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Let E, n=1,2,... be a sequence of normed spaces and
A an AK-K3the sequence space. The A-sum of the spaces E;
is defined by A{Ep}:={(xp)n: Xn is in En and (lxnl)n€x}.
Starting from the topology in A, AME,} can be given a
natural topology. In this paper we characterize the
dual of X{E,} as the X‘-sum of Ej5 and give conditions
for AM{En} to be quasi-barrelled, barrelled, reflexive,
bornological or distinguished.

1. A-SUMS OF NORMED SPACES

Let A be a sequence space which is normal in the
sense of Kéthe [7,830], [13,ch.2]. A family M which co-
vers A* and consists of normal, absolutely convex, clo-
sed and o (2*,\) -bounded subsets of A* induces on A the
topology 1 of uniform convergence on M which, because
of the normality, is given by the ieminorms:

qy:8=(8,) o€ A >qy(B) :=sup{ ] |8 o l: ae M)
as M runs through M [3], [11]. e
If En(l-l) n=1,2,... is a sequence of normed spaces over
the field X of real or complex numbers, we define the
A-sum of En as A{Ep}t:={(xp)n: xn€ E and (l&nI)HE ),
note that 1if 1xn|§1 n=1,2,... and o€ A then ax:=(apXply
is in A{Ep}. AlSobk{En} contains the algebraic direct
sum, ¢{E,} where ¢ is the space of finitely non-zero

sequences, of the spaces Ep. Starting from t we define
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the topology 1 also on X{E,} (there is little danger of
confusion) by means of the seminorms:

Pu:x=(Xn) n € MER} +py () 1=qy (([x5]) )
as M runs through M. 2P-sums and Co-sums of a sequence
of normed spaces have been widely studied [2], [5,517],
[7,526.8], [9,54.9] or [12,m §512,15]. On the other
hand, A-sums of spaces E, all equal to a fixed Hausdorff
lcs E have been introduced by Pietsch [10} and studied
in [3], [5,519.4], [9,54] or [11], Our purpose here is
to study barrelledness and related properties in the
space A{Ep} (1), our immediate precursors being the paper
by Lurije [8], where the barrelledness of ?P{E } is stu-

died, and our [4], where we study barrelledness in ME}.

In what follows, X stands for a perfect sequence
space [7,530], [13,Ch°2] and we shall consider ) and
AMEp} endowed with the topology t. By using the conti-
nﬁity of the maps

Ig:x=(xp)n € M{Ep} + Ix(x):=xy€ Ey

Jx:Xg € Ex +Jx (xx) :=xxex€ A{Ep}

I:x=(xn)n€ AMEn} > I(x):=(|xy])n€ A
where k€ IN and ey, stands for the k-th unit sequence,
standard arguments [3,3.8] or [11,2.(3)] show that the
completion of A{E,} is A{%n}. An element x=(xp) in
AMEnp}(t) is said to have the property AK if x is the
T-limit of the sequence of its finite sections Py (x):=
=(xX1,%X2,...,Xx,0,0,...). We shall be mainly concerned
with the subspace of A{Ep}(t1) formed by those elements
having AK. Clearly, this space is equal to the A pr=sum
of Ep, where A, is the subspace of sequences having AK
in X (1), and coincides also with the t-closure of d{Ep}
in AM{Ep}. In other terms:

Ar{En}={x=(xn) n€A{Ep}: x=T-1imgPy (x)}=¢(E,]
If M is the family of all normal, absolutely convex,
closed and o(A*,))-bounded subsets of A*, T coincides
with the strong topology B(X,X*). In this case, A, is

called the regular subspace of ) and has some interes-
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ting properties, e.g. Co AC A, A\, is normal, (A ) =X,
B(A,\") induces on Ap its own strong topology, Ay endowed
with the Mackey topology n(Ap,2") is barrelled and, in
fact, A=A, if and only if A(B(A,A)) is barrelled [6],

[7,530], [13.Tn.2].

THEOREM 1. Define the generalized K&8the a-dual of
MEq) by
(X{En})x:={u=kun)n: u, € Ep and 2n|<un,xn>|<w}
Then we have the following chain of equalities:
(Ar{En}(T))'=(A{En})x=(kr{3n})X=AX{EA}=XX~Qm{E$}

Moreover, a subset AC (A {Ej})" is equicontinuous if

and only if it is contained in rM-B; for some r>0 and

ME M, By standing for the unit ball of the normed space
L7{EAT .
PROOF. We shall prove the "C” inclusions from the left

to the right and then close the circle:

(1) If £€ (Ap{En} (1)) "' take up:=£J,€ E, for each n. Take
arbitrary y=(yn)n in A{Eg} and a=(ap)p in c, and take
|8n|=1 such that lan<un,yn>|=an6n<un,yn> then we have

that aBy=(apBn¥n)n is in A {En} hence
£ (aBy) =limy £ (Py (aBY)) "'E:rxlc"nqlnlyn> | <o

since o was arbitrary in c,, we obtain (|<un,yn>l)r1€ L.
(2) This is immediate.
(3) Let u=(uy) g in (Ap{Ex})” and a=(ap)n arbitrary in X.

