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Abstract 

This article aims to propose a fuzzy model for closed-loop material requirement planning (MRP) 

systems considering uncertain parameters like production capacity, on-hand inventory and lead times. 

For this, a deterministic closed-loop MRP model is proposed, and then fuzzy coefficients in the 

constraints of the model are used to establish the fuzzy MRP model, which depends on the degrees of 

satisfaction (λ) of the decision-maker. Data from a production plan of a company dedicated to the 

manufacture of electrical transformers are employed to verify the proposed fuzzy MRP model, 

minimizing inventory holding costs, production setup costs, and extra capacity costs. The results show 

the fuzzy model performs better than the deterministic model, especially for low λ values, providing 

better performance in terms of the total cost, total inventory, service level, and computational efficiency. 
(Received in September 2020, accepted in November 2020. This paper was with the authors 2 weeks for 1 revision.) 
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1. INTRODUCTION 
 

Material Requirements Planning (MRP) represents an approach for converting the gross 

requirements of finished product given by the Master Production Schedule (MPS) into a 

replenishment schedule for raw materials and component parts described in a bill of materials 

(BOM) that seeks to comply with the due dates [1]. For this, MRP considers external and 

internal demand requirements, lead times, on-hand inventory, resource capacity constraints, 

among other elements [2]. Therefore, MRP provides production control through the dimensions 

of quantities and timing, balancing the trade-off between efficiency and cost [3] since the 

inventory represents a serious money investment for any company, and in turn inventories 

enhance operational flexibility and ensure a constant flow of materials in the production chain 

[4]. 

      MRP has prevailed over time as the most widely used production planning system, 

especially in discrete parts manufacturing, and is combined with other manufacturing 

techniques to improve its performance and scope [5]. MRP application sectors include the 

machine industry [6], the management of crude oil inventory [7], the automobile industry [8], 

the garment industry [9], among others. However, not every MRP system offers satisfactory 

operation [10], due to the fact that, since its origins, shortcomings have been identified in 

capacity management [2], lot sizes and fixed delivery times [11], integration with shop floor 

extensions [2] and the uncertainty management that affects the performance of MRP production 

plans [5, 12]. In order to mitigate risks, some parameters of the MRP cannot be assumed as 

deterministic in uncertain environments, such as those faced by supply chains [13]. In an MRP 

system, some uncertainty sources can be mentioned like customer demand fluctuations [14], 

the lead time length, supply reliability, production capacity, inventory levels [12], product 
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quality, production system failures, among others [15], and this uncertainty can be caused by 

randomness or lack of knowledge [16]. Therefore, considering uncertainty in MRP systems 

allows the creation of realistic models, which generate superior planning decisions to those of 

deterministic models [17]. 

      In most cases, an MRP model operates in uncertain environments in which statistical data 

are not reliable or even available for parameters like demand and capacity [18] due to rapid 

market and technological changes in companies, making the use of probability distributions and 

stochastic approaches impractical [16]. Consequently, fuzzy logic allows modelling uncertainty 

through possibility functions [19], offering a more rational decision-making approach based on 

expert opinion rather than using probability distributions [20, 21]. According to [16], it is 

necessary to distinguish whether the uncertainty management is required due to the lack of 

clarity or flexibility in constraints and goals, for which fuzzy constraints are modelled, or it is 

required due to lack of knowledge of parameters [22], for which systemic uncertainty is 

modelled with fuzzy coefficients [17]. 

      Therefore, MRP parameters are considered with uncertainty through fuzzy constraints, 

fuzzy coefficients [16], or flexibility in the objective functions [21]. Table I shows the main 

studies addressing MRP systems with fuzzy logic, identifying for each study the modelling and 

solution approach, as well as the parameters considered with uncertainty. It shows that the most 

used fuzzy parameters in MRP systems are market demand and lead times, as highlighted by 

[23], but in addition, it is observed that capacity data has become even more relevant than lead 

times in the analysed works. Likewise, the works that usually consider the largest number of 

parameters and fuzzy conditions in MRP systems are those of [16-18], [21], and [24]; and that 

the optimization of linear programming is the prevalent modelling and solution approach, 

followed by fuzzy inference systems (FIS). 
 

