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A B S T R A C T

The load-displacement (P-δ) curve, recorded during the fracture process of concrete in three-point bending tests,
is supposed to depict a fracture phenomenon of statistical character that can be suitably described by a density
function pertaining to the generalized extreme value family, which proves to be maximal Fréchet, as a particular
case of heavy tail distributions. Since the proposed analytical function fits the test record throughout, the non-
measured fracture work, corresponding to the upper asymptotic tail of the fracture curve P-δ, is expected to be
measured in a more reliable and accurate way than using other methods currently recommended to evaluate the
total fracture energy of concrete. The general scale parameter Ω, identified as the area under the fracture curve,
and the three parameters of the Fréchet density function are estimated by fitting the recorded data to the
experimental P-δ curve using a specific Matlab program. The model is applied to fit experimental fracture curves
from an ample 3-PB test program on notched specimens for different self-compacting concrete mixes. The results
obtained for the size-independent specific fracture energy are compared with those provided by other well-
established conventional approaches. In both instances, the suitability of the proposal is confirmed.

G R A P H I C A L A B S T R A C T

1. Introduction

The reliable estimation of the area under the P-δ (respectively P-
CMOD) fracture curve, identified as the total fracture energy dissipated

during the fracture process of quasi-brittle materials, in particular of
concrete [1], requires suitable and accurate fitting of the test data
recorded not only at the lower but the upper or even far upper tail of
the fracture curve [2,3]. Due to testing limitations, one end point of the

http://dx.doi.org/10.1016/j.matdes.2017.05.030
Received 17 January 2017; Received in revised form 12 March 2017; Accepted 8 May 2017

⁎ Corresponding author.
E-mail address: bulte@us.es (H. Cifuentes).

Materials & Design 129 (2017) 201–209

Available online 10 May 2017
0264-1275/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/02641275
http://www.elsevier.com/locate/matdes
http://dx.doi.org/10.1016/j.matdes.2017.05.030
http://dx.doi.org/10.1016/j.matdes.2017.05.030
mailto:bulte@us.es
http://dx.doi.org/10.1016/j.matdes.2017.05.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matdes.2017.05.030&domain=pdf


test at a certain displacement (or CMOD), known as the test limit, is
adopted by interrupting prematurely the test record before complete
failure of the specimen occurs. Though the area corresponding to this
unattainable terminal phase of the test fracture may appear negligible,
it represents a significant part of the total fracture energy that cannot be
disregarded because the vast extension of the associated displacement
while the low load values are approaching asymptotically to zero. In
fact, this non-measured work of fracture is considered for some authors
[4–6] as the main cause for the size dependency obtained in the specific
fracture energy if 3-PB test is performed as indicated by RILEM work-of-
fracture method [7].

To achieve this goal, two different but complementary fitting steps
are generally proposed for measuring the fracture energy. In the first
one, the area under the recorded test data is directly measured without
a particular analytical expression is needed to fit the fracture curve
data. In the second one, exponential or hyperbolic solutions are
suggested for the extrapolation of the far upper tail of the fracture
curve [4–6] without representing a fully convincing solution to the
problem. In any case, the assessment of the fracture energy is not
straightforward. First, sudden load jumps and irregularities commonly
occur in the post-pick region, due to successive aggregate fractures,
impeding the load to be smoothly recorded. Furthermore, the accurate-
ness in the estimation of the marginal energy is influenced by the choice
of the initiation point of the extrapolation due to the limiting part of the
far upper tail of the fracture curve giving support to the extrapolation
[1]. Finally, the questionable suitability of the analytical solution
proposed adds uncertainty to the estimation of the marginal energy.

In this paper, an alternative proposal is presented allowing a global
and robust analytical fitting of the fracture curve to be achieved. The
approach is founded on the presumably statistical character of maxima
of the fracture phenomenon observed in the concrete bulk where
random local failures progress exhibiting an asymptotic trend. The
coarse aggregate structure and its random distribution, inherent to
concrete, imply high inhomogeneity of the material evidenced by the
peak and post-peak branch of the load-displacement curve of concrete,
which explains the statistical nature of the fracture mechanism of
concrete as stated by Hu et al. in a recent paper [8]. This suggests the
fracture curve shape to be identified as a density function of the
generalized extreme value (GEV) family for maxima.

In this work, a novel proposal is made for optimal fitting of the
whole fracture curve of concrete from the recorded test results, along
both the pre- and post-pick regions, based on an analytical solution
pertaining to the GEV distribution. In this way, the asymptotic far upper
tail of the fracture curve is also included in the proposal without lack of
continuity with the rest of the curve.

