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Abstract
In this paper, practical stability with respect to a part of the variables of nonlinear

stochastic differential equations (SDEs) are studied.
We investigate, the global practical uniform asymptotic, the global practical uniform pth
moment exponential stability, as well as the global practical uniform exponential stability
with respect to a part of the variables based on Lyapunov techniques. We provide also
some illustrative examples to show the usefulness of the notion of stability with respect to
a part of variables for SDEs.

Keywords: Stochastic systems, Lyapunov techniques, Itô formula, Brownian motion, non-
trivial solution, practical stability with respect to a part of the variables .

1 Introduction

Stability of stochastic differential equations (SDEs) has become a very prevalent theme of recent
research in mathematics and its applications. Stochastic model can be used to solve the problem

∗The research of Tomás Caraballo has been partially supported by FEDER and Ministerio de Economı́a y
Competitividad (Spain) under grant MTM2011-22411
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which evinces by accident, noise, etc.
This paper aims mainly to establish some criteria for the global practical uniform asymptotic,
the global practical uniform pth moment exponential stability, and the global practical uniform
exponential stability with respect to a part of the variables of a class of nonlinear stochastic
differential equations (SDEs) of the form:

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t).

In this way, considerable attention has been paid to the concept of stability with respect to a
part of the system’s states. Such concept arises from the study of electro-magnetics [23], inertial
navigation systems [22], spacecraft stabilization via gimballed gyroscopes and/or flywheels [24],
combustion systems [3], vibrations in rotating machinery [20], and biocenology [21].
The method of Lyapunov functions is one of the most powerful tool to study the stability of
stochastic dynamical system, with the emergence of the second method of Lyapunov Peiffer and
Rouche (1969), Rouche et al. (1977), Rumyantsev (1957), Rumyantsev and Oziraner (1987),
Savchenko and Ignatyev (1989), Sontag and Wang (2001), Vorotnikov (1998), Vorotnikov and
Rumyantsev (2001), involved the notion of stability with respect to a part of the variables es-
pecially when the origin considered as an equilibrium point. We would like to mention here the
references [7],[12],[19],[24], among others.
Stability with respect to a part of the variables, has been used in investigating the qualitative
properties of equilibria and boundedness properties of motions of dynamical systems determined
by ordinary differential equations, difference equations, functional differential equations, stochas-
tic differential equations, etc. It involves a notion of stability with respect to only a prespecified
subset of the state variables characterizing the motions of the system under investigation.
Several interesting and important variants to Lyapunov’s original concepts of practical stability
were proposed in [1]-[4]-[10]. When the origin is not necessarily an equilibrium point, we can
study the stability with respect to a part of the variables of the SDE in a small neighborhood of
the origin in terms of convergence of solution in probability with respect to a part of the variables
to a small ball.
Our main objective in this paper is to highlight situations in which the results in [10] cannot be
applied to obtain the global practical stability in all variables but at least we can prove for some
of the variables.
The remainder of this paper is organized as follows. In section 2, we give necessary preliminaries
and results. In sections 3, 4, and 5, we give sufficient conditions to ensure the global practi-
cal uniform asymptotic, the global practical uniform pth moment exponential stability, and the
global practical uniform exponential stability with respect to a part of the variables of SDEs.
Moreover, we exhibit some illustrative examples to show the applicability of the main results.
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2 Auxiliary Facts and Results

Consider the following n-dimensional stochastic differential equation (SDE):

dx(t) = f(x(t), t)dt+ g(x(t), t)dBt, ∀t ≥ 0. (2.1)

Where f : Rn×R+ −→ Rn, g : Rn×R+ −→ Rn×m, x = (x1, ...., xn)T andBt = (B1(t), ...., Bm(t))T

is an m-dimensional Brownian motion defined on a complete probability space (Ω,F ,P).
We assume that there exists t such that f(0, t) 6= 0 or g(0, t) 6= 0, i.e. the stochastic differential
equation (2.1) does not have the trivial solution x = 0.
The functions f(x(t), t) and g(x(t), t) verify the following standard assumptions for Itô calculus
[16]. ∫ T

0

||f(x(s), s)||ds <∞ a.s. ∀T > 0,∫ T

0

||g(x(s), s)||2ds <∞ a.s. ∀T > 0.

We assume that both f and g satisfy the following conditions:

||f(x, t)||2 + ||g(x, t)||2 ≤ K1

(
1 + ||x||2

)
, for all t ≥ 0, x ∈ Rn, (2.2)

||f(x, t)− f(y, t)|| ∨ ||g(x, t)− g(y, t)|| ≤ K2||x− y||, for all t ≥ 0, x, y ∈ Rn, (2.3)

where k1 and k2 are given positive reals.
Denote x = (y, z)T where y = (y1, ...., yn1)

T ∈ Rn1 , z = (z1, ...., zn2)
T ∈ Rn2 , n1 + n2 = n;

||y|| =
√
y2

1 + ...+ y2
n1
, ||z|| =

√
z2
1 + ...+ z2

n2
, ||x|| = (||y||2 + ||z||2)

1
2 .