Table I: Modelling approaches and fuzzy parameters in MRP models. 
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[21] Optimization, linear programming ✓  ✓    ✓     

[25] Fuzzy Inference System        ✓    

[16, 17] Optimization, linear programming ✓ ✓ ✓ ✓        

[24] Optimization, linear programming ✓      ✓  ✓   

[26] Optimization, linear programming ✓    ✓       

[27] Optimization, linear programming   ✓       ✓  

[28] Graph approach ✓       ✓    

[18] Optimization, linear programming ✓ ✓ ✓         

[5, 29, 30] Optimization, linear programming        ✓    

Our proposal Optimization, linear programming   ✓     ✓   ✓ 

 

      However, in the literature no works have been identified addressing linear programming 

optimization models considering uncertain on-hand inventory, which is important to note 

because the probability that a finished product is completed is equal to IAn, assuming the 

finished product consists of n items and that each item presents the same inventory accuracy 

(IA). For example, for the case in which a product consists of 10 items and each item has an 



Cano, Gomez-Montoya, Cortes, Campo: MRP Systems Considering Fuzzy Capacity, Lead … 

31 

inventory accuracy of 99 %, the probability that the product can be completed is 0,9910 = 0,904 

= 90,4 %. 

      Based on the abovementioned, to the best of our knowledge, proposals for linear 

programming optimization models have not yet been made considering uncertain available 

capacity, on-hand inventory and lead times, and assuming lead times dependent on lot sizes for 

a closed-loop MRP system. For this reason, Section 2 proposes a mathematical model for a 

deterministic closed-loop MRP model that will serve as the basis for formulating a fuzzy MRP 

model. Section 3 introduces the MRP model considering fuzzy coefficients for lead times, 

required capacity, and on-hand inventory. Section 4 presents the results of the implementation 

of the fuzzy model in a company dedicated to the manufacture of electrical transformers, and 

Section 5 shows the main conclusions of this study. 

 

2. APPROACH TO A CLOSED-LOOP MRP MODEL 
 

The proposed closed-loop MRP model is applicable for manufacturing environments 

considering capacity constraints, variable demands over time for each item and finished 

products, allowing inventory accumulation for succeeding periods and considering initial 

inventory for each item. Likewise, the model considers production and purchase lead times for 

each item. The model aims to reduce inventory holding costs, setup and extra capacity cost 

within a production plan for the short and medium-term. Some assumptions of the initial model 

include the existence of a finite planning horizon, deterministic external demand for each item, 

and capacity constraints based on the percentage of the use of resources, where the maximum 

capacity of a resource takes the value of 1. Thus, it is assumed that the production quantity of 

each item exceeds the established minimum lot size, and it is assumed that setup and assembly 

times for the production of each item represent a percentage of the maximum capacity of a 

resource. Likewise, it is assumed that the variation in the purchase price of raw materials is 

unrelated to production decisions, therefore the costs of raw materials are excluded. Other 

assumptions of the proposed model include a multi-level production system where subsets of 

components are assembled independently, a multi-period planning horizon comprising a set of 

consecutive and integer time periods of equal length, the inventory of each item represents the 

volume present at the end of a given period, and the lead time of an item is the number of 

consecutive and integer periods required for their finalization [5, 18, 29]. The following notation 

and definition for the indices, parameters, and variables of the model is proposed: 
 

Indices and parameters 

i = 1 … I Index of items in the production system 

r = 1 … R Index of production resources defining capacity 

t = 1 … T Index of discrete periods in the planning horizon 

d(i,t) Independent (external) demand for item i in period t 

b(i,j)  Number of units of item i required per unit of item j according to the bill of 

materials 

τ(i) Time to process or purchase a lot of the product i 

f(i,r) Fraction of resource r required to process a unit of item i 

w(i,r) Fraction of resource r required to set up a unit of item i 

ma(r,t) Maximum fraction of resource r that can be added in period t 

e(i) Inventory accuracy of item i 

s(i,0) Initial on-hand inventory for item i 

l(i) Minimum production lot size for item i 

ac(r,t) Cost per added capacity fraction to resource r in period t 

wc(i) Total fixed cost of setting up the production/purchase of item i in a period  

sc(i) Inventory holding cost per period for one unit of item i 
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Decision variables 

p(i,t) Production quantity of item i in period t 

s(i,t) Final inventory of item i in period t 

a(r,t) Added fraction of resource r in period t 

q(i,t) Binary production indicator for product i in period t 
 

      The variable p(i,t) includes the production or purchase quantities of item i in the product 

structure given by the bill of materials, and the response time τ(i) represents the production or 

purchase lead time for each item. On the other hand, the inventory accuracy parameter e(i) 

represents the inventory accuracy for item i, which is expressed as the division between the 

physical and theoretical inventory of item i, and can generate different values for each item due 

to the characteristics of the components of a given product like turnover ratio, storage system, 

unit value, item size, among others. 

