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Abstract. In this paper we investigate the partial practical exponen-
tial stability of neutral stochastic functional differential equations with
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plicability and interest of the main results.
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1. Introduction

Neutral stochastic differential equations with Markovian switching have at-
tracted much attention over the last decades within the scopes and main
problems from the applied sciences and which are modeled by stochastic
differential equations (see [1],[4],[8] and [9]). Neutral stochastic differential
equations with Markovian switching are useful to model physical, biological
and economical dynamical phenomena. In the literature, many authors have
studied the existence and uniqueness of solution to neutral stochastic dif-
ferential equations with a Markovian switching (see [10] and [11]). Stability
is the most important concept in modern control theory, and switching sys-
tems can be used to model a wide type of physical and engineering systems
in practice, hence, stability of neutral stochastic differential equations with
a Markovian switching has received an increasing attention (see [6], [7] and
[10]). However, in many physical systems, such stability is sometimes too
strong to be satisfied. Therefore, the notion of stability with respect to part
of the variables (i.e. partial stability) (see [5], [6], [12] and [13]) has been
used, and the Lyapunov Method, as an indispensable tool, has been used to
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investigated the partial stability and stabilizability in various practically im-
portant problems. However, when the origin is not necessarily an equilibrium
point, it is still possible to study the asymptotic stability of solutions with
respect to a small neighborhood of the origin, which yields to the concept of
practical stability (see [2] and [3]).

The structure of the paper is as follows. In Section 2 we introduce some
basic notions and assumptions. Section 3 is devoted to prove some sufficient
conditions ensuring practical partial p-th moment exponential stability of so-
lutions to neutral stochastic functional differential equations with Markovian
switching. We prove a sufficient condition ensuring the convergence of the
solution (with respect to part of the variables) to a ball with radius r > 0
in p-th moment, even in the case that zero is not an equilibrium point. In
Section 4 we prove a sufficient condition ensuring practical exponential in-
stability in the q-th moment. Finally we analyze an example to illustrate our
results in Section 5.

2. Preliminaries and definitions

Let
(

Ω,F , {Ft}t≥0 ,P
)

be a complete probability space with a filtration sat-

isfying the usual conditions, i.e., the filtration is right continuous and in-
creasing and F0 contains all P–null sets. W (t) is an m-dimensional Brownian
motion defined on the probability space. For a given τ > 0, let C([−τ, 0];Rn)
be the family of functions ϕ from [−τ, 0] to Rn that are right-continuous
and have limits on the left. C([−τ, 0];Rn) is equipped with the norm ‖ϕ‖ =

sup−τ≤s≤0 |ϕ(s)| and |x| =
√
xTx for any x ∈ Rn. If A is a matrix, its trace

norm is denoted by |A| =
√
trace(ATA), while its operator norm is denoted

by ‖A‖ = sup{|Ax| : |x| = 1}. Denote by CbF0
([−τ, 0];Rn) the family of all

F0-measurable bounded C([−τ, 0];Rn)-valued random variables ξ = {ξ(θ) :
−τ ≤ θ ≤ 0}. Let p > 0, t ≥ 0, LpFt([−τ, 0];Rn) denote the family of all Ft-
measurable, C([−τ, 0];Rn)-valued random variables ϕ = {ϕ(θ) : −τ ≤ θ ≤ 0}
such that sup−τ≤θ≤0 E|ϕ(θ)|p <∞.

Let {r(t), t ∈ R+ = [0,+∞[} be a right-continuous Markov chain on
the probability space {Ω,F , {Ft}t≥0 ,P} taking values in a finite state space

S = {1, 2, . . . , N} with a generator Γ = (γij)N×N given by

P (r(t+ ∆) = j|r(t) = i) =

 γij∆ + o(∆), if i 6= j

1 + γii∆ + o(∆), if i = j

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j, if i 6= j, while

γii = −
∑
i6=j

γij .

We assume that the Markov chain r(t) is independent of the Brownian motion
W (t). It is known that almost every sample path of r(t) is a right-continuous
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step function with a finite number of simple jumps in any finite sub-interval
of R+.

Consider the following neutral stochastic functional differential equation
with Markovian switching:

d [x(t)−G(xt)] = f(t, xt, r(t))dt+ g(t, xt, r(t))dW (t), t > 0, (2.1)

with the initial condition x0 = ξ = (ξ1, ξ2)T ∈ CbF0
([−τ, 0];Rn) where ξ1 ∈ Rk

and ξ2 ∈ Rp, k+ p = n, which is independent of W (·), x(t) = (x1(t), x2(t)) ∈
Rk ×Rp and xt = {x(t+ θ) : −τ ≤ θ ≤ 0}. Let x̃(t) = x(t)−G(xt). Here, we
furthermore assume that

f : R+×C([−τ, 0];Rn)×S −→ Rn, g : R+×C([−τ, 0];Rn)×S −→ Rn×m,

G : C([−τ, 0];Rn) −→ Rn.
Denote by C1,2 ([−τ,+∞[×Rn × S;R+) the family of all non-negative func-
tions V (t, x, i) on [−τ,+∞[×Rn × S, which are twice continuously differen-
tiable with respect to x and once continuously differentiable with respect to
t.
For any (t, x, i) ∈ [−τ,+∞[×Rn × S, xt = ϕ ∈ C([−τ, 0];Rn) and ϕ̃(θ) =
ϕ(θ) − G(ϕ), define an operator LV : R+ × C([−τ, 0];Rn) × S → R by (see
[11])

LV (t, ϕ̃(0), i) = Vt(t, ϕ̃(0), i) + Vx(t, ϕ̃(0), i)f(t, ϕ, i)

+
1

2
trace

(
gT (t, ϕ, i)Vxx(t, ϕ̃(0), i)g(t, ϕ, i)

)
+

N∑
j=1

γijV (t, ϕ̃(0), j),

where

Vt =
∂V (t, x, i)

∂t
, Vx =

(
∂V (t, x, i)

∂x1
, . . . ,

∂V (t, x, i)

∂xn

)
,

Vxx =

(
∂2V (t, x, i)

∂xi∂xj

)
n×n

.

For our purpose, we will state some assumptions which can ensure the exis-
tence and uniqueness of a solution, denoted by x(t) = (x1(t), x2(t)) on t > 0,
for equation (2.1).

A1: (A local Lipschitz condition): For each p = 1, 2, . . . there is an lp > 0
such that

|f(t, ϕ1, i)− f(t, ϕ2, i)| ∨ |g(t, ϕ1, i)− g(t, ϕ2, i)| ≤ lp||ϕ1 − ϕ2||,
for all t ≥ 0, i ∈ S and ϕ1, ϕ2 ∈ C([−τ, 0];Rn) with ||ϕ1|| ∨ ||ϕ2|| ≤ p.

A2: There exist three functions V ∈ C1,2 ([−τ,∞)× Rn × S;R+), U1,
U2 ∈ C ([−τ,∞)× Rn;R+) and a probability measure m on [−τ, 0] satisfying∫ 0

−τ dm(θ) = 1, and nonnegative constants c′1, c′2, c′3 with c′2 > c′3, such that

lim
|x|→∞

(
inf
t≥0

U1(t, x)
)

=∞, (2.2)
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and for all (t, x, i) ∈ R+ × C([−τ, 0];Rn)× S, we have

U1(t, x) ≤ V (t, x, i) ≤ U2(t, x). (2.3)

LV (t, ϕ̃(0), i) ≤ c′1 − c′2U2(t, ϕ̃(0)) + c′3

∫ 0

−τ
U2(t+ θ, ϕ̃(θ))dm(θ), (2.4)

for all i ∈ S and xt = ϕ ∈ C([−τ, 0];Rn), t ≥ 0 and where ϕ̃(θ) = ϕ(θ)−G(ϕ).

