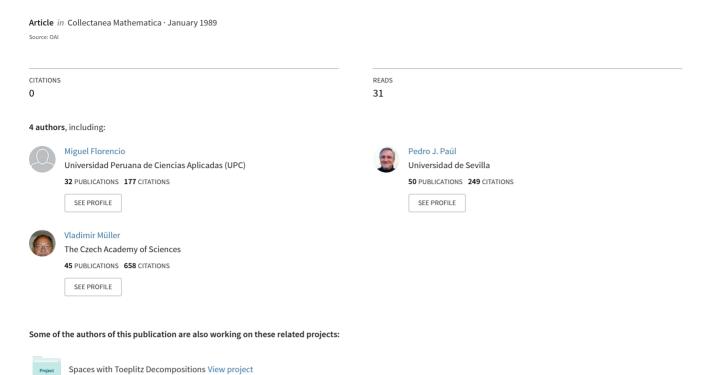
Extensions of topological algebras



Extensions of topological algebras

ANTONIO FERNANDEZ, MIGUEL FLORENCIO AND PEDRO J. PAUL*

Depto. Matemática Aplicada, E. S. Ingenieros Industriales, Av. Reina Mercedes s/n, 41012 Sevilla, Spain

VLADIMÍR MÜLLER

MÚ ČSAV, Žitná 25, 11567 Praha 1, Czekoslovakia

Received 6/JUL/89

ABSTRACT

We prove that, in the class of commutative topological algebras with separately continuous multiplication, an element is permanently singular if and only if it is a topological divisor of zero. This extends the result given by R. Arens [1] for the Banach algebra case. We also give sufficient conditions for non-removability of ideals in commutative topological algebras with jointly continuous multiplication.

AMS Subject Classification (1985) Revision: 46J20, 46J30 (46H10)

introduction

By a topological algebra we mean a topological vector space with a jointly continuous multiplication making of it a complex algebra. The topology of a topological algebra A can be given by a system $\mathcal U$ of zero-neighbourhoods satisfying the following properties:

(i) For every $V \in \mathcal{U}$, there exists $W \in \mathcal{U}$ such that $W + W \subset V$.

^{*} The second and third named authors have been partially supported by a research project from La Consejería de Educación y Ciencia de La Junta de Andalucía. The fourth named author has been supported by a research grant from El Ministerio de Educación y Ciencia.

- (ii) For every $V \in \mathcal{U}$ and $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1$, $\alpha V \subset V$.
- (iii) Every $V \in \mathcal{U}$ is absorbent.
- (iv) For every $V \in \mathcal{U}$, there exists $W \in \mathcal{U}$ such that $W \cdot W \subset V$.

Every algebra in this paper will be a commutative complex algebra with unit element denoted usually by e.

A locally convex algebra is a topological algebra with a system of convex zero-neighbourhoods. The topology of a locally convex algebra A can be given by a directed system of seminorms $\{|\cdot|_{\alpha}:\alpha\in\mathcal{D}\}$ (in this case, (iv) above can be written as follows: for every $\alpha\in\mathcal{D}$ there exists $\beta\in\mathcal{D}$ such that $|xy|_{\alpha}\leq |x|_{\beta}|y|_{\beta}$ for all $x,y\in A$).

Let A and B be topological algebras with units e_A and e_B , respectively. We say that B is an extension of A if there exists a unit preserving, injective algebra homomorphism $f:A\to B$ such that A is topologically isomorphic to its image f(A). In this case, we identify A with f(A) and simply write $A\subset B$.

Let A be a topological algebra and $I \subset A$ an ideal. We say that I is removable if there exists an extension $B \supset A$ such that I is not contained in any proper ideal of B. It is easy to see that this condition is equivalent to the existence of a finite number of elements $x_1, \ldots, x_k \in I$ and $y_1, \ldots, y_k \in B$ such that $x_1y_1 + \cdots + x_ky_k = \epsilon$. An ideal which is not removable will be called non-removable. The notion of non-removable ideal was introduced by R. Arens [2]. Non-removable ideals in commutative Banach algebras have been studied, e.g., in [2, 6, 4, 5] and in topological algebras in [8].

