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Abstract

This paper presents a general 2.5D coupled finite element – boundary element methodology for the com-
putation of the dynamic interaction between a layered soil and structures with a longitudinally invariant
geometry, such as railway tracks, roads, tunnels, dams, and pipelines. The classical 2.5D finite element
method is combined with a novel 2.5D boundary element method. A regularized 2.5D boundary integral
equation is derived that avoids the evaluation of singular traction integrals. The 2.5D Green’s functions
of a layered halfspace, computed with the direct stiffness method, are used in a boundary element method
formulation. This avoids meshing of the free surface and the layer interfaces with boundary elements and
effectively reduces the computational efforts and storage requirements. The proposed technique is applied
to four examples: a road on the surface of a halfspace, a tunnel embedded in a layered halfspace, a dike on
a halfspace and a vibration isolating screen in the soil.
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1. Introduction

The calculation of three-dimensional dynamic soil-structure interaction problems is computationally
demanding, since the radiation of waves towards infinity has to be taken into account [4, 27]. A number of
assumptions is often made to reduce the computational efforts. In many cases, the geometry can be assumed
to be periodic or longitudinally invariant, which is a valid assumption for roads, railway tracks, tunnels,
dams, vibration isolation screens in the soil, pipelines, and alluvial valleys.

For periodic structures, a Floquet transform can be used for the computation of the structural response
and the radiated wavefield [8, 16]. In the case of longitudinally invariant structures, a computationally
efficient two-and-a-half-dimensional (2.5D) approach can be applied [3, 17, 35], where the Fourier transform
of the longitudinal coordinate allows to represent the three-dimensional (3D) response of the structure and
the radiated wavefield on a two-dimensional mesh. 2.5D boundary elements are often used for the soil
[30, 33, 34] while 2.5D finite elements are used for the structure [14, 15]. A number of examples involving
railway tracks have been presented by Sheng et al. [30]. Andersen and Nielsen apply the methodology to
study the effect of vibration isolating screens along a railway track [1, 2]. A similar approach is followed by
Lombaert and Degrande [24] and Lombaert et al. [25] to predict vibrations induced by road [24] and railway
traffic [25]. The latter model has been validated by means of field measurements [25] and has been used to
assess the vibration isolation efficiency of a floating slab track [26].

The classical 2.5D boundary element method applied to embedded structures requires Cauchy principal
value integrals of the singular fundamental tractions. For the evaluation of these Cauchy principal value
integrals, a fully or locally enclosing elements technique [9] or an analytical integration [31] can be used.

In the present paper, a regularized boundary integral equation is used as an alternative to the evaluation
of singular integrals. This global regularization of the boundary integral equation is based on the fact that
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the singularity of the static and dynamic fundamental solutions correspond at the source point [5, 7, 28].
This requires a generalization of the global regularization technique to the 2.5D boundary integral equation,
allowing for regular integration.

In most cases, the boundary element method is based on the 2.5D fundamental solution of a homogeneous
full space, for which a closed form analytical expression is available [33, 34]. The use of the homogeneous
full space solution has the disadvantage that the free surface and the layer interfaces of the halfspace have
to be discretized with boundary elements. Meshing of the infinite free surface and the interfaces of the
halfspace requires mesh truncation, at which spurious reflections may occur. These spurious reflections can
be partially mitigated through the use of a special truncation element [30].

In the present paper, fundamental solutions of a layered halfspace are used in a 2.5D boundary element
formulation as an alternative to the homogeneous full space solution. The layer interfaces and the surface of
the halfspace no longer have to be meshed, avoiding spurious reflections at mesh truncations. The boundary
element mesh can be limited to the interface between the structure and the soil, significantly reducing the
size of the boundary element mesh.

The paper is organized as follows. Section 2 treats the 2.5D finite element formulation starting from
the virtual work equation of the structure. In section 3, the 2.5D boundary element method is discussed
with emphasis on the global regularization technique and the use of fundamental solutions of a layered
halfspace. The solution of the coupled finite element – boundary element problem is the topic of section 4.
The proposed methodology is demonstrated in section 5 for a road on a halfspace, a tunnel embedded in a
layered halfspace, a dike on a halfspace and a vibration isolating screen.

2. 2.5D finite element formulation

2.1. Problem outline and domain decomposition

A domain decomposition method is used to solve the problem involving a structure Ωb and a semi-infinite
layered soil Ωs (figure 1). The dynamic soil-structure interaction problem is solved by enforcing continuity
of displacements and equilibrium of stresses on the interface Σbs between both subdomains. The section
Ab of the structure is invariant with respect to the longitudinal coordinate y. The dynamic soil-structure
interaction problem is assumed to be linear and all equations are elaborated in the frequency domain. The
dynamic equilibrium equation of the structure is discretized by means of 2.5D finite elements. The structure
is considered as a 3D continuum, and can be modelled with 2.5D volume elements.
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Figure 1: The geometry of the coupled soil-structure system.
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2.2. Virtual work equation

The equilibrium equation for the dynamic soil-structure interaction problem is formulated in a variational
form. For any virtual displacement field vb imposed on the structure Ωb, the sum of the virtual work of the
internal and the inertial forces is equal to the virtual work of the external loads:

−ω2

∫

Ωb

vb ·ρbubdΩ+

∫

Ωb

ǫb(vb) : σb(ub)dΩ =

∫

Ωb

vb ·ρbbbdΩ+

∫

Γbσ

vb · t
nb

b dΓ+

∫

Σbs

vb · t
nb

b (ub)dΓ (1)

where ub(x, ω) is the displacement vector in the structure containing three displacement components. ρbbb

denotes the body force in the domain Ωb and t
nb

b = σb · nb is the traction vector on a boundary with unit

outward normal vector nb. Tractions t
nb

b are imposed on the boundary Γbσ (figure 1).
Accounting for the equilibrium of stresses tnb

b (ub) + tns

s (us) = 0 on the interface Σbs, where us(x, ω) is
the displacement vector in the soil and tns

s = σs ·ns is the traction vector on a boundary with unit outward
normal ns, equation (1) becomes:

−ω2

∫

Ωb

vb · ρbubdΩ+

∫

Ωb

ǫb(vb) : σb(ub)dΩ =

∫

Ωb

vb · ρbbbdΩ+

∫

Γbσ

vb · t
nb

b dΓ−

∫

Σbs

vb · t
ns

s (us)dΓ (2)

An alternative vector notation for the symmetrical stress tensor σb is used where the components are col-
lected in the vector σb = {σxx, σyy, σzz, σxy, σyz, σzx}

T. Analogously, the vector ǫb = {ǫxx, ǫyy, ǫzz, γxy, γyz, γzx}
T

collects the components of the symmetrical strain tensor ǫb; the use of engineering shear strains allows to
write the internal work as an inner product ǫTbσb.