A3: There exists a constant k ∈ [0, 1) such that

|G(ϕ1)−G(ϕ2)| ≤ k|ϕ1(−τ)− ϕ2(−τ)|, (2.5)

for all ϕ1, ϕ2 ∈ C([−τ, 0];Rn).

Denote x = (x1, x2)T ∈ Rn, where x1 ∈ Rk and x2 ∈ Rp, k+p = n, and

the definitions of x̃ = (x̃1, x̃2)
T ∈ Rn and G(xt) = (G1(xt), G2(xt))

T ∈ Rn
are similar to x = (x1, x2)T . The domain BK = {x ∈ Rn : |x1| < K}, and
the stopping time τK = inf {t ≥ t0;x(t) /∈ BK}. Let K →∞, then τK →∞.
Denote the set of functions

K :=
{
φ : R+ −→ R+, continuous, monotonically increasing and φ(0) = 0

}
.

We will study the partial stability of the neutral stochastic functional
differential equation with Markovian switching when 0 is not an equilibrium
point, but in a small neighborhood of the origin in terms of convergence of
solution in probability to a small ball Br := {x ∈ Rd : ||x1|| ≤ r}, r > 0.

Definition 2.1. The solution x(t) = (x1(t), x2(t)) of equation (2.1) is said to
be practically exponentially xp1-stable (p > 0), if there exist positive constants
α, c, r such that, for any (x1, x0) ∈ Rk × CbF0

([−τ, 0];Rn),

E (|x1|p) ≤ cE (||x0||p) exp (−α(t− t0)) + r, t ≥ t0. (2.6)

When p = 1 (respectively p = 2), the solution x(t) of stochastic system (2.1)
is called exponential x1-stable in the mean (respectively in the mean-square).

Remark 2.2. Note that, as the origin x = 0 may not be an equilibrium point
of system (2.1), then we can no longer study the stability of the origin as
an equilibrium point nor should we expect the p-th moment of the solution
(with respect to part of the variables) of the system to approach the origin
almost surely as t → +∞. Inequality (4.1) implies that E (|x1|p) will be
ultimately bounded by a small bound r > 0, that is, E (|x1|p) will be small for
sufficiently large t. This can be viewed as a robustness property of convergence
almost surely to the origin provided that f and g satisfy f(t, 0, r(t)) = 0 and
g(t, 0, r(t)) = 0, ∀t ≥ 0. In this case the origin becomes an equilibrium point.

3. Main results

Now we can state and prove our main results.

Theorem 3.1. Under assumptions A1-A3, for any given initial condition ξ ∈
CbF0

([−τ, 0];Rn) and i0 ∈ S, there exists a unique global solution x(t), t ≥ −τ
of equation (2.1).
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Proof. See [10] and [11]. �

Lemma 3.2. (i). Let 0 < p ≤ 1 and a, b ∈ R+. Then

(a+ b)p ≤ ap + bp.

(ii). Let p > 1, ε > 0 and a, b ∈ R+. Then

(a+ b)p ≤
(

1 + ε
1
p−1

)p−1 [
ap +

bp

ε

]
.

Proof. See [9]. �

Let us rewrite now assumption A3 in a new way:
A′3: There exist constants k ∈ [0, 1), p, δ > 0 such that

|G(ϕ1)−G(ϕ2)| ≤ ke−
δ
p τ |ϕ1(−τ)− ϕ2(−τ)|, (3.1)

for all ϕ1, ϕ2 ∈ C([−τ, 0];Rn).

Theorem 3.3. Let c1, c2, c3, δ be positive constants such that c3
c2
≤ δ and

p > 0. Assume that there exist V (t, x, i) ∈ C1,2 (]− τ,+∞[×Rn × S,R+) and

e
c3
c2
tρ(t) ∈ L1([0,+∞[) such that,

(i). c1|x1|p ≤ V (t, x, i) ≤ c2|x1|p for x1 ∈ Rk.
(ii). LV (t, ϕ̃(0), i) ≤ −c3|ϕ̃1(0)|p + ρ(t), ∀(t, ϕ, i) ∈ R+×C([−τ, 0];Rn)×
S where ϕ = (ϕ1, ϕ2) ∈ C([−τ, 0];Rk) × C([−τ, 0];Rs), k + s = n and
ϕ̃(0) = ϕ(0)−G(ϕ).

Let assumptions A1, A2 and A′3 hold. Then, the solution x(t) = (x1(t), x2(t))
of equation (2.1) is practically exponentially xp1-stable if 0 < p ≤ 1. If p > 1,
the same stability holds true if in addition there exists ε > 0 such that kp <

ε
(

1 + ε
1
p−1

)1−p
.

Proof. According to the stopping time τK = inf {t ≥ t0;x(t) /∈ BK}, writing
xt = ϕ = (ϕ1, ϕ2), x1(t) = ϕ1(0), ϕ̃(0) = x(t) − G(xt) and ϕ̃1(0) = x1(t) −
G1(xt) for t ≥ t0, and applying Itô’s formula (see [11]), we can derive for
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t ≥ −τ

E
(
e
c3
c2

(t∧τK−t0)V (t ∧ τK , x(t ∧ τK)−G(xt∧τK ), r(t ∧ τK))
)

= E (V (t0, x0 −G(x0), r(t0)))

+E
(∫ t∧τK

t0

e
c3
c2
s

[
c3
c2
V (s, x(s)−G(xs), r(s)) + LV (s, x(s)−G(xs), r(s))

]
ds

)
≤ E (V (t0, x0 −G(x0), r(t0)))

+E
(∫ t∧τK

t0

e
c3
c2
s

(
c3
c2
V (s, x(s)−G(xs), r(s))− c3|x1(s)−G1(xs)|p + ρ(s)

)
ds

)
≤ E (V (t0, x0 −G(x0), r(t0)))

+E
(∫ t∧τK

t0

e
c3
c2
s

(
c3
c2
c2|x1(s)−G1(xs)|p − c3|x1(s)−G1(xs)|p + ρ(s)

)
ds

)
≤ E (V (t0, x0 −G(x0), r(t0))) + E

(∫ t∧τK

t0

e
c3
c2
sρ(s)ds

)
.

Hence,

E
(
e
c3
c2

(t∧τK−t0)V (t ∧ τK , x(t ∧ τK)−G(xt∧τK ), r(t ∧ τK))
)

≤ E (V (t0, x0 −G(x0), r(t0))) + E
(∫ t∧τK

t0

e
c3
c2
sρ(s)ds

)
.

Therefore, by inequality (i), we have

c1E
(
e
c3
c2

(t∧τK−t0)|x1(t ∧ τK)−G1(xt∧τK )|p
)

≤ E
(
e
c3
c2

(t∧τK−t0)V (t ∧ τK , x(t ∧ τK)−G(xt∧τK ), r(t ∧ τK))
)

≤ E (V (t0, x0 −G(x0), r(t0))) + E
(∫ t∧τK

t0

e
c3
c2
sρ(s)ds

)
.