The SDE (2.1) has a unique global solution x(t, t0, x0) with initial condition x0 (Mao, 1997,
Oksendal, 2003). In what follows we use x(, t0, x0), or simply x(t) for a solution on some small
interval.

3 Global practical uniform asymptotic stability of stochas-

tic differential equations with respect to a part of the

variables

In this section, we study the asymptotic stability in probability with respect to a part of the
variables of stochastic differential systems when the origin is not an equilibrium point.
Therefore, we will study the asymptotic stability with respect to x1 of the SDE in a small
neighborhood of the origin in terms of convergence of solution in probability with respect to a
part of the variables to a small ball Br := {x ∈ Rn : ||x|| ≤ r}, r > 0.
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Definition 3.1. The solution of (2.1) is said to be globally uniformly bounded in probability, if
for each α > 0, there exists c = c(α) > 0 (independent of t0) such that,

for every t0 ≥ 0, and all x0 ∈ Rn with ||x0|| ≤ α, sup
t≥t0
||x(t, t0, x0)|| ≤ c(α), a.s. (3.1)

Definition 3.2. (i) The ball Br is said to be uniformly stable with respect to y in probability,
if for each ε ∈]0, 1[ and k > r, there exists δ = δ(ε, k) > 0 such that

P
(
||y(t, t0, x0)|| < k, ∀t ≥ t0 ≥ 0

)
≥ 1− ε for all ||x0|| < δ. (3.2)

(ii) The ball Br is said to be globally uniformly stable with respect to y in probability, if it is
uniformly stable with respect to y in probability and the solution of (2.1) is globally uniformly
bounded in probability.

Definition 3.3. The ball Br is said to be globally uniformly attractive with respect to y in
probability, if for each ε ∈]0, 1[, k > r and c > 0 (independent of t0), there exists T = T (ε, c) > 0
such that, for all t0 ≥ 0, it holds

P
(
||y(t, t0, x0)|| < k, ∀t ≥ t0 + T

)
≥ 1− ε for all x0 ∈ Rn such that ||x0|| < c. (3.3)

Definition 3.4. The system (2.1) is said to be globally uniformly practically asymptotically
stable with respect to y in probability, if there exists r > 0 such that Br is globally uniformly
stable with respect to y in probability and globally uniformly attractive with respect to y in
probability.

Definition 3.5 (Class K function). A continuous function α : [0, a)→ [0,+∞) is said to belong
to class K, if it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if a = +∞
and α(r)→ +∞ as r → +∞.

Definition 3.6. (see [24]) A function V : R+ × Rn → R is said to be positive definite with
respect to y (or y-positive definite) if there exist α1 ∈ K such that V (t, x) ≥ α1(||y||).

Definition 3.7. (see [24]) A function V : R+ × Rn → R is said to have an infinitesimal upper
limit in y if there exists α2 ∈ K such that V (t, x) ≤ α2(||y||).

We will define now C2,1(Rn×R+,R) the family of all real-valued functions V (x, t) defined on
Rn × R+ which are twice continuously differentiable in x and once in t.
If V ∈ C2,1(Rn × R+,R), we set

Vt(x, t) =
∂V

∂t
(x, t) ; Vx(x, t) = (

∂V

∂y
(x, t),

∂V

∂z
(x, t)); Vxx(x, t) =

( ∂2V

∂xi∂xj
(x, t)

)
n×n

.

Define the differential operator L as associated with equation (2.1) by

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trace[g(x, t)TVxx(x, t)g(x, t)].
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By Itô’s formula, it follows

dV (x(t), t) = LV (x(t), t)dt+ Vx(x(t), t)g(x(t), t)dBt.

Our first main result in this section reads as follow.

Theorem 3.1. Assume that there exist V ∈ C2,1(Rn × R+,R+), α1, α2 ∈ K∞, with
α1 : R∗+ → R∗+ and α3 ∈ K, M > 0, such that for all t ≥ 0, and all x ∈ Rn,

α1(||y||) ≤ V (x, t) ≤ α2(||y||), (3.4)

LV (x, t) ≤ −α3(||y||) + ϕ(t), (3.5)

where ϕ(t) is a continuous nonnegative function with

lim
t→+∞

ϕ(t) = 0, (3.6)

and ∫ +∞

0

ϕ(t)dt ≤M < +∞. (3.7)

Furthermore, we suppose that for all t ≥ t0 ≥ 0, ||z(t, t0, x0)|| ≤ h, a.s.
where h is a positive constant independent of x0 and t0.
Then, system (2.1) is globally uniformly practically asymptotically stable with respect to y in
probability.

