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Abstract

Let X be a Banach space. We prove that the normed and non-complete
space of all functions f : [a, b]→ X which are integrable in the sense of Denjoy-
Dunford (introduced by Gordon in 1989) is ultrabornological.

1 Introduction

For functions f : [a, b] → R there exist more integrals than that of Lebesgue’s,
although maybe not so widespread; namely, the integrals attached to the names of
Denjoy (two types), Henstock, Khinchin, Kurzweil, Luzin, McShane, and Perron.
The relationships between these integrals are by now well understood and they can
be classified, roughly speaking, with respect to the kind of derivatives that can be
integrated by means of the corresponding Fundamental Theorem of Calculus, so
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that

Lebesgue⇔ McShane

⇓ 6⇑
Denjoy (strict)⇔ Henstock⇔ Kurzweil⇔ Luzin⇔ Perron

⇓ 6⇑
Denjoy (general)⇔ Khinchin

meaning that the lower in this arrangement, the fewer conditions are imposed on the
notion of derivability for a derivative function to be integrable. We refer the reader
to the excellent monographs on the subject written by Gordon [Go3] and Henstock
[H], and also to Saks’s classic [Sa].

All of these integrals have been extended to functions f : [a, b] → X taking
their values in a Banach space X, but integrals that were equivalent in R may
be different in a general Banach space X. For instance, we have the integrals of
Bochner, Dunford, and Pettis [DU, II.2–3], the integral of McShane [F1], [F2], [F3],
[FM], [Go2] and [Sw], and the integrals of Denjoy-Dunford, Denjoy-Pettis, Denjoy-
Henstock, and Kurzweil [A], [F1], [F2], [FM], [Ga], [GaM], [Gi] and [Go1].

From the point of view of Functional Analysis, each of these notions of vector-
valued integration produces its own linear space of vector-valued integrable functions
together with a norm defined on it in a natural way. However, these normed spaces
are usually non-complete; the space of Bochner integrable functions being the excep-
tion. Fortunately, during the last years most of these non-complete normed spaces
of integrable functions have been shown to be ultrabornological.

Let us recall at this point that an absolutely convex and bounded subset B
of a locally convex space E is said to be a Banach disc if the linear span of B,
usually denoted by EB, endowed with the normed topology defined by the gauge
of B is a Banach space [PB, 3.2]. A locally convex space E is said to be ultra-
bornological if every absolutely convex set that absorbs the Banach discs of E is a
zero-neighborhood. A locally convex space is ultrabornological if and only if it is
the inductive limit of a family of Banach spaces [PB, 6.1]. Their importance lies in
the fact that ultrabornological spaces form a good class of domain spaces for which
the following form of the closed graph theorem holds [K, §35.2.(2)]: “If E and F are
locally convex spaces such that E is ultrabornological and F is webbed, then every
linear mapping from E into F is continuous provided that it has closed graph.” (The
definition of webbed space, due to De Wilde, is a bit too involved to be given here.
Note, however, that almost all relevant spaces are webbed; this is the case of the
space of test functions and the space of distributions [K, §35.1].)

Going back to the spaces of vector-valued integrable functions we were discussing,
Gilioli [Gi] proved that the space of Kurzweil integrable functions and the space of
real-valued (i.e., X = R) Denjoy-Khinchin integrable functions are ultrabornologi-
cal. It was proved in [DFFP] that the space of Dunford integrable functions and the
space of Pettis integrable functions (both in a general σ-finite measure space) are
ultrabornological. The theorem for the McShane integral was given in [DFFP] and
extended to the integral over R by Swartz [Sw]. Finally, Gámez [Ga, Cap. 4] gave a
unified proof for integrals satisfying some general principles, but the vector-valued



The space of Denjoy-Dunford integrable functions is ultrabornological 77

Denjoy-Dunford integral was explicitly excluded.
The proofs of these theorems consist in different versions of du Bois-Reymond,

Lebesgue, and Toeplitz’s sliding hump techniques which, roughly speaking, can be
described as follows: to prove that an absolutely convex set A that absorbs Banach
discs is a zero-neighborhood, proceed by contradiction and start by finding, with
the help of a suitable family of projections, a sequence of elements in the unit ball
(xn), either disjoint or with decreasing support, such that xn /∈ nA. Then use the
elements (xn) to cook up a Banach disc containing them and, consequently, not
absorbed by A. (This technique works also for some curious subspaces of C [a, b],
the interested reader is referred to [BS] and [Gi]).