1. Non-removable ideals in topological algebras

The aim of this section is to give a sufficient condition for an ideal in a topological algebra to be non-removable. This condition will be shown to be more general than the one given in [8]. However, it seems that there is no simple necessary and sufficient condition characterizing non-removability. Our result will be reformulated also for permanently singular elements.

Theorem 1

Let A be a commutative topological algebra with unit ϵ , and $\mathcal{U}(A)$ a system of zero-neighbourhoods defining the topology of A and satisfying (i) (iv). Let $I \subset A$ be an ideal such that

(1) For every finite subset $\{x_1, \ldots, x_k\} \subset I$ there exists $V \in \mathcal{U}(A)$ such that for all $W \in \mathcal{U}(A)$ there is an $n \geq 1$ such that, for every r > 0, there exists $u \in A \setminus V$ satisfying $ux_i^n \in rW$ $(i = 1, \ldots, k)$

then I is non-removable.

Proof. Suppose, on the contrary, that there exists an extension $B \supset A$, and elements $x_1, \ldots, x_k \in I, y_1, \ldots, y_k \in B$ such that $x_1y_1 + \cdots + x_ky_k = e$. Let $\mathcal{U}(B)$ be a system of zero-neighbourhoods for the topology of B. Let $V \in \mathcal{U}(A)$ be the neighbourhood given by condition (1). Take $V', W' \in \mathcal{U}(B)$ such that $V' \cap A \subset V$ and

$$\underbrace{W'W' + \dots + W'W'}_{k \text{ times}} \subset V'.$$

and $W \in \mathcal{U}(A)$ satisfying $W \subset W' \cap A$. Let n be the integer from condition (1) (for V and W) and m = k(n-1)+1. Then we have

$$e = e^m = \left(\sum_{i=1}^k x_i y_i\right)^m = \sum_{i_1 + \dots + i_k = m} \frac{m!}{i_1! \dots i_k!} (x_1 y_1)^{i_1} \dots (x_k y_k)^{i_k}.$$

In every term of this sum at least one exponent $i_j \ge n$, so that, for some $v_i \in B$, we may write

$$e = \sum_{i=1}^{k} x_i^n v_i.$$

Take s > 0 such that $v_i \in sW'$ for i = 1, ..., k, let $r = s^{-1}$ and take $u \in A \setminus V$ given by condition (1). Then

$$u \in A \setminus V \subset B \setminus V'$$

but, on the other hand

$$ux_i^n v_i - (ux_i^n)v_i \in rW \cdot sW' \subset W' \cdot W'$$
 $(i = 1, \dots, k)$

and therefore

$$u - uc = \sum_{i=1}^{k} ux_i^n v_i \in \underbrace{W'W' + \dots + W'W'}_{k \text{ times}} \subset V'.$$

a contradiction.

Remark 1. For a locally convex algebra A, with the topology given by a system of seminorms $\{|\cdot|_{\alpha}: \alpha \in \mathcal{D}\}$ condition (1) can be reformulated as follows:

(1) For every finite subset $\{x_1, \ldots, x_k\} \subset I$, there exists $\alpha \in \mathcal{D}$, such that, for every $\beta \in \mathcal{D}$, there is some $n \geq 1$ satisfying

$$\inf \left\{ \sum_{i=1}^{k} |\{ux_{i}^{n}|_{\beta} : u \in A, ||u|_{\alpha} = 1 \right\} = 0.$$

Therefore, if I is an ideal in A satisfying (1) then it is non-removable.

Remark 2. In [8, Prop. 2.18] was given the following sufficient condition for the non-removability of an ideal I in a topological algebra A with a system of zero-neighbourhoods U:

(2) I is contained in an ideal J = I₁ + I_s(A) where: I₁ consists locally of joint topological divisors of zero, i.e., for every finite {y₁,...,y_r} ⊂ I₁ there exists a net {u_γ}_γ ⊂ A such that u_γ ≠ 0 but u_γy_i - 0, for i = 1,...,r.

 $I_s(A)$ is the set of all elements of A with small powers: $z \in A$ is said to have small powers if for every zero-neighbourhood V there exists an integer $n \ge 1$ such that $\lambda z^n \in V$ for all $\lambda \in \mathbb{C}$.