Remark 3.2. If ϕ(t) is uniformly continuous nonnegative function, then By Barbalat’s Lemma
(Khalil, 2002) (3.7) implies (3.6) .

Proof. Let us start prove the uniform stability of Br with respect to y in probability.
Let ε ∈]0, 1[, and take a small positive real number r, and k > r.
Assume that there exists δ = δ(ε, k) ∈]0, k[ such that, for x0 ∈ Sδ, Sδ = {x ∈ Rn/||x|| < δ} and

α1(k) >
M

ε
, we deduce

V (x0, 0)

ε
≤ α1(k)− M

ε
.

Define the stopping time
τk = inf{t ≥ 0; ||y(t; t0, x0)|| ≥ k}.

By Itô’s formula, for any t ≥ 0,

V (x(τk ∧ t), τk ∧ t) = V (x0, 0) +

∫ τk∧t

0

LV (x(s), s)ds+

∫ τk∧t

0

Vx(x(s), s)g(x(s), s)dBs.
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Taking the expectation on both sides, we obtain that

0 ≤ E
(
V (x(τk ∧ t), τk ∧ t)

)
= V (x0, 0) + E

( ∫ τk∧t

0

LV (x(s), s)
)
ds.

This, together with (3.5) and (3.7), implies

E
(
V (x(τk ∧ t), τk ∧ t)

)
≤ V (x0, 0) + E

( ∫ τk∧t

0

ϕ(s)− α3(||y(s)||)ds
)

≤ V (x0, 0) + E
( ∫ τk∧t

0

ϕ(s)ds
)

≤ V (x0, 0) + E
( ∫ +∞

0

ϕ(s)ds
)

≤ V (x0, 0) +M

≤ εα1(k).

Note that, ||y(τk ∧ t; t0, x0)|| = ||y(τk; t0, x0)|| = k if τk ≤ t.
Hence,

E
(
V (x(τk ∧ t), τk ∧ t)

)
≥ E

(
1{τk≤t}V (x(τk), τk)

)
≥ E

(
1{τk≤t}α1(||y(τk; t0, x0)||)

)
≥ E

(
1{τk≤t}α1(k)

)
= α1(k)E

(
1{τk≤t}

)
= α1(k)P

(
τk ≤ t

)
.

Consequently,
α1(k)P

(
τk ≤ t

)
≤ εα1(k).

This implies immediately that,
P
(
τk ≤ t

)
≤ ε.

Letting, t→ +∞, we get P
(
τk < +∞

)
≤ ε.

That is, for all ε ∈]0, 1[, r ≥ 0 and k > r, there exists δ = δ(ε, k) ∈]0, k[, such that

P
(
||y(t; t0, x0)|| < k, ∀t ≥ t0 ≥ 0

)
≥ 1− ε, for all ||x0|| < δ. (3.8)

Let us now prove the global uniform attractivity of Br with respect to y in probability.
It is sufficient to prove that, for each ε ∈]0, 1[, λ > r and c > 0, there exists T = T (ε, c) > 0
(independent of t0), such that for all t ≥ t0 + T , we have

P
(
||y(t; t0, x0)|| < λ

)
≥ 1− ε, for all ||x0|| < c. (3.9)

Let ε ∈]0, 1[, h > r large enough and c > 0 (independent of t0), such that ||x0|| < c and
α1(λ) > M

ε
, we deduce

α1(h)− M

ε
≥ V (x0, 0)

ε
.
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Suppose now that there exists T = T (ε, c) > 0 such that, for all t0 ≥ 0,

τλ = inf{t ≥ t0 + T ; ||y(t; t0, x0)|| ≥ λ}

By the Itô formula, for any t ≥ t0 + T , we obtain

0 ≤ E
(
V (x(τλ ∧ t), τλ ∧ t)

)
= V (x0, 0) + E

( ∫ τλ∧t

0

LV (x(s), s)
)
ds.

Taking the expectation on both sides and making use (3.5) and (3.7), we obtain that

E
(
V (x(τλ ∧ t), τλ ∧ t)

)
≤ V (x0, 0) + E

( ∫ τλ∧t

0

(ϕ(s)− α3(||y(s)||)ds
)

≤ V (x0, 0) +M

≤ εα1(h).

Note that, ||y(τλ ∧ t; t0, x0)|| = ||y(τλ; t0, x0)|| = λ when τλ ≤ t. Therefore, we can obtain

E
(
V (x(τλ ∧ t), τλ ∧ t)

)
≥ E

(
1{τλ≤t}V (x(τλ), τλ)

)
≥ E

(
1{τλ≤t}α1(||y(τλ; t0, x0)||)

)
≥ E

(
1{τλ≤t}α1(λ)

)
= α1(λ)E

(
1{τλ≤t}

)
= α1(λ)P

(
τλ ≤ t

)
.

