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Abstract In this paper we investigate stochastic evolution equations with unbounded delay in fractional

power spaces perturbed by a tempered fractional Brownian motion Bσ,λQ (t) with −1/2 < σ < 0 and λ > 0.

We first introduce a technical lemma which is crucial in our stability analysis. Then we prove the existence

and uniqueness of mild solutions by using semigroup methods. The upper nonlinear noise excitation index

of the energy solutions at any finite time t is also obtained. Finally, we consider the exponential asymptotic

behavior of mild solutions in mean square.
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1 Introduction

Tempered fractional Brownian motion (TFBM) defined by exponentially tempering the power law ker-

nel in the moving average representation of a fractional Bownian motion (FBM) was first introduced by
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Meerschaert and Sabzikar in [27]. Tempered fractional Gaussian noise (TFGN), the increments of TFBM,

can exhibit semi-long range dependence when the corresponding FGN is long range dependent. Wind speed

data are important for electrical power generation and structural engineering. An important application to

model wind speed near the earth surface was also presented in [27]. More precisely, TFGN can provide a

useful stochastic process model for wind speed data, see, e.g., [3,10,17,23,29]. Furthermore, the time-changed

TFBM has been investigated in [9] with potential applications in financial time series, biology and physics.

Retarded differential equations have attracted much attention in the literature due to physical reasons

with non-instant transmission phenomena such as high velocity fields in wind tunnel experiments, or other

memory processes, or biological motivations like species growth or incubating time in disease models among

many others. Stochastic delay differential equations driven by the standard Brownian motion have been

widely investigated in the literature, see, e.g., [7,8,21,26,32,33] and the references therein. There has, how-

ever, been little mention of SDEs or SPDEs with delay driven by TFBM. In this paper we consider the

stochastic evolution equations with infinite delay{
du(t) = −Au(t)dt+ f(t, ut)dt+ g(t, ut)dB

σ,λ
Q (t), t > 0,

u(t) = ϕ(t), t ∈ (−∞, 0],
(1.1)

where −A is a closed, densely defined linear operator generating an analytic semigroup S(t), t ≥ 0, on a

separable Hilbert space H, f : [0,∞) × C (Hα) 7→ H, g : [0,∞) × C (Hα) 7→ L0
Q(U ,H) are two Lipschitz

continuous functions, Bσ,λQ (t) is a tempered fractional Brownian motion with −1/2 < σ < 0 and λ > 0 over

a filtered probability space (Ω,F , (Ft)t≥0, P ), ϕ ∈ C (Hα) with ϕ(t) being Ft-measurable, where Ft = F0

for all t ≤ 0. Here Hα = D(Aα) and

C (Hα) =
{
ψ ∈ C

(
−∞, 0;L2(Ω;Hα)

)
: lim
θ→−∞

ψ(θ) exists in L2(Ω;Hα)
}
.

In [15,16], the existence of a unique pathwise solution for stochastic evolution equations driven by FBM

was established when H ∈ (1/3, 1/2]. In [13,14], the existence and uniqueness of solutions for delayed SDEs

driven by FBM have been proved when H > 1/2. Using rough path theory, the authors gave the existence

and uniqueness of solutions to fractional equations with delay when H > 1/3 (see, e.g., [30]). In [6,18],

the authors investigated the existence, uniqueness and exponential asymptotic behavior of mild solutions

to stochastic delay equations perturbed by FBM with H > 1/2. Controllability of non-autonomous neutral

evolution stochastic functional differential equations driven by FBM with H > 1/2 has been proved in

[24]. More recently, the global existence, uniqueness and viability results to stochastic functional differential

equations in Hilbert spaces driven by FBM when H > 1/2 have been studied in [34]. However, the literature

about SDEs or SPDEs driven by TFBM is scarce in both cases with and without delay.