Obviously τK →∞ as K →∞. Then

c1E
(
e
c3
c2

(t−t0)|x1(t)−G1(xt)|p
)
≤ E (V (t0, x0 −G(x0), r(t0)))

+

∫ t

t0

e
c3
c2
sρ(s)ds. (3.2)
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First case: For 0 < p ≤ 1, by Lemma 3.2 and Assumption A′3, we have

E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤ E
(
e
c3
c2

(t−t0)|x1(t)−G1(xt)|p
)

+ E
(
e
c3
c2

(t−t0)|G1(xt)|p
)

≤ E
(
e
c3
c2

(t−t0)|x1(t)−G1(xt)|p
)

+kpe−δτE
(
e
c3
c2

(t−t0)|x1(t− τ))|p
)

≤ 1

c1
E (V (t0, x0 −G(x0), r(t0)))

+
1

c1

∫ t

t0

e
c3
c2
sρ(s)ds+ kpe−δτE

(
e
c3
c2

(t−t0)|x1(t− τ)|p
)

≤ c2
c1

E (|x0 −G1(x0)|p)

+
1

c1

∫ +∞

0

e
c3
c2
sρ(s)ds+ kpe−δτE

(
e
c3
c2

(t−t0)|x1(t− τ)|p
)

≤ c2
c1

E (‖x0‖p + |G1(x0)|p)

+
1

c1

∫ +∞

0

e
c3
c2
sρ(s)ds+ kpe−δτE

(
e
c3
c2

(t−t0)|x1(t− τ)|p
)

≤ c2
c1

E
(
‖x0‖p + kpe−δτ‖x0‖p

)
+

1

c1

∫ +∞

0

e
c3
c2
sρ(s)ds+ kpe−δτE

(
e
c3
c2

(t−t0)|x1(t− τ)|p
)

≤ c2
c1

(1 + kp)E (‖x0‖p)

+
1

c1

∫ +∞

0

e
c3
c2
sρ(s)ds+ kpe−δτE

(
e
c3
c2

(t−t0)|x1(t− τ)|p
)
.
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For any T > 0, we have

sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤ c2
c1

(1 + kp)E (‖x0‖p) +
1

c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+kpe−δτ sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t− τ)|p
)

≤ c2
c1

(1 + kp)E (‖x0‖p) +
1

c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+kpe

(
c3
c2
−δ

)
τ

sup
t0−τ≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤ c2
c1

(1 + kp)E (‖x0‖p) +
1

c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+kp sup
t0−τ≤t≤t0

E
(
e
c3
c2

(t−t0)|x1(t)|p
)

+kp sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤ c2
c1

(1 + kp)E (‖x0‖p) +
1

c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+kpE (‖x0‖p) + kp sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤
(
c2
c1

(1 + kp) + kp
)
E (‖x0‖p) +

1

c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+kp sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|p
)
.

Then,

sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|p
)
≤ 1

1− kp

(
c2
c1

(1 + kp) + kp
)
E (‖x0‖p)

+
1

c1(1− kp)

∫ +∞

0

e
c3
c2
sρ(s)ds

≤ C1(k)E (‖x0‖p) + C2(k)

∫ +∞

0

e
c3
c2
sρ(s)ds,

where C1(k) = 1
1−kp

(
c2
c1

(1 + kp) + kp
)

and C2(k) = 1
c1(1−kp) .

Letting T → +∞, we have

sup
t0≤t<+∞

E
(
e
c3
c2

(t−t0)|x1(t)|p
)
≤ C1(k)E (‖x0‖p) + C2(k)

∫ +∞

0

e
c3
c2
sρ(s)ds.

Therefore, we obtain for all t ≥ t0

E (|x1(t)|p) ≤ C1(k)E (‖x0‖p) e−
c3
c2

(t−t0) + C2(k)

∫ +∞

0

e
c3
c2
sρ(s)ds. (3.3)
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Second case: For p > 1, by Lemma 3.2 and Assumption A′3, for ε > 0

such that kp

ε

(
1 + ε

1
p−1

)p−1
< 1 and for λ > 0, we have

E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤
(

1 + ε
1
p−1

)p−1
E
(
e
c3
c2

(t−t0)|x1(t)−G1(xt)|p
)

+
(

1 + ε
1
p−1

)p−1
E
(
e
c3
c2

(t−t0) |G1(xt)|p

ε

)
≤
(

1 + ε
1
p−1

)p−1
E
(
e
c3
c2

(t−t0)|x1(t)−G1(xt)|p
)

+
kpe−δτ

ε

(
1 + ε

1
p−1

)p−1
E
(
e
c3
c2

(t−t0)|x1(t− τ)|p
)

≤

(
1 + ε

1
p−1

)p−1
c1

E (V (t0, x0 −G(x0), r(t0)))

+

(
1 + ε

1
p−1

)p−1
c1

∫ t

t0

e
c3
c2
sρ(s)ds

+
kpe−δτ

ε

(
1 + ε

1
p−1

)p−1
E
(
e
c3
c2

(t−t0)|x1(t− τ)|p
)

≤
c2

(
1 + ε

1
p−1

)p−1
c1

E (|x0 −G1(x0)|p)

+

(
1 + ε

1
p−1

)p−1
c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+
kpe−δτ

ε

(
1 + ε

1
p−1

)p−1
E
(
e
c3
c2

(t−t0)|x1(t− τ)|p
)

≤
c2

(
1 + ε

1
p−1

)p−1
c1

(
1 + λ

1
p−1

)p−1
E
(
‖x0‖p +

|G1(x0)|p

λ

)

+

(
1 + ε

1
p−1

)p−1
c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+
kpe−δτ

ε

(
1 + ε

1
p−1

)p−1
E
(
e
c3
c2

(t−t0)|x1(t− τ)|p
)

≤
c2

(
1 + ε

1
p−1

)p−1
c1

(
1 + λ

1
p−1

)p−1(
1 +

kp

λ

)
E (‖x0‖p)

+

(
1 + ε

1
p−1

)p−1
c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+
kpe−δτ

ε

(
1 + ε

1
p−1

)p−1
E
(
e
c3
c2

(t−t0)|x1(t− τ)|p
)
.



10 T. Caraballo, L. Mchiri and M. Rhaima

Hence, for any T > 0, we have

sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤
c2

(
1 + ε

1
p−1

)p−1
c1

(
1 + λ

1
p−1

)p−1(
1 +

kp

λ

)
E (‖x0‖p)

+

(
1 + ε

1
p−1

)p−1
c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+
kpe−δτ

ε

(
1 + ε

1
p−1

)p−1
sup

t0≤t≤T
E
(
e
c3
c2

(t−t0)|x1(t− τ)|p
)

≤
c2

(
1 + ε

1
p−1

)p−1
c1

(
1 + λ

1
p−1

)p−1(
1 +

kp

λ

)
E (‖x0‖p)

+

(
1 + ε

1
p−1

)p−1
c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+
kpe

(
c3
c2
−δ

)
τ

ε

(
1 + ε

1
p−1

)p−1
sup

t0−τ≤t≤T
E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤
c2

(
1 + ε

1
p−1

)p−1
c1

(
1 + λ

1
p−1

)p−1(
1 +

kp

λ

)
E (‖x0‖p)

+

(
1 + ε

1
p−1

)p−1
c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+
kp

ε

(
1 + ε

1
p−1

)p−1
sup

t0−τ≤t≤t0
E
(
e
c3
c2

(t−t0)|x1(t)|p
)

+
kp

ε

(
1 + ε

1
p−1

)p−1
sup

t0≤t≤T
E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤
c2

(
1 + ε

1
p−1

)p−1
c1

(
1 + λ

1
p−1

)p−1(
1 +

kp

λ

)
E (‖x0‖p)

+

(
1 + ε

1
p−1

)p−1
c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+
kp

ε

(
1 + ε

1
p−1

)p−1
E (‖x0‖p)

+
kp

ε

(
1 + ε

1
p−1

)p−1
sup

t0≤t≤T
E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤ C(ε, λ, k)E (‖x0‖p)

+

(
1 + ε

1
p−1

)p−1
c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+
kp

ε

(
1 + ε

1
p−1

)p−1
sup

t0≤t≤T
E
(
e
c3
c2

(t−t0)|x1(t)|p
)
,
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where

C(ε, λ, k) =
(

1 + ε
1
p−1

)p−1(c2
c1

(
1 + λ

1
p−1

)p−1(
1 +

kp

λ

)
+
kp

ε

)
.