For each n we find |xp|=1 such that
lan | lunlslan<un,xq>| + 1727

since (apxy), is in A{Ep}, we have
Tolanllunlslnl<un anxa>| + La1/20<e

Since o was arbitrary, (|up|)n is in A%, i.e. u€ ALEL )
(4) Given u=(uy), in A*{Ej} define voi=up/|ug| 1f up=0
and v,:=0 otherwise (this notation will be often used
in the sequel). Then u=(|u,|) - (vq)n where (Jup])n €27
and vi=(vg)p is in B1C L7 {Eq}.

(5) Take u=aw where 2o € 2* and for some r>0, Iwnlgr for
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all n. Since M covers \°, take M in ¥ containing a, then
for all x in X,.{E,} we have

an <unlxn>| s anlo‘nl |an Srpy(x)
thus <u,x>:=zn<un,xn> defines a t-continuous linear form
on A {E,}.
Now if A is equicontinuous, take r>0 and M in M such
that |<u,x>| srpy(x) for all u in A and x in A {E.}.
Take the corrgsponding v in B4y, let us check that dunbn
is in rM for all u in A. Indeed, take o in M® and e€>0.
Choose |xpy|=1 such that lajgu,] S <apun.xp> + /2. Then
for all k we have

k
<up,apXp> +€ )1/27 %
1 n=1

n
S<u/(Cllxlr'--lakxkrolol«--)> +€ =z

e~

k
- Z Q‘nlunl s
n=1

5rpM(a1X1,=~-,Othk,0,0,~u) + € =

IN

rqyla) +¢€

since k and e were arbitrary, Znathnls r for all o in MO
this implies that (|up|), is in rM®°=rM. Finally, if
A=rM-B; it is clear that |<u,=>| srpy(-) for all u€ A,
QED

COROLLARY. The strong dual of A.{E } (1) is the space

N {Ej}(B) where B is the topology of uniform convergen-

ce on the family B of all normal, absolutely convex,
closed and o (A, )\ )-bounded subsets of A.

PROOF .Let A be a g (A {En}, A {EL})-bounded set. It is
easy to see that I(A)={(|xn|)n:x€ A} is o (X, )" )-bounded:
recall that AX{EA}=AX-2w{Eg}, Thus if u is in AX{EA}

then for x in A

cu,xo | 2 Lnlunllxgl cagCug[)n) =py (w)
where H, the absolutely convex, closed and normal hull
of A, is in B. Hence the strong topology in X\ {E}} is
coarser than B. On the other hand, take H in B. Since

H is normal, the set H*:={Pp(a): a€H, k€ N} is also
normal and included in both H and A,, and Py () =pyd+)
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in A*{EYL}. Take A:={By:B€ H*,y, in the unit ball of E,},
then A is contained in Ar{En} and for u in X*{E}} we

have
sup{ |b<u,f3y>| :By € A} =sup{ l Zan<un,yn>l :BYyC A} =

= Sup{ZnIBnl |un| 1B € H* =pH*(u) = py(u)

second equality: H* is normal and y, can be arbitrarily
selected from the unit ball of Ep . Thus A is weakly
bounded in Ay{En} aﬁd sup{[<u,x>l: x €A} =py(u), this
means that every R-continuous seminorm is also strongly

continuous. QED

2. BARRELLED AND BORNOLOGICAL A,.{E_}

In this section, M (resp. B) stands for the family
of all normal, absolutely convex, closed and o (A" ,))-
-bounded (resp. o(A,\")-bounded) sets in A\ (resp. A),
and we keep the notation 1t (resp. B) for the correspon-
ding topologies. In this case A, (1) is always barrelled

and, under certain conditions, also bornological [6].

THEOREM 2. (1) A .{E }(71) is quasi-barrelled.
(2) If every E, is barrelled then A, {E,} (1) is barrelled.

(3) If XA, and every E, are reflexive, then Ar{En}(T)ii

also reflexive.
PROOF. (1) Let A be a strongly bounded subset of the

dual of A.{Ep}(t). According to the preceding result,

A is R-bounded, thus H , the absolutely convex, closed
and normal hull of I(A), is in M, and by writing every
u in A as (|un|)n'(vn)n (notation from (4) in Theorem 1)
we obtain ACH-B;. Now, according to Theorem 1, A is
equicontinuous.