The purpose of this paper is to investigate the global existence and uniqueness of mild solutions to

stochastic delay evolution equations (1.1) in fractional power spaces, and to study the effect of nonlinear

noise to (1.1) but with f = 0 when the noise is large, and also to analyze the long time behavior to (1.1)

but in the particular case in which the function g becomes independent of the state variable, in other words,
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when g is replaced by φ : [0,∞) 7→ L0
Q(U ,H). The reason to consider this particular situation is explained

in details in Section 5. “Intermittency” is the property that the solution ut(x) develops extreme oscillations

at some values of x, typically when t is large. Intermittency has been observed in an enormous number of

scientific disciplines such as “spikes” in neural activity or “shocks” in finance among many others. It is worth

noticing that, in NMR spectroscopy, intermittency can be strongly associated to nonlinear noise excitation

(see, e.g., [1,22]). The effect of noise intensity on stochastic parabolic equations driven by Brownian motion

has been discussed in recent years, in particular the relationship between the energy of solutions at time t

and the level of the noise was established in [12,25,19,20]. However, there has been little literature about

the relationship between the energy of solutions and the level of the noise for stochastic delay evolution

equations even in the case of Brownian motion. Here we consider stochastic evolution equations with infinite

delay and TFBM, the upper bound of the upper excitation index of the solution at time t will be presented.

e(t) and e(t), respectively, denote the lower and upper excitation indices of the mild solution at time t [12,

25,19,20], where we may use the notation

e(t) := lim inf
η→∞

log log Et(η)

log η
, e(t) := lim sup

η→∞

log log Et(η)

log η
,

where Et stands for the energy of the solution at time t and η stands for the level of the noise.

The contents of the paper are as follows. In Section 2 some necessary preliminaries on the stochastic

integration with respect to TFBM are established. In particular, a technical lemma which is crucial in our

analysis is proved. In Section 3 the global existence and uniqueness of mild solutions to (1.1) are established.

In Section 4 we show an upper bound of the upper excitation index of the mild solution to (1.1) at time t but

with f = 0. The last section is devoted to establishing some sufficient conditions ensuring the exponential

decay to zero of the mild solution to (1.1) in mean square, but in the particular case in which g possesses

the form g(t, ut) = φ(t), with φ : [0,∞) 7→ L0
Q(U ,H).

2 Preliminaries

In this section, we introduce the tempered fractional Brownian motion as well as the Wiener integral

with respect to it; for more details, we refer to [27,28]. We also establish some important results which will

be used throughout the paper.

We denote by H a separable Hilbert space with inner product (·, ·) and norm ‖·‖. Let U be another

separable Hilbert space and L(U ,H) be the space of all bounded linear operators from U into H. For

convenience, we will use the same notation ‖·‖ to denote the norms in U and L(U ,H), and use (·, ·) to denote

the inner product of U without any confusion. Let (Ω,F , P ) be a probability space on which an increasing

and right continuous family {Ft}t≥0 of complete sub-σ-algebras of F is defined, and F0 contains all P -null

sets of F .

Now let us recall the definition and some basic properties of tempered fractional Brownian motion

(TFBM). Let {B(t)}t∈R be a two-sided one-dimensional Brownian motion with mean zero and variance



4 Yejuan Wang et al.

|t| for all t ∈ R. Define an independently scattered Gaussian random measure B(dx) with control measure

m(dx) = dx by setting B[a, b] = B(b) − B(a) for any real numbers a < b, and then extending to all Borel

sets.

Definition 1 For any σ < 1/2 and λ > 0, a tempered fractional Brownian motion (TFBM) is defined by

the following integral:

Bσ,λ(t) =

∫ ∞
−∞

[
e−λ(t−x)+(t− x)−σ+ − e−λ(−x)+(−x)−σ+

]
B(dx), (2.1)

where (x)+ = xI(x>0), 00 = 0 and λ is called tempered parameter.

It follows from Proposition 2.3 in [27] that TFBM has the covariance function

Cov
[
Bσ,λ(t), Bσ,λ(s)

]
=

1

2

[
C2
t |t|

2H
+ C2

s |s|
2H − C2

t−s |t− s|
2H
]
,

where H = 1/2− σ, and

C2
t =

2Γ (2H)

(2λ |t|)2H
−

2Γ (H + 1
2 )

√
π

1

(2λ |t|)H
KH(λ |t|), t 6= 0,

in which KH(·) is the modified Bessel function of the second kind, and C2
0 = 0.