As we have pointed out, there is a gap in the list, namely, the space of Denjoy-
Khinchin integrable functions is known to be ultrabornological in the scalar-valued
case, but it is not known whether the Denjoy-Dunford extension to the vector-
valued case given by Gordon [Go1] produces an ultrabornological space of integrable
functions. The purpose of this note is to prove that the answer is also affirmative.

2 Vector-Valued Extensions of the Denjoy-Khinchin Integral

We start by recalling the Denjoy-Khinchin integral for real valued functions (alias
“Denjoy integral” [Go1], “Denjoy integral in the wide sense” and “Khinchin integral”
[Go3, Ch. 15]; note, in particular, that the terminologies in [Go1] and [Go3] do not
match exactly) and its relationship with the usual Lebesgue integration (see [Go1],
[Go3] or [Sa] for the proofs). Afterwards, we shall describe the extensions to the
vector-valued case proposed by Gordon [Go1]. In what follows, X stands for a
Banach space with dual X∗ and bidual X∗∗.

Definitions Let F : [a, b]→ X be a function and let S be a subset of [a, b].

(1) The function F is said to be absolutely continuous on S if for each ε > 0
there exists δ > 0 such that

∑
i ‖F (di)− F (ci)‖ < ε whenever {[ci, di]} is a

finite collection of nonoverlapping intervals having endpoints in S and such
that

∑
(di − ci) < δ. The set of all absolutely continuous functions on S will

be denoted by AC(S,X).

(2) The function F is said to be absolutely continuous in the generalized sense
on S if F is continuous on S and S can be expressed as a countable union
S =

⋃
n Sn such that F ∈ AC(Sn, X) for all n ∈ N. The set of all functions

which are absolutely continuous in the generalized sense on S will be denoted
by ACG(S,X).

(3) A point t ∈ (a, b) is said to be a point of density of a set S ⊂ [a, b] if

lim
h→0+

µ∗(S ∩ [t− h, t + h])

2h
= 1

where µ∗ stands for the outer Lebesgue measure on R.

(4) The function F is said to be approximately derivable at a point t ∈ (a, b) with
approximate derivative F ′ap(t) ∈ X if there exists a measurable set S ⊂ [a, b]
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that has t as a point of density and such that

lim
s→t
s∈S

F (s)− F (t)

s− t = F ′ap(t).

As it is well known, the Fundamental Theorem of Calculus for the Lebesgue
integral tells us that a function f : [a, b] → R is Lebesgue integrable in [a, b] if and
only if there exists F ∈ AC([a, b],R) such that F ′ = f almost everywhere on [a, b].
The Denjoy-Khinchin integral is obtained by replacingAC by ACG and “derivative”
by “approximate derivative” in this theorem.

Definitions A function f : [a, b] → R is said to be Denjoy-Khinchin integrable
on [a, b] if there exists F ∈ ACG([a, b],R) such that F ′ap = f almost everywhere on
[a, b] in which case the Denjoy-Khinchin integral of f on [a, b] is defined by∫ b

a
f := F (b)− F (a)

(there is no ambiguity here because if F ∈ ACG([a, b],R), then F is approximately
derivable almost everywhere and, moreover, if F ′ap = 0 almost everywhere, then
F is constant on [a, b]). It is worth noting that every Denjoy-Khinchin integrable
function is measurable.

The function f is said to be Denjoy-Khinchin integrable on a set S ⊂ [a, b] if
fχS is Denjoy-Khinchin integrable on [a, b] in which case

∫
S f :=

∫ b
a fχS .

We denote by DK([a, b],R) the linear space of all Denjoy-Khinchin integrable
(classes of almost everywhere equal) functions on [a, b]. This space is topologized in
a natural way using the scalar Alexiewicz norm ‖·‖A defined by

‖f‖A := sup
{∣∣∣∫ dc f ∣∣∣ : c, d ∈ [a, b], c < d

}
.

This is equivalent to the norm defined by ‖f‖∗A := ‖F‖∞ where F ∈ ACG([a, b],
R) is such that F ′ap = f almost everywhere on [a, b] and F (a) = 0; indeed ‖f‖∗A ≤
‖f‖A ≤ 2 ‖f‖∗A. The space DK([a, b],R) endowed with the scalar Alexiewicz norm
is a non-complete, ultrabornological normed space [Ga], [Gi].