Proposition

Let A be a topological algebra and $I \subset A$ an ideal satisfying (2), then I satisfies (1).

Proof. Let \mathcal{U} be a system of zero neighbourhoods in A satisfying (i)—(iv). To see that I satisfies condition (1), take $x_1, \ldots, x_k \in I$. Then, since I satisfies condition (2), we can find $y_1, \ldots, y_k \in I_1$ and $z_1, \ldots, z_k \in I_s(A)$ such that $x_i = y_i + z_i$ for $i = 1, \ldots, k$. It is easy to see that the y_i 's and the z_i 's satisfy the following conditions:

- (a) There exists $V \in \mathcal{U}$ such that, for every $W \in \mathcal{U}$, there is some $u \in A \setminus V$ satisfying $uy_i \in W$ for i = 1, ..., k.
- (b) For every $U \in \mathcal{U}$, there is some $n \geq 1$ satisfying $z_i^n \in \bigcap_{r>0} rU$ for $i = 1, \ldots, k$.

Let $V \in \mathcal{U}$ be given by (a), and for $W \in \mathcal{U}$ arbitrary take $U \in \mathcal{U}$ such that $UU + UU \subset W$. Let $n \geq 1$ be the integer from (b), then we can write:

$$x_i^n = (y_i + z_i)^n = z_i^n + y_i \left[\sum_{j=1}^n \binom{n}{j} y_i^{j-1} z_i^{n-j} \right] + z_i^n + y_i v_i \qquad (i = 1, \dots, k)$$

for some $v_1, \ldots, v_k \in A$. Fix r > 0 and let s > 0 be such that $v_i \in sU$ for $i = 1, \ldots, k$, then by using (a) we can find $u \in A \setminus V$ such that

$$uy_i \in rs^{-1}U$$
 $(i=1,\ldots,k).$

Therefore, we can write $ux_i^n = uz_i^n + (uy_i)v_i$ where, for some t > 0,

$$uz_i^n \in (tU) \left(\bigcap_{r'>0} r'U \right) \subset \bigcap_{r'>0} r'UU \subset rUU$$

and, on the other hand,

$$(uy_i)v_i \in rs^{-1}U \cdot sU \subset rUU.$$

Hence

$$ux_i^n \in rUU + rUU \subset rW$$
 $(i = 1, \dots, k),$

which proves that I satisfies (1). \square

An element x of a topological algebra A is called permanently singular if x is singular in every extension $B \supset A$. Clearly, $x \in A$ is permanently singular if and only if the ideal xA generated by x is non-removable. Therefore Theorem 1 yields the following

Corollary

Let A be a commutative topological algebra with unit e, and a system of zero-neighbourhoods U satisfying (i)-(iv). Suppose that $x \in A$ satisfies the following condition

(3) there exists $V \in \mathcal{U}$ such that, for each $W \in \mathcal{U}$, there is some $n \geq 1$ satisfying $(A \setminus V)x^n \cap rW \neq \emptyset$ for every r > 0, then x is permanently singular.

Remark. If A is a locally convex algebra, and $\{|\cdot|_{\alpha}: \alpha \in \mathcal{D}\}$ is the corresponding system of seminorms, condition (3) may be written as follows:

(3') there exists $\alpha \in \mathcal{D}$ such that, for each $\beta \in \mathcal{D}$, there is some $n \geq 1$ satisfying

$$\inf\{|zx^n|_{\beta}:z\in A,\ |z|_{\alpha}=1\}:0.$$

We construct now an example showing that condition (1) is more general than (2) even in the case of simply generated ideals in locally convex algebras.

Example. Let A be the algebra of all polynomials with complex coefficients in the variable x, endowed with the topology given by the system of seminorms $|\cdot|_k$, $k=1,2,\ldots$ defined by:

$$\left|\sum_{i=0}^{\infty} |\alpha_i x^i|\right|_{\mathbb{R}} = \sum_{i=0}^{\infty} |c_{ki}| \alpha_i | \qquad (k::1,2,\ldots)$$

(actually, all sums are finite) where c_{ki} (k = 1, 2, ...; i = 0, 1, 2, ...) are positive numbers satisfying:

- (α) $c_{k0} = 1$
- (3) $c_{k,i+j} \le c_{k+1,i} c_{k+1,j}$
- (γ) $c_{k+1,i} \geq c_{k,i}$
- (δ) $c_{k+1,i+1} \geq c_{k,i}$

$$\epsilon (\epsilon) = \inf \left\{ rac{c_{k,k+j}}{c_{1,j}} : j=0,1,\ldots
ight\} \geq 0.$$

Conditions (3) and (γ) imply that A is a locally convex algebra. It is clear, since all $c_{ik} > 0$, that $|\sum \alpha_i x^i|_k > 0$ for every non-zero polynomial $\sum \alpha_i x^i$ and every index $k = 1, 2, \ldots$, this means that there are no elements with small powers in A. Condition (δ) implies $|ax|_{k+1} \geq |a|_k$ for all $a \in A$ and $k = 1, 2, \ldots$, i.e. x is not a topological divisor of zero in A. Therefore, the ideal xA does not satisfy (2).

On the other hand, x satisfies (3'): take $\alpha = 1$, and for arbitrary seminorm $|\cdot|_k$ put n = k, then, by condition (ϵ):

$$\inf \left\{ |ux^k|_k : u \in A, \ |u|_1 = 1 \right\} \leq \inf_{j \geq 0} \left\{ \frac{|x^{k+j}|_k}{|x^j|_1} \right\} - \inf_{j \geq 0} \left\{ \frac{c_{k,k+j}}{c_{1,j}} \right\} = 0.$$

It remains to show that it is possible to find numbers c_{ki} satisfying (α) - (ϵ) . To see this, assume we can construct sets $M_k \subset \{0,1,2,\ldots\}, \ k=1,2,\ldots$ satisfying $0 \in M_k$ and

- a) $M_{k+1} + M_{k+1} \subset M_k$.
- b) $M_{k+1} 1 \subset M_k$.
- c) $M_{k+1} \subset M_k$ and
- d) For every pair n, k such that $k \geq 1, n \geq k$, there exists m such that $m, m+1, \ldots, m+n \notin M_1$, and $m+n+k \in M_k$.

Now take

$$c_{k,i} = 2^{i - \max\{j \le i, \ j \in M_k\}}$$
 $(i = 0, 1, ..., k = 1, 2, ...).$

It is a matter of routine to check that the above properties of the sets M_k imply $(\alpha) - (b)$ for c_{ki} . To prove (c) consider the infimum over those j = n + m, where m is the index existing for given k and $n \ge k$, i.e.,

$$\inf\left\{\frac{c_{k,k}}{c_{1,j}},\ j\geq 0\right\}\leq\inf\left\{\frac{c_{k,n+m+k}}{c_{1,n+m}},\ n\geq k\right\}\leq\inf\left\{\frac{1}{2^n},\ n\geq k\right\}=0.$$

The sets $M_{\scriptscriptstyle B}$ can be constructed as follows: put

$$N_k^{(0)} = \left\{ 2^{2^i}, \ i \ge k \right\}$$

$$N_k^{(r)} = N_{k+1}^{(r-1)} \cup \left(N_{k+1}^{(r-1)} - 1\right) \cup \bigcup_{r=0}^{r-1} \left(N_{k+1}^{(r-1)} + N_{k+1}^{(s)}\right)$$

for $k, r = 1, 2, \ldots$, and now take

$$M_k = \bigcup_{r=0}^{\infty} N_k^{(r)} \cup \{0\}$$
 $(k = 1, 2, ...).$

Clearly $M_{k+1} \subset M_k$ since $N_{k+1}^{(r-1)} \subset N_k^{(r)}$ for r = 1, 2, ... The properties $M_{k+1} = \{0\} \subset M_k$ and $M_{k+1} + M_{k+1} \subset M_k$ can be checked analogously.