Thus,

sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤ C(ε, λ, k)

1− kp

ε

(
1 + ε

1
p−1

)p−1E (‖x0‖p)

+

(
1 + ε

1
p−1

)p−1
c1

(
1− kp

ε

(
1 + ε

1
p−1

)p−1)∫ +∞

0

e
c3
c2
sρ(s)ds

≤ C3(ε, λ, k)E (‖x0‖p) + C4(ε, k)

∫ +∞

0

e
c3
c2
sρ(s)ds,

where

C3(ε, λ, k) =
C(ε, λ, k)

1− kp

ε

(
1 + ε

1
p−1

)p−1
and

C4(ε, k) =

(
1 + ε

1
p−1

)p−1
c1

(
1− kp

ε

(
1 + ε

1
p−1

)p−1) .
Letting T → +∞, we obtain

sup
t0≤t<+∞

E
(
e
c3
c2

(t−t0)|x1(t)|p
)

≤ C3(ε, λ, k)E (‖x0‖p) + C4(ε, k)

∫ +∞

0

e
c3
c2
sρ(s)ds,

Then, we have for all t ≥ t0

E (|x1(t)|p) ≤ C3(ε, λ, k)E (‖x0‖p) e−
c3
c2

(t−t0) + C4(ε, k)

∫ +∞

0

e
c3
c2
sρ(s)ds.

We see that for all t ≥ t0,

E (|x1(t)|p) ≤ max
{
C1(k), C3(ε, λ, k)

}
E (‖x0‖p) e−

c3
c2

(t−t0)

+ max
{
C2(k), C4(ε, k)

}∫ +∞

0

e
c3
c2
sρ(s)ds.

Setting

c = max
{
C1(k), C3(ε, λ, k)

}
, α =

c3
c2
,

r = max
{
C2(k), C4(ε, k)

}∫ +∞

0

e
c3
c2
sρ(s)ds,
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we conclude that the solution of system (2.1) is practically exponentially
xp1-stable. The proof is therefore complete. �

In the following corollary we will study the partial stability in mean
square of system (2.1) in the domain D = {(t, x) ∈ R+ × Rn; |x| <∞}.
We will consider the new assumption:
A′′3 : There exists a constant k ∈ [0, 1) such that

|G(ϕ1)−G(ϕ2)| ≤ ke− δ2 τ |ϕ1(−τ)− ϕ2(−τ)|, (3.4)

for all ϕ1, ϕ2 ∈ C([−τ, 0];Rn) and δ > 0.

Corollary 3.4. Let x = (x1, x2)T ∈ Rn, where x1 ∈ Rk, x2 ∈ Rs and n =
k + s, be the solution of system (2.1). Suppose that in the domain D =
{(t, x) ∈ R+×Rn; |x| <∞}, along with a V-function, it is possible to specify

a continuous vector µ(x)-function, µ(0) = 0 and e
c3
c2
tρ(t) ∈ L1([0,+∞[) such

that, for all (t, ϕ, i) ∈ R+ × C([−τ, 0];Rn)× S and

ϕ̃(0) = ϕ(0)−G(ϕ) = x(t)−G(xt),

we have

(i).

c1|x1|2 ≤ V (t, x, i) ≤ c2
(
|x1|2 + |µ(x)|2

)
,

(ii).

LV (t, ϕ̃(0), i) ≤ −c3
(
|ϕ̃1(0)|2 + |µ(ϕ̃(0))|2

)
+ ρ(t). (3.5)

Let assumptions A1, A2 and A′′3 hold. Assume that there exist k ∈ [0,
√
2
2 )

and δ > 0 such that c3
c2
≤ δ. Then the solution of system (2.1) is practically

exponentially x1-stable in mean-square.

Proof. Proceeding as in the previous proof, writing xt = ϕ, x(t) = ϕ(0) and
x1(t) = ϕ1(0) for t ≥ t0, we have

E
(
e
c3
c2

(t∧τK−t0)V (t ∧ τK , x(t ∧ τK)−G(xt∧τK ), r(t ∧ τK))
)

≤ E (V (t0, x0 −G(x0), r(t0)))

+c3E
(∫ t∧τK

t0

e
c3
c2
s
(
|x1(s)−G1(x(s))|2 + |µ

(
x(s)−G(x(s))

)
|2
))

−c3E
(∫ t∧τK

t0

e
c3
c2
s
(
|x1(s)−G1(x(s))|2 + |µ

(
x(s)−G(x(s))

)
|2
))

+E
(∫ t∧τK

t0

e
c3
c2
sρ(s)ds

)
≤ E (V (t0, x0 −G(x0), r(t0))) + E

(∫ t∧τK

t0

e
c3
c2
sρ(s)ds

)
.

By inequality (i),

c1E
(
e
c3
c2

(t∧τK−t0)|x1(t ∧ τK)−G1(xt∧τK )|2
)
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≤ E
(
e
c3
c2

(t∧τK−t0)V (t ∧ τK , x(t ∧ τK)−G(xt∧τK ), r(t ∧ τK))
)

≤ E (V (t0, x0 −G(x0), r(t0))) + E
(∫ t∧τK

t0

e
c3
c2
sρ(s)ds

)
.

Obviously τK →∞ as K →∞ then

c1E
(
e
c3
c2

(t−t0)|x1(t)−G1(xt)|2
)
≤ E (V (t0, x0 −G(x0), r(t0)))

+

∫ t

t0

e
c3
c2
sρ(s)ds. (3.6)

Since µ is continuous and µ(0) = 0 then there exist η > 0 such that
|µ(x0 −G(x0))| ≤ η|x0 −G(x0)| for a sufficiently small ‖x0‖.

|µ(x0 −G(x0))|2 ≤ η2|x0 −G(x0)|2

≤ 2η2
(
‖x0‖2 + |G(x0)|2

)
≤ 2η2

(
‖x0‖2 + k2e−

δ
τ ‖x0‖2

)
≤ 2η2

(
‖x0‖2 + k2‖x0‖2

)
≤ 2η2(1 + k2)‖x0‖2.

Then, for x0 = (x01, x02) ∈ C([−τ, 0];Rk)× C([−τ, 0];Rs), we have

|x01 −G1(x0))|2 ≤ 2
(
‖x01‖2 + |G1(x0)|2

)
≤ 2

(
‖x0‖2 + k2‖x0‖2

)
≤ 2(1 + k2)‖x0‖2.