Next, the finite element discretization is introduced into equation (2). As the structure is longitudinally
invariant and has an invariant cross section Ab, the displacement vector ub(x, ω) is discretized as:

ub(x, ω) ≃ Nb(x, z)
¯
ub(y, ω) (3)

where Nb(x, z) are the globally defined shape functions defined over the section Ab and
¯
ub(y, ω) is the vector

with the degrees of freedom at all nodes of the two-dimensional mesh. The vector
¯
ub(y, ω) is a function of

the longitudinal coordinate y and the frequency ω.
The strain vector ǫb is derived from the displacement vector

¯
ub(y, ω) as:

ǫb = L1Nb
¯
ub + L2Nb

∂
¯
ub

∂y
(4)

where:

L1 =

















∂
∂x

0 0
0 0 0
0 0 ∂

∂z

0 ∂
∂x

0
0 ∂

∂z
0

∂
∂z

0 ∂
∂x

















and L2 =

















0 0 0
0 1 0
0 0 0
1 0 0
0 0 1
0 0 0

















(5)

The strain vector ǫb in equation (4) is related to both the displacement vector
¯
ub and its derivative ∂

¯
ub/∂y

with respect to the longitudinal coordinate y. This differs from the relationship ǫb = LNb
¯
ub in the case

of 3D finite elements, where the strain vector is written as a linear combination of the elements of the
displacement vector

¯
ub only. Equation (4) is alternatively written as:

ǫb = Bb1
¯
ub +Bb2

∂
¯
ub

∂y
(6)

where Bb1 = L1Nb and Bb2 = L2Nb.
The stress vector is related to the strain vector through the constitutive relation:

σb = Cbǫb (7)
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where, in the case of a linear isotropic material, the constitutive matrix Cb depends on the Lamé coefficients
λ and µ.

A standard Galerkin procedure is followed, where the same approximation is used for the virtual dis-
placement vector vb(x, ω) = Nb(x, z)

¯
vb(y, ω) as for the displacement vector ub(x, ω). Substituting the

strain-displacement relation (6) and the constitutive equation (7) in the virtual work equation (2) yields:

− ω2

∫

Ωb
¯
vT
bN

T
b ρbNb

¯
ubdΩ +

∫

Ωb

(

¯
vT
bB

T
b1 +

(

∂
¯
vb

∂y

)T

BT
b2

)

Cb

(

Bb1
¯
ub +Bb2

∂
¯
ub

∂y

)

dΩ

=

∫

Ωb
¯
vT
bN

T
b ρbbbdΩ +

∫

Γbσ
¯
vT
bN

T
b t̄

nb

b dΓ−

∫

Σbs
¯
vT
bN

T
b t

ns

s (us) dΓ (8)

Equation (8) is further elaborated, rewriting the volume integrals as an integral over the longitudinal coor-
dinate y and the cross section Ab:

− ω2

∫

∞

−∞
¯
vT
b

(
∫

Ab

NT
b ρbNb dA

)

¯
ub dy +

∫

∞

−∞
¯
vT
b

(
∫

Ab

BT
b1CbBb1 dA

)

¯
ub dy

+

∫

∞

−∞
¯
vT
b

(
∫

Ab

BT
b1CbBb2 dA

)

∂
¯
ub

∂y
dy +

∫

∞

−∞

(

∂
¯
vb

∂y

)T (∫

Ab

BT
b2CbBb1 dA

)

¯
ub dy

+

∫

∞

−∞

(

∂
¯
vb

∂y

)T (∫

Ab

BT
b2CbBb2 dA

)

∂
¯
ub

∂y
dy =

∫

∞

−∞
¯
vT
b

(
∫

Ab

NT
b ρbbb dA

)

dy

+

∫

∞

−∞
¯
vT
b

(
∫

Gbσ

NT
b t̄

nb

b dΓ

)

dy −

∫

∞

−∞
¯
vT
b

(
∫

Sbs

NT
b t

ns

s (us) dΓ

)

dy (9)

where Gbσ is the intersection of the surface Γbσ with the plane y = 0 and Sbs is defined as the intersection
of the soil-structure interface Σbs with the plane y = 0 (figure 1). The discretized equation is obtained
through elimination of the virtual displacement vector

¯
vb(y, ω). This requires integration by parts on the

terms containing derivatives ∂
¯
vb(y, ω)/∂y in equation (9):

− ω2

∫

∞

−∞
¯
vT
b

[
∫

Ab

NT
b ρbNb dA

]

¯
ub dy +

∫

∞

−∞
¯
vT
b

[
∫

Ab

BT
b1CbBb1 dA

]

¯
ub dy

+

∫

∞

−∞
¯
vT
b

[
∫

Ab

BT
b1CbBb2 dA−

∫

Ab

BT
b2CbBb1 dA

]

∂
¯
ub

∂y
dy −

∫

∞

−∞
¯
vT
b

[
∫

Ab

BT
b2CbBb2 dA

]

∂2

¯
ub

∂y2
dy

=

∫

∞

−∞
¯
vT
b

[
∫

Ab

NT
b ρbbb dA

]

dy +

∫

∞

−∞
¯
vT
b

[
∫

Gbσ

NT
b t̄

nb

b dΓ

]

dy −

∫

∞

−∞
¯
vT
b

[
∫

Sbs

NT
b t

ns

s (us) dΓ

]

dy (10)

Since equation (10) holds for any virtual displacement
¯
vb(y, ω), all integrals over the longitudinal coordinate

y vanish and equation (10) is equivalent to:

−ω2Mbb
¯
ub(y, ω) +K0

bb¯
ub(y, ω) +K1

bb

∂
¯
ub(y, ω)

∂y
+K2

bb

∂2

¯
ub(y, ω)

∂y2
=

¯
fb(y, ω) +

¯
f sb(y, ω) (11)

where the mass matrix Mbb is defined as:

Mbb =

∫

Ab

NT
b ρbNbdA (12)
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The stiffness matrices K0
bb, K

1
bb, and K2

bb are defined as:

K0
bb =

∫

Ab

BT
b1CbBb1 dA (13)

K1
bb =

∫

Ab

(

BT
b1CbBb2 −BT

b2CbBb1

)

dA (14)

K2
bb =

∫

Ab

BT
b2CbBb2 dA (15)

The external load vector:

¯
fb(y, ω) =

∫

Ab

NT
b ρbbb(x, y, z, ω) dA+

∫

Gbσ

NT
b t̄

nb

b (x, y, z, ω) dΓ (16)

contains contributions of both body forces and surface tractions and is evaluated for every point y on the
longitudinal axis. The force vector:

¯
f sb(y, ω) = −

∫

Sbs

NT
b t

ns

s (us(x, y, z, ω)) dΓ (17)

represents the soil-structure interaction forces on the interface Σbs.
The integrals in equations (12)-(15) are evaluated by means of a classical two-dimensional Gaussian

integration. The matrices Mbb and K0
bb correspond to a combination of the classical two-dimensional in-

plane and out-of-plane finite element mass and stiffness matrices, respectively. For the mass matrix Mbb

and the stiffness matrix K0
bb, the in-plane displacements ux and uz are uncoupled from the out-of-plane

displacements uy. The stiffness matrices K1
bb and K2

bb account for 3D wave propagation in the structure,
where the in-plane and out-of plane degrees of freedom are coupled.