Finally, fix k and n > k and put $m = 2^{2^n} - 2n$, then $2^{2^n} \in M_n$, $2^{2^n} - 1 \in M_{n-1}$ and by induction $m + n + k = 2^{2^n} - (n - k) \in M_k$. It remains to prove that $m, m + 1, \ldots, m + n \notin M_1$. First note that for $j = 1, 2, \ldots, r = 0, 1, 2, \ldots$ we have:

$$\min N_j^{(r)} = \min N_{j+1}^{(r-1)} - 1 = \dots = \min N_{j+r}^{(0)} - r = 2^{2^{j+r}} - r.$$

Further, the open interval $\left(2^{2^{n-1}},2^{2^n}\right)$ and $N_j^{(0)}$ are disjoint:

$$N_j^{(0)} \cap \left(2^{2^{n-1}}, 2^{2^n}\right) = \emptyset,$$

and it is easy to prove, by induction on r, that, as a matter of fact, we have:

$$N_j^{(r)} \cap \left(2^r 2^{2^{n+1}}, 2^{2^n} - r\right) = \emptyset$$

for every $r = 0, 1, \ldots, n-1$ and $j = 1, 2, \ldots$ Therefore,

$$M_{1} \cap \left[2^{2^{n}} - 2n \cdot 2^{2^{n}} - n\right] = \bigcup_{r=0}^{n-1} \left\{ N_{1}^{(r)} \cap \left[2^{2^{n}} + 2n \cdot 2^{2^{n}} - n\right] \right\} \subset \bigcup_{r=0}^{n+1} \left\{ N_{1}^{(r)} \cap \left(2^{r} 2^{2^{n-1}} \cdot 2^{2^{n}} + r\right) \right\} = \emptyset.$$

Hence $m = 2^{2^n} - 2n$, m + 1, ..., $m + n = 2^{2^n} - n \notin M_1$.

2. Topological divisors of zero in s-algebras

In this section we deal with algebras having multiplication only separately continuous. These algebras have been also called topological algebras by some authors [7]. To avoid misunderstanding, these algebras will be called s-algebras in this paper.

In terms of zero neighbourhoods, the difference is that for an s-algebra A we assume (i) (iii) plus the following (iv') which is weaker than (iv):

(iv) For every $V \in \mathcal{U}$ and $x \in A$, there exists $W \in \mathcal{U}$ such that $xW \subset V$.

An element x of an s-algebra A is said to be a topological divisor of zero if there exists a net $\{u_\alpha\}_\alpha \subset A$ such that $u_\alpha \not \vdash 0$ but $u_\alpha x \vdash 0$. Clearly, x is not a topological

divisor of zero if and only if the mapping $f_x(a) = xa$ is a homeomorphism from A onto xA. The notion of sextension is defined analogously to the notion of extension for topological algebras. Let A be an s-algebra and $x \in A$ be a topological divisor of zero, then x is singular in any s-extension $B \supset A$. If this were not the case, we could find an s-extension $B \supset A$ and $y \in B$ such that xy = c. But for $(u_\alpha)_\alpha$, the net in A such that $u_\alpha \not= 0$ and $u_\alpha x \to 0$ we would have $u_\alpha = u_\alpha c = (u_\alpha x)y \to 0$ (by the separate continuity of multiplication in B), a contradiction.

The purpose of this section is to prove the converse of the statement above. This will mean that in the class of s-algebras there exists a simple characterization of permanently singular elements, similar to the one that holds for Banach algebras (recall that if A is a Banach s-algebra, then A is a Banach algebra by the Banach-Steinhaus theorem).

Let A be an s-algebra with unit e and \mathcal{U} a system of zero-neighbourhoods in A satisfying (i) (iii) and (iv'). Let A[x] be the algebra of all polynomials with coefficients from A in one variable x. We define a topology in A[x] in the following way: Let $V = (V_i)_{i=0}^{\infty}$ be a sequence from \mathcal{U} and define

$$N_V = \left\{ \sum_{i=0}^n a_i x^i \in A[x] : a_i \in V_i, \ i = 0, 1, \ldots \right\}.$$

Let \mathcal{V} be the set of all N_V obtained from all sequences V. It is easy to see that \mathcal{V} satisfies (i), (ii), (iii) and (iv'), therefore A[x] is an s-algebra (if we identify A[x] with the countable direct sum of copies of A by means of

$$\sum_{i=0}^{n} a_i x^i \in A[x] \longrightarrow (a_0, a_1, \dots, a_n, 0, \dots) \in \bigoplus_{m=0}^{\infty} A$$

the topology defined above is precisely the direct sum topology). By identifying elements of A with constant polynomials we see that A[x] is an s-extension of A. Moreover, if A is a locally convex s-algebra, then A[x] is also locally convex.

