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ABSTRACT

We prove that, in the class of commutative topological algebras with sepa-
rately continuous multiplication, an element is permanently singular if and
only if it is a topological divisor of zero. This extends the result given by
R. Arens [1] for the Banach algebra case. We also give sufficient condi-
tions for non-removability of ideals in commutative topological algebras with
jointly continuous multiplication.

AMS Subject Classification (1985) Revision: 46]20, 46J30 (46H10)

introduction

By a topological algebra we mean a topological vector space with a jointly con-
tinuous multiplication making of it a complex algebra. The topology of a topological
algebra A can be given by a system U of zero-neighbourhoods satisfying the following
properties:

(i) Yor every V € U, there exists W € U such that W + W c V.

* The second and third named authors have been partially supported by a research project from
La Conscjeria de Educacién y Ciencia de La Junta de Andalucia. The fourth named author has
been supported by a research grant from El Ministerio de Educacién y Ciencia.
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i) Forevery V €l and a € C with |a| < . al C V.

(iii) Every V €U is absorbent.

(iv) For every V €. there exists W e U such that 1. H cC V.

Every algebra in this paper will be a commutative complex algebra with unit
clement denoted usually by e.

A locally convex algebra is a topological algebra with a system of convex zero-
neighbourhoods. The topology of a locally convex algebra A can be given by a
directed system of seminorms {|- |, : @ € D} (in this case. (iv) above can be written
as follows: for every a € D there exists 3 € D such that |zyl, < |v]|s]yly for all
T,y € A).

Let. A and B be topological algebras with units ¢ 4 and ¢y, respectively. We
say that 13 is an extension of (A if there exists a unit preserving. injective algebra
homomorphism [ : A — I3 such that .1 is topologically isomorphic to its image
J(A). In this case, we identify -1 with f(.4) and simply write A C 3.

Let A be a topological algebra and 1 C A1 anideal. We say that [ is removable if
there exists an extension 3D /A such that Tis not contained in any properideal of 3.
It is casy to see thal this condition is equivalent to the existence of a finite number of
clements ry. ... o € Fand gy, ooy € Bsuch that gy b4 2pye — ¢ Anideal
which is not removable will be called non-removable. The notion of non removable
ideal was introduced by R. Arens [2]. Non-removable ideals in commutative Banach
algebras have been studied, e.g., in [2, 6, 1, 5] and in topological algebras in [8].

1. Non-removable ideals in topological algebras

The aim of this section is to give a suflicient condition for an ideal in a topological
algebra to be non-removable. This condition will be shown o he more general than
the one givenin [8]. However. it seems that there is no simple necessary and sufficient
condition characterizing non-removability. Our result will be reformnlated also for
permauently singular elements.

Theorem 1
Let A be a commutative topological algebra with unit ., and Y{ ) a system of
zero-neighbourhoods defining the topology of A\ and satisfving (i) (iv). Let T C A
be an ideal such that
(1) For every finite subset {&y,....x:) C 1 there exists Vo€ U(A) such that
for all W e U(A) there is an n > 1 such that, for every r > 0. there exists
u € A\ V satisfying wal € rW (i = 1.....k)
then | is non-removable,
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Prool. Suppose. on the contrary. that there exists an extension 2 9 1, and elements
Procc @ € Loyraoooyr € Bsuch that zyyy -+ apyp = e, et U(B) be asystem
of zero-neighbourhoods for the topology of BB, Let V € U(A) be the neighbourhood
siven by condition {1}, ‘Take VW c U (1) such that V' A C V and

!l"ll-"' 4 -4 H"'H’i ol
k |‘il’ll('5

and W CU(1) satislying W C 1 7 AL Let n be the integer from condition (1) (for
Voand Wy and m = b(n- 1)+ 1. Then we have

.
!

" L\ - m. . : :
co A Dom ) = Y e () ()
— Pteeady!

it tig=m

In every term of this sum at least one exponent 1j > n.so that. for some v; € . we
mayv write

A.
L
n
¢ = Ny
i=1
Take s > 0 such that v; CsW/ for i 1,k letr = s and take n e A \V given

by condition (1). Then
v ANV CcB\V
but. on the other hand
wrivy - (ual)ei € W s o W (7= 1.....k)
and therefore

weoue — X wrl v, CWH + o W

i=1

k times

a contradiction. 3

Remark 1. Tor a locally convex algebra /. with the topology given by a system of
seminorms {] !, ta ¢ D} condition (1) can be reformulated as follows:
(17) Tor every linite subset {ay,....0x} C 1. there oxists a € D. such that, lor

every .3 € D, there is some n > | satislying

A

inf Z wrilagrue A, Jula=1p=0.

i=1

Therefore. if 1 is an ideal in A satisfving (17) then it is non removable.
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Remark 2. In [8, Prop. 2.18] was given the following suflicient condition for the
non-removability of an ideal T in a topological algebra A with a system of zero-
ncighbourhoods I:
(2) 1 is contained in an ideal J = /] + 15(A) where:
I consists locally of joint topological divisors of zero, i.c., for every finite

{y1s---vy:} C 1y there exists a net {u,}, € A such (hat -, f 0 but
oy -0 fori=1..... r.