2. Fitting the fracture curve as a density function of the
generalized extreme value (GEV) family

In brittle materials, failing of the first local element failure incites,
as a chain reaction, a global component failure so that the weakest link
principle is applicable. Other than this family, quasi-brittle materials, as
plain concrete, exhibit a steady local failure process with ubiquitous
progress so that generalized microcracking propagation extends
throughout until the accepted failure. This kind of fracture suggests a
certain statistical law underlying the microcracking extension in the 3-
PB test, which fits the fracture curve of concrete. The latter is identified
as the load-displacement (respectively, load-CMOD) curve according to
a law of maxima referred to the stronger links, which gradually give up
their integrity during the failure process in an asymptotic way thus
justifying a heavy tail distribution. In this way, possible discontinuities
or inconsistencies by the recorded data arising during the test, as for
instance jumps due to aggregate failures, are smoothed.

In order to avoid a correction of the work of fracture to achieve a
size-independent value of the specific fracture energy of concrete, an
“ad-hoc” fixture was proposed, see [4–6]. This implies a premature test

ending, in case that self-weight compensation is provided, whereas the
key point consists in how to estimate, through extrapolation of the
fracture curve, the remaining work of fracture to be expected beyond
such a test limit [9–11].

Different exponential or hyperbolic shaped functions are currently
applied to fit the far upper tail of the fracture curve for concrete
specimens by extrapolation [1,4–6]. From a physical or functional
perspective such a procedure is considered not entirely satisfactory
since this fitting is only supported by the recorded results of an
arbitrarily selected after-peak region of the fracture curve, namely
those showing a positive curvature pertaining to the last branch of the
curve approaching to the abscissa axis, i.e. the tail of the curve.
Contrary, data results preceding the maximum load value as well as
the immediate part of the after peak region of the P-δ curve are
disregarded in this fitting process though both, notably, represent
regions not suitable to be fitted by the arbitrary selected curve.
Moreover, the transition point between this local fitting and the initial
part of the P-δ curve is discretionary chosen thus conditioning the
boundary conditions of the curve searched [1]. In this way, the
extrapolation to very large δ values, implying the fitted curve outside
the test scope, seems to be unreliable and as such, questionable.

As an alternative, the whole load-displacement curve P-δ by quasi-
brittle materials is supposed to depict a fracture process of statistical
character, due to the random successive local failures succeeding by the
huge number of material units involved by the cement past and
aggregates. Such a process may be adequately represented by a
generalized extreme value (GEV) distribution [12], which represents
a particular case of heavy tail distributions [13–15]. This family of
distributions is occasionally applied for prediction of natural disasters
of any kind and is characterized by exhibiting a tail heavier than that
provided by the exponential distribution. With such a solution, not only
the upper tail but the whole P-δ curve is fitted. The resemblance
between the pdfs of such distributions, which evidence an asymptotic
far upper tail, and the concrete fracture energy curves resulting from
experimental tests supports “a priori” the assumption of such a
probabilistic background inherent to the failure process.

The unknown heavy tailed distribution, theoretically suitable to be
assumed, can be identified asymptotically with a distribution pertaining
to the generalized extreme value (GEV) family [12]. The suitable
particular distribution implied, from which only the Fréchet, Gumbel
or Weibull distributions are possible candidates, according to the
extreme value statistics, will be decided from the outgoing fitting
parameters of the GEV distribution. In fact, from the point of view of a
valid range condition, only the Fréchet for maxima and the Weibull for
minima are suitable solutions to reproduce the P-δ fracture curve. This
is because the characteristics of the recorded results along the fracture
process implying limited lower value and apparently unlimited upper
value of the displacement. Intuitively, maxima values of the displace-
ment, or alternatively crack mouth opening displacements (CMOD), are
the expected reference magnitudes to be considered, thus requiring an
extreme value distribution family for maxima, while load, after
previous normalization by the fracture work, may be related to
probability. Accordingly, the Weibull option should be discarded, and
a Fréchet distribution for maxima is the only possible fitting solution for
the P-δ fracture curve. In any case, such theoretical considerations
should be confirmed through the application to the real test P-δ,
respective P-CMOD registers.

The following advantages are expected using the Fréchet distribu-
tion for fitting the fracture curve:

- An extreme value model is supposed to describe statistically the
physical fracture phenomenon occurring during the test as the relation
existing between the increasing displacement and the locally varying
external forces necessary to overcome the cohesion in the process zone.

- The heavy tailed distribution proposed belongs to a three-
parameter Fréchet distribution, thus profiting of the properties exhib-
ited by such distributions as representing the only asymptotic solution
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whichever the fracture curve could be.
- The assumed existence of an underlying statistical model con-

tributes to a more reliable parameter estimation avoiding the arbitrari-
ness of adopting different kinds of regression solutions as a function of
the particular material tested. Possibly, physical interpretation can be
assigned to the model parameters.