𝑀𝑖𝑛 𝑍 = ∑ [∑ 𝑎(𝑟,𝑡)𝑎𝑐(𝑟,𝑡)
𝑅
𝑟=1 + ∑ (𝑞(𝑖,𝑡)𝑤𝑐(𝑖) + 𝑒(𝑖)𝑠(𝑖,𝑡)𝑠𝑐(𝑖,𝑡))𝐼

𝑖=1 ]𝑇
𝑡=1  

 
∀ 𝑖, 𝑟, 𝑡 

 
(1) 

∑ (𝑝(𝑖,𝑡)𝑓(𝑖,𝑟) + 𝑞(𝑖,𝑡)𝑤(𝑖,𝑟))𝐼
𝑖=1 ≤ 1 + 𝑎(𝑟,𝑡)  ∀ 𝑟, 𝑡  (2) 

∑ (𝑝(𝑖,𝑡)𝑏(𝑖,𝑗))𝐼
𝑗=1 + 𝑑(𝑖,𝑡) + 𝑒(𝑖)𝑠(𝑖,𝑡) = 𝑒(𝑖)𝑠(𝑖,𝑡−1) + 𝑝(𝑖,𝑡−𝜏(𝑖))   ∀ 𝑖, 𝑡  (3) 

𝑎(𝑟,𝑡) ≤ 𝑚𝑎(𝑟,𝑡)  ∀ 𝑟, 𝑡  (4) 

𝑝(𝑖,𝑡) ≥ 𝑞(𝑖,𝑡)𝑙(𝑖)   ∀ 𝑖, 𝑡  (5) 

𝑞(𝑖,𝑡) ∈ {0,1} , 𝑝(𝑖,𝑡) ≥ 0, 𝑠(𝑖,𝑡) ≥ 0, 𝑎(𝑟,𝑡) ≥ 0  ∀ 𝑖, 𝑟, 𝑡 
 

(6) 

      The objective function in Eq. (1) minimizes inventory holding costs, production setup costs, 

and extra capacity costs in a time horizon T. Constraints in Eq. (2) guarantee that the capacity 

of resource r consumed by setting up and manufacturing item i in a period t will not exceed the 

maximum capacity and the additional capacity allowed for this resource. Eq. (3) ensures the 

inventory balance, where the sum of the dependent demand, the independent demand and the 

ending inventory of item i are equal to the initial inventory and the ordered quantities of item i 

for period t. Eq.(4) restricts the maximum additional capacity of a resource in a period, which 

is typically generated by limitations in the process related to technological capacity, availability 

of additional resources and subcontracting, labour legislation, business policies, among others. 

Constraints (5) establish the minimum production or purchase lot size for an item i, responding 

to the requirements of the manufacturing processes and purchasing policies. Constraints (6) are 

the domain and non-negativity restrictions on the decision variables. 

 

3. FUZZY MODEL FOR MATERIAL REQUIREMENTS PLANNING 
 

The proposed closed-loop MRP model considers uncertainty in the parameters τ(i), f(i,r) and e(i), 

that is, the production or purchase times, the capacity required by each unit of an item in a 

resource and the inventory accuracy of each item. Therefore, fuzzy coefficients are used in the 

constraints of the model, and it presents an asymmetric form to measure performance according 

to different degrees of satisfaction (λ) of the decision-maker [5, 16, 18, 21]. Likewise, λ is used 

as a coefficient of compensation between efficiency and equity. Three other elements appear in 

the proposed model allowing to express uncertainty in the selected parameters, being h(i) the 

maximum slack for the production or purchase time of item i, g(i,r) the maximum tolerance of 

capacity considered for the manufacture of item i in resource r and n(i) the tolerance for the 

inventory accuracy of item i. Consequently, the production or purchase time of item i can be 

expressed in intervals [τ(i), τ(i) + h(i)]; the fraction of resource r used to process item i is expressed 

in intervals [f(i,r), f(i,r) + g(i,r)], and the inventory accuracy of item i is expressed as symmetric 

triangular fuzzy number (e(i) – n(i), e(i), e(i) + n(i)). Based on the definition of the fuzzy coefficients 
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of the MRP model, a fuzzy model is proposed, in which both the objective function and the 

constraints present uncertain parameters. According to [16], the resource capacity constraints 

can be expressed in an equivalent form as shown in Eq. (7), the inventory balance constraints 

can be expressed in an equivalent form as shown in Eq. (8) and Eq. (9). 