Therefore,

E
(
|x01 −G1(x0)|2 + |µ(x0 −G(x0))|2

)
≤ 2(1 + k2)(1 + η2)E

(
‖x0‖2

)
.
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By Assumption A3 and (ii) in Lemma 3.2 (for ε = 1), we have for k ∈ [0,
√
2
2 ),

E
(
e
c3
c2

(t−t0)|x1(t)|2
)

≤ 2E
(
e
c3
c2

(t−t0)|x1(t)−G1(xt)|2
)

+ 2E
(
e
c3
c2

(t−t0)|G1(xt)|2
)

≤ 2E
(
e
c3
c2

(t−t0)|x1(t)−G1(xt)|2
)

+ 2k2e−δτE
(
e
c3
c2

(t−t0)|x1(t− τ)|2
)

≤ 2

c1
E (V (t0, x0 −G(x0), r(t0))) +

2

c1

∫ t

t0

e
c3
c2
sρ(s)ds

+2k2e−δτE
(
e
c3
c2

(t−t0)|x1(t− τ)|2
)

≤ 2c2
c1

E
(
|x01 −G1(x0)|2 + |µ(x0 −G(x0))|2

)
+

2

c1

∫ +∞

0

e
c3
c2
sρ(s)ds+ 2k2e−δτE

(
e
c3
c2

(t−t0)|x1(t− τ)|2
)

≤ 4c2(1 + k2)(1 + η2)

c1
E
(
‖x0‖2

)
+

2

c1

∫ +∞

0

e
c3
c2
sρ(s)ds+ 2k2e−δτE

(
e
c3
c2

(t−t0)|x1(t− τ)|2
)
.

Hence, for any T > 0, we have

sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|2
)

≤ 4c2(1 + k2)(1 + η2)

c1
E
(
‖x0‖2

)
+

2

c1

∫ +∞

0

e
c3
c2
sρ(s)ds+ 2k2e−δτ sup

t0≤t≤T
E
(
e
c3
c2

(t−t0)|x1(t− τ)|2
)

≤ 4c2(1 + k2)(1 + η2)

c1
E
(
‖x0‖2

)
+

2

c1

∫ +∞

0

e
c3
c2
sρ(s)ds+ 2k2e

(
c3
c2
−δ

)
τ

sup
t0−τ≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|2
)
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≤ 4c2(1 + k2)(1 + η2)

c1
E
(
‖x0‖2

)
+

2

c1

∫ +∞

0

e
c3
c2
sρ(s)ds+ 2k2E

(
‖x0‖2

)
+2k2 sup

t0≤t≤T
E
(
e
c3
c2

(t−t0)|x1(t)|2
)

≤
(

4c2(1 + k2)(1 + η2)

c1
+ 2k2

)
E
(
‖x0‖2

)
+

2

c1

∫ +∞

0

e
c3
c2
sρ(s)ds

+2k2 sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|2
)
.

This implies

sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x1(t)|2
)

≤ 1

(1− 2k2)

(
4c2(1 + k2)(1 + η2)

c1
+ 2k2

)
E
(
‖x0‖2

)
+

2

c1 (1− 2k2)

∫ +∞

0

e
c3
c2
sρ(s)ds.

Letting T → +∞, we obtain

sup
t0≤t<+∞

E
(
e
c3
c2

(t−t0)|x1(t)|2
)

≤ 1

(1− 2k2)

(
4c2(1 + k2)(1 + η2)

c1
+ 2k2

)
E
(
‖x0‖2

)
+

2

c1 (1− 2k2)

∫ +∞

0

e
c3
c2
sρ(s)ds.

Therefore, for all t ≥ t0, we have

E
(
|x1(t)|2

)
≤ 1

(1− 2k2)

(
4c2(1 + k2)(1 + η2)

c1
+ 2k2

)
e−

c3
c2

(t−t0)E
(
‖x0‖2

)
+

2

c1 (1− 2k2)

∫ +∞

0

e
c3
c2
sρ(s)ds.

Setting

c =
1

(1− 2k2)

(
4c2(1 + k2)(1 + η2)

c1
+ 2k2

)
, α =

c3
c2
,

and

R =
2

c1 (1− 2k2)

∫ +∞

0

e
c3
c2
sρ(s)ds,
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we prove that the solution of system (2.1) is practically exponentially x1-
stable in mean square. �

4. Practical exponential instability in the q-th moment

In this section we will prove a sufficient condition ensuring practical expo-
nential instability of solutions in the q-th moment.

Definition 4.1. The solution x(t) = (x1(t), x2(t)) of equation (2.1) is said to
be practically exponentially unstable in q-th moment (q > 0), if there exist
positive constants α, c, r such that, for any x0 ∈ CbF0

([−τ, 0];Rn),

E (|x|q) ≥ cE (||x0||q) exp (−α(t− t0)) + r, t ≥ t0. (4.1)

When q = 2, the solution x(t) of stochastic system (2.1) is called practically
exponentially unstable in mean square.

Remark 4.2. We can take in (4.1) a continuous nonnegative function r(t)
instead of r such that limt→+∞ r(t) = 0.

We will consider the new assumption:
H3: There exists a constant k ∈ [0, 1) such that

|G(ϕ1)−G(ϕ2)| ≤ ke−
δ
q τ |ϕ1(−τ)− ϕ2(−τ)|, (4.2)

for all ϕ1, ϕ2 ∈ C([−τ, 0];Rn), δ > 0 and q > 0.

Theorem 4.3. Let c1, c2, c3 and q be positive constants such that c3
c1
≥ δ.

Assume that there exist V (t, x, i) ∈ C1,2 (]− τ,+∞[×Rn × S,R+) and γ ∈
C(R;R+) as well as a nonnegative constant ν, independent of t0, such that

(i). c1|x|q ≤ V (t, x, i) ≤ c2|x|q for x ∈ Rn.
(ii). LV (t, ϕ̃(0), i) ≥ −c3|ϕ̃(0)|q + γ(t), ∀(t, ϕ, i) ∈ R+×C([−τ, 0];Rn)×S

where ϕ ∈ C([−τ, 0];Rn) and ϕ̃(0) = ϕ(0)−G(ϕ).

(iii). inf
t≥t0

∫ t

t0

e
c3
c1
sγ(s)ds ≥ ν.

Let assumptions A1, A2 and H3 hold. Assume that the constant k in assump-

tion H3 verifies kq < β
(

1 + β
1
q−1

)1−q
and kq < α; for α, β > 0 and q > 1.

Then, the solution of equation (2.1) is practically q-th moment exponentially
unstable.

Proof. Define the stopping time σl = inf{t ≥ t0; |x(t)| ≥ l}. Let xt = ϕ, x(t) =
ϕ(0) and ϕ̃(0) = x(t) − G(xt) for t ≥ t0. By Itô’s formula, we obtain for
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t ≥ −τ :

E
(
e
c3
c1

(t∧σl−t0)V (t ∧ σl, x(t ∧ σl)−G(xt∧τK ), r(t ∧ σl))
)

= E (V (t0, x0 −G(x0), r(t0)))

+E
(∫ t∧σl

t0

e
c3
c1
s

[
c3
c1
V (s, x(s)−G(xs), r(s)) + LV (s, x(s)−G(xs), r(s))

]
ds

)
≥ E (V (t0, x0 −G(x0), r(t0)))

+E
(∫ t∧σl

t0

e
c3
c1
s

(
c3
c1
c1|x(s)−G(xs)|q − c3|x(s)−G(xs)|q + γ(s)

)
ds

)
≥ E (V (t0, x0 −G(x0), r(t0))) + E

(∫ t∧σl

t0

e
c3
c1
sγ(s)ds

)
.

Therefore, by inequality (i),

E (V (t0, x0 −G(x0), r(t0))) + E
(∫ t∧σl

t0

e
c3
c1
sγ(s)ds

)
≤ E

(
e
c3
c1

(t∧σl−t0)V (t ∧ σl, x(t ∧ σl)−G(xt∧σl), r(t ∧ σl))
)

≤ c2E
(
e
c3
c1

(t∧σl−t0)|x(t ∧ σl)−G(xt∧σl)|q
)
.

Obviously σl →∞ as l→∞. Then

E (V (t0, x0 −G(x0), r(t0)))+

∫ t

t0

e
c3
c1
sγ(s)ds ≤ c2E

(
e
c3
c1

(t−t0)|x(t)−G(xt)|q
)
.