The differential equation (11) is solved by a Fourier transform of the longitudinal coordinate y to the
horizontal wavenumber ky, where the Fourier transform is defined as F [f(y), ky] =

∫

∞

−∞
exp(+ikyy)f(y)dy.

Equation (11) is transformed to the wavenumber domain as:

[

−ω2Mbb +K0
bb − ikyK

1
bb − k2yK

2
bb

]

˜
¯
ub(ky , ω) =

˜
¯
fb(ky , ω) +

˜
¯
f
s

b(ky, ω) (18)

where a tilde above a variable denotes its representation in the frequency-wavenumber domain.
In equation (18), the force vector:

˜
¯
f
s

b(ky , ω) = −

∫

Sbs

NT
b t̃

ns

s (ũs(x, ky , z, ω)) dΓ (19)

is an integral of the product of the shape functions Nb and the wavenumber-frequency representation t̃s(ũs)
of the tractions on the soil-structure interface Σbs. Accounting for continuity of displacements ũs = ũb

on the soil-structure interface Σbs, and introducing the finite element discretization (3), equation (19) is
elaborated as:

˜
¯
f
s

b(ky, ω) = −

∫

Sbs

NT
b t̃

ns

s (Nb)(x, ky , z, ω)˜
¯
ub(ky, ω) dΓ (20)

where t̃ns

s (Nb)(x, ky , z, ω) represents the tractions t̃ns

s (x, ky, z, ω) due to imposed displacements ũb(x, z) =
Nb(x, z) on the soil-structure interface. Introducing equation (20) in the equilibrium equation (18) yields:

[

−ω2Mbb +K0
bb − ikyK

1
bb − k2yK

2
bb + K̃

s

bb(ky, ω)
]

˜
¯
ub(ky , ω) =

˜
¯
fb(ky , ω) (21)

where

K̃
s

bb(ky, ω) =

∫

Sbs

NT
b t̃

ns

s (Nb)(x, ky , z, ω) dΓ (22)
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represents the dynamic stiffness matrix of the soil in the wavenumber-frequency domain.
The derivation of the 2.5D finite element equilibrium equation (21) can similarly be performed for 2.5D

shell elements or beam elements (figure 2). 2.5D shell elements have first been derived by Gavrić [14, 15]
in a study of wave propagation in cylindrical thin-walled structures. The 2.5D shell element has three
displacement degrees of freedom and one degree of freedom for the rotation around the y-axis (figure 2b).
In the following, a shell element is based on Kirchhoff bending theory and in-plane plane stress deformation.
The 2.5D beam element consists of a single node with four degrees of freedom: three displacement degrees
of freedom and one degree of freedom for rotation around the y-axis (figure 2c).

x

y

z

(a) (b) (c)

Figure 2: 2.5D finite elements: (a) a 2.5D finite volume element, (b) a 2.5D finite shell element, and (c) a 2.5D finite beam
element.

A longitudinally invariant structure can be meshed using a combination of volume, beam, and shell
elements. The assembly of 2.5D element stiffness matrices results in the following generalized 2.5D finite
element equilibrium equation [6, 14, 15]:

[

−ω2Mbb +K0
bb − ikyK

1
bb − k2yK

2
bb + ik3yK

3
bb + k4yK

4
bb + K̃

s

bb(ky, ω)
]

˜
¯
ub(ky, ω) = ˜

¯
fb(ky , ω) (23)

The finite element matrices Mbb and K0
bb to K4

bb in equation (23) are independent of the wavenumber ky
and the frequency ω, and are only assembled once.

3. 2.5D boundary element formulation

3.1. Integral representation theorem

The 2.5D boundary element method is based on the integral equation that relates the displacements
in the soil domain to the displacements and tractions on the soil-structure interface. The 2.5D boundary
integral equation has been derived by Sheng et al. [31] from the 2.5D reciprocal theorem. In this paper, the
2.5D boundary integral equation is derived from the 3D integral representation [5]:

κusi(x
′, y′, z′, ω) =

∫

Σbs

uG
ij(x

′, y′, z′, x, y, z, ω)tnsj(x, y, z, ω) dΓ

−

∫

Σbs

tGn

ij (x′, y′, z′, x, y, z, ω)usj(x, y, z, ω) dΓ = 0 (24)

that expresses the relation between the displacements usi(x, y, z, ω) and tractions tnsi(x, y, z, ω) on the inter-
face Σbs to the Green’s displacements uG

ij(x
′, y′, z′, x, y, z, ω) and tractions tGn

ij (x′, y′, z′, x, y, z, ω). In equa-

tion (24), κ is equal to 1 for points {x′, y′, z′}
T
inside the domain Ωs and equal to 0 for points {x′, y′, z′}

T

located outside the domain Ωs. Integral equation (24) is not valid if the point {x′, y′, z′}
T
is located on the

boundary Σbs.
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Equation (24) is elaborated, rewriting the surface integrals as integrals over the intersection Sbs of the
interface Σbs with the plane y = 0 (figure 1) and integrals with respect to the longitudinal coordinate y
(figure 1):

κusi(x
′, y′, z′, ω) =

∫

Sbs

∫ +∞

−∞

uG
ij(x

′, y′, z′, x, y, z, ω)tnsj(x, y, z, ω) dy dS

−

∫

Sbs

∫ +∞

−∞

tGn

ij (x′, y′, z′, x, y, z, ω)usj(x, y, z, ω) dy dS (25)

It is assumed that the soil is invariant in the horizontal direction. As a result, the Green’s functions only
depend on the relative horizontal distance between source and receiver. In equation (25), the source is
shifted to the plane y = 0:

κusi(x
′, y′, z′, ω) =

∫

Sbs

∫ +∞

−∞

uG
ij(x

′, 0, z′, x, y − y′, z, ω)tnsj(x, y, z, ω) dy dS

−

∫

Sbs

∫ +∞

−∞

tGn

ij (x′, 0, z′, x, y − y′, z, ω)usj(x, y, z, ω) dy dS (26)

As the interface is invariant in the y-direction, the horizontal coordinate y′ is transformed to the wavenumber
domain:

κũsi(x
′, ky, z

′, ω) =

∫ +∞

−∞

∫

Sbs

∫ +∞

−∞

exp (+ikyy
′) uG

ij(x
′, 0, z′, x, y − y′, z, ω)tnsj(x, y, z, ω) dy dS dy′

−

∫ +∞

−∞

∫

Sbs

∫ +∞

−∞

exp (+ikyy
′) tGn

ij (x′, 0, z′, x, y − y′, z, ω)usj(x, y, z, ω) dy dS dy′ (27)

Replacing exp (+ikyy
′) by exp (−iky (y − y′)) exp (+ikyy) and changing the order of integration, the follow-

ing expression is obtained:

κũsi(x
′, ky, z

′, ω) =
∫

Sbs

∫ +∞

−∞

[
∫ +∞

−∞

exp (−iky (y − y′))uG
ij(x

′, 0, z′, x, y − y′, z, ω) dy′
]

exp (+ikyy) tsj(x, y, z, ω) dy dS

−

∫

Sbs

∫ +∞

−∞

[
∫ +∞

−∞

exp (−iky (y − y′)) tGn

ij (x′, 0, z′, x, y − y′, z, ω) dy′
]

× exp (+ikyy)usj(x, y, z, ω) dy dS (28)

The bracketed terms in equation (28) are identified as the Fourier transform of the Green’s displacement
and tractions, respectively:

κũsi(x
′, ky, z

′, ω) =

∫

Sbs

ũG
ij(x

′, 0, z′, x,−ky, z, ω)

[
∫ +∞

−∞

exp (+ikyy) t
n

sj(x, y, z, ω) dy

]

dS

−

∫

Sbs

t̃Gn

ij (x′, 0, z′, x,−ky, z, ω)

[
∫ +∞

−∞

exp (+ikyy)usj(x, y, z, ω) dy

]

dS (29)

Subsequently, the bracketed terms in equation (29) are identified as the Fourier transforms of the displace-
ments and tractions, respectively:

κũsi(x
′, ky, z

′, ω) =

∫

Sbs

ũG
ij(x

′, 0, z′, x,−ky, z, ω)t̃
n

sj(x, ky , z, ω) dS

−

∫

Sbs

t̃Gn

ij (x′, 0, z′, x,−ky, z, ω)ũsj(x, ky , z, ω) dS (30)
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Equation (30) is the wavenumber domain integral representation theorem and agrees with the results pre-
sented by Sheng et al. [31]. Equation (30) can be used to compute the radiated wavefield in the soil for given
displacements and tractions on the interface Sbs. Equation (30) cannot be used, however, for the solution of

the soil-structure interaction problem as it is not valid for source points {x′, 0, z′}
T
located on the interface

Sbs. Therefore, a regularized boundary integral equation that allows for the solution of the displacements
and tractions on the soil-structure interface is proposed in the next subsection.

3.2. Regularization procedure

Following a classical approach, the regularization of the boundary integral representation (30) results in
Somigliana’s identity that involves Cauchy principal value integrals of the singular fundamental tractions.
This procedure is followed by Sheng et al. [31], who evaluate the Cauchy principal value integrals analytically.
Alternatively, a regularization procedure [5, 7, 28] is proposed in the present paper that avoids singular
integration. This global regularization of the boundary integral equation is based on the fact that the
singularity of the static and dynamic fundamental solutions at the source point correspond.

Since the rigid body identity only applies for bounded domains [5], it is elaborated for an auxiliary
bounded domain Ωint

s that is enclosed by the boundary Σbs (figure 3). For an arbitrary rigid body translation

(a) (b)

Ωs

Ωint
s

Σbs

Σbs

n

n

Figure 3: Definition of the auxiliary bounded domain Ωint
s enclosed by the boundary Σbs of Ωs.

urig
i , the stress tensor is zero throughout the volume Ωint

s . Application of the 3D integral representation
theorem (24) results in the following rigid body identity [5]:

κurig
i + urig

j

∫

Σbs

tGn

ij (x′, y′, z′, x, y, z, ω = 0) dΓ = 0 (31)

The longitudinal invariance is exploited, rewriting the surface integral in equation (31) as an integral over
the interface Sbs and the longitudinal coordinate y. Furthermore, the source of the Green’s function is
shifted to the plane y = 0:

κurig
i + urig

j

∫

Sbs

∫ +∞

−∞

tGn

ij (x′, 0, z′, x, y − y′, z, ω = 0) dy dS = 0 (32)

The coordinate y′ is transformed to the wavenumber domain:

κurig
i δ (ky) + urig

j

∫ +∞

−∞

∫

Sbs

∫ +∞

−∞

exp (+ikyy
′) tGn

ij (x′, 0, z′, x, y − y′, z, ω = 0) dy dS dy′ = 0 (33)

Replacing exp (+ikyy
′) by exp (−iky (y − y′)) exp (+ikyy) and changing the order of integration, the follow-
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ing expression is obtained:

κurig
i δ (ky) + urig

j

×

∫ +∞

−∞

∫

Sbs

[
∫ +∞

−∞

exp (−iky (y − y′)) tGn

ij (x′, 0, z′, x, y − y′, z, ω = 0) dy′
]

dS exp (+ikyy) dy = 0 (34)

The bracketed term in equation (34) is identified as the Fourier transform of the static Green’s traction
evaluated at −ky :

κurig
i δ (ky) + urig

j

∫

Sbs

t̃Gn

ij (x′, 0, z′, x,−ky, z, ω = 0) dS

[
∫ +∞

−∞

exp (+ikyy
′) dy′

]

= 0 (35)

Similarly, the bracketed integral in equation (35) is equal to the Dirac function δ (ky):

[

κurig
i + urig

j

∫

Sbs

t̃Gn

ij (x′, 0, z′, x,−ky, z, ω = 0) dS

]

δ (ky) = 0 (36)

The presence of the Dirac function δ (ky) implies that the bracketed term should only be zero at the
wavenumber ky = 0. This corresponds to the fact that a rigid body translation of a longitudinally invariant
body is entirely two-dimensional. Equation (36) therefore reduces to:

κurig
i + urig

j

∫

Sbs

t̃Gn

ij (x′, 0, z′, x, ky = 0, z, ω = 0) dS = 0 (37)

If the rigid body translation urig
i is chosen to be equal to the displacement ũsi(x

′, ky, z
′, ω), the following

identity is obtained:

κũsi(x
′, ky, z

′, ω) + ũsj(x
′, ky, z

′, ω)

∫

Sbs

t̃Gn

ij (x′, 0, z′, x, ky = 0, z, ω = 0) dS = 0 (38)

The rigid body identity (38) is subtracted from the integral representation (30) in order to obtain a regu-
larized boundary integral equation. As the integral representation (30) is only valid for points not located
on the soil-structure interface Sbs, a limiting procedure is followed. The procedure is similar to the regular-
ization in the two-dimensional case [5], and yields the following regularized displacement integral equation
for an unbounded domain:

ũsi(x
′, ky, z

′, ω)−

∫

Sbs

ũG
ij(x

′, 0, z′, x,−ky, z, ω)t̃
n

sj(x, ky , z, ω) dS

+

∫

Sbs

[ t̃Gn

ij (x′, 0, z′, x,−ky, z, ω)ũsj(x, ky, z, ω)

− t̃Gn

ij (x′, 0, z′, x, ky = 0, z, ω = 0) ũsj(x
′, ky, z

′, ω) ] dS = 0 (39)

The strong singularity of the traction integral has been successfully removed, as the singularity of the 2.5D
dynamic Green’s traction t̃Gn

ij (x′, 0, z′, x,−ky, z, ω) corresponds to the singularity of the two-dimensional

static Green’s traction t̃Gn

ij (x′, 0, z′, x, ky = 0, z, ω = 0) when the receiver location {x,z}T approaches the

source location {x′,z′}T [35]. In the case of a bounded domain, a similar regularized displacement integral
equation can be derived, where the integral-free term ũsi(x

′, ky , z
′, ω) in equation (39) vanishes.