- Since all experimental recorded data from both the pre- and post-
pick regions are included in the assessment, an extrapolation of the P-δ
curve beyond the test limit to assess the non-measured fracture energy
may be objectively justified for fitting the asymptotic upper tail with
enhanced reliability.

- The model ensures continuity and smoothness of the fracture curve
even if irregular jumps are recorded or even partial lack of records arise
due to successive failures of the brittle aggregates.

- The analytical expression obtained for the P-δ curve and the
physical meaning of the intervening parameters entail considerable
advantages when analyzing the characteristics and trends of the
experimental results obtained for different materials or test conditions,
in particular, in the scatter analysis.

- An “ad-hoc” Matlab program, developed for the fitting assessment,
provides an estimation of the three Fréchet parameters and the work of
fracture, as the normalizing fracture parameter. Further, the Young's
modulus, as related to the ascendant part of the fracture curve, and the
tension stress fct, as related to the distribution mode, i.e., the peak of the
fracture curve, could be also estimated.

3. Steps in the experimental testing and recorded data

Fitting the experimental results to a GEV fracture curve comprises
the following steps:

Step 1. Recording the experimental fracture curve from the 3-PB
test.

The whole P-δ fracture curve for the concrete studied is recorded
along the fracture process from the test initiation up to specimen
failure, building a vast experimental database of P-δ value pairs. In
principle, the experimental program is focused on the 3-PB test.
Sometimes, a previous filtering of the anomalous outgoing fracture
curve record from the experimental results, exemplary in the post-peak
region, are required; in particular sudden load up and down arises due
to the random and irregular fracture of aggregates, see Fig. 1.

Step 2. Enhancing the quality of the P-δ curve by homogenizing
weights of all recorded data along the fracture curve P-δ.

Usually, the 3-PB test is performed by CMOD control with a clip-
gauge transducer, whereby the load and the vertical displacement at
the mid-span section are recorded too. The vertical displacement is
measured by using a LVDT transducer mounted on a rigid frame to
avoid parasitic torsional effects.

This implies that higher density of registered points, as projected to

abscissa axis, is obtained where fracture curve parts exhibits larger
slope whereas lower density results where the test rate speeds up, i.e.
where it trends to horizontality, This is particularly notable at the upper
tail where small changes of the load magnitude correspond to very
larger variations of the δ values, implying implicitly that more weight is
assigned to the numerous number of registered points in the pre- and
post-peak region than to those located on the upper tail.

As a result, unsatisfactory fitting of the fracture curve is observed in
the upper tail region, see red line of Fig. 3, what consequently induces a
wrong extrapolation beyond the test scope impeding the correct
fracture energy estimation.

A way to compensate this undesirable effect consists in expurgating
the results in the high density regions of the fracture curve so that a
regular data spacing along the fracture curve, in this case
Δδ = 0.001 mm, is achieved allowing a practically homogeneous
weighted data sample to be considered in the fitting process of the
registered P-δ fracture curve. A plot representing the number of points
included in the fitting process applied to the three representative zones
of the fracture curve as considered here, is given in Fig. 2 b). In this
way, more emphasis is given to the tail point registered in the tail and
the improved fitting achieved becomes apparent, see green dotted line
of Fig. 3. Other alternative procedures, as assigning different weights
according to the different slope region of the fracture curve could be
also envisaged.

The operation loop implemented in the fitting Matlab software
consists in:

- A displacement vector ranging from a minimum 0 value to the
maximum experimental limit test displacement is created assuming
regular increments of 0.001 mm.

- For any displacement value of the displacement vector just
created, the corresponding paired load value is found out from the
experimental vector registered. This ensures pair of P-δ values at
regular displacement increments.

- Just in case the precise displacement value needed to define the
next searched pair of values P-δ is not found, a linear interpolation is
performed between the pair of values before and after the required
displacement allowing an estimation of the searched load to be
achieved.

Step 3. Fitting the experimental fracture curve as a scaled prob-
ability distribution function (pdf).

In the following, the fracture curve is assumed to be identified as a
scaled probability density function (pdf) pertaining to the family of a
generalized extreme value distribution (GEVD), see [12]. In fact, a
Fréchet distribution could be proposed directly as a fitting candidate
although letting open the distribution type from the GEVD family
enhances the objectivity of the procedure.