15(A) is the set of all clements of A with small powers: 2z G A 18 said to
have small powers if for every zero-neighbourhood V' there exists an integer

~.

n > 1 such that Az ¢ V for all A e C.

Proposition

Let A be a topological algebra and 1 C A an ideal satislying (2). then I satis-

fies (1).

Prool. Let 14 be a systein of zero neighbourhoods in A satiglying (i) (iv). Tosce that
I satisfies condition (1). take #...., 24 € 1. Then. since 1 satisfios condition (2), we
can find yyoooooyp Clpand 2y, 2, € T(A) such that 2; — gitzifori=1,....k.
IUis casy to see that the yi's and the z;%s satisfy the following conditions:
(a) There exists V€ U such that, for every W € U, there is some u G A \V
salisfying wy; € W lor i = 1,... k.
(b) Tor every Ui ¢ U, there is some n > | salislying 2! € ﬂ,_>(, rl; for
EE S IR 3
Let V¢ 4 be given by (a), and for W ¢ ¢ arbitrary take U € U such that
CU 00 UL Let w2 1 be the integer from (b), then we can write:

i
. . ~/(1\ -1 u—: .
= gt 5) = Aty L(f)u;’ ] I N (S T

i=1
forsomeno.ooep € A Fisre > 0andlet s > 0 besuceh that riCsl fordi=1,....k,
then by using (a) we can find u € ANV such that
wy; € re” (i=1,....k).

Therelore. we can write ya? = uzi 4 (wy;)e; where, for some { > 0,

nz' € (1) ﬂ 7"(,> C m Ul

>0 / >0
and. on the other hand,
(uyide; Crs W sl Crlil.
Hence
wa! CrlU - r U0 C el (i =1.....k),

v hich proves that [ satisfies (1), U
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An element 2 of a topological algebra A is called permanentiy singular il @ is
singular in every extension 8 D A, Clearly, @ € A is permanentily singular if and
ouly il the ideal 2.1 generated by 2 is non-removable. ‘I'herefore “Theorem 1 vields
the following

Corollary
Let A be a commutative topological algebra with unit ¢, and a system of zero-
neighbourhoods U satislving (i)-{(iv). Suppose that = € A satisfies the lfollowing
condition
(3) there exists Vo€ U such that, for cach W € U, there is somen > 1 salislving
(AN NV £ 9 for every > 0.
then @ is permanently singular.

Remark. 16 A is a locally convex algebra. and {| -], : o € D} is the corresponding
system of seminorms. condition (3) may be written as {ollows:

(37) there exists o € D such that, for cach 3 € D, there is some n > 1 satisfving

inf{lza™|g:2 ¢ A,

Zle 2 1} 0.

We construct now an example showing that condition (1) is more general than
{2) even in the case of simply generated ideals in locally convex algebras.

Fxavene. Lel A be the algebra of all polvnomials with complex coelficients in
the variable z. endowed with the topology given by the system of seminorins S
ko 12000 delined by:

' | ~
|Z art| = L Chi, v (k:-1,2,..)
D=0 2 i 0

{actually. all suins arve finite) where ey (K = 1.2,...04 = 0.1.2....) are posilive
numbers satisfving:

)
(1) Crigi £ Cotr o Cogrj
() kg4 > Chi

(6)  Crzyiz > ey
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Conditions (3) and (5) nnp]\ that A Is a locally convex algebra. It is clear, since
all ¢ > 0, that |Z(‘1,‘-.1. ix > 0 for every non-zero polynomial 3> a2t and every
index & = L,2...., this means that there are no elements with small powers in A.
Condition (&) Il'll])ll(‘s ol >

eforallae Aand b o 1.2,....i.c. ¢ is not a
topological divisor of zero in 4. Therefore, the ideal 2.1 does not salisly (2)

On the other hand, r satisfies {3°): take o = 1. and for arbitrary scminorm |- |
put n: k. then, by condition (¢):

!,‘.Ic+i n .
: R |k .o ) Ck ok
inf{Jue®e cu ¢, Gl = 1) < il faid I3 inf QAL ),
20 U |edihy 20 L e

It remains to show that it is possible to find numbers ¢, satisfying (a) - (¢). To

see this, assume we can construct sets My € {012, 3.k =1,2..... salisfyving

¢ M, and

a) My -+ M, b1 C M.