Bochner, Dunford and Pettis integrals are the best known extensions of Lebesgue
integral to functions f : [a, b]→ X (see [DU, II.2–3], for instance). Based on these,
the Denjoy-Bochner, Denjoy-Dunford and Denjoy-Pettis integrals were defined by
Gordon [Go1] as follows.

Definitions A function f : [a, b] → X is said to be Denjoy-Bochner integrable
on [a, b] if there exists F ∈ ACG([a, b], X) such that F ′ap = f almost everywhere on

[a, b] in which case the Denjoy-Bochner integral of f on [a, b] is defined by
∫ b
a f :=

F (b) − F (a) (there is no ambiguity here because, again, if F ∈ ACG([a, b], X) is
such that F ′ap = 0 almost everywhere on [a, b], then F is constant on [a, b]).

A function f : [a, b]→ X is said to be Denjoy-Dunford integrable on [a, b] if the
composition t→ 〈x∗, f(t)〉 is Denjoy-Khinchin integrable for every x∗ ∈ X∗. Gámez
and Mendoza [GaM, Thm. 3] proved that for every interval [c, d] ⊂ [a, b] there is an
element

∫ d
c f ∈ X∗∗ called the Denjoy-Dunford integral of f on [c, d] such that〈

x∗,
∫ d
c f

〉
=
∫ d

c
〈x∗, f〉 =

∫ b

a
〈x∗, f〉χ[c,d].
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(N. B. The existence of these elements
∫ d
c f ∈ X∗∗ was assumed by Gordon as a part

of his original definition of Denjoy-Dunford integral [Go1, Def. 25].)
A function f : [a, b] → X is said to be Denjoy-Pettis integrable on [a, b] if it is

Denjoy-Dunford integrable and the Denjoy-Dunford integral
∫ d
c f is in X for every

[c, d] ⊂ [a, b].
As in the scalar case, these spaces can be topologized in a natural way using the

vectorial Alexiewicz norm ‖·‖A defined by

‖f‖A : = sup
{∥∥∥∫ dc f∥∥∥ : c, d ∈ [a, b], c < d

}
= sup

{∣∣∣∫ dc 〈x∗, f〉∣∣∣ : c, d ∈ [a, b], c < d; x∗ ∈ X∗, ‖x∗‖ ≤ 1
}

followed by the appropriate quotient, namely, two functions f, g : [a, b]→ X are in
the same equivalence class if 〈x∗, f − g〉 = 0 almost everywhere for every x∗ ∈ X∗.

None of these spaces is complete, but Gámez [Ga, 4.2.13] proved, by means of a
clever adaptation of Gilioli’s technique [Gi], that the spaces of Denjoy-Bochner and
Denjoy-Pettis integrable functions are ultrabornological; the Denjoy-Dunford case
remaining open.

Theorem. The space DD([a, b], X) of Denjoy-Dunford integrable functions en-
dowed with the vectorial Alexiewicz norm is ultrabornological.

Proof. The sliding hump technique that we shall employ is, essentially, the one we
used in [DFFP, Thm. 1]. However, the measure theoretic framework of that paper
is too general for our purposes here, so we need to make some major adjustments,
mainly contained in the Lemma below, to adapt it to the case at hand.

Let A be an absolutely convex subset of DD([a, b], X) that absorbs all Banach
discs. To prove that A is a zero-neighborhood, we have to check that A absorbs
the unit ball B of DD([a, b], X). Assume, on the contrary, that A does not absorb
B. Let c be the midpoint of [a, b] and write B = χ[a,c]B + χ[c,d]B, then A does
not absorb χ[a,c]B or A does not absorb χ[c,d]B. Let I1 be a half of I0 = [a, b] such
that A does not absorb χI1B. The obvious inductive procedure tells us that we
can find a sequence of nested intervals (In) such that for every n ∈ N the set A
does not absorb χInB and length(In) = 2−n(b − a). Denote by t0 the unique point
belonging to all of the intervals (In). For every n ∈ N, take a function fn in (the set
of equivalence classes) χInB, hence ‖fn‖A ≤ 1, such that fn(t0) = 0 and fn /∈ nA.
Now take a sequence (αn) ∈ `1. If t is a point in [a, b] such that t 6= t0, then the series∑
n αnfn(t) contains only a finite number of non-zero terms because the supports

of the functions fn decrease to {t0}, so we may define a function f : [a, b]→ X by
f(t) :=