The final P-δ function becomes

Fig. 1. Example of fracture curve of a concrete as recorded directly from test (left) and after filtering (right).
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Pδ f δ λ γ κ= Ω· ( ; , , )GEVD (1)

where fGEVD(λ,γ,κ) is the GEVD characterized by λ ,γ ,κ, i.e. the
location, scale and shape parameters, respectively:
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where δ λ if κ or δ λ if κ≤ + , > 0, ≥ + , < 0γ
κ

γ
κ and Ω is a con-

version factor denoted “fracture work scaling parameter” with work
units that must be applied for the unit area under the pdf to equate the
fracture work under the fracture curve. This ensures the model
identification to be congruent from a dimensional point of view.

Step 4. Initial estimation of the GEVD parameters.
In order to speed up the convergence process by the parameter

estimation procedure as well as to enhance the reliability of their
values, a reasonable choice of the initial parameter values is advisable.
A procedure providing those values independently of the particular P-δ
studied would represent a desirable advance for the parameter estima-
tion procedure. A rough estimation of the fracture work scaling
parameter Ω is provided as the accumulated area under the fracture
P-δ curve till the test limit, i.e. the measured fracture work, while the
initial values of the remaining GEVD parameters λ, γ, and κ, are found

based on the elemental percentile method proposed in [12] as a more
suitable procedure than the maximum likelihood method. In this case
the percentiles 0.1, 0.3 and 0.5 are considered in the calculation.

Step 5. Final estimation of the GEVD parameters.
With the aim of facilitating the final parameter estimation by an

iteration process, a Matlab program is developed (see Annex 1 and 2),
in which the initial values previously determined are introduced. It
provides an optimal fitting of the analytical P-δ curve to the experi-
mental results using the probability density function of a generalized
extreme value (GEV) as already mentioned, see Expr. (2).

The parameters λ ,δ ,κ, and Ω are determined by minimizing the
difference between the curve defined by the function P(δ)=Ω ·
fGEVD(δ;λ,γ,κ) to be fitted and the original test results pairs using the
least square method.

Step 6. Calculation of the work of fracture and fracture energy
The total fracture work cannot be determined directly from the test

results due to data censoring caused by the limit displacement adopted
in the real test. While the conventional assessment methods must resort
to a complementary model to provide a prospective extrapolation of the
fracture curve far upper tail, see [1,4–6], the present approach
furnishes directly the fracture work as the fracture work scaling
parameter Ω. This happens because since fGEVD(δ;λ,γ,κ) is a pdf
function, the integral of which from λ to infinity is equal 1, so that Ω
can be identified as the integral of the P-δ curve from zero to infinity or
equivalently as the total fracture work Wtotal consumed in the test:

∫ ∫ ∫Pδdδ Ω f δ λ γ κ dδ f δ λ γ κ dδ= · ( ; , , ) = Ω· ( ; , , ) = Ω
λ

GEVD
λ

GEVD
0

∞ ∞ ∞

(3)

Further, the non-measured or remaining work of fracture, corre-
sponding to the area under the far upper tail can be easily calculated
from the analytical expression of the GEV pdf as its integral from the
limit displacement in the experimental record, δlim, up to infinity,
giving us the opportunity to compare the values of such a remaining
fracture work as given by the current estimation methods based on an
extrapolation [1,4–6], and the GEVD approach proposed here.

Step 7. Identification of the particular resulting GEVD from the
shape parameter value

Once the GEVD parameters are estimated, the sign of the shape
parameter κ, determines the identification of the particular extreme
value distribution, i.e. Weibull, Gumbel or Fréchet that fits optimally
the experimental results. Without a unique exception in all the cases
handled, the shape parameter κ turns out to adopt a negative value
confirming, without any supplementary assumption, that a Fréchet
distribution for maxima is the searched solution. This allows the

Fig. 2. Data density in experimental fracture curves: original data points as registered from the test (left) and data points used in curve fitting after weight compensation (right).

Fig. 3. Fitting of test record as delivered and after data weight compensation.

A.F. Canteli et al. Materials & Design 129 (2017) 201–209

204



fracture curve to be optimally fitted irrespective of the concrete mix and
strength, as expected from the considerations already advanced in
Section 2.

The Fréchet distribution fulfils the condition of being a particular
case of heavy tail distribution the pdf of which is given as
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λ, δ and β being the location, scale and shape Fréchet parameters,
respectively, to be obtained from the GEVD parameters, see (2),
according to the expressions:
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where the parameters marked with asterisk correspond to the GEVD
function.

The same P-δ law as in (1) holds with the only change of the pdf
being particularized to the Fréchet one:

́Pδ f δ λ γ κ= Ω· ( ; , , )Fre chet (6)

Expr. (4) evidences that an extrapolation for the far upper tail of the
fracture curve beyond the test limit should be performed as a product of
an increasing exponential function times a decreasing potential func-
tion, a solution not at all evident to be foreseen in advance.