(4.3)
First case: For 0 < q ≤ 1, by Lemma 3.2 and Assumption A3, we have

E (|x(t)−G(xt)|q) ≤ E (|x(t)|q) + E (|G(xt)|q)
≤ E (|x(t)|q) + kqe−δτE (|x(t− τ)|q) .

On the other hand, by inequality (i), we obtain

E (‖x0‖q) ≤ E (|x0 −G(x0)|q) + E (|G(x0)|q)
≤ E (|x0 −G(x0)|q) + kqE (‖x0)‖q) .

Then,

(1− kq)E (‖x0)‖q) ≤ E (|x0 −G(x0)|q) . (4.4)
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This implies

E
(
e
c3
c1

(t−t0)|x(t)|q
)

≥ 1

c2
E (V (t0, x0 −G(x0), r(t0))) +

1

c2

∫ t

t0

e
c3
c1
sγ(s)ds

−kqe−δτE
(
e
c3
c1

(t−t0)|x(t− τ)|q
)

≥ c1
c2

E (|x0 −G(x0)|q) +
1

c2

∫ t

t0

e
c3
c1
sγ(s)ds

−kqe−δτE
(
e
c3
c1

(t−t0)|x(t− τ)|q
)
.

Thus, for any T > 0,

inf
t0≤t≤T

E
(
e
c3
c1

(t−t0)|x(t)|q
)

≥ c1
c2

E (|x0 −G(x0)|q) +
1

c2
inf

t0≤t≤T

∫ t

t0

e
c3
c1
sγ(s)ds

+ inf
t0≤t≤T

(
−kqe−δτE

(
e
c3
c1

(t−t0)|x(t− τ)|q
))

≥ c1
c2

E (|x0 −G(x0)|q) +
1

c2
inf

t0≤t≤T

∫ t

t0

e
c3
c1
sγ(s)ds

+kqe−δτ sup
t0≤t≤T

E
(
e
c3
c1

(t−t0)|x(t− τ)|q
)

≥ c1
c2

E (|x0 −G(x0)|q) +
1

c2
inf

t0≤t≤T

∫ t

t0

e
c3
c1
sγ(s)ds

+kqe(
c3
c1
−δ)τ sup

t0−τ≤t≤T−τ
E
(
e
c3
c1

(t−t0)|x(t)|q
)

≥ c1
c2

E (|x0 −G(x0)|q) +
1

c2
inf

t0≤t≤T

∫ t

t0

e
c3
c1
sγ(s)ds

+kq sup
t0−τ≤t≤T−τ

E
(
e
c3
c1

(t−t0)|x(t)|q
)
.

Letting T → +∞, we obtain

inf
t0≤t<+∞

E
(
e
c3
c1

(t−t0)|x(t)|q
)

≥ c1
c2

E (|x0 −G(x0)|q) +
1

c2
inf

t0≤t<+∞

∫ t

t0

e
c3
c1
sγ(s)ds

+kq sup
t0−τ≤t<+∞

E
(
e
c3
c1

(t−t0)|x(t)|q
)

≥ c1
c2

E (|x0 −G(x0)|q) +
ν

c2

+kq sup
t0−τ≤t<+∞

E
(
e
c3
c1

(t−t0)|x(t)|q
)
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≥ c1
c2

E (|x0 −G(x0)|q) +
ν

c2

+kqE
(
e
c3
c1

(t−t0)|x(t)|q
)
.

Therefore, for all t ≥ t0, we have

E (|x(t)|q) ≥ c1
c2

E (‖x0‖q) e−
c3
c1

(t−t0) +
ν

c2(1− kq)
e−

c3
c1
t.

Setting

C =
c1
c2
, α =

c3
c1

and r1(t) =
ν

c2(1− kq)
e−

c3
c1
t,

the result is proved.
Second case: For q > 1, by Lemma 3.2 and Assumption A3, for α > 0 and
β > 0 such that

kq

β

(
1 + β

1
q−1

)q−1
< 1,

and kq < α, we have,

E (|x(t)−G(xt)|q) ≤
(

1 + α
1
q−1

)q−1
E
(
|x(t)|q +

|G(xt)|q

α

)
≤

(
1 + α

1
q−1

)q−1
E (|x(t)|q)

+
kq

α

(
1 + α

1
q−1

)q−1
e−δτE (|x(t− τ)|q) .

By inequality (i),

E (‖x0‖q) ≤
(

1 + β
1
q−1

)q−1
E
(
|x0 −G(x0)|q +

|G(x0)|q

β

)
≤

(
1 + β

1
q−1

)q−1
E
(
|x0 −G(x0)|q +

kq

β
‖x0‖q

)
.

Then,(
1− kq

β

(
1 + β

1
q−1

)q−1)(
1 + β

1
q−1

)1−q
E (‖x0‖q) ≤ E (|x0 −G(x0)|q) .

(4.5)
This implies

E
(
e
c3
c1

(t−t0)|x(t)|q
)

≥
c1

(
1 + α

1
q−1

)1−q
c2

E (|x0 −G(x0)|q) +

(
1 + α

1
q−1

)1−q
c2

∫ t

t0

e
c3
c1
sγ(s)ds

−k
q

α
e−δτE

(
e
c3
c1

(t−t0)|x(t− τ)|q
)



20 T. Caraballo, L. Mchiri and M. Rhaima

≥
c1

(
1 + α

1
q−1

)1−q
c2

(
1− kq

β

(
1 + β

1
q−1

)q−1)(
1 + β

1
q−1

)1−q
E (‖x0‖q)

+

(
1 + α

1
q−1

)1−q
c2

∫ t

t0

e
c3
c1
sγ(s)ds

−k
q

α
e−δτE

(
e
c3
c1

(t−t0)|x(t− τ)|q
)
.

Hence, for any T > 0, we have

inf
t0≤t≤T

E
(
e
c3
c1

(t−t0)|x(t)|q
)

≥
c1

(
1 + α

1
q−1

)1−q
c2

(
1− kq

β

(
1 + β

1
q−1

)q−1)(
1 + β

1
q−1

)1−q
E (‖x0‖q)

+

(
1 + α

1
q−1

)1−q
c2

inf
t0≤t≤T

∫ t

t0

e
c3
c1
sγ(s)ds

+ inf
t0≤t≤T

(
−k

q

α
e−δτE

(
e
c3
c1

(t−t0)|x(t− τ)|q
))

≥
c1

(
1 + α

1
q−1

)1−q
c2

(
1− kq

β

(
1 + β

1
q−1

)q−1)(
1 + β

1
q−1

)1−q
E (‖x0‖q)

+

(
1 + α

1
q−1

)1−q
c2

inf
t0≤t≤T

∫ t

t0

e
c3
c1
sγ(s)ds

+
kq

α
e−δτ sup

t0≤t≤T
E
(
e
c3
c1

(t−t0)|x(t− τ)|q
)

≥
c1

(
1 + α

1
q−1

)1−q
c2

(
1− kq

β

(
1 + β

1
q−1

)q−1)(
1 + β

1
q−1

)1−q
E (‖x0‖q)

+

(
1 + α

1
q−1

)1−q
c2

inf
t0≤t≤T

∫ t

t0

e
c3
c1
sγ(s)ds+

kq

α
sup

t0−τ≤t≤T−τ
E
(
e
c3
c1

(t−t0)|x(t)|q
)
.