When λ = 0 and −1/2 < σ < 1/2, the TFBM (2.1) reduces to a fractional Brownian motion (FBM), a

self-similar Gaussian stochastic process with Hurst scaling index H = 1/2− σ. When λ = 0 and σ < −1/2,

TFBM (2.1) does not exist, since the integrand in the right hand of (2.1) is not in L2(R). However, TFBM

with λ > 0 and σ < −1/2 is well-defined, because the exponential tempering keeps the integrand in L2(R).

When σ < −1/2 and λ > 0, or when σ = 0 and λ > 0, TFBM (2.1) is a continuous semimartingale, so the

classical Itô stochastic calculus is applicable to TFBM in these cases. When σ ∈ (−1/2, 0) ∪ (0, 1/2) and

λ > 0, TFBM is neither a semimartingale nor a Markov process.

We assume that there exists a complete orthonormal basis {ek}k∈N in U , and that Bσ,λQ = {Bσ,λQ (t)}t≥0,

BHQ = {BHQ (t)}t≥0 and BQ = {BQ(t)}t≥0, respectively, are cylindrical U-valued TFBM, FBM and Brownian

motion defined on (Ω,F , {Ft}t≥0, P ) with a finite trace nuclear covariance operator Q ≥ 0. Denote Tr(Q) =

Σ∞k=1λk < ∞, which satisfies that Qek = λkek, k ∈ N. Let {Bσ,λk }k≥1 be a sequence of two-sided one-

dimensional TFBMs mutually independent on (Ω,F , {Ft}t≥0, P ) such that

Bσ,λQ (t) =

∞∑
k=1

√
λkB

σ,λ
k (t)ek, t ≥ 0,

where −1/2 < σ < 0 and λ > 0. In particular, let {BHk }k≥1 and {Bk}k≥1, respectively, be the se-

quences of two-sided one-dimensional standard FBMs and Brownian motions mutually independent on

(Ω,F , {Ft}t≥0, P ) such that

BHQ (t) =

∞∑
k=1

√
λkB

H
k (t)ek, t ≥ 0,
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and

BQ(t) =

∞∑
k=1

√
λkBk(t)ek, t ≥ 0,

where Hurst index H ∈ (1/2, 1).

For ψ, φ ∈ L(U ,H), we define (ψ, φ)Q = Tr(ψQφ∗), where φ∗ is the adjoint of the operator φ. Then, for

any bounded operator φ ∈ L(U ,H),

‖φ‖2Q = Tr(φQφ∗) =

∞∑
k=1

∥∥∥√λkφek∥∥∥2 .
If ‖φ‖2Q <∞, then φ is called a Q-Hilbert-Schmidt operator. Denote by L0

Q(U ,H) the space of all φ ∈ L(U ,H)

such that φ is a Q-Hilbert-Schmidt operator equipped with the norm ‖·‖Q.

Now we recall the definitions of tempered fractional integral and stochastic integral with respect to

TFBM; see [28].

Definition 2 For any f ∈ Lp(0, T ) (where 1 ≤ p < ∞), and for any a, b ∈ [0, T ] with b > a, the positive

and negative tempered fractional integral on (a, b) are defined by

Iα,λa+ f(t) =
1

Γ (α)

∫ t

a

f(u)(t− u)α−1e−λ(t−u)du (2.2)

and

Iα,λb− f(t) =
1

Γ (α)

∫ b

t

f(u)(u− t)α−1e−λ(u−t)du (2.3)

respectively, for any α > 0 and λ > 0, where Γ (α) =
∫ +∞
0

e−xxα−1dx is the Euler gamma function.

Definition 3 For any −1/2 < σ < 0, λ > 0, and for any a, b ∈ [0, T ] with b > a, we define∫ b

a

f(t)dBσ,λ(t) := Γ (k + 1)

∫ b

a

(
Ik,λb− f(t)− λIk+1,λ

b− f(t)
)
dB(t) (2.4)

for any f ∈ A1 :=

{
f ∈ L2(a, b) :

∫ b

a

∣∣∣Ik,λb− f(t)− λIk+1,λ
b− f(t)

∣∣∣2 dt <∞}. Here k = −σ, and A1 is a linear

space with inner product 〈f, g〉A1 := 〈F,G〉L2(a,b) where

F (t) = Γ (k + 1)
(
Ik,λb− f(t)− λIk+1,λ

b− f(t)
)
,

G(t) = Γ (k + 1)
(
Ik,λb− g(t)− λIk+1,λ

b− g(t)
)
.