4. Experimental program

In this Section, the results of an extensive experimental program

carried out on 3-PBT specimens made of normal and high-strength self-
compacting concretes mixes with compressive strength ranging from 36
to 107 MPa are presented. The three GEVD model parameters and the
fracture work scaling parameter Ω are estimated from the test data, and
the Fréchet pdf parameters and the total fracture work and energy are
subsequently derived. In particular, the remaining non measured
fracture work is calculated allowing a comparison to be made with
the corresponding values as resulting from the model proposed by
Elices et al. [4–6]. In this way, the applicability of the Fréchet
distribution to fit the load-displacement curves can be checked.

4.1. Materials

The mixes were designed according to the method proposed by
Deeb and Karihaloo [16]. The maximum aggregate size was 10 mm and
the cement was an ordinary Portland cement CEMII/B-L 32.5 N for all
mixes. Six different SCC mixes were manufactured with different
volume fractions of coarse aggregates, paste to solid and water to
binder ratios. The mix proportions and constituents are shown in
Table 1. It should be noted that in the designation of the mixes the
number corresponds to their target compressive strength. The specific
gravity of the cement, ggbs and silica fume are 3.10, 3.30 and 2.25
respectively. In case of limestone, river sand and coarse aggregate is
1.70, 2.65 and 2.8 respectively. Table 2 shows the flow test results
measured for the SCC mixes.

4.2. Specimen preparation and test procedure

From each of the six mixes (Table 1) 4 beam specimens
(100 × 100 × 440 mm), four cubes (100 mm) and four cylinders
(100 × 200 mm) were cast. The mixes were prepared in a planetary
mixer by mixing the coarsest constituent (coarse aggregate) and the
finest one (micro-silica), followed by the next coarsest (sand) and next
finest constituent (cement), and so on. Before each addition, the
constituents were mixed for 2 min. To fluidize the dry mix, two-thirds

Table 1
Mix proportions of SCC mixes, kg/m3.

Mix designation cma water SPb w/cm SP/cm (%) LPc FAd CAe

cement ggbs SF FA† FA††

M1 233 117 – 200 1.8 0.57 5 62 453 698 548
M2 207 152 – 200 1.8 0.56 5 58 426 709 540
M3 252 124 – 190 2.3 0.50 6 65 479 739 580
M4 405 – 196 144 20 0.24 34 48 352 434 796
M5 407 – 195 146 20 0.24 34 48 350 436 791
M6 429 – 137 131 16 0.23 28 54 396 691 560

a Cementitious material, i.e. binder (Note: ggbs is the ground granulated blast furnace slag and SF refers to silica fume).
b Super-plasticizer (BASF Masterglenium SKY 886).
c Limestone powder < 125 μm.
d Fine aggregate < 2 mm (Note: a part of the fine aggregate is the coarser fraction of the limestone

powder, FA†125 μm-2 mm, whereas FA†† refers to natural river sand < 2 mm).
e Coarse aggregate < 10 mm.

Table 2
Flow test results of SCC mixes.

Mix designation Slump flow

Spread
mm

t500
s

M1 690 2.5
M2 710 2.4
M3 700 2.8
M4 760 2.2
M5 805 2.1
M6 700 2.7

Table 3
Results of mechanical properties and fracture parameters of SCC mixes.

Mix Mechanical properties

fc
(MPa)

fst
(MPa)

Ec
(GPa)

M1 34.4 ± 2% 3.2 ± 3% 30.7 ± 1%
M2 42.2 ± 2% 3.3 ± 1% 33.9 ± 7%
M3 51.4 ± 2% 4.0 ± 9% 35.1 ± 6%
M4 79.4 ± 5% 4.9 ± 5% 36.9 ± 4%
M5 96.8 ± 4% 5.3 ± 5% 42.3 ± 1%
M6 105.2 ± 3% 5.4 ± 7% 46.0 ± 2%
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of the super-plasticiser (SP) was added to the water. One-half of this
water–SP mixture was added to the dry constituents and mixed for
2 min. One-half of the remaining water–SP mixture was then added and
mixed for 2 min. This process was continued until all water–SP mixture
was added in about 10 min. The remaining one-third of the SP was
added and mixed for 2 min just before transferring the mix into the
moulds. The specimens were de-moulded after 1 day and cured in water
at ambient temperature for 28 days.

The characteristic compressive strength (fc) was determined from
100 mm cubes in accordance with UNE EN12930–3:2009. The indirect
tensile strength (fst) was obtained using the cylinder splitting test
(Brazilian tests) according to UNE EN12930–6:2010, carried out on
100 mm diameter by 200 mm long cylinders. The static elastic modulus
of concrete (Ec) was determined according to the UNE
EN12390–13:2014 by gradually loading a cylindrical specimen in
compression to approximately a third of its failure load and measuring
the corresponding strain from 30 mm strain gauges. The values of the
mean and coefficient of variation measured for the mechanical proper-
ties of all concrete mixes are given in Table 3.