Letting T → +∞, we obtain

inf
t0≤t<+∞

E
(
e
c3
c1

(t−t0)|x(t)|q
)

≥
c1

(
1 + α

1
q−1

)1−q
c2

(
1− kq

β

(
1 + β

1
q−1

)q−1)(
1 + β

1
q−1

)1−q
E (‖x0‖q)

+

(
1 + α

1
q−1

)1−q
c2

inf
t0≤t<+∞

∫ t

t0

e
c3
c1
sγ(s)ds



21

+
kq

α
sup

t0−τ≤t<+∞
E
(
e
c3
c1

(t−t0)|x(t)|q
)

≥
c1

(
1 + α

1
q−1

)1−q
c2

(
1− kq

β

(
1 + β

1
q−1

)q−1)(
1 + β

1
q−1

)1−q
E (‖x0‖q)

+
ν
(

1 + α
1
q−1

)1−q
c2

+
kq

α
sup

t0−τ≤t<+∞
E
(
e
c3
c1

(t−t0)|x(t)|q
)

≥
c1

(
1 + α

1
q−1

)1−q
c2

(
1− kq

β

(
1 + β

1
q−1

)q−1)(
1 + β

1
q−1

)1−q
E (‖x0‖q)

+
ν
(

1 + α
1
q−1

)1−q
c2

+
kq

α
E
(
e
c3
c1

(t−t0)|x(t)|q
)
.

Therefore, for all t ≥ t0,

E (|x(t)|q)

≥
c1

(
1 + α

1
q−1

)1−q
c2
(
1− kq

α

) (
1− kq

β

(
1 + β

1
q−1

)q−1)(
1 + β

1
q−1

)1−q
×

×e−
c3
c1

(t−t0)E (‖x0‖q) +
ν
(

1 + α
1
q−1

)1−q
c2
(
1− kq

α

) e−
c3
c1
t.

where

C1(α, β, k) =
c1

(
1 + α

1
q−1

)1−q
c2
(
1− kq

α

) (
1− kq

β

(
1 + β

1
q−1

)q−1)(
1 + β

1
q−1

)1−q
and

r2(t) =
ν
(

1 + α
1
q−1

)1−q
c2
(
1− kq

α

) e−
c3
c1
t.

Finally

E (|x(t)|q) ≥ min
{
C1(α, β, k), C

}
E (‖x0‖q) e−

c3
c1

(t−t0)

+ min
{
r1(t), r2(t)

}
.

Setting c = min
{
C1(α, β, k), C

}
, α =

c3
c1

and r(t) = min
{
r1(t), r2(t)

}
, we

conclude that the solution of system (2.1) is practically exponentially unstable
in q-th moment (q > 0).

�
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5. Example

We consider the following neutral stochastic functional differential equation
with Markovian switching:

d[x1(t)− 1
2e
− 1

2x1(t− 1)] = f1(t, xt, r(t))dt+ g1(t, xt, r(t))dW1(t)

d[x2(t)− 1
2e
− 1

2x2(t− 1)] = f2(t, xt, r(t))dt+ g2(t, xt, r(t))dW2(t)

d[x3(t)− 1
2e
− 1

2x3(t− 1)] = f3(t, xt, r(t))dt+ g3(t, xt, r(t))dW3(t).
(5.1)

Let t0 = 0, the initial data x0 = x(λ) = ξ = (ξ1, ξ2, ξ3) ∈ CbF0
([−1, 0];R3)

and {Wi(t)}i∈{1,2,3} are one dimensional Brownian motions. Let

f1(t, xt, 1) = −4

(
x1(t)− 1

2
e−

1
2x1(t− 1)

)
,

f1(t, xt, 2) = −3

(
x1(t)− 1

2
e−

1
2x1(t− 1)

)
,

f1(t, xt, 3) = −2

(
x1(t)− 1

2
e−

1
2x1(t− 1)

)
,

f2(t, xt, 1) = −3

(
x2(t)− 1

2
e−

1
2x2(t− 1)

)
,

f2(t, xt, 2) = −4

(
x2(t)− 1

2
e−

1
2x2(t− 1)

)
,

f2(t, xt, 3) = −2

(
x2(t)− 1

2
e−

1
2x2(t− 1)

)
,

f3(t, xt, 1) = −4

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)
,

f3(t, xt, 2) = −3

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)
,

f3(t, xt, 3) = −2

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)
,

g1(t, xt, 1) =

∫ 0

−1

∣∣∣∣x2(t+ θ)− 1

2
e−

1
2x2(t+ θ − 1)

∣∣∣∣ dm(θ),

g1(t, xt, 2) =
1

2
g1(t, xt, 1), g1(t, xt, 3) =

1

4
g1(t, xt, 1),

g2(t, xt, 1) =

∫ 0

−1

∣∣∣∣x1(t+ θ)− 1

2
e−

1
2x1(t+ θ − 1)

∣∣∣∣ dm(θ),

g2(t, xt, 2) =
1

2
g2(t, xt, 1), g2(t, xt, 3) =

1

4
g2(t, xt, 1),

g3(t, xt, 1) = e−t, g3(t, xt, 2) =
1

2
e−t, g3(t, xt, 3) =

1

4
e−t,

where m is a probability measure defined on [−1, 0] satisfying
∫ 0

−1 dm(θ) = 1.

Let ϕ̃(0) = x̃(t) = (x̃1(t), x̃2(t), x̃3(t)), where x̃i(t) = xi(t) − 1
2e
− 1

2xi(t − 1)
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for i ∈ {1, 2, 3}. Let S = {1, 2, 3} and the matrix Γ = (γij)1≤i,j≤3 defined by

−8 4 4
γ −2γ γ
3 3 −6

 ,

where 1 < γ < 2.
We will prove that system (5.1) is practically exponentially unstable in mean
square with respect to all variables.
Let V (t, x, i) = ψi(x

2
1 +x22 +x23), for i ∈ S, where ψ1 = ψ3 = 1, ψ2 = 1

2 . Then

1

2
|x|2 ≤ V (t, x, i) ≤ |x|2 (5.2)

Let U1(t, x) = 1
2 |x|

2
and U2(t, x) = |x|2. By the definition of LV, we have for

i = 1

LV (t, ϕ̃(0), 1)

= −8

(
x1(t)− 1

2
e−

1
2x1(t− 1)

)2

− 6

(
x2(t)− 1

2
e−

1
2x2(t− 1)

)2

−8

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2

− 2

(
x1(t)− 1

2
e−

1
2x1(t− 1)

)2

−2

((
x2(t)− 1

2
e−

1
2x2(t− 1)

)2

+

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2
)

+

(∫ 0

−1

∣∣∣∣x1(t+ θ)− 1

2
e−

1
2x1(t+ θ − 1)

∣∣∣∣ dm(θ)

)2

+ e−2t

+

(∫ 0

−1

∣∣∣∣x2(t+ θ)− 1

2
e−

1
2x2(t+ θ − 1)

∣∣∣∣ dm(θ)

)2

= −10(x1(t)− 1

2
e−

1
2x1(t− 1))2 − 8

(
x2(t)− 1

2
e−

1
2x2(t− 1)

)2

−10

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2

+

(∫ 0

−1

∣∣∣∣x1(t+ θ)− 1

2
e−

1
2x1(t+ θ − 1)

∣∣∣∣ dm(θ)

)2

+ e−2t

+

(∫ 0

−1

∣∣∣∣x2(t+ θ)− 1

2
e−

1
2x2(t+ θ − 1)

∣∣∣∣ dm(θ)

)2

.
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By the Hölder inequality, we have

LV (t, ϕ̃(0), 1)

≤ 1− 8U2(t, ϕ̃(0)) +

∫ 0

−1

∣∣∣∣x2(t+ θ)− 1

2
e−

1
2x2(t+ θ − 1)

∣∣∣∣2 dm(θ)

+

∫ 0

−1

∣∣∣∣x1(t+ θ)− 1

2
e−

1
2x1(t+ θ − 1)

∣∣∣∣2 dm(θ)

≤ 1− 8U2(t, ϕ̃(0)) +

∫ 0

−1
U2(t+ θ, ϕ̃(0))dm(θ).