Then,
α1(λ)P

(
τλ ≤ t

)
≤ εα1(λ),

which implies that,
P
(
τλ ≤ t

)
≤ ε.

Letting t→∞ we get P
(
τλ < +∞

)
≤ ε.

That is, for any ε ∈]0, 1[, λ > r and c > 0 (independent of t0), for a fixed T = T (ε, c) > 0, we
have, for all t ≥ t0 + T , P

(
||y(t; t0, x0)|| < λ;∀t ≥ t0 + T

)
≥ 1− ε, for all ||x0|| < c.

For a small r ∈]0, δ[ and ||x0|| < r, we can take k = k(r) > 0, such that for all t ≥ t0 ≥ 0, we

have ||y(t; t0, x0)|| < k, a.s , for all ||x0|| < r.
We also have for all t ≥ t0 ≥ 0, ||z(t; t0, x0)|| < h, a.s.
Consequently, there exist m = m(r)such that,

sup
t≥t0
||x(t)|| < m for all ||x0|| < r a.s.

Hence, the system (2.1)is globally uniformly practically asymptotically stable with respect to y
in probability. 2

We present an example that implement the previous Theorem.
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Example 3.3. Sorry Mohamed, in my opinion this example is not valid to justify that the results
in our paper [10], namely Theorem 2.1, cannot be applied to all the variables and therefore the
current result in this paper is meaningful. Let me explain: first, in the example below there are

some mistakes, please check it carefully. Second, if we consider V :=
x2

1 + x2
2 + x2

3

2
, then the

result Theorem 2.1 in ref. [10] holds and therefore we have stability in the three variables. In my
opinion, to show the applicability of the theory in the current paper, we need to find an example
which is not stable in all the variables and that we can prove stability in some of the variables. If
we cannot provide such example, then our results do not have any interest. Can you please think
about this? This is the real motivation and importance of the present study in this paper.

Consider the following stochastic system

dx1(t) = (−x1 +
1√
ch(t)

)dt+
√

2x1

√
x4

2 + 1dBt,

dx2(t) = (−x2 − x2
1x2(x

4
2 + 1))dt,

dx3(t) = −βx3dt,

(3.10)

where β > 0, x(t) = (x1(t), x2(t), x3(t))
T ∈ R3 and B(t) is one-dimensional Brownian motion.

It is clear that x2(t, t0, x0) is stochastically bounded, in fact, x2(t, t0, x0) = x20(t, ω)e−β(t−t0).

Denote, V :=
x2

1 + x2
2

2
.

Applying the Itô formula on V leads to

LV = x1(−x1 +
1√
ch(t)

)− x2
2 − x2

1x
2
2(x

4
2 + 1) + x2

1x
2
2(x

4
2 + 1)

= −x2
1 − x2

2 + x1
1√
ch(t)

≤ −1

2
x2

1 − x2
2 +

1

2

1

ch(t)

≤ −1

2
(x2

1 + x2
2) +

1

2

1

ch(t)
.

Note that we cannot apply theorem on practical asymptotic stability in probability [10], because all
conditions of this Theorem are not fulfilled. But we can apply Theorem (3.1), since V is positive
definite with respect to (x1, x2) and it have an infinitesimal upper limit in (x1, x2). Furthermore,

LV (x, t) ≤ −1

2
(x2

1 + x2
2) + ϕ(t),

where ϕ(t) = 1
2

1

ch(t)
. which satisfied both conditions (3.6) and (3.7).
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Hence, all conditions of Thorem (3.1) are fulfilled and we get that (3.10) is globally uniformly
practically asymptotically stable with respect to (x1, x2) in probability.

4 Global practical uniform pth moment exponential sta-

bility of stochastic differential equation with respect to

a part of the variables

In this section, we present sufficient conditions for global practical pth moment exponential sta-
bility of SDE with respect to a part of the variables.

Definition 4.1. i)Let p > 0, the ball Br is said to be globally uniformly pth moment exponen-
tially stable with respect to y, if there exist λ1 > 0 and λ2 > 0, such that

E(||y(t, t0, x0)||p) ≤ λ1||x0||pe−λ2(t−t0) + r ∀t ≥ t0, ∀x0 ∈ Rn. (4.1)

ii) The system (2.1) is said to be globally practically uniformly pth moment exponentially stable
with respect to y if there exists r > 0 such that Br is globally uniformly pth moment exponentially
stable with respect to y.

Within the method of Lyapunov, we present the following result.