]J)) Mepr -1 C Mg

¢) Mpay C My oand

(l) For every pair n, l.“: such that & > 1. n > k. there exists m such that
et oo mebn g My, and A on4 ke M.

Now l.;;lk(‘,
Cri = gi—max {j<i. jEAMy } G=0,1,.... k- 1,2...).
It is a malter of routine to check that the above properties of the sets My im ply

(ex) = (&) for egi. To prove (¢) consider the infimum over those j = n -+ m, where m
is the index existing for given & and n > k. i

The sets Miocan be constructed as follows: put.

VIO fz .i>/.-}

for k.or = 1.2,..., and now take

llh_.U\" {0}y  (k=1.2...)).

=0
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Clearly Mo, C My since .-\'f.:__ll) C .\",i") for r = 1.2..... The properties My, —
{0} € M and My = M C My can be checked analogously.

Finally, fix £ and n > kand put m = 22" - 20, then 22" ¢ M,. 22" —1 ¢ M,y

and by induction m = n 4 b = 2% — (n - k) ¢ Mg It remains to prove that
mym+ LoooomAn g M. First note that for j = 1,2,...r = 0,1,2.... we have:
R A , Ay — ., . . ni+r
min .-"\-'_;') = min \:,H D l =--- = min '\:(_)_), =28

Further. the open interval (‘2"'" ,2%") and .-'\'50) are disjoint:

{()) . o2t L o
\ "‘(2 22 =g,

/

and it is casy to prove. by induction on r. that. as a matter of fact, we have:
.’("') : 'y X3 '2"' ! ;'l"
A 1 ) —7r)] =
N (22 - ) = 0

forevery r=0.1,....n - land j = 1.2..... Therefore,

=1
: o : g NS r‘ g M
N e U R Ry 2" 202" -}
rz:)
n- 1 |
C U {‘\I(,) N (27.2211 -2211 . ,.)}
r=I0)

= .

S ¢ L N (O
Mence m =24 20 m--1...0ombn= 22 —ndgll.

2. Topological divisors of zero in s-algebras

I this section we deal with algebras having multiplication only separately continu-
ous. These algebras have been also called topological algebras by some authors |7].
To avoid misunderstanding. these algebras will be called s-algebras in this paper.
In terms of zero-neiglibourhoods. the difference is that for an s-algebra A we
assume (i) (iii} plus the following (iv®) which is weaker than (iv):
(iv?) Forevery Ve Lf and x € AL there exists W ¢ U such that 21V ¢ V.
Anelemem roof an s-algebra A is said 10 be a topological divisor of zero if there
exists a net {u, ), C Asuch that v, £ 0but u,e — 0. Clearly. x is not a topological
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divisor of zero i and only if the mapping fu{a) = ra is a haincomorphism from A
onto xA. The notion of s extension is defined aralogously to the notion of extension
for topological algebras. Let A be an s-algebra and 2 € A be a topological divisor
of zero, then x is singular in any s-extension I3 73 A, If this wore not the case. we
could find an s-extension B A and y ¢ B such that zy = . But for (4 )a- the
net in A such that uy /- 0 and w2 — 0 we would have v,  wu,e = (ugx)y -+ 0
(by the separate continuity of multiplication in 13), a contradiction.

The purpose of this section is (o prove the converse of the statement above.
I'his will mean that in the class of s-algebras there exists a simple characterization
ol permancntly singular elements, similar to the one that holds for Banach algebras
(recall that if A is a Banach s-algebra, then A is a Banach algebra by the Banach-
Steinhaus theorem).

Let 1 be an s-algebra with unit ¢ and 2 a system of zero- neighbourhoods in
A satislying (i) (iii) and (iv"). Let Afz] be the algebra of all polynomials with
cocflicients from A in one variable 2. We deline a topology in A 2] in the following
way: Let Vo= (1), be a sequence from U and define

Ny = Za,;;z:" € Alx)ra; € Vio i =0, l,...lf .
=0 1

Let V be the set of all Ny obtained from all sequences V. It is casy to sec that
V satisfies (i), (i), (iii) and (iv"), therefore A[2] is an s-algebra, (if we identify Alx]

with the countable direct sum of copies of A by means of
1 . X
2 ax' ¢ Alx] — (ag.ay,. .. ca,.0,..) € GB A
i--0 =0

the topology defined above is precisely the direct sum topology). By identilving
clements of A with constant polynomials we sce that Alz] is an s-extension of A.
Morcover. if +1is a locally convex s-algebra, then A[z] is also locally convex.