3.3. Boundary element discretization

The regularized 2.5D boundary integral equation (39) is subsequently discretized with two-dimensional
boundary elements. The displacement vector on the soil-structure interface Sbs is discretized as:

ũs(x, ky , z, ω) = Ns(x, z)˜
¯
us(ky , ω) (40)
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where the vector ˜
¯
us(ky, ω) collects the boundary element displacement degrees of freedom and Ns(x, z) are

the two-dimensional boundary element interpolation functions defined on the soil-structure interface Sbs.
Similarly, the traction vector is discretized as:

t̃ns (x, ky, z, ω) = Ns(x, z)˜
¯
ts(ky, ω) (41)

where the vector ˜
¯
ts(ky, ω) collects the boundary element traction degrees of freedom.

The displacements and tractions on the interface Sbs are discretized by means of the same interpolation
functions Ns(x, z). Although it is possible to use different interpolation functions, this is a convenient choice
as it results in a square system of equations. The interpolation nodes are commonly chosen at the center
of the boundary elements and a constant interpolation is used for both displacements and tractions. An
alternative is the isoparametric approach where the interpolation nodes correspond to the nodes of the
boundary element mesh. These alternatives are referred to as element and nodal collocation, respectively
[5]. A nodal collocation is followed in the present paper, as it allows for a straightforward coupling of the
finite element and boundary element equations, as will be elaborated in section 4.

The boundary element discretizations (40) and (41) are introduced in the regularized boundary integral
equation (39). A point collocation method results in the following boundary element system of equations:

[

T̃(ky, ω) + I
]

˜
¯
us(ky , ω) = Ũ(ky, ω)˜

¯
ts(ky , ω) (42)

where Ũ(ky, ω) and T̃(ky , ω) are fully populated unsymmetric boundary element system matrices. The unit
matrix I corresponds to the integral-free term in equation (39) and is not present in the case of a bounded
medium.

After the solution of a 2.5D boundary value problem by means of equation (42), the radiated wavefield
is computed by means of the integral representation (30). Introducing the boundary element discretizations
(40) and (41) into equation (30) allows to compute the radiated wavefield as:

¯
ũr (ky, ω) = Ũr (ky, ω)

¯
t̃s (ky, ω)− T̃r (ky, ω)

¯
ũs (ky, ω) (43)

where the vector
¯
ũr (ky, ω) collects the displacement components at nr receiver locations.

3.4. Validation of the boundary element method

The boundary element method is validated by means of the benchmark example of a cylindrical cavity in
a full space (figure 4) [11, 12]. The cavity has a radius r0 = 1m and the full space has a shear wave velocity

Cs = 150m/s, a dilatational wave velocity Cp = 300m/s, a density ρ = 1800 kg/m3, and a material damping
ratio βs = βp = 0.05 in both deviatoric and volumetric deformation. The cavity is loaded by a pressure
p̃(ky , ω) = 1 that is harmonic with respect to the longitudinal coordinate y with a wavelength 2π/ky (figure
4). This loading results in a radial displacement ũr(r, ky , ω) in the full space that is axisymmetric around
the y-axis and varies harmonically with respect to the coordinate y with the same wavelength 2π/ky as
the load. Correspondingly, the wavefield around the cavity is characterized by both dilatational and shear
waves.

An analytical reference solution for the cavity problem has been derived by Forrest and Hunt [11, 12]
by considering the equilibrium equation of a thick-walled cylindrical tube with an internal radius r0 and a
limiting large external radius. The solution is expressed in terms of modified Bessel functions of the second
kind and reduces to the two-dimensional reference solution of Eringen and Suhubi [10] for ky = 0, in which
case the solution only depends on the dilatational wave velocity Cp. For ky 6= 0, the solution also depends
on the shear wave velocity Cs.

Two 2.5D boundary element meshes with 10 and 50 equal sized linear elements over the circumference of
the cavity, respectively, are used. The analytical 2.5D full space Green’s functions [35] are integrated using
6 integration points per element.

Figure 5 shows the radial displacement ũr(r = r0, ky, ω) at the wall of the cavity for a dimensionless
wavenumber k̄y = kyω/Cs = 0, k̄y = 0.5, and k̄y = 1. The results obtained with the 2.5D boundary element
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p̃(ky , ω)

Figure 4: Cylindrical cavity.

model are in good agreement with the analytical solution and converge for an increasing number of boundary
elements. This validates the 2.5D regularized boundary integral equation (39) and its implementation.

Similarly, the radial displacement ũr(r, ky, ω) at a distance r = 10m of the center of the cavity (figure
6) are in good agreement with the analytical solution, validating also equation (43).
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Figure 5: Real (solid line) and imaginary (dashed line) part of the radial displacement ũr(r = r0, ky , ω) on the wall of the
cavity with radius r0 = 1m subjected to a spatially harmonic internal pressure p̃(ky, ω) at a dimensionless wavenumber (a)
k̄y = 0, (b) k̄y = 0.5, and (c) k̄y = 1. The results obtained with the 2.5D boundary element model with 10 (light gray lines) and
50 (dark gray lines) boundary elements around the circumference are compared with the analytical reference solution (black
lines).

3.5. Evaluation of the Green’s functions of a layered halfspace

The computation of the boundary element system matrices Ũ(ky, ω) and T̃(ky , ω) in equation (42)
requires the wavenumber-frequency domain Green’s displacements ũG

ij and tractions t̃Gn

ij . Commonly, the
2.5D homogeneous full space solution [32, 35] is used. If the geometry involves a layered halfspace, the use
of the homogeneous full space solution has the disadvantage that the traction free surface and the layer
interfaces of the halfspace have to be discretized with boundary elements. Meshing of the infinite surface
and interfaces requires mesh truncation, at which spurious reflections may occur. These disadvantages
are avoided: in this paper, the Green’s functions of a layered halfspace are used which does not require
meshing of the infinite surface and interfaces. The fundamental solutions are computed by means of the
direct stiffness method [20, 21] using the MATLAB toolbox EDT 2.1 [29]. As the traction free surface of
the halfspace and the layer interfaces are included in these fundamental solutions, only the interface Σbs

between the structure and the layered halfspace is discretized.
In every boundary element collocation point, a source {x′, 0, z′}T is considered. For every source position,

the Green’s displacements and tractions are evaluated at all boundary element integration points. The
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Figure 6: Real (solid line) and imaginary (dashed line) part of the radial displacement ũr(r, ky, ω) at a distance r = 10m of
the center of the cavity with radius r0 = 1m subjected to a spatially harmonic internal pressure p̃(ky , ω) at a dimensionless
wavenumber (a) k̄y = 0, (b) k̄y = 0.5, and (c) k̄y = 1. The results obtained with the 2.5D boundary element model with 10
(light gray lines) and 50 (dark gray lines) boundary elements around the circumference are compared to the analytical reference
solution (black lines).

boundary element collocation point corresponds to the nodes of the mesh in the case of nodal collocation
or to the element center in the case of element collocation [5]. The boundary element integration points are
based on a Gaussian integration over the element (figure 7). In order to avoid the evaluation of the Green’s
functions for every combination of collocation and integration points, the Green’s functions are evaluated
on a grid. During the boundary element integration, the Green’s functions are evaluated at the boundary
element integration points by interpolation on this grid.