Let A be an s-algebra and $I \subset A$ a closed ideal. Then A/I is again an s-algebra. To see this we only need to prove (iv'): let $a+I \in A/I$ and let V+I be a zero-neighbourhood in A/I. Take W such that $aW \subset V$, then

$$(a+I)(4V+I) \in aW + aI + IW + I^2 \in V + I$$
.

Theorem 2

Let A be an s-algebra with unit ϵ and $u \in A$. Then u is invertible in some s-extension $B \supset A$ if and only if u is not a topological divisor of zero in A.

Proof. One implication was proved above. Conversely, assume that u is not a topological divisor of zero in A, i.e., that $a \mapsto au$ is a homeomorphism from A onto uA. This means that for every $V \in \mathcal{U}$ there exists $V' \in \mathcal{U}$ such that $V' \cap uA = uV$. Consider the s-algebra A[x] and let I be the ideal generated by e - ux, I = (e - ux)A[x]. We prove firstly that I is closed in A[x]: Let $(p_{\alpha})_{\alpha}$ be a net of elements from I,

$$p_{\alpha} = (e - ux) \sum_{i=0}^{\infty} b_i^{(\alpha)} x^i = b_0^{(\alpha)} + \sum_{i=0}^{\infty} \left(b_i^{(\alpha)} - ub_{i-1}^{(\alpha)} \right) x^i$$

(where only a finite number of coefficients $b_i^{(\alpha)}$ are non-zero for every α) and suppose that $p_{\alpha} \longrightarrow p = \sum_{i=0}^{n} a_i x^i$ in the topology of A[x]. Then, coordinatewise, we have:

$$b_0^{(\alpha)} \longrightarrow a_0,$$

$$b_i^{(\alpha)} - ub_{i-1}^{(\alpha)} \longrightarrow a_i \quad \text{for } i = 1, \dots, n.$$

$$b_i^{(\alpha)} - ub_{i-1}^{(\alpha)} \longrightarrow 0 \quad \text{for } i > n.$$

Since $b_0^{(\alpha)}u \longrightarrow a_0u$, we have $b_1^{(\alpha)} \longrightarrow a_1 + a_0u$, and inductively:

$$b_i^{(\alpha)} - c_i := a_i + a_{i-1}u + \dots + a_0u^i \quad \text{for } i = 0, \dots, n,$$

$$b_i^{(\alpha)} \longrightarrow a_n u^{i-n} + a_{n-1}u^{i-n+1} + \dots + a_0u^i = c_n u^{i-n} \quad \text{for } i > n$$

where $c_n = a_n + a_{n-1}u + \cdots + a_0u^n$. Suppose $c_n \neq 0$ and let $V_0 \in \mathcal{U}$ such that $c_n \notin V_0$. Let $W_0 \in \mathcal{U}$ such that $W_0 + W_0 \subset V_0$. Construct $V_i, W_i \in \mathcal{U}$ such that:

$$V_{i+1} \cap uA \subset uW_i$$
 and $W_{i+1} + W_{i+1} \subset V_{i+1}$ for $i = 0, 1, 2, ...$

and consider the zero-neighbourhood N_W in A[x] given by the sequence

$$(\underbrace{W_0,\ldots,W_0}_{n \text{ times}},W_0,W_1,W_2,\ldots).$$

Since $p_{\alpha} \mapsto p$ and $b_n^{(\alpha)} \longrightarrow c_n$, there exists an index α such that

$$b_{n+i}^{(\alpha)} - ub_{n+i-1}^{(\alpha)} \in W_i$$
 (i = 1,2,...)