∑ [𝑝(𝑖,𝑡)(𝑓(𝑖,𝑟) + (1 − λ)𝑔(𝑖,𝑟)) + 𝑞(𝑖,𝑡)𝑤(𝑖𝑟)]𝐼
𝑖=1 ≤ 1 + 𝑎(𝑟,𝑡)      ∀ 𝑖, 𝑟, 𝑡 (7) 

𝑝(𝑖,𝑡−(𝜏(𝑖)+(1−λ)ℎ(𝑖))) + [(𝑒(𝑖) + 𝑛(𝑖)(1 − λ)) (𝑠(𝑖,𝑡−1) − 𝑠(𝑖,𝑡))] − ∑ (𝑝(𝑖,𝑡)𝑏(𝑖,𝑗))𝐼
𝑗=1 ≤ 𝑑(𝑖,𝑡)      ∀ 𝑖, 𝑡 (8) 

𝑝(𝑖,𝑡−(𝜏(𝑖)+(1−λ)ℎ(𝑖))) + [(𝑒(𝑖) − 𝑛(𝑖)(1 − λ)) (𝑠(𝑖,𝑡−1) − 𝑠(𝑖,𝑡))] − ∑ (𝑝(𝑖,𝑡)𝑏(𝑖,𝑗))𝐼
𝑗=1 ≥ 𝑑(𝑖,𝑡)      ∀ 𝑖, 𝑡 (9) 

      Additionally, it is necessary to create the auxiliary variable sreal(i,t), which represents the 

final inventory resulting from multiplying the final inventory of an item in a period by its 

accuracy value. Therefore, Eqs. (10) and (11) are added to the equivalent model, and also 

sreal(i,t) is added to the objective function. 

[𝑒(𝑖) + 𝑛(𝑖)(1 − λ)]𝑠(𝑖,𝑡) ≤ 𝑠𝑟𝑒𝑎𝑙(𝑖,𝑡)     ∀ 𝑖, 𝑡 (10) 

[𝑒(𝑖) − 𝑛(𝑖)(1 − λ)]𝑠(𝑖,𝑡) ≥ 𝑠𝑟𝑒𝑎𝑙(𝑖,𝑡)     ∀ 𝑖, 𝑡
 

(11) 

      It should be noted that in the equations where the parameter λ is included, as long as the 

value of the parameter approaches 1, the constraints of the model are satisfied to a greater 

degree, while the parameter takes values close to 0, the constraints of the model are satisfied to 

a lower degree. Once the conversion of inventory balance and resource capacity constraints are 

applied, the auxiliary variable is created to include uncertainty in the proposed MRP model, 

and the degree of satisfaction of the decision-maker (λ) is included, the equivalent fuzzy 

mathematical model conformed by Eqs. (1), (4-6), and (7-11). 

      To configure the fuzzy model, a degree of satisfaction (λ) must be determined by the 

decision-maker to influence the optimal solution of the production plan, which will be 

expressed as a crisp. Likewise, when the level of satisfaction level (λ) takes values of 1 in the 

proposed fuzzy model, the fuzzy model is equivalent to the deterministic model. On the other 

hand, to verify the fuzzy model, we used information from a production plan of a company 

dedicated to the manufacture of electrical transformers. This information is related to the 

demand of the finished product in each period, bill of materials, use of work centres in the 

production system, production/purchase lead times, minimum lot sizes per item, initial 

inventory of each item, inventory accuracy, inventory holding costs, production setup costs and 

purchasing costs, maximum tolerance in inventory accuracy, production/purchase times, and 

capacity consumed by each item, among others. Therefore, the time horizon in the production 

plan is equivalent to a month, detailed per day, obtaining 30 periods in a production plan. Six 

work centres (resources) are considered for the manufacture of the finished product, made up 

of 73 different items, as shown in Fig. 1. The dataset for input data is fully presented at [31], 

describing the values of each parameter of the MRP model. 
 