The following inequalities will be used in the proof of our main results in this section.
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Lemma 1 For any −1/2 < σ < 0, we have∫ u∧r

0

(u− s)−σ−1(r − s)−σ−1ds ≤ |r − u|−2σ−1 β(1 + 2σ,−σ) (2.5)

∫ x∧y

0

(x− s)−σ(y − s)−σds ≤ (x ∨ y)2 |x− y|−2σ−1 β(1 + 2σ, 1− σ), (2.6)

where β(·, ·) is the beta function.

Proof It follows from Lemma 2.2 in [31] that∫ 1

0

tu−1(1− t)v−1(c− t)−u−vdt = c−v(c− 1)−uβ(u, v) (2.7)

for u, v > 0, c > 1. Consider first the case u > r, by (2.7) we obtain∫ u∧r

0

(u− s)−σ−1(r − s)−σ−1ds =

∫ r

0

(u− s)−σ−1(r − s)−σ−1ds

=

∫ 1

0

(u
r
− y
)−σ−1

(1− y)
−σ−1

r−2σ−1dy (change of variable y = s/r)

≤
∫ 1

0

(u
r
− y
)−σ−1

(1− y)
−σ−1

y2σr−2σ−1dy

=
(u
r
− 1
)−2σ−1 (u

r

)σ
β(1 + 2σ,−σ)r−2σ−1

= (u− r)−2σ−1
(u
r

)σ
β(1 + 2σ,−σ) ≤ (u− r)−2σ−1 β(1 + 2σ,−σ).

For the case r > u, in a similar way as above, we have∫ u∧r

0

(u− s)−σ−1(r − s)−σ−1ds ≤ (r − u)
−2σ−1

β(1 + 2σ,−σ),

and consequently ∫ u∧r

0

(u− s)−σ−1(r − s)−σ−1ds ≤ |r − u|−2σ−1 β(1 + 2σ,−σ).

We want to show now that (2.6) holds true. For the case x > y, we deduce from (2.7) that∫ x∧y

0

(x− s)−σ(y − s)−σds =

∫ y

0

(x− s)−σ(y − s)−σds

= y−2σ+1

∫ 1

0

(
x

y
− t
)−σ

(1− t)−σ dt (change of variable t = s/y)

= y−2σ+1

∫ 1

0

(
x

y
− t
)−σ−2

(1− t)−σ
(
x

y
− t
)2

dt
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≤ y−2σ+1

(
x

y

)2 ∫ 1

0

(
x

y
− t
)−σ−2

(1− t)−σ t2σdt

= y−2σ−1x2
(
x

y

)σ−1(
x

y
− 1

)−2σ−1
β(1 + 2σ, 1− σ)

= x2
(
x

y

)σ−1
(x− y)

−2σ−1
β(1 + 2σ, 1− σ)

≤ x2 (x− y)
−2σ−1

β(1 + 2σ, 1− σ).

For the case y > x, using a similar argument as above, we find that∫ x∧y

0

(x− s)−σ(y − s)−σds ≤ y2 (y − x)
−2σ−1

β(1 + 2σ, 1− σ).

Thus, ∫ x∧y

0

(x− s)−σ(y − s)−σds ≤ (x ∨ y)2 |x− y|−2σ−1 β(1 + 2σ, 1− σ).

The proof of this lemma is completed.

Now we state and prove the following important result, which will be needed throughout the paper.

Lemma 2 If φ : [0, T ] 7→ L0
Q(U ,H) satisfies

∫ T
0
‖φ(s)‖2Q ds <∞, then for any t ∈ [0, T ],

E

∥∥∥∥∫ t

0

φ(s)dBσ,λQ (s)

∥∥∥∥2 ≤ ((2H − 1)t2H−1β(2− 2H,H − 1

2
)

+ 4λ2t2H+1 β(2− 2H,H + 1
2 )

2H − 1

)∫ t

0

‖φ(s)‖2Q ds,

where −1/2 < σ < 0, λ > 0, H = 1
2 − σ and β(·, ·) is the beta function.