and also

$$b_n^{(\alpha)} - c_n \in W_0.$$

This implies $b_n^{(\alpha)} \notin W_0$ since $c \notin V_0$. We prove now, by induction, that $b_{n+i}^{(\alpha)} \notin W_i$ for $i = 0, 1, \ldots$ suppose $b_{n+i}^{(\alpha)} \notin W_i$, then $ub_{n+i}^{(\alpha)} \notin uW_i$, and so $ub_{n+i}^{(\alpha)} \notin V_{i+1}$. Write

$$ub_{n+i}^{(\alpha)} = \left(-b_{n+i+1}^{(\alpha)} + ub_{n+i}^{(\alpha)}\right) + b_{n+i+1}^{(\alpha)}$$

to deduce that $b_{n+i+1}^{(\alpha)} \notin W_{i+1}$. Therefore, we have that $b_{n+i}^{(\alpha)} \notin W_i$ for i = 0, 1, ... which implies $b_{n+i}^{(\alpha)} \neq 0$ for all $i \geq 0$ and this contradicts the fact that $\sum b_i^{(\alpha)} x^i$ is a polynomial and, consequently, has only a finite number of non-zero coefficients. We have proved that $c_n = 0$ and therefore p, the limit of p_α , can be written as:

$$p = \sum_{i=0}^{n} a_i x^i = (e - ux) \sum_{i=0}^{n-1} c_i x^i \in I = (e - ux) A[x].$$

Now, let $q:A[x]\to A[x]/I$ be the canonical homomorphism and let $g:A\to A[x]$ be the natural embedding. Denote by $f=q\circ g$. Since $e-ux\in I$, we have (u+I)(x+I)=e+I, hence f(u) is invertible in A[x]/I. Finally, we must check that A[x]/I is an s-extension of A. Clearly f is a continuous algebra homomorphism. To prove that f is 1-1 and f(A) is topologically isomorphic to A, it suffices to prove that for all $V\in \mathcal{U}$ we can find $N_W\in \mathcal{V}$ such that $(N_W+I)\cap f(A)\subset V$: For $V\in \mathcal{U}$, let $W_0\in \mathcal{U}$ be such that $W_0+W_0\subset V$ (hence $W_0\subset V$). Choose $V_1\in \mathcal{U}$ such that $ua\in V_1$ implies $a\in W_0$, and take $W_1\in \mathcal{U}$ such that $W_1+W_1\subset V_1$. Define inductively neighbourhoods $V_i,W_i\in \mathcal{U}$ such that

$$ua \in V_{i+1}$$
 implies $a \in W_i$.

$$W_{i+1} + W_{i+1} \subset V_{i+1}$$
, (hence $W_{i+1} \subset V_{i+1}$).

Let $N_W \in \mathcal{V}$ be the neighbourhood corresponding to the sequence $(W_i)_{i=0}^{\infty}$. To show that $(N_W + I) \cap f(A) \subset V$, take $a \in A$,

$$p = (e - xu) \sum_{i=0}^{n} b_i x^i \in I$$

and $a+p \in N_W$. We have:

$$a + p = (a + b_0) + x(b_1 - ub_0) + x^2(b_2 - ub_1) + \cdots + x^{n+1}(-ub_n).$$

Since $ub_n \in W_{n+1} \subset V_{n+1}$ we have $b_n \in W_n$. Furthermore.

$$b_{n-1}u = (b_{n-1}u - b_n) + b_n \in W_n + W_n \subset V_n$$

so that $b_{n-1} \in W_{n-1}$. We continue in the same way and obtain $b_i \in W_i$ for $i = n-1,\ldots,1,0$. Finally, since $b_0 \in W_0$, $a = a + b_0 - b_0 \in W_0 + W_0 \subset V$. \square

References

- 1. R. Arens, Extensions of Banach algebras, Pacific J. Math. 10 (1960), 1-16.
- 2. R. Arens, Ideals in Banach algebras extensions, Studia Math. 31 (1968), 29-34.
- 3. B. Bollobás, Adjointly inverses to commutative Banach algebras, Trans. Amer. Math. Soc. 181 (1973), 165-174.
- 4. V. Müller, Non-removable ideals in commutative Banach algebras, Studia Math. 74 (1982), 97-104.
- 5. V. Müller, Removability of ideals in commutative Banach algebras Studia Math. 78 (1984), 297-307.
- 6. W. D. Żelazko, Concerning a problem of Arens on removable ideals in Banach algebras, Collect. Math. 30 (1974), 127-131.
- 7. W. D. Żelazko, Metric Generalizations of Banach Algebras, Rozprawy Math. 47 (1965).
- 8. W. D. Żelazko, On non-removable ideals in commutative locally convex algebras, *Studia Math.* 77 (1983), 133-154.