As the soil is invariant in the horizontal direction, the Green’s functions only depend on the relative
horizontal position of source and receiver. Therefore, the source position is placed at the depth of every
collocation point along the line {x′ = 0, z′}T (figure 7).

zr

zr

x

z

Integration point

Collocation point
Receiver grid

Σbs

Figure 7: The evaluation of the Green’s function at relative receiver depths.

The Green’s displacements and tractions exhibit a singular behaviour around the source z′. In order to
properly sample the Green’s functions around the source, the receivers of the grid are concentrated around
the source point. Therefore, the receiver grid is defined in terms of the relative depth zr of the receiver with
respect to the vertical source position z′. The relative receiver grid is the same for every source location
(figure 7). For the boundary element integration, the Green’s displacements and tractions at the boundary
element integration points are interpolated from this grid.

4. Finite element - boundary element coupling

The boundary element system of equations (42) allows to compute the dynamic soil stiffness matrix

K̃
s

bb(ky, ω) in equation (23). The finite element degrees of freedom
¯
ub are divided into internal degrees

12



of freedom
¯
ub1

and degrees of freedom
¯
ub2

on the soil-structure interface (figure 1). This allows to write
equation (23) as:

(

−ω2

[

Mb1b1
Mb1b2

Mb2b1
Mb2b2

]

+

[

K0
b1b1

K0
b1b2

K0
b2b1

K0
b2b2

]

− iky

[

K1
b1b1

K1
b1b2

K1
b2b1

K1
b2b2

]

−k2y

[

K2
b1b1

K2
b1b2

K2
b2b1

K2
b2b2

]

− ik3y

[

K3
b1b1

K3
b1b2

K3
b2b1

K3
b2b2

]

+k4y

[

K4
b1b1

K4
b1b2

K4
b2b1

K4
b2b2

]

+

[

0 0

0 K̃s
b2b2

(ky, ω)

])[

˜
¯
ub1

(ky, ω)
˜
¯
ub2

(ky, ω)

]

=

[

0
˜
¯
fb2

(ky, ω)

]

(44)

The dynamic soil stiffness matrix K̃s
b2b2

(ky, ω) is written as:

K̃s
b2b2

(ky , ω) =

∫

Sbs

NT
b2
t̃ns

s (Nb2
)(x, ky , z, ω) dS (45)

The boundary element mesh is chosen to match the finite element mesh on the soil-structure interface
Sbs. As a result, the boundary element interpolation functions Ns(x, z) correspond to the finite element
shape functions Nb2

(x, z) on the soil-structure interface. This allows to introduce the boundary element
traction discretization in equation (45):

K̃s
b2b2

(ky, ω) =

∫

Sbs

NT
b2
Nb2

dS ˜
¯
ts(Nb2

)(ky , ω) (46)

The integral Tq =
∫

Sbs

NT
b2
Nb2

dS in equation (45) is independent of wavenumber and frequency, which

allows to write the dynamic soil stiffness matrix K̃s
b2b2

(ky, ω) as:

K̃s
b2b2

(ky, ω) = Tq
˜
¯
ts(Nb2

)(ky, ω) (47)

The tractions ˜
¯
ts(Nb2

)(ky, ω) are found as the solution of the boundary element system of equations (42):

˜
¯
ts(Nb2

)(ky , ω) = Ũ−1(ky, ω)
(

T̃(ky, ω) + I
)

(48)

Equation (48) is introduced in equation (47):

K̃s
b2b2

(ky, ω) = TqŨ
−1(ky, ω)

(

T̃(ky , ω) + I
)

(49)

which allows to compute the soil stiffness matrix K̃s
b2b2

(ky, ω) from the boundary element system matrices

Ũ−1(ky , ω) and T̃(ky, ω).

5. Applications

5.1. Road on a halfspace

As a first example, a road on a halfspace is considered (figure 8). The halfspace has a shear wave velocity

Cs = 150m/s, a dilatational wave velocity Cp = 300m/s, a density ρ = 1800 kg/m
3
and a material damping

ratio βs = βp = 0.05 in both deviatoric and volumetric deformation. The road consists of several layers
which characteristics are summarized in table 1. The road has a width of 4m and is loaded by a vertical
unit harmonic point load at the center of the road. The road is modelled with 40 2.5D shell elements of
equal size. The soil is modelled with 2.5D boundary elements conforming with the finite element mesh.

The solution of the coupled FE-BE equation (44) results in the displacements of the road in the
wavenumber-frequency domain. The wavenumber-frequency domain solution is subsequently transformed
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Figure 8: Road on a halfspace.

Layer Type d E ν ρ
[m] [MPa] [-] [kg/m3]

1 Asphalt 0.15 9150 1/3 2100
2 Crushed stone 0.20 500 1/2 2000
3 Crushed concrete 0.25 200 1/2 1800

Table 1: The characteristics of the road.

to the spatial domain by means of an inverse Fast Fourier Transform (FFT) of the wavenumber ky to the co-
ordinate y. The wavenumber sampling is specified in terms of the dimensionless wavenumber k̄y = kyCs/ω.
As both the response of the road and the layered halfspace strongly decay for dimensionless wavenumbers
larger than k̄y = 1 [22, 23], a maximum dimensionless wavenumber k̄y = 3 is sufficient to accurately compute
the displacements in the in the far field.

Nyquist’s theorem states that the wavenumber step ∆ky should be smaller than 2π/ymax where ymax is
a distance where the solution is sufficiently attenuated. Specifying the distance ymax in terms of a number
n of shear wavelengths λs, allows to determine the dimensionless wavenumber step as ∆k̄y = 1/n. In the
present analysis, n = 100 wavelengths are considered, resulting in 300 samples from k̄y = 0 to k̄y = 3.

Figure 9a shows the real part of the vertical displacements on the road and on the surface of the halfspace
at 10Hz. The wavelength of the Rayleigh waves in the soil is much larger than the width of the road. As a
result, the wavefield is characterized by nearly cylindrical wave fronts. The results are compared with the
results obtained with a model previously proposed by Lombaert [22] and Lombaert and Degrande [23] (figure
9b). In this model, the road is modelled as a beam with a rigid cross section where only vertical tractions on
the interface between the road and the halfspace are considered, referred to as relaxed boundary conditions.
In the frequency range up to 50Hz considered for road traffic, the results between the road modelled with
shell elements and the road with a rigid cross-section compare well.