Proof Let {ek}k∈N be the complete orthonormal basis of U introduced above. By Definition 3 and Lemma 1

we obtain

E

∥∥∥∥∫ t

0

φ(s)dBσ,λQ (s)

∥∥∥∥2
= E

∥∥∥∥∥
∫ t

0

∞∑
k=1

φ(s)
√
λkekdB

σ,λ
k (s)

∥∥∥∥∥
2

≤
∞∑
k=1

λkE

∣∣∣∣∫ t

0

‖φ(s)ek‖ dBσ,λk (s)

∣∣∣∣2

=

∞∑
k=1

λk
(
Γ (1− σ)

)2
E

∣∣∣∣∫ t

0

(
I−σ,λt− ‖φ(s)ek‖ − λI1−σ,λt− ‖φ(s)ek‖

)
dBk(s)

∣∣∣∣2
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=

∞∑
k=1

λk
(
Γ (1− σ)

)2
E

∫ t

0

∣∣∣I−σ,λt− ‖φ(s)ek‖ − λI1−σ,λt− ‖φ(s)ek‖
∣∣∣2 ds

≤
∞∑
k=1

2λk

∫ t

0

(
σ2

(∫ t

s

‖φ(u)ek‖ (u− s)−σ−1e−λ(u−s)du
)2

+λ2
(∫ t

s

‖φ(x)ek‖ (x− s)−σe−λ(x−s)dx
)2
)
ds

=

∞∑
k=1

2λkσ
2

∫ t

0

∫ t

s

∫ t

s

‖φ(u)ek‖ ‖φ(r)ek‖ (u− s)−σ−1(r − s)−σ−1e−λ(u−s)e−λ(r−s)dudrds

+

∞∑
k=1

2λkλ
2

∫ t

0

∫ t

s

∫ t

s

‖φ(x)ek‖ ‖φ(y)ek‖ (y − s)−σ(x− s)−σe−λ(y−s)e−λ(x−s)dxdyds

≤
∞∑
k=1

2λkσ
2

∫ t

0

∫ t

0

∫ u∧r

0

‖φ(u)ek‖ ‖φ(r)ek‖ (u− s)−σ−1(r − s)−σ−1dsdudr

+

∞∑
k=1

2λkλ
2

∫ t

0

∫ t

0

∫ x∧y

0

‖φ(x)ek‖ ‖φ(y)ek‖ (y − s)−σ(x− s)−σdsdxdy

≤
∞∑
k=1

λk

(
2σ2

∫ t

0

∫ t

0

‖φ(r)ek‖2 |u− r|−2σ−1 β(1 + 2σ,−σ)dudr

+2(λt)2
∫ t

0

∫ t

0

‖φ(y)ek‖2 |y − x|−2σ−1 β(1 + 2σ, 1− σ)dxdy

)
≤
(

(2H − 1) t2H−1β(2− 2H,H − 1

2
) + 4λ2t2H+1 β(2− 2H,H + 1

2 )

2H − 1

)∫ t

0

‖φ(s)‖2Q ds.

Therefore, we complete the proof of this lemma.

Since {BHk }k≥1 and {Bk}k≥1, respectively, are the sequences of two-sided one-dimensional standard FBMs

and Brownian motions mutually independent on (Ω,F , {F}t≥0, P ), we have the following properties for the

stochastic integrals with respect to BHQ and BQ (see, e.g., [2,4]).

Lemma 3 If φ : [0, T ] 7→ L0
Q(U ,H) satisfies

∫ T
0
‖φ(s)‖2Q ds <∞, then for any t ∈ [0, T ],

E

∥∥∥∥∫ t

0

φ(s)dBHQ (s)

∥∥∥∥2 ≤ 2Ht2H−1
∫ t

0

‖φ(s)‖2Q ds,

E

∥∥∥∥∫ t

0

φ(s)dBQ(s)

∥∥∥∥2 ≤ ∫ t

0

‖φ(s)‖2Q ds,

where H ∈ (1/2, 1).
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3 Existence and uniqueness of mild solutions to stochastic evolution equations with

unbounded delay and a TFBM

Let (Ω,F , P ) be the complete probability space which was introduced in Section 2. Denote Ft = F0, for

all t ≤ 0.