Let 4 be an s-algebra and 1 ¢ A a closed ideal. Then A/[ is again an
s-algebra. To see this we only need to prove (iv?): let a4 1 € A/1 and let V + [ be
a zero-neighbourhood in A/, Take 1 such that ¢l ¢ V. then

(a4 Tyt - 1y C all fal LIW L ]2 C V).

Theorem 2

Let A be an s-algehra with unit € and v ¢ A. Thep u is invertible in some
s-extension 375 Vil and only il v is not a topological divisor of zero in A.
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Proof. Onme implication was proved above. Conversely, assume that u is not a
topological divisor of zero in A4, i.e., that @ — au is a homeomorphism from A onto
uA. This means that for every V € U there exists V' € U such that V' N uA = uV.
Consider the s-algebra A[z] and let I be the ideal generated by e — uz, I = (e —

uz)A[z]. We prove firstly that I is closed in A[z]: Let (p,)s be a net of elements
from I,

Po = (e — u:c)f: B¥gi = (™ + i (bE"’ - ubfi)l) x’
i=0 i=0

(where only a finite number of coefficients bs-a) are non-zero for every o) and suppose
that po — p = Y [, a;z' in the topology of A[z]. Then, coordinatewise, we have:

b((,""') — ay,
()S_-”) - 'ub(i‘_")1 — a; fori=1,...,n.
B —ubl®) — 0 fori >,

Since l)s,o)'u. — apu, we have b(l”) — a1 4 «ou, and inductively:

[¢3 ; .
()E- - ¢t a;qut-- 4 agn’ fori=0,...,n,

Qa i—n i—n : i1 S
(IE: N A ™" bt T g gt = e, fori>n

where ¢, = @y + @poqu 4 -+ - agu”. Suppose ¢, £ 0 and let Vy & U such that
e & Vo. Tet Wy € U such that Wy 4+ 1y € V. Construct Vi, W; € U such that:

Vi N C ulV; and Wipr = Wiy ¢ Vi for v . 0.1,2....
and consider the zero-neighbourhood N in Ale] given by the sequence

— e
notimes

(”"’0,. o W o, WL Lo .
N o

e (K5 . .
Since py - — pand b —, ¢,., there exists an index o such that

{ ) { - - . 0 .
B — bl e W (e L

i

and also

Ve € 1T,
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This implies 5! ¢ Wy since ¢ ¢ V5. We prove now, by induction, that bgf_',_)i ¢ W;

for i =0,1,...: suppose ()(rffl_),- ¢ W;, then ub(,,z_)i ¢ uWV;, and so ub(no_‘i_)i ¢ Vigi. Write
ubl; = (—bﬁ)m + 'ub-(,fi’,-) + 054

to deduce that bg:ﬁiH ¢ Wiy1. Therelore, we have that b(n(:gi ¢ W;fori=0,1,...
which implies b(nc_'l_)i # 0 for all ¢ > 0 and this contradicts the fact that ) I)E-“):z:' is a
polynomial and, consequently, has only a finite number of non-zero coeflicients. We
have proved that ¢, = 0 and thereflore p, the limit of p,,, can be written as:

n n—1
p= Z a;xt = (¢ — uz) Z cie’t € 1 = (¢ — uz)Afz).
i=0 i=0
Now, let ¢ : A[z] — A[z]/I be the canonical homomorphism and let ¢ : A —

A[z] be the natural embedding. Denote by f .= gog. Since e — uz € I, we have
(ut1)z+1) = c¢+1, hence f(u)isinvertible in A[2z]//. Finally, we must check that
Alz]/I is an s-extension of A. Clearly f is a continuous algebra homomorphism. To
prove that fis 1-1 and f(A) is topologically isomorphic to A, it suffices to prove
that for all V. € U we can find Nw € V such that (Nw 4 1NN f(A)C V: For V €U,
let Wy € U be such that Wy + Wy ¢ V (hence Wy € V). Choose V, € U such
that va € V| implies ¢ € Wy, and take W, € U such that W, + W, C V;. Define
inductively neighbourhoods V;, W; € i such that
ua € Viyy implies a € W;,
Wipr + Wiy C Vi1, (h(.‘ﬂC(! ”/i"rl C Vig )

Let Ny € V be the neighbourhood corresponding to the sequence (W;)82,. To show
that (Nw +1)N f(A)C V,take a € A,

,
p (e —au) Zbi-’lfi el
i=0

and a - p € Ny, We have:
at+p=(atby)+alby —uby)+a(by - ub )+ - + 2"+ (—uby,).
Since uby, € Wiy C Vypq we have b, € W,. Furthermore,
brytt = (bymytt — by) + b € W + Wy C Vi,

so that b, _; € W, ;. We continue in the same way and obtain b; € W; for i =
n—1....,1.0. Finally. since bg € Wo,a=a -+ by —bg e Wy + Wy Cc V. O
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