(2) By Banach-Mackey theorem [7,521,11.(8)], it suffices
to prove that (A {E,}(t))' is weakly sequentially com-
plete. By Theorem 1, this dual is the generalized K&the
a-dual. Now, let u(p)=(u$]p))[1 p=1,2,... be a Cauchy se-
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quence for the weak topology o((A {E;})",A {E }). It is
clear that coordinatewise each sequence u&P)p=1,2,.,.
is o(E;,Ep-Cauchy. Since E, is barrelled, all these se-
quences are weakly convergent. Call un:zo—limpugﬂ for
every mn. Define u:=(u,),, we shall prove that u is in
(A {E,}) ™ and u=o-limyu®). Indeed: if x=(xp) € Ar{Epn)
then a(9%=(<u%”,xn>)n is in ¢! for all p=1,2,... and
these terms form a o(ﬂl,lw)-Cauchy sequence (note that
if g€ then Bx is in A {E;} and |<a(®P-q(@),g>]| =
= I<uu”-u“y,8x>l), By Schur theoren [7,§22,4.(2)] o (P
p=1,2,... converges in the g2!-norm to some a:(an)ne 21,

Necessarily, anzlimp<u¥”,xn> =<Up,xp>.Thus (<u,,x,>), is

in 21,'i.e. u G(Ar{En})x, and we have limp<u§”,x>=<u,x>
(3) If A (1) is reflexive then A,=(A"(8))'=A and also

A =(3), [7,530,7.(4)]. Then, by the result above, the
strong dual of A {E,} (1) is‘AX{EA}(B)=(AX)r{EA}(B),

whose strong dual is, in turn, A{E} }(1)=) {EL)} (1). QED

COROLLARY. If A.(7) is a DF-space, then A, {E }(t)

is also a DF-space.

PROCF. If Ap, m=1,2,... is a countable fundamental Sys-
tem of bounded sets in A,(t) and V; stands for the unit
ball in ¢"{E,}, then Ap-Vy m=1,2,... is the correspon-
ding fundamental system in A, {E_}(t). Indeed, if A is
t-bounded in A {E,} then I(A) is t-bounded in A,. Take
Ap such that I(A)C A, and for each x=(x ), in A write
x=(|xn|)n-(yn)n with (yp)n in V. Then x is in I(A)-v,
which is contained in A *V;. On the other hand, A {EL}
is, as we have seen, quasi-barrelled, thus it is a DF-

-space. QED

THEOREM 3. If A,(7) is bornological, then A, (E,} (1)

is also bornological.
PROOF. By Theorem 2, 1 is the Mackey topology on
A {EL}. Let £: A, {E,} » XX be a locally bounded linear

form (i.e. f is bounded on T-bounded sets) . According

to [7,528,1,(3)] we must prove that f is t-continuous.
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For every y in V; (the unit ball in £%{E_,}) we define
Iyta€Aplr) »Iy(a):=(anyn) n €A {Eq} (1)

every I, is linear and continuous. Now take
N:={a in A.: |f(Iy(a))I <1 for all y in vy}

N is absolutely convex and bornivorous, for if A is t-
-bounded in A,, then A-Vy; 1is t-bounded in X,.{E,} and
we can find r>0 such that [f(Iy(a))| sr for all y 'in Vv,

and all o in A, therefore AC rN. Since A, (1) is borno-

logical, N is a zero-neighborhood in A (t) or, equi-
valently, we can find M in ¥ such that If(Iy(u))ISqM(a)
for all y in Vy and o in A,. Finally, if x is in A {E_}

and we write x=([xn|yn)n with y=(y,), in V;, we obtain
00| = [£Ty ((xala)) | s @ xn ) n) = py(x)

thus f is T1-continuous. QED

Our next result extends, using a different approach,
Proposition 2.3 in Bierstedt and Bonet's celebrated pa-
per [1], where it is used as a tool for their result

about distinguished K8the echelon spaces.

THEOREM 4. If X, (1) is distinguished, then A, {E,} (1)
is also distinguished.
PROOF. Since A, 1s weakly dense in A, the strong topo-

logies B(A*,X) and B(A*,A,) coincide on \*. Then the
strong dual of A, (1) is the complete and barrelled
space A (B(A*,X)). Now, by the Corollary to Theorem 1,
the strong dual of A .{E,}(t) is A*{E}}(8) which is com-

plete since so are all Ej. Thus it suffices to prove

that this space is quasi-barrelled (we cannot apply
Theorem 2 since it is not true in general that (A‘)r=xx,
e.g. ). Let N be a bounded subset of the strong dual
of AX{EA}(B); For each v in By, the unit ball in 2*(E}},

define the map

Iy:a €2 Iy (a):=(anvy)y € A {EL)
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for £ in N and v in By, foly is B(X*,X)-continuous on

A*. Moreover, the set
N*:={foI,: £ in N and v in By}

is bounged in the strong dual of A(B(X*,X)): indeed,
if A is bounded in A* then A-B; is bounded in A*{Ej}
and we can find r>0 such that |f(Iv(a))l sr for all «
in A, v in By and £ in N. Therefore N* is equiconti-
nuous and we can find M in B such that lf(Iv(j))Is au ()
for all v in By and f in N. Finally, given u in X*{Ep},

we write u=(|up|vy)y, with v in B; to obtain
[£w | = [£@e(JuaDa)) | sau((JunDn) =pu(w)

for all f in N. Thus N is equicontinuous. QED

REMARK. The proof above shows indeed that "If X (71)
is quasi-barrelled, then A{Ep}(t) is also quasi -barrelled"”

without AK assumptions.
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