Figure 10 compares the real and imaginary part of the vertical displacement in the point {10m, 0, 0}T

on the surface of the halfspace. The results obtained with both models correspond well, in particular at low
frequencies.

In the case of a model of a railway track, for which higher frequency components are important, or in the
case of a road with a large width, the assumption of a rigid cross-section for the soil-structure interface may
no longer be valid. The present methodology allows investigating the validity of these assumptions made in
existing models for railway traffic [25].

5.2. Tunnel in a layered halfspace

In the second example, the wavefield radiated by a concrete tunnel embedded in a layered halfspace due
to a unit vertical harmonic point load at the tunnel invert is considered. The displacements are computed
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Figure 9: Real part of the vertical displacements on the road and on the surface of the halfspace for a unit vertical point load
applied on the road with a width of 4m at a frequency of 10Hz The results are shown for (a) a model using 40 2.5D shell
elements and (b) the model of Lombaert [22] and Lombaert and Degrande [23], modelling the road as a beam with rigid cross
section.
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Figure 10: (a) Real and (b) imaginary part of the vertical displacement in the point {10m, 0, 0}T on the surface of the halfspace
for a unit vertical point load applied at the center the road. The results are shown for (a) the model using 40 2.5D shell elements
and (b) the model of Lombaert [22] and Lombaert and Degrande [23], modelling the road as a beam with rigid cross section.

with the proposed methodology and compared with the results obtained with the analytical Pipe-in-Pipe
(PiP) model [18].

The center of the tunnel is situated at a depth of 14 m below the free surface. The tunnel has an
internal radius ri = 2.75m and a wall thickness t = 0.25m (Figure 11). The concrete has a Young’s modulus

E = 50000MPa, a Poisson’s ratio ν = 0.30, a density ρ = 2500 kg/m3 and a hysteretic material damping
ratio β = 0.03.

The soil consists of layer with a thickness of 6m on top of a homogeneous halfspace. The surface layer
has a shear wave velocity Cs = 275m/s, a dilatational wave velocity Cp = 1964m/s, a density ρ = 1980m/s
and a material damping ratio βs = βp = 0.04 in both deviatoric and volumetric deformation. The halfspace
has a shear wave velocity Cs = 220m/s, a dilatational wave velocity Cp = 1571m/s, a density ρ = 1980m/s
and a material damping ratio βs = βp = 0.04 in both deviatoric and volumetric deformation. The wave
velocities of the soil layers correspond to a nearly-incompressible material, which is a reasonable assumption
for fully saturated soils.

The response of the tunnel and the halfspace is computed using the 2.5D coupled FE-BE methodology.
The tunnel is modelled with 36 equal-sized 2.5D shell elements around the circumference of the tunnel. The
boundary element mesh matches the finite element mesh, which allows to compute the tunnel response by
means of equation (45).
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Figure 11: Cross section of the tunnel.

Figure 12 shows the vertical displacement at the surface of the layered halfspace due to a unit vertical
point load at the tunnel invert at a frequency of 20Hz. Waves generated at the tunnel invert propagate
through the soil and result in Rayleigh waves at the surface of the layered halfspace. The wavefronts on the
surface of the halfspace are not cylindrical, which is a result of the dynamic interaction between the soil and
the tunnel.

-1 -0.5 0 0.5 1

×10-11

Figure 12: Real part of the vertical displacement at the surface of the layered halfspace due to a unit vertical point load at the
tunnel invert at a frequency of 20Hz.

Figures 13a and 13b show the vertical free-field displacement at the point with coordinates {10m, 10m,−6m}
T

on the layer interface and at the point with coordinates {10m, 10m, 0m}T on the surface of the layered half-
space.

The results obtained with the presented 2.5D coupled FE-BE methodology are compared to the results
obtained with the semi-analytical PiP model. In the PiP model, the tunnel-soil interaction is solved ana-
lytically, where the tunnel is assumed to be embedded in a homogeneous full space. The tunnel response is
subsequently used to compute the displacements in the layered halfspace using the direct stiffness method,
where the tunnel is replaced by a number of equivalent point sources in the layered halfspace [18]. A good
agreement between both models is observed. The discrepancy between both models at higher frequencies
is attributed to the limited wavenumber sampling in the PiP model for the computation of the free field
response.
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Figure 13: Modulus of the vertical displacement in (a) the point with coordinates {10m, 10m,−6m}T and (b) at the point
with coordinates {10m, 10m, 0m}T. The results obtained with the presented methodology (dashed line) is compared with
results obtained with the PiP model (solid line).

5.3. Wave propagation along a dike

In the third example, the wave propagation along an earth dam is studied. The aim of this analysis is to
verify the assumptions made in seismic tomography on earth dams [19], where a Seismic Analysis of Surface
Waves technique is used as a non-destructive technique to determine the dynamic soil characteristics of a
dike from the dispersion of seismic surface waves [13].

The first step involves an in situ experiment where vibrations are generated at the dike surface using
a falling weight, an instrumented impact hammer or a hydraulic shaker and measured with geophones or
accelerometers up to a distance from the source of typically 50 m. In the second step, an experimental
dispersion curve is determined using the phase of the transfer functions between pairs of receivers. It is
assumed that the response at sufficiently large distance from the source is dominated by dispersive surface
waves. The experimental dispersion curve corresponds to the effective (dominant) wave velocity. An inverse
problem is formulated as an optimization problem where the objective function is defined as the squared
difference between the experimental and a computed theoretical dispersion curve.

The MASW method is commonly applied to sites with a flat free surface and the solution of the inverse
problem is based on the assumption that the subgrade can be modelled as a layered elastic halfspace.
When the MASW method is employed to determine the dynamic soil characteristics of dikes, the pertinent
question is under what conditions the inverse problem can still be formulated based on the dispersion curve
of a layered halfspace with a flat free surface where the elevated topography is not included.

To investigate the validity of this assumption, a soft earth dam with a steep slope on top of a homogeneous
halfspace is considered in this example. The dam has a height h = 5m, a base width wb = 20m and a top
width wt = 2m. The dam consists of a soft soil with a shear wave velocity Cs = 150m/s, a dilatational

wave velocity Cp = 300m/s, a density ρ = 2000 kg/m
3
, and a material damping ratio βs = βp = 0.02 in

both deviatoric and volumetric deformation. The dam is founded on a homogeneous halfspace with a shear
wave velocity Cs = 300m/s, a dilatational wave velocity Cp = 600m/s, a density ρ = 2000 kg/m

3
and a

material damping ratio βs = βp = 0.02 in both deviatoric and volumetric deformation.
The 2.5D coupled FE-BE methodology is used to compute the response of the dike and the surrounding

soil due to a unit vertical point load on top of the dike. The dike is modelled using 2.5D volume elements
(figure 14) and the subgrade is modelled using 2.5D boundary element mesh that matches the finite element
mesh on the dike-soil interace.