For i = 2, we have

LV (t, ϕ̃(0), 2)

= −3

(
x1(t)− 1

2
e−

1
2x1(t− 1)

)2

− 4

(
x2(t)− 1

2
e−

1
2x2(t− 1)

)2

+
1

2

(∫ 0

−1

∣∣∣∣x2(t+ θ)− 1

2
e−

1
2x2(t+ θ − 1)

∣∣∣∣ dm(θ)

)2

+
1

2

(∫ 0

−1

∣∣∣∣x1(t+ θ)− 1

2
e−

1
2x1(t+ θ − 1)

∣∣∣∣ dm(θ)

)2

+
1

8
e−2t

−3

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2

+ γ

(
x1(t)− 1

2
e−

1
2x1(t− 1)

)2

+γ

((
x2(t)− 1

2
e−

1
2x2(t− 1)

)2

+

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2
)

= (γ − 3)

(
x1(t)− 1

2
e−

1
2x1(t− 1)

)2

+ (γ − 4)

(
x2(t)− 1

2
e−

1
2x2(t− 1)

)2

+ (γ − 3)

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2

+
1

8
e−2t

+
1

2

(∫ 0

−1

∣∣∣∣x1(t+ θ)− 1

2
e−

1
2x1(t+ θ − 1)

∣∣∣∣ dm(θ)

)2

.

By the Hölder inequality,

LV (t, ϕ̃(0), 2) ≤ 1

8
+ (γ − 3)U2(t, ϕ̃(0)) +

1

2

∫ 0

−1
U2(t+ θ, ϕ̃(0))dm(θ).
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For i = 3, proceeding as i = 1 and i = 2, we have

LV (t, ϕ̃(0), 3)

= −4

(
x1(t)− 1

2
e−

1
2x1(t− 1)

)2

− 4

(
x2(t)− 1

2
e−

1
2x2(t− 1)

)2

+
1

16

(∫ 0

−1

∣∣∣∣x2(t+ θ)− 1

2
e−

1
2x2(t+ θ − 1)

∣∣∣∣ dm(θ)

)2

+
1

16

(∫ 0

−1

∣∣∣∣x1(t+ θ)− 1

2
e−

1
2x1(t+ θ − 1)

∣∣∣∣ dm(θ)

)2

−4

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2

+
1

16
e−2t − 3

2

(
x1(t)− 1

2
e−

1
2x1(t− 1)

)2

−3

2

((
x2(t)− 1

2
e−

1
2x2(t− 1)

)2

+

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2
)
.

By the Hölder inequality, we have

LV (t, ϕ̃(0), 3) ≤ 1

16
− 3

2
U2(t, ϕ̃(0)) +

1

16

∫ 0

−1
U2(t+ θ, ϕ̃(0))dm(θ).

Then, for i ∈ S,

LV (t, ϕ̃(0), i) ≤ 1 + (γ − 3)U2(t, ϕ̃(0)) +

∫ 0

−1
U2(t+ θ, ϕ̃(0))dm(θ).

Thus, assumption A2 is satisfied.
For all ϕ1 = yt, ϕ2 = zt ∈ C([−τ, 0];Rn).

|G(yt)−G(zt)| ≤
1

2
|y(t− 1)− z(t− 1)|, (5.3)

then, assumption A3 is satisfied with k = 1
2 .

It is easy to verify assumptions A1. Therefore, by Theorem 3.1, system (5.1)
has a unique solution x(t) = (x1(t), x2(t), x3(t)).

LV (t, ϕ̃(0), 1) ≥ −10

((
x1(t)− 1

2
e−

1
2x1(t− 1)

)2

+

(
x2(t)− 1

2
e−

1
2x2(t− 1)

)2

+

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2
)

+e−2t

≥ −10|ϕ̃(0)|2 + e−2t.
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LV (t, ϕ̃(0), 2)

≥ (γ − 4)

((
x1(t)− 1

2
e−

1
2x1(t− 1)

)2

+

(
x2(t)− 1

2
e−

1
2x2(t− 1)

)2

+

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2
)

+
1

8
e−2t

≥ (γ − 4) |ϕ̃(0)|2 +
1

8
e−2t.

LV (t, ϕ̃(0), 3)

≥ −6

((
x1(t)− 1

2
e−

1
2x1(t− 1)

)2

+

(
x2(t)− 1

2
e−

1
2x2(t− 1)

)2

+

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2
)

+
1

16
e−2t

≥ −6|ϕ̃(0)|2 +
1

16
e−2t.

Therefore, for i ∈ S

LV (t, ϕ̃(0), i) ≥ −max
(

10, 4− γ, 6
)
|ϕ̃(0)|2 +

1

16
e−2t.

Finally,

LV (t, ϕ̃(0), i) ≥ −10|ϕ̃(0)|2 +
1

16
e−2t.

Hence, by Theorem 4.3, system (5.1) is practically exponentially unstable in
mean square.

Now, we define V1 for i ∈ S for ϕ̃1(0) = x̃3(t) by

V1(t, x, i) =
ψi
2
x23 where ψ1 = 2 and ψ2 = ψ3 = 1.

This implies that
1

2
x23 ≤ V1(t, x, i) ≤ x23.

Then, for i = 1,

LV1(t, ϕ̃(0), 1) = −8

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2

+ e−2t

−4

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2

.

Finally, we obtain

LV1(t, ϕ̃(0), 1) ≤ −12|ϕ̃1(0)|2 + e−2t. (5.4)
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In the same way, for i = 2,

LV1(t, ϕ̃(0), 2) = −3

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2

+
1

8
e−2t

+
γ

2

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2

.

Therefore,

LV1(t, ϕ̃(0), 2) ≤ −
(

3− γ

2

)
|ϕ̃1(0)|2 + e−2t. (5.5)

On the other hand, for i = 3,

LV1(t, ϕ̃(0), 3) = −2

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2

+
1

32
e−2t

+
3

2

(
x3(t)− 1

2
e−

1
2x3(t− 1)

)2

.

Therefore,

LV1(t, ϕ̃(0), 3) ≤ −1

2
|ϕ̃1(0)|2 + e−2t. (5.6)

Then, from inequalities (5.4), (5.5) and (5.6), for any i ∈ S, we have

LV1(t, ϕ̃(0), i) ≤ −min

(
12,
(

3− γ

2

)
,

1

2

)
|ϕ̃1(0)|2 + e−2t.

Hence,

LV1(t, ϕ̃(0), i) ≤ −1

2
|ϕ̃1(0)|2 + e−2t.

It is easy to verify that V1 satisfies assumption A2 with U1(t, x) = 1
2x

2
3,

U2(t, x) = x23, c′1 = 1, c′2 = 1
2 and c′3 = 0.

Thus, assumptions of Theorem 3.3 are satisfied with c1 = 1
2 , c2 = 1,

c3 = 1
2 , p = 2, δ = 1, ρ(t) = e−2t, k ∈ [0,

√
2
2 ) and c3

c2
≤ δ. Then system (5.1)

is practically exponentially x3-stable in mean square.

Acknowledgment. The research of T. C. has been partially supported
by Ministerio de Ciencia, Innovación y Universidades (Spain), FEDER (Eu-
ropean Community) under grant PGC2018-096540-B-I00, and Junta de An-
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