Theorem 4.1. Assume that there exist V ∈ C2,1(Rn × R+,R∗+) and positive constants ci(i =
1, 2, 3), γ, p, such that for all x 6= 0 and all t ≥ t0 ≥ 0,

c1||y||p ≤ V (x, t) ≤ c2||y||p, (4.2)

LV (x, t) ≤ −c3||y||p + ψ(t), (4.3)

where ψ(t) is a continuous nonnegative function with

lim
t→+∞

ψ(t) = 0, (4.4)

and ∫ +∞

t0

ψ(t)dt ≤ ρ < +∞. (4.5)

Furthermore, we suppose that for all t ≥ t0 ≥ 0, ||z(t, t0, x0)|| ≤ h, a.s.
where h is a positive constant independent of x0 and t0.
Then, system (2.1) is globally practically uniformly pth moment exponentially stable with respect
to y with r = ρ

c1
.

In order to prove this Theorem, we need to recall an important Gronwall-Lemma see Dragomir
[11] for other versions.
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Lemma 4.2. Let b(t) and f(t) be continuous functions for t ≥ t0 ≥ 0, let v(t) be a differentiable
function for t ≥ t0 ≥ 0, and suppose

v̇(t) ≤ b(t)v(t) + f(t), t ≥ t0 ≥ 0. (4.6)

Then, for all t ≥ t0 ≥ 0,

v(t) ≤ v(t0) exp(

∫ t

t0

b(s)ds) +

∫ t

t0

f(s) exp(

∫ t

s

b(τ)dτ)ds. (4.7)

Proof. For a fixed t > t0 we have from (4.6) that

v̇(s) ≤ b(s)v(s) + f(s), s ∈ [t0, t].

Therefore

[v̇(s)− b(s)v(s)]exp(

∫ t

s

b(τ)dτ) ≤ f(s)exp(

∫ t

s

b(τ)dτ), s ≥ t0,

d

ds
[v(s) exp(

∫ t

s

b(τ)dτ)] ≤ f(s) exp(

∫ t

s

b(τ)dτ).

By integration between t0 and t

v(t)− v(t0) exp(

∫ t

t0

b(τ)dτ) ≤
∫ t

t0

f(s) exp(

∫ t

s

b(τ)dτ)ds,

and the result is shown. 2

Now we are able to prove our result Theorem (4.1).

Proof of Theorem 4.1. Applying the Itô formula on V for any t ≥ t0 ≥ 0, leads to

V (x(t), t) = V (x0, t0) +

∫ t

t0

LV (x(s), s)ds+

∫ t

t0

Vx(x(s), s)g(x(s), s)dBs.

Taking the expectation on both sides, we obtain that

0 ≤ E
(
V (x(t), t)

)
= V (x0, t0) +

∫ t

t0

E(LV (x(s), s))ds.

Differentiating this equality with respect to t and taking into consideration conditions (4.2) and
(4.3). We obtain

d

dt
E
(
V (x(t), t)

)
= E(LV (x(t), t))

≤ c3E(−||y(t)||p) + ψ(t)

≤ −c3
c2

E(V (t, x(t))) + ψ(t).
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An application of lemma (4.2) this implies

E
(
V (x(t), t)

)
≤ V (x0, t0)e

− c3
c2

(t−t0)
+

∫ t

t0

ψ(s)e
− c3
c2

(t−s)
ds

≤ c2||y0||pe−
c3
c2

(t−t0)
+

∫ +∞

t0

ψ(s)ds.

Due to the fact that ||y0|| ≤ ||x0|| and condition (4.5), we deduce from the last inequality that

E
(
V (x(t), t)

)
≤ c2||x0||pe−

c3
c2

(t−t0)
+ ρ. (4.8)

From (4.8), and V (x(t), t) ≥ c1||y||p for all t ≥ t0 ≥ 0, implies

E
(
||y(t)||p)

)
≤ 1

c1
E
(
V (x(t), t)

≤ c2
c1
||x0||pe−

c3
c2

(t−t0)
+
ρ

c1
.

Setting λ1 = c2
c1

and λ2 = c3
c2
, we conclude that the system (2.1)is globally practically uniformly

pth moment exponentially stable with respect to y with r = ρ
c1
. 2

5 Global practical uniform exponential stability of stochas-

tic differential equation with respect to a part of the

variables

In this section, we are basically interested to study the global practical uniform exponential sta-
bility of SDE with respect to a part of the variables based on Lyapunov techniques.

Definition 5.1. i)The ball Br is said to be almost surely globally uniformly exponentially stable
with respect to y if for any x0 such that 0 < ||y(t, t0, x0)|| − r, for all t ≥ 0, it holds that

lim
t→∞

sup
1

t
ln(||y(t, t0, x0)|| − r) < 0, a.s. (5.1)

ii) The system (2.1) is said to be almost surely globally practically uniformly exponentially
stable with respect to y, if there exists r > 0 such that Br is almost surely globally uniformly
exponentially stable with respect to y.