 

Figure 1: Bill of materials of the selected product. 
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      This study considers the service level, inventory level, total cost of the production plan, and 

the computational efficiency to measure the performance of the proposed MRP models. These 

performance measures evaluate key aspects of the models like the demand fulfilment, 

investment in finished product inventory, total investment for the production plan, and the 

computing time to obtain results. The information of the electricity sector company provides 

both the deterministic model and the fuzzy model, and the proposed models are tested with the 

GAMS (General Algebraic Modelling System) software package, which is a modelling 

language as well as a program to solve problems of optimization, offering modelling modules 

and incorporating different nonlinear, linear and mixed-integer programming solvers. In this 

case, CPLEX represents the solver selected to solve the MRP models that are considered as 

mixed integer programming (MIP) problems. 

 

4. RESULTS AND DISCUSSION 
 

The proposed fuzzy MRP model considering uncertain manufacturing capacity, in inventory 

availability, and in lead times is solved in GAMS, thus obtaining different results according to 

the degree of satisfaction in the constraints preferred by the decision-maker (λ). For practical 

purposes, as described in Table II, the experiments were performed assigning values between 

0 and 1 for λ. The values obtained with λ = 1 correspond to the results produced by the 

deterministic model, as this is the model obtaining the maximum degree of satisfaction for the 

constraints. The values obtained for the decision variables in each scenario (λ) are shown in 

[31], detailing the values of p(i,t), s(i,t), a(r,t), q(i,t) for all items i, resources r, and periods t. 

      To obtain an evaluation of the computational efficiency in the fuzzy model tests, the 

execution time of the model, the number of iterations, the completion time for the execution of 

the model and the use of resources were rated on a scale from 0 to 10, assigning 10 to the test 

with the best performance in each measure, 9 to the test with the second-best performance, and 

so on until assigning 0 to the worst test. Therefore, the scores rated on a scale from 0 to 10 are 

computed for each λ value, obtaining the computational efficiency value. Consequently, from 

Table II, the model with λ = 0,4 provides the best computational efficiency. 
 

Table II: Results for the fuzzy MRP model. 

λ 
Total cost 

(USD) 

Total 

inventory 

Service 

level 

Computational 

efficiency 

0,0 $ 36.384 3.579 0,97 18 

0,1 $ 37.278 3.571 0,97 31 

0,2 $ 38.175 3.562 0,98 24 

0,3 $ 39.078 3.553 0,98 26 

0,4 $ 39.979 3.544 0,99 32 

0,5 $ 41.152 3.718 0,99 22 

0,6 $ 42.070 3.711 1,00 29 

0,7 $ 42.991 3.703 1,00 2 

0,8 $ 43.911 3.695 1,00 16 

0,9 $ 44.843 3.688 1,00 18 

1,0 $ 40.719 7.089 1,00 2 

 

      Based on the results of the fuzzy MRP model, Fig. 2 establishes that the total cost of the 

production plan decreases as the degree of satisfaction λ decreases in the inventory balance 

constraints, where the lead times and inventory accuracy are involved, and as λ decreases in the 

capacity constraints, where the required capacity to manufacture a unit of an item is involved. 
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This is explained by the fact that λ values close to 0 allow each unit of each item to consume a 

greater fraction of the resources, allow more or fewer units of on-hand inventory and allow lead 

times to be longer than usual. All this represents greater flexibility within the production 

planning parameters that allow considering a broader set of solutions impacting the extra 

capacity costs, inventory holding, and ordering costs, which constitute the total cost of the 

production plan. This is proved by measuring the differential between the lowest cost solution 

(λ = 0) and the highest cost solution (λ = 0,9), which represents $ 8.459. 
 

  

Figure 2: a) Total costs and b) total inventory from the fuzzy MRP model. 
 

      When comparing the total costs of the fuzzy model (λ ≠ 0) with those obtained by the 

deterministic model (λ = 1), it is observed that if λ ≤ 0,4 the fuzzy model presents lower total 

costs, therefore the fuzzy model performs better when the degree of satisfaction of the 

constraints is limited, that is, when greater flexibility is allowed in the parameters. Unlike, when 

λ takes high values, it causes the total costs to exceed the costs produced by the deterministic 

model. Likewise, Fig. 2 shows as λ decreases, the accumulated sum of inventory held 

throughout the planning horizon decreases, presenting a significant change when moving from 

the deterministic model to the fuzzy model. This relationship between λ and the total inventory 

in the planning horizon contributes to the reduction of total costs as λ decreases. 