Regarding the fracture energy of SCC mixes, three-point bending
tests were carried out on notched beams. The beams cast for each mix
were notched to a depth of 50 mm (notch to depth ratio a/W = 0.5)
with a thin (3 mm) diamond saw. As schematically shown in Fig. 4, the
tests for the determination of the fracture energy were performed
according to the RILEM work-of-fracture method [7]. The crack mouth
opening displacement (CMOD) was used as the feedback control signal
and the load-point deflection was measured simultaneously by means of
a linearly variable displacement transducer (LVDT) mounted on a rigid
frame to avoid parasitic torsional effects on measurement of vertical
displacement. The tests were performed in a stiff closed-loop universal
testing machine with a maximum load capacity of 50 kN.

4.3. Determination of the size-independent fracture energy according to the
method proposed by Elices et al.

The specific fracture energy of concrete is determined by means of
the work-of-fracture method procedure of RILEM [7] with the correc-
tions proposed by Guinea, Planas and Elices [4–6]. As is well known,
the original RILEM procedure provides size-dependent values of the
specific fracture energy of concrete. Guinea et al. studied this size
dependency and attributed it to the presence of several sources of
energy dissipation in the test procedure. Among others, the most
important source is the non-measured specific fracture energy of
concrete due to the curtailment of the tail part of the load-displacement
curve (P-δ). It should be noted that other procedure could be used to
determine the size-independent value of the specific fracture energy as
the boundary effect method proposed by Hu, Wittmann and Duan
[17–20] or its simplified version proposed by Abdalla and Karihaloo
[10] and validated by Karihaloo et al. [21].

To estimate this non-measured work of fracture when the test is

finished (WF.NM) at very low loads it is necessary to model the beam
behavior when the cohesive crack closely approaches to the free surface
[6]. For cohesive materials like concrete, the last phase of a stable
three-point bending test can be modeled following the rigid-body
kinematics used by Petersson [2].

Considering the geometrical relationships given by the rigid-body
model, the non-measured fracture energy of the three-point bend test
must be estimated by (7) according to [6]:

W A
δ

=F NM
u

. (7)

where A is the experimental coefficient for fitting the P-δ tail (also
known as the far tail constant) and δu is the last recorded midspan
deflection of the specimen at the end of the test.

Once the non-measured energy has been estimated, the size-
independent fracture energy of concrete can be calculated from Expr.
(8), see [22]:

∫
G W W

A

Pdδ

B D a
= + =

· −F
F M F NM

lig

δ

. . 0
u

(8)

where Alig is the ligament area to be broken during the test.
As observed, the tail of the P-δ curve must be fitted between the two

end points (δ0 and δu) to derive the coefficient A (Fig. 5).
As demonstrated by Lee and Lopez [1], the estimated non-measured

work of concrete is highly sensitive to the far tail constant value, which
depends on the values of both end points (δ0 and δu) considered for
fitting the tail. They found that the appropriate selection of the end
points of the test should be considered along with the maximum
aggregate size in order to obtain a consistent value of the size-
independent fracture energy of concrete. Elices et al. [4–6] established
that a general criterion consists in considering δ0 as the vertical
displacement corresponding to a load of 5% of the peak load (Pmax)
and δu as the last recorded mid-span deflection of the specimen at the
end of the test.

5. Results

Table 4 shows the results (mean values and COV) of the total work
of fracture and the size-independent fracture energy for the different
SCC mixes considering the correction to fit the tail of the P-δ curve. The
results are similar to those found by other authors for similar strength
SCC mixes [22–24]. It should be noted that results showed in Table 4
are those obtained for a value of δ0 corresponding to the 5% of the peak
load. In Annex 3 the values of the different necessary fitting values of δ0
corresponding to a load of 7.5%, 5% and 2.5% of the peak load,
respectively, are considered to analyze the variability of results for the
δ0 chosen. ΔWF.NM-5% represents the variation of the non-measured
work of fracture estimated according to the recommended load of 5% of
the peak load. As observed, the estimated value of WF.NM shows high
relative variations with respect to the chosen δ0 in some cases.

Fig. 4. Schematic representation of the 3-PB test configurations.
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The fracture curves from the experimental program are also fitted
using the GEVD model with the aid of the Matlab code given in Annex
1. Captures of the Matlab program prepared as User's Guide are also
given in Annex 2. The mean values and COV of the work of fracture and
size-independent specific fracture energy calculated with the proposed
method are also provided in Table 4 so that, subsequently, the values
from both methods can be easily compared. In Annex 4, the corre-

sponding GEVD model parameters obtained for each of the analyzed
beams are exposed giving advice of the quality of the fitting reached.