Theorem 5.1. Assume that there exist a function V ∈ C2,1(Rd×R+,R∗+) and constants p ∈ N∗,
β1 ≥ 1, γ ≥ β1, ζ ≥ 0 and β2 ∈ R, β3 ≥ 0 such that for all t ≥ t0 ≥ 0, and x ∈ Rn,
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1. β1||y||p ≤ V (x, t),

2. LV (x, t) ≤ β2V (x, t) + γ,

3. ||Vx(x, t)g(x, t)||2 ≥ %(t)V 2(x, t) + ζ,

where %(t) is a continuous non negative function with

lim
t−→+∞

sup
(∫ t

0
%(s)ds

t

)
≤ β3.

Furthermore, we suppose that for all t ≥ t0 ≥ 0, ||z(t, t0, x0)|| ≤ h, a.s.
where h is a positive constant independent of x0 and t0.
Then,

lim
t→+∞

sup
1

t
ln
(
||y(t, t0, x0)|| − (

γ

β1

)
1
p
)
≤ −

[
(β3 + σ)− 2(β2 + 1)

]
2

, a.s., for all x0 ∈ Rn, (5.2)

where σ is a positive constant.
In particular, if (β3 + σ) > 2(β2 + 1), then the system (2.1) is said to be almost surely globally

practically uniformly exponentially stable with respect to y, with r = (
γ

β1

)
1
p .

In order to prove this Theorem we need to recall the following Lemma see Mao [16].

Lemma 5.2. For all x0 ∈ Rn such that x0 6= 0 it holds

P
(
x(t; t0, x0) 6= 0,∀t ≥ 0

)
= 1. (5.3)

That is, almost all the sample path of any solution starting from a non-zero state will never reach
the origin.

Proof. Arguing by contradiction, if the lemma were false, there would exist some x0 6= 0 such
that P{τ <∞} > 0, where

τ = inf{t ≥ 0;x(t) = 0}.

So, we can find a pair of constants T > 0 and θ > 1, sufficiently large, such that P(B) > 0, where

B = {τ ≤ T and ||x(t)|| ≤ θ − 1, for all 0 ≤ t ≤ τ}.

But, by the standing hypotheses, there exist positive constants Kθ, r, and a small positive
constant c such that

||f(x, t)|| ∨ ||g(x, t)|| ≤ Kθ||x||+ r for all 0 < c ≤ ||x|| ≤ θ, 0 ≤ t ≤ T.

12



Let V (x, t) = ||x||−1.
Then, by the Itô formula, for 0 < c ≤ ||x|| ≤ θ and 0 ≤ t ≤ T ,

LV (x, t) = −||x||−3xTf(x, t) +
1

2

(
− ||x||−3||g(x, t)||2 + 3||x||−5||xTg(x, t)||2

)
≤ ||x||−2||f(x, t)||+ ||x||−3||g(x, t)||2

≤ ||x||−2
(
Kθ||x||+ r

)
+ ||x||−3

(
Kθ||x||+ r

)2
≤ Kθ(1 +Kθ)V (x, t) + r||x||−1

(
||x||−1 + 2Kθ||x||−1 + r||x||−2

)
≤ Kθ(1 +Kθ)V (x, t) + rV (x, t)

(1

c
+

2Kθ

c
+
r

c2
)

≤
[
Kθ(1 +Kθ) + β

]
V (x, t),

where, β = r
(1

c
+

2Kθ

c
+
r

c2
)
.

Now, for any ε ∈]0, ||x0||[, define the stopping time

τε = inf{t ≥ 0; ||x(t)|| /∈]ε, θ[}.

Applying the Itô formula, we obtain

E
[

exp
{
−
[
Kθ(1 +Kθ) + β

]
(τε ∧ T )

}
V
(
x(τε ∧ T ), τε ∧ T

)]
− V (x0, 0),

= E
[ ∫ τε∧T

0

exp
{
−
[
Kθ(1 +Kθ) + β

]
s
}[
−
(
Kθ(1 +Kθ) + β

)
V (x(s), s) + LV (x(s), s)

]
ds
]
,

≤ 0.

Note that for ω ∈ B, this implies τε ≤ T and ||x(τε)|| = ε. The above inequality therefore
involves that

E
[

exp
{
−
[
Kθ(1 +Kθ) + β

]
T
}
ε−11B

]
≤ ||x0||−1.

Hence,

P(B) ≤ ε||x0||−1 exp
{[
Kθ(1 +Kθ) + β

]
T
}
.

Letting ε −→ 0 gives P(B) = 0, but this contradicts the definition of B.
The proof is complete. 2

The next Lemma, whose proof can be found in [16], will be useful in our analysis:

Lemma 5.3. Let g = (g1, ...., gm) ∈ L2(R+,Rm), and let T , α, β be any positive
numbers. Then

P
(

sup
0≤t≤T

[ ∫ t

0

g(s)dBs −
α

2

∫ t

0

||g(s)||2ds
]
> β

)
≤ exp(−αβ).