Throughout this paper we shall assume 0 ≤ α < 1/2 and define the Banach space D(Aα) with the

norm ‖y‖α := ‖Aαy‖ for y ∈ D(Aα), where D(Aα) denotes the domain of the fractional power operator

Aα : H → H. Denote Hα = D(Aα). We denote by C
(
a, b;L2(Ω;Hα)

)
= C

(
a, b;L2(Ω,F , P ;Hα)

)
the

Banach space of all continuous functions from [a, b] into L2(Ω;Hα) equipped with the sup norm.

Let us also consider a real number T > 0. If x ∈ C
(
−∞, T ;L2(Ω;Hα)

)
for each t ∈ [0, T ] we denote by

xt ∈ C
(
−∞, 0;L2(Ω;Hα)

)
the function defined by xt(s) = x(t+ s), for s ∈ (−∞, 0]. We define the abstract

phase space C (Hα) by

C (Hα) =

{
ψ ∈ C

(
−∞, 0;L2(Ω;Hα)

)
: lim
θ→−∞

ψ(θ) exists in L2(Ω;Hα)

}
.

If C (Hα) is endowed with the norm

‖ψ‖C (Hα) =
(

sup
θ∈(−∞,0]

E ‖ψ(θ)‖2α
) 1

2

, ψ ∈ C (Hα),

then
(
C (Hα), ‖·‖C (Hα)

)
is a Banach space.

In this section we consider the global existence and uniqueness of mild solutions to the following stochastic

evolution equation with infinite delay:{
du(t) = −Au(t)dt+ f(t, ut)dt+ g(t, ut)dB

σ,λ
Q (t), t > 0,

u(t) = ϕ(t), t ∈ (−∞, 0],
(3.1)

where Bσ,λQ (t) is the tempered fractional Brownian motion which was introduced in the previous section, the

initial data ϕ ∈ C (Hα) with ϕ(t) being Ft-measurable with Ft = F0 for all t ≤ 0, −A is the infinitesimal

generator of an analytic semigroup S(t), t ≥ 0, on the separable Hilbert space H. Furthermore, for the closed,

densely defined linear operator −A we assume the following conditions:

(A1) There exist a constant G ≥ 1 and a real number δ > 0 such that for any x ∈ H,

‖S(t)x‖ ≤ Ge−δt ‖x‖ , t ≥ 0.

(A2) The fractional power Aα satisfies that for any x ∈ H,

‖AαS(t)x‖ ≤ Gαe−δtt−α ‖x‖ , t > 0,

where Gα ≥ 1.
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(A3) There exists a constant Qα ≥ 1 such that for any x ∈ Hα,

‖S(t)x− x‖ ≤ Qαtα ‖Aαx‖ , t > 0.

The delay term f : [0,∞)× C (Hα) 7→ H satisfies

(B1) For any ξ ∈ C (Hα), the mapping [0,∞) 3 t 7→ f(t, ξ) ∈ H is measurable.

(B2) There exists l1 > 0 such that for any ξ, η ∈ C (Hα) and t ≥ 0,

E ‖f(t, ξ)− f(t, η)‖2 ≤ l1 ‖ξ − η‖2C (Hα) .

(B3) There exists l2 > 0 such that for any ξ ∈ C (Hα) and t ≥ 0,

E ‖f(t, ξ)‖2 ≤ l2
(

1 + ‖ξ‖2C (Hα)

)
.

Moreover, the delay term g : [0,∞)× C (Hα) 7→ L0
Q(U ,H) satisfies the following conditions:

(C1) For any ξ ∈ C (Hα), the mapping [0,∞) 3 t 7→ g(t, ξ) ∈ L0
Q(U ,H) is measurable.

(C2) There exists a nonnegative function k1 ∈ L∞(R+) such that for any ξ, η ∈ C (Hα) and t ≥ 0,

E ‖g(t, ξ)− g(t, η)‖2Q ≤ k1(t) ‖ξ − η‖2C (Hα)

and ‖k1‖L∞(R+) := K1 <∞.