Fig. 6 shows a selection of fitted density functions for the different
mixes plotted along with the experimental recorded data. For the sake
of simplicity, only one of the fracture curves for each sample, i.e.
concrete mix, is displayed. The GEVD fit can be judged as highly
satisfactory. Only in three cases (from a total amount of twenty three

Fig. 5. P-δ curve in a three-point bend test and the measured (WF.M) and non-measured (WF.NM) work of fracture.

Table 4
Mean values and COV of the work of fracture and the size-independent specific fracture energy obtained for the different SCC mixes according to the Elices et al. and the GEVD models.

Mix Elices et al. GEVD Model

WF.M

(Nmm)
WF.NM

(Nmm)
WF.T

(Nmm)
GF

(N/m)
W⁎

F.M

(Nmm)
W⁎

F.N M

(Nmm)
W⁎

F.T

(Nmm)
G⁎
F

(N/m)

M1 536 ± 13% 87 ± 46% 623 ± 17% 125 ± 17% 543 ± 14% 73 ± 32% 616 ± 16% 123 ± 16%
M2 490 ± 15% 62 ± 23% 553 ± 16% 111 ± 16% 491 ± 16% 50 ± 51% 541 ± 19% 108 ± 19%
M3 528 ± 10% 68 ± 20% 597 ± 10% 119 ± 10% 526 ± 11% 34 ± 56% 560 ± 13% 112 ± 13%
M4 393 ± 11% 50 ± 22% 443 ± 12% 89 ± 8% 399 ± 12% 22 ± 52% 421 ± 13% 84 ± 13%
M5 428 ± 15% 71 ± 35% 499 ± 17% 100 ± 17% 428 ± 15% 28 ± 36% 455 ± 15% 91 ± 15%
M6 386 ± 16% 46 ± 43% 432 ± 18% 86 ± 18% 394 ± 17% 18 ± 54% 412 ± 19% 82 ± 19%

3 

Fig. 6. Original fracture curves from recorded data and fitted GEVD function representative of each concrete mix M1 to M6.
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beams tested) a slight feet would be advisable.
It should be noted that the GEVD approach provides directly the

total fracture work identifiable as the value of the Ω parameter. In order
to compare the results of the fracture energy obtained using the GEVD
approach with those issuing from the method proposed by Elices et al.
[4–6], the partial work of fracture, as resulting from the area under the
fracture curve measured from the test record, and the non-measured
work of fracture, are also included in Table 4. The values calculated
with the GEVD model are those corresponding to the columns marked
with an asterisk.

6. Discussion

The results of the measured fracture work, WF.M, corresponding to
the area under the fracture curve up to the test limit, are in good
agreement either using directly the experimental recorded results or the
GEVD approach. On the contrary, substantial differences arise between
the non-measured fracture work, WF.NM, as estimated according to the
GEVD approach and as proposed by Elices et al. [4–6], and recom-
mended in [7]. Higher confidence can be assigned to the former since
its results are supported by the throughout fitted fracture curve, which
is not influenced by the choice of the limiting displacement, δ0,
contrary to the results provided by the latter, as pointed out by Lee
and Lopez [1]. According to the assessment of the results for the five
concrete mixes, it can be concluded that the non-measured fracture
work results estimated by the proposal of Elices et al. for δ0(5% Pmax)
surpasses systematically those provided by the present approach. This
implies unsafe overestimation of the fracture energy of the concrete.
This could be explained as a consequence of assuming a solution of
exponential type for the extrapolation curve instead of the correct one,
represented presumably by the Fréchet density function, which repre-
sents the product of a potential type component times an exponential
one, the latter, by the way, not approaching asymptotically to zero but
increasing to unity (see Fig. 7). The GEVD solution, as a particular case
of heavy tail distribution, approaches closer to the displacement axis
than the pure exponential solution thus providing less area under the
far tail of the curve than that as presumed by the solution of Elices et al.
[4–6].

Since the maximum aggregate size is maintained constant through-
out all concrete mixes, the variation exhibited by the model parameters
may be expectedly attributed to the mechanical properties of the mix,

for instance to the compressive strength, as long as a systematic
parameter investigation is not undertaken. Accordingly, apart from
some small inconsistencies possibly due to the limited number of the
specimens included in the six concrete mix samples tested, a clearly
decreasing trend of the fracture curve scaling parameter Ω is noticed,
while a significant increasing trend is exhibited by the Fréchet shape
parameter for increasing values of the compressive strength. The
Fréchet scale parameter seems to be insensible to the concrete strength,
at least when the maximum aggregate remains unaltered. On its turn,
the absolute variation of the Fréchet location parameter is not
significant.