      Fig. 3 illustrates that as λ decreases, the level of service decreases. This information is 

significant for the decision-maker, who must consider for this model that obtaining lower total 

costs and less total inventory implies offering a lower service level. Likewise, as λ presents 

values close to zero, the computational efficiency tends to increase, which is explained by the 

increased flexibility of the model, providing more alternatives to the mathematical 

programming software to find an optimal solution. 
 

   

Figure 3: a) Service level and b) computational efficiency from the fuzzy MRP model. 
 

      Moreover, Fig. 4 presents the response surfaces of the fuzzy model, showing that as the 

inventory level increases, the total costs increase, except when the model becomes deterministic 

due to the fact that the inventory level increases drastically and the total cost is reduced with 
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respect to fuzzy models with λ values close to 1. The response surface also indicates that as λ 

increases, the service level and the total inventory increase, reaching service levels of 100 % 

and stabilizing the inventory level for λ = 0,6; 0,7; 0,8; 0,9. Likewise, when the MRP model 

becomes deterministic (λ = 1), achieving a 100 % service level requires inventory levels from 

approximately double that required in fuzzy models. 
 

  

Figure 4: Response surfaces of the MRP model: a) Total cost, λ, total inventory; b) Total inventory, λ, 

service level. 
 

      Since multiple performance measures are used to measure the overall efficiency of the fuzzy 

MRP model, the criteria weighting method is applied to support the rating for each λ. Table III 

shows the weights assigned to the four criteria of the MRP models. Then, the values of each 

performance measure or criterion (total cost, total inventory, service level, computational 

efficiency) receive a score from 0 to 10, assigning 0 to the worst value and 10 to the best value 

of each criterion, and a weighted average is calculated to obtain the overall efficiency for each 

MRP model (λ), as shown in Fig. 5. 
 

Table III: Weighting for the evaluation criteria. 
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Figure 5: Overall efficiency for the MRP models. 
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(λ = 1), concluding that the fuzzy MRP model leads to more satisfactory results than the 

deterministic model when greater flexibility is involved in lead times, production capacity and 

inventory levels. 

 

5. CONCLUSIONS 
 

The application of fuzzy logic in closed-loop MRP systems with capacity restrictions represents 

a valuable option for managing uncertainty, since it facilitates involving the knowledge of 

experts, especially in the definition of ranges of values for the possibility of the parameters for 

the proposed optimization model. Involving uncertain parameters like lead times, production 

capacity and inventory levels, modifies the behaviour of a closed-loop MRP system, providing 

better results compared to a deterministic model in criteria such as total costs, total inventory, 

service level and computational efficiency. Likewise, the fuzzy parameters can be adjusted by 

the decision-maker in charge of production planning, facilitating that membership functions 

involve historical and subjective information of the production process, and selecting the degree 

of satisfaction for the constraints of the fuzzy model. 

      The use of modelling and mathematical programming software, like GAMS, facilitates the 

operation of fuzzy optimization models since it allows linking with other commonly used 

software like MS Excel. In this way, the proposed models involving uncertainty can be adopted 

on a daily basis in real environments, considering the criteria of experts who determine the 

ranges and fuzzy numbers to describe a parameter. For the electricity sector company addressed 

in this study, the fuzzy model presented better results with respect to the total cost, total 

inventory, service level, and computational efficiency when greater flexibility is allowed in 

fuzzy parameters like on-hand inventory. Therefore, considering uncertainty in the on-hand 

inventory allows us to better represent the reality of production systems and achieve satisfactory 

solutions for multiple objectives in operations management. 

      Future research should involve uncertainty with fuzzy logic in the external demand for 

finished products and test the fuzzy model for other types of companies. Likewise, it is 

suggested to evolve in the approach of the membership functions for the fuzzy parameters and 

determine the rate of change in the overall performance. Finally, further research would be 

expected to extend the concepts of uncertainty addressed in this study to Master Production 

Scheduling (MPS) and scheduling problems, and jointly solve a production plan representing 

real environments of production systems. 
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