∑
n αnfn(t). We claim —it will be proved in the Lemma below— that for

every x∗ ∈ X∗ the scalar function given by

〈x∗, f(t)〉 =
∑
n

αn 〈x∗, fn(t)〉 (t ∈ [a, b])

is Denjoy-Khinchin integrable on [a, b] and that the series
∑
n αn 〈x∗, fn〉 converges

to 〈x∗, f〉 in the scalar Alexiewicz norm. This implies that f is Denjoy-Dunford
integrable. Let us also see that

∑
n αnfn converges to f in the vectorial Alexiewicz
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norm. This follows from the convergence in the scalar Alexiewicz norm by noting
that if c < d are points in [a, b] and x∗ is in the unit ball of X∗, then∣∣∣∣∣

∫ d

c

〈
x∗, f −

m∑
n=1

αnfn

〉∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

n=m+1

αn

∫ d

c
〈x∗, fn〉

∣∣∣∣∣∣
≤

∞∑
n=m+1

|αn|
∣∣∣∣∣
∫ d

c
〈x∗, fn〉

∣∣∣∣∣
≤

∞∑
n=m+1

|αn| ‖fn‖A ≤
∞∑

n=m+1

|αn| −→
m→∞

0.

Since the series
∑
n αnfn converges for every sequence (αn) ∈ `1, it follows, as it

is well known, that the set C := {∑n αnfn : ‖(αn)‖1 ≤ 1} is a Banach disc in
DD([a, b], X) which is not absorbed by A because fn ∈ C but fn /∈ nA for all
n ∈ N. A contradiction. �

Lemma. Let (In) be a sequence of nested intervals in [a, b] with a unique
common point t0. Let (fn) be a sequence of Denjoy-Khinchin integrable functions
such that fn is supported in In and fn(t0) = 0 for each n ∈ N. If

∑
n ‖fn‖A < ∞,

then the function defined by f(t) =
∑
n fn(t) is Denjoy-Khinchin integrable and the

series
∑
fn converges to f in the scalar Alexiewicz norm.

Proof. We may assume that t0 = b (if not, reason as follows in [a, t0] and sym-
metrically in [t0, b]) so that we may write In = [cn, b] where (cn) is increasing and
limn cn = b. First note, as above, that f is well-defined because for every t ∈ [a, b)
there is only a finite number of non-zero terms in the series

∑
n fn(t). Now, for each

n ∈ N take the primitive Fn ∈ ACG([a, b],R) such that (Fn)′ap = fn and Fn(a) = 0.
Since

∑
n ‖Fn‖∞ < ∞ because ‖Fn‖∞ = ‖fn‖∗A ≤ ‖fn‖A, it follows that the se-

ries
∑
n Fn converges in C([a, b]) to a continuous function F . We shall prove that

F ∈ ACG([a, b],R) and that F ′ap = f almost everywhere on [a, b]. This will show
that f is Denjoy-Khinchin integrable on [a, b].

Note that if k ≥ n then Ik and [a, cn) are disjoint. Therefore, fk is zero in [a, cn)
so that Fk must be constant in this interval. Using that Fk is continuous and that
Fk(a) = 0, it follows that Fk = 0 in [a, cn]. This tells us, on the one hand, that

F is zero in [a, c1], and on the other hand, that F =
n∑
k=1

Fk in [cn, cn+1] for each

n ∈ N. Therefore, we have that Fχ[cn,cn+1] ∈ ACG([cn, cn+1],R) for each n ∈ N and

this proves that F ∈ ACG([a, b],R). The same equality F =
n∑
k=1

Fk in [cn, cn+1] also

shows that

F ′ap =
n∑
k=1

(Fk)
′
ap =

n∑
k=1

fk = f almost everywhere on [cn, cn+1],

so that F ′ap = f almost everywhere on [a, b]. Finally,∥∥∥∥∥f −
m∑
n=1

fm

∥∥∥∥∥
A

≤ 2

∥∥∥∥∥f −
m∑
n=1

fm

∥∥∥∥∥
∗

A

= 2

∥∥∥∥∥F −
m∑
n=1

Fn

∥∥∥∥∥
∞
≤ 2

∞∑
n=m+1

‖Fn‖∞ −→m→∞ 0,

which shows that the series
∑
n fn converges to f in the scalar Alexiewicz norm. �
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