It should be noted that the Fréchet location parameter generally
exhibits small but not nil values. This would point out that the
transmission of the load from the machine to the specimen is not so
simple and immediate as usually is taken for granted. In fact, an initial
process is required before the linear ascending pre-pick branch of the
fracture curve occurs. In any case, the influence of this initial part of the
curve on the fracture work is negligible.

The analytical expression of the fracture curve provided by the
model proposed opens new perspectives for deriving the softening
curve to be subsequently implied in FE calculations based on a cohesive
model but also for exploring the possible use and standardization of
alternative testing specimens to determine fracture energy, as for
instance the so-called “modified disc compact test” (MDCT), proposed
by the authors [23], which proves to represent a reliable and simple
test, particularly suitable also for assessing fracture properties of
already casted concrete structures.

Finally, it must be insisted on the statistical grounds on which the
model herein proposed is based, which strengthen the real statistical
character of the fracture process in concrete. As stated by Hu et al. in a
recent paper [8], the coarse aggregate structure of concrete has a
crucial role on the peak load and the softening branch, after the peak, of
the P-δ curve and subsequently, on fracture parameters of concrete,
such as the tensile strength, the specific fracture energy and size effect.
It is well known the influence of the internal structure of concrete on its
fracture behavior and subsequently, of its mix proportioning, as
demonstrated by several researchers [24–26], especially in SCC where
a higher amount of fine particles is necessary [27]. An increase of the
CA fraction produces an increase of GF [24,28], originated by the
greater softening part of the P-δ curve. Moreover, as demonstrated by
Alyhya et al. [24] an increase in the p/s ratio provides a decrease of the
fracture energy, as well as the reduction of GF with decreasing the w/cm
ratio [24–26]. As observed from results (Table 4), the mixes herein
studied follow the same trends depending on its mix proportions
(Table 1). The presence of the coarse aggregate structure implies a
remarkable heterogeneity of the concrete, which combined with the
random distribution of the coarse aggregates in the matrix and its
influence on the shape of the real crack front reveals the mechanisms
acting behind the statistical nature of the fracture process in quasi-
brittle materials, as considered in the Hu-Duan boundary effect model
[8]. It is expected that the analytical description of the fracture process
would contribute to help in clarifying the conceptual discussion
concerning the Bazant size effect model (SEM) and the BEM, see
[8,29–31]. It will be of interest to investigate in a next experimental
research program the influence of the coarse aggregate structure
(distribution and maximum size) on the Fréchet parameters, particu-
larly the scale and shape ones. The same applies for the specimen size.

7. Conclusions

The main conclusions that can be drawn from this work are the
following:

- The fracture process of quasi brittle materials, in particular that of
concrete, is supposed to represent a phenomenon of statistical character
that can be identified with a probability density function of the GEVD
family as a particular case of heavy tail distributions. At least some of

Fig. 7. Graphical representation of the two potential (blue) and exponential (green)
components, constituting the Fréchet density function, see (4). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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the parameters can be identified with physical magnitudes related to
the fracture process.

- A Fréchet distribution for maxima is “a priori” justified on
considerations based on extreme value statistics and confirmed as the
general solution in all the cases studied. This expectation is confirmed
since the GEVD probability density function fitting optimally the
experimental P-δ data recorded during the fracture process to a fracture
curve turns out to be regularly a Fréchet for maxima. This supports the
assumption of the statistical character of the micromechanical damage
of the material during the real fracture process.

- The GEVD model is applied to 3-PB test records from an
experimental program carried out on an ample variety of concrete
mixes. The Fréchet density function for maxima provides repeatedly
high satisfactory fitting throughout the P-δ curve proving to represent a
robust proposal for fitting the fracture curve and estimating the fracture
energy of concrete, independently of the concrete mix considered.

- The results of the measured fracture work, WF.M, provided by the
GEVD approach are in good agreement with those derived directly from
the test recorded results whereas the non-measured fracture work,
WF.NM, as derived according to the method recommended by RILEM
TCM-85 systematically exceeds that obtained applying the GEVD
approach, to which incidentally higher confidence can be assigned
since the fracture curve is in such a case fitted throughout the recorded
test data.

- A Matlab program is developed for automatic determination of the
model parameters. The program provide the fracture energy measured
and non-measured, represented by the scale parameter according to the
fitted GEVD distribution, the Fréchet parameters, the maximum load by
the specimen identified as the distribution mode and an estimation of
the tension strength for the concrete specimen tested.
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