13



Now, we are able to prove our main result in this section.

Proof of Theorem 5.1.

Fix x0 6= 0 in Rn. By Lemma (5.2), x(t) 6= 0, for all t ≥ 0 almost surely.
For any y ∈ Rb, we obtain

β1||y||p − γ = β1

(
||y||p − γ

β1

)
,

= β1

(
||y||p −

(
(
γ

β1

)
1
p
)p)

,
(5.4)

and using
ap − bp = (a− b)(ap−1 + ap−2b+ ap−3b2 + ...+ a0bp−1),

equality (5.4) becomes

β1||y||p − γ = β1

(
||y|| − (

γ

β1

)
1
p
)(
||y||p−1 + ||y||p−2(

γ

β1

)
1
p + ...+ (

γ

β1

)
p−1
p
)
,

≥ β1

(
||y|| − (

γ

β1

)
1
p
)( γ
β1

) p−1
p .

Since β1 ≥ 1 and γ ≥ β1,we obtain

V (x, t) ≥ β1||y||p ≥ β1||y||p − γ ≥ β1

(
||y|| −

( γ
β1

)
1
p
)( γ
β1

) p−1
p ≥

(
||y|| − (

γ

β1

)
1
p
)
.

Thus, (
||y|| − (

γ

β1

)
1
p
)
≤ V (x, t)

and
ln
(
||y|| − (

γ

β1

)
1
p
)
≤ ln

(
V (x, t)

)
, ∀t ≥ 0, x ∈ Rn.

The Application of Itô formula, leads to, for all t ≥ 0,

d
(

ln(V (x(t), t))
)

=
LV (x(t), t)

V (x(t), t)
dt+

Vx(x(t), t)g(x(t), t)

V (x(t), t)
dBt −

1

2

||Vx(x(t), t)g(x(t), t)||2

V 2(x(t), t)
dt.

That is,∫ t

0
d(ln(V (x(s), s)))ds =

∫ t

0

LV (x(s), s)
V (x(s), s)

ds+
∫ t

0

Vx(x(s), s)g(x(s), s)
V (x(s), s)

dBs−
1
2

∫ t

0

||Vx(x(s), s)g(x(s), s)||2

V 2(x(s), s)
ds.

So,

ln(V (x(t), t)) = ln(V (x(0), 0)) +

∫ t

0

LV (x(s), s)

V (x(s), s)
ds+M(t)− 1

2

∫ t

0

||Vx(x(s), s)g(x(s), s)||2

V 2(x(s), s)
ds.
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Where, M(t) =

∫ t

0

Vx(x(s), s)g(x(s), s)

V (x(s), s)
dBs, is a continuous martingale with initial value M(0) =

0.
Taking, into account the assumptions, we obtain that, for all t ≥ 0

ln(V (x(t), t)) ≤ ln(V (x(0), 0)) +

∫ t

0

β2V (x(s), s) + γ

V (x(s), s)
ds+M(t)− 1

2

∫ t

0

||Vx(x(s), s)g(x(s), s)||2

V 2(x(s), s)
ds

≤ ln(V (x(0), 0)) + β2t+

∫ t

0

γ

V (x(s), s)
ds+M(t)− 1

2

∫ t

0

||Vx(x(s), s)g(x(s), s)||2

V 2(x(s), s)
ds

≤ ln(V (x(0), 0)) + β2t+

∫ t

0

γ

β1||y(s)||p
ds+M(t)− 1

2

∫ t

0

||Vx(x(s), s)g(x(s), s)||2

V 2(x(s), s)
ds

≤ ln(V (x(0), 0)) + β2t+ t+M(t)− 1

2

∫ t

0

||Vx(x(s), s)g(x(s), s)||2

V 2(x(s), s)
ds.

That is,

ln(V (x(t), t)) ≤ ln(V (x(0), 0)) + (β2 + 1)t+M(t)− 1

2

∫ t

0

||Vx(x(s), s)g(x(s), s)||2

V 2(x(s), s)
ds. (5.5)

Assign ε ∈]0, 1[ arbitrarily and let n = 1, 2, ... It follows from Lemma (5.3) that,

P
{

sup
0≤t≤n

[
M(t)− ε

2

∫ t

0

||Vx(x(s), s)g(x(s), s)||2

V 2(x(s), s)
ds
]
>

2

ε
ln(n)

}
≤ 1

n2
.

Applying the Borel-Cantelli lemma we see that, for almost all ω ∈ Ω, there exists an integer
n0 = n0(ω), such that if n ≥ n0,

M(t) ≤ 2

ε
ln(n) +

ε

2

∫ t

0

||Vx(x(s), s)g(x(s), s)||2

V 2(x(s), s)
ds, for all 0 ≤ t ≤ n.