Figure 15 shows the real part of the vertical displacement of the dike and the surface of the halfspace at
frequencies of 5Hz and 20Hz. At 5Hz, the wavelength λs = Cs/f = 30m of shear waves in the dike is much
larger than the height of the dike. As a result, the Rayleigh waves penetrate into the underlying halfspace and
the displacement amplitudes on the surface of the halfspace are comparable to the displacement amplitudes
on the dike.
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Figure 14: Mesh of the dike using 2.5D volume elements.

At a frequency of 20Hz, the wavelength of shear waves λs = Cs/f = 7.5m is of the same order of
magnitude as the dike height. The Rayleigh waves are now concentrated in the dike body. As a result, the
dike acts as a one-dimensional wave guide. As the Rayleigh waves are trapped within the one-dimensional
wave guide, the waves are only attenuated by material damping and not by geometrical damping. As a

(a) (b)
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×10-10

Figure 15: Real part of the vertical displacement for a unit vertical point load on top of the dike at a frequency of (a) 5Hz and
(b) 20Hz.

result, the amplitude of the Rayleigh waves in the one-dimensional wave guide is much larger than the
amplitude in the equivalent halfspace. However, the dispersive character of the Rayleigh waves remains
unchanged and it can be concluded that the halfspace is a good forward model to determine the dynamic
soil characteristics of dikes.

5.4. Vibration isolating screen

In the fourth example, the 2.5D coupled FE-BE methodology is applied to study the efficiency of a
vibration isolating screen in the soil. A vibration isolating screen is a soft or stiff wave barrier. Due to
the impedance contrast between the isolating screen and the soil, waves are reflected, effectively reducing
vibration levels behind the screen.

Figure 16 shows a vibration isolating screen embedded in a homogeneous halfspace with a shear wave
velocity Cs = 150m/s, a dilatational wave velocity Cp = 300m/s, a density ρ = 1800 kg/m

3
and a material

damping ratio βs = βp = 0.05 in both deviatoric and volumetric deformation. The incident wavefield is
generated by a unit vertical point load acting on the surface of the halfspace at a distance of 5m from the
vibration isolating screen.

First, the reference case of a unit point load on the surface of a homogeneous halfspace is considered.
This case corresponds to the 3D Green’s displacements of a layered halfspace and is evaluated by means of
the direct stiffness method [20, 21, 29]. Figure 17 shows the real part of the vertical displacement due to a
vertical point source on the surface of the halfspace at 20Hz and 40Hz. The origin of the Cartesian frame
of reference corresponds to the source location.
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Figure 16: 2.5D methodology for the computation of the vibration isolating screen.
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Figure 17: Real part of the vertical displacement for a unit vertical point load at the surface of a homogeneous halfspace at a
frequency of (a) 20Hz and (b) 40Hz.

The displacement in the soil is dominated by Rayleigh waves with cylindrical wave fronts. The Rayleigh
waves have a velocity CR = 139.8m/s which corresponds to a wavelength λR = CR/f = 6.95m at the
frequency f = 20Hz and λR = 3.48m at a frequency f = 40Hz. The penetration depth of the Rayleigh
waves is proportional to the wavelength: most of the wave energy is located above a depth of one wavelength.
The design of the vibration isolating screen is based on this penetration depth at the lowest frequency for
which isolation is desired. A concrete vibration isolating screen with a depth of 8m and a width of 0.6m is
considered, which is expected to isolate vibrations above a frequency of 20Hz. The concrete has a Young’s
modulus Ec = 30GPa, a Poisson’s ratio νc = 0.2 and a density ρc = 2600 kg/m

3
. The screen is modelled

with 4-node rectangular 2.5D finite volume elements. The finite element mesh consists of 16 elements over
the height of the trench and 4 elements over the width of the trench. The boundary element mesh matches
the finite element mesh over the screen-soil interface, allowing for the computation of the response of the
screen and the soil by means of equation (44).

A vertical point source is considered at the surface of the halfspace at a distance of 5m from the centerline
of the trench. Figure 18 shows the real part of the vertical displacement in the free field at frequencies of
20Hz and 40Hz. The incident waves are reflected on the vibration isolating screen, reducing vibration levels
behind the screen. At 40Hz, two lines of destructive interference between a direct and reflected Rayleigh
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waves are observed. As the concrete is much stiffer than the soil, it acts as a rigid wave barrier and a small
displacement amplitude is observed along the soil-screen interface.

(a) (b)
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Figure 18: Real part of the vertical displacement for a unit harmonic point load at a distance of 5m from the center of the
concrete vibration isolating screen at a frequency of (a) 20Hz and (b) 40Hz.

The efficiency of the vibration isolating screen can also be quantified by the insertion loss ILz of the
vertical displacement, defined as the ratio of the vertical displacement amplitudes |uiso

z (ω) | and |uuniso
z (ω) |

in the case with and without vibration isolating screen. The vertical insertion loss is expressed in dB:

ILz = 20 log10(
|uuniso

z (ω) |

|uiso
z (ω) |

) (50)

Figure 19 shows the vertical insertion loss at 20Hz and 40Hz. The screening efficiency is larger at 40Hz
than at 20Hz. This indicates that the vibration isolating screen effectively reduces the vibration levels
behind the trench.

(a) (b)
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Figure 19: Vertical insertion loss ILz for a unit harmonic point load at a distance d = 5m from the vibration isolating screen
at a frequency of (a) 20Hz and (b) 40Hz for a concrete vibration isolating screen.
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6. Conclusion

In the present paper, a general 2.5D coupled FE-BE methodology for the computation of the interaction
between longitudinally invariant structures and a layered halfspace has been presented. For the boundary
element model, a novel regularized 2.5D boundary integral equation has been derived based on the two-
dimensional rigid body identity. This regularization procedure avoids the evaluation of strongly singular
integrals and has been validated for a cylindrical cavity embedded in a full space. Furthermore, the boundary
element method is based on the fundamental solutions of a layered halfspace which are computed by means
of the direct stiffness method. As a result, only the interface between the structure and the soil has to
be discretized, reducing storage requirements with respect to the classical use of full space solutions. The
Green’s functions are interpolated from a receiver grid that is concentrated around the source of the Green’s
function to the boundary element integration points for the calculation of the boundary element system
matrices.

The method has been demonstrated with four examples: a road on the surface of a halfspace, a tunnel
embedded in a layered halfspace, a dike on a halfspace and a vibration isolating screen in the soil.

All examples focus on the computation of the transfer function between a vertical point source and the
displacements of the structure and in the soil. These transfer functions can subsequently be used to compute
the response due to a moving load [24]. The examples demonstrate the practical use of the 2.5D method for
the evaluation of the 3D radiated wavefield in practical dynamic soil-structure interaction problems.
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