Then, the inequality (5.5) becomes, for all 0 ≤ t ≤ n, n ≥ n0 almost surely, as

ln(V (x(t), t)) ≤ ln(V (x(0), 0)) + (β2 + 1)t+
2

ε
ln(n) +

ε− 1

2

∫ t

0

||Vx(x(s), s)g(x(s), s)||2

V 2(x(s), s)
ds,

≤ ln(V (x(0), 0)) + (β2 + 1)t+
2

ε
ln(n)− 1− ε

2

∫ t

0

%(s)V 2(x(s), s) + ζ

V 2(x(s), s)
ds,

≤ ln(V (x(0), 0)) + (β2 + 1)t+
2

ε
ln(n)− 1− ε

2

∫ t

0

%(s)ds− 1− ε
2

∫ t

0

ζ

V 2(x(s), s)
ds.

(5.6)
From condition (5.6), there exists β3 ∈ R+ such that

lim
t−→∞

sup

∫ t
0
%(s)ds

t
≤ β3, (5.7)
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then there exists σ > 0 such that ∫ t

0

%(s)ds ≤ (β3 + σ)t.

Since 0 < ε < 1, the following inequality

−1− ε
2

∫ t

0

ζ

V 2(x(s), s)
ds ≤ 0.

Then inequality (5.6) becomes

ln(V (x(t), t)) ≤ ln(V (x(0), 0) + (β2 + 1)t+
2

ε
ln(n)− 1− ε

2
(β3 + σ)t. (5.8)

Consequently, for almost all ω ∈ Ω, if n− 1 ≤ t ≤ n and n ≥ n0,

1

t
ln(V (x(t), t)) ≤ −1

2

[
(1− ε)(β3 + σ)− 2(β2 + 1)

]
+

ln(V (x(0), 0)) + 2
ε

ln(n)

n− 1
.

This implies ,

lim
t→+∞

sup
1

t
ln(V (x(t), t)) ≤ −1

2

[
(1− ε)(β3 + σ)− 2(β2 + 1)

]
a.s.

Putting ε −→ 0 gives,

lim
t→+∞

sup
1

t
ln(||y(t; t0, x0)|| − (

γ

β1

)
1
p ) ≤ (−(β3 + σ)− 2(β2 + 1))

2
a.s.

If the inequality (β3 + σ) > 2(β2 + 1) is satisfied, then the system (2.1) is almost surely globally
practically uniformly exponentially stable with respect to y. 2

Now, we provide an illustrative example that implement the previous result.

Example 5.4. In this example, the second equation is exponentially stable, so, I guess that my
comments in red in the first example are also valid here, I mean, I think that this example is
stable in all the variables. Please, we need to find an example in which we cannot prove stability
in all the variables, but only in a few of them.

Consider the following stochastic system:
dx1(t) = f(x(t))dt+Gx1(t)dBt

dx2(t) = αx2(t)dt+ βx2(t)dBt, α +
β2

2
< 0,

(5.9)
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where x = (x1, x2) ∈ R3, and x1 = (z1, z2) ∈ R2, B(t) is one-dimensional Brownian motion,

f(x) =

(
(z1 + 1) cos(z2)
(z2 + 1) sin(x2),

)
, G =

(
4 −0.4
−0.4 r

)
.

With initial value x0 = (x10, x20), and x10 = (z10, z20).

It is clear that, for α+
β2

2
< 0, x2(t, t0, x0) is stochastically bounded since x2(t, t0, x0) is geometric

Brownian motion (see [16]).
Consider the Lyapunov-like function: V (t, x) = x2

1 = z2
1 + z2

2 .
It is easy to verify that

LV (x, t) = 2z1(z1 + 1) cos(z2) + 2z2(z2 + 1) sin(x2) + ||Gx1||2

≤ 2z1(z1 + 1) + 2z2(z2 + 1) + ||Gx1||2

≤ 22.36x2
1 + 2,

and
||VxGx1||2 = ||2x1

TGx1||2 ≥ 51.84||x1||4 + 0.

Thus, the constants in Theorem 5.1 become β1 = 1, β2 = 22.36, β3 = 51.84, p = γ = 2,
ζ = σ = 0. Clearly, β3 > 2(β2 + 1).
Note that we cannot apply the result of [10] to deduce the practical uniform exponential stability
of the system, because V is not definite positive,Mohamed, indeed we cannot apply the results in
[10] to this precise Lyapunov function V but it is possible that we can apply to another V , so it
is not fully justified that our problem does not have stability in all the variables.Please, we need
an example in which we can ensure that stability in all variables does not hold. it is only definite
positive with respect to x1. Therefore, all conditions of Theorem (5.1) are satisfied, hence the
system (5.9) is almost surely globally practically uniformly exponentially stable with respect to x1

with r =
√

2.
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