(C3) There exist nonnegative functions k2 ∈ Lp(R+) with p ∈
(

1
1−2α ,∞

)
and k3 ∈ L∞(R+) such that for any

ξ ∈ C (Hα) and t ≥ 0,

E ‖g(t, ξ)‖2Q ≤ k2(t) + k3(t) ‖ξ‖2C (Hα) ,

and ∫ ∞
0

(k2(t))pdt := K2 <∞, ‖k3‖L∞(R+) := K3 <∞.

Now we state the definition of mild solution to problem (3.1).

Definition 4 Let ϕ ∈ C (Hα) be an initial process with Ft = F0 for all t ≤ 0. An Ft-adapted stochastic

process u(t) is called a mild solution of (3.1) if u ∈ C
(
−∞, T ; L2(Ω;Hα)

)
, u(t) = ϕ(t) for t ∈ (−∞, 0], and

for t ∈ [0, T ],

u(t) = S(t)ϕ(0) +

∫ t

0

S(t− r)f(r, ur)dr +

∫ t

0

S(t− r)g(r, ur)dB
σ,λ
Q (r) P -a.s. (3.2)

Definition 5 Let
(
Ω,F , {Ft}t≥0, P

)
be a filtered probability space. A stochastic process {X(t)}t≥0 is said

to be predictable if X, considered as a mapping from R+ × Ω, is measurable with respect to the σ-algebra

generated by all left-continuous Ft-adapted processes.

We also need the following lemma.
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Lemma 4 Let ψ(t) : R+ × Ω 7→ L0
Q(U ,H) be a predictable, Ft-adapted process. If ψ(t)v ∈ Hα, t ≥ 0, for

any v ∈ U and
∫ t
0
E ‖ψ(r)‖2Q dr <∞,

∫ t
0
E ‖Aαψ(r)‖2Q dr <∞, then

Aα
∫ t

0

ψ(r)dBσ,λQ (r) =

∫ t

0

Aαψ(r)dBσ,λQ (r) P -a.s.

Proof By Proposition 4.22 in [11] there exists a sequence {ψn} of D(Aα)-valued predictable processes on

[0, t] taking only a finite numbers of values such that

E

∫ t

0

‖ψ(r)− ψn(r)‖2Q dr + E

∫ t

0

‖Aαψ(r)−Aαψn(r)‖2Q dr −→ 0 as n→∞. (3.3)

This and Lemma 2 imply that

E

∥∥∥∥∫ t

0

(ψ(r)− ψn(r)) dBσ,λQ (r)

∥∥∥∥2 + E

∥∥∥∥∫ t

0

(
Aαψ(r)−Aαψn(r)

)
dBσ,λQ (r)

∥∥∥∥2 −→ 0, (3.4)

as n→∞. From the definition of the integral, we have

Aα
∫ t

0

ψn(r)dBσ,λQ (r) =

∫ t

0

Aαψn(r)dBσ,λQ (r). (3.5)

Thanks to (3.4)-(3.5) and the closedness of Aα, we deduce that

Aα
∫ t

0

ψ(r)dBσ,λQ (r) =

∫ t

0

Aαψ(r)dBσ,λQ (r) P -a.s.

We now introduce the following notation. Let u ∈ C
(
0, T ;L2(Ω;Hα)

)
with u(0) = ϕ(0) and ϕ ∈ C (Hα).

Then for r ∈ [0, T ], we denote by u ∨r ϕ the mapping from R− to L2(Ω;Hα) defined by

u ∨r ϕ(s) =

{
u(r + s), s ∈ (−r, 0],

ϕ(r + s), s ≤ −r.
(3.6)

It follows from [5] that, for such function u, the integral in (3.2) is well defined.

Theorem 1 Let 0 < α < 1
2 . Suppose that assumptions (A1)-(A3), (B1)-(B3) and (C1)-(C3) hold. Then for

each ϕ ∈ C (Hα) there exists a unique local mild solution u to (3.1) on [0, h] for some h > 0.

Proof Let us fix some ϕ ∈ C (Hα), and let R := 3G2
(
E ‖ϕ(0)‖2α + 1

)
. Assume h ∈ (0, T ) is a fixed time

which has been chosen such that

3G2
αl2

(
1 +R+ ‖ϕ‖2C (Hα)

) h2−2α

1− 2α
+ 3

(
(2H − 1)h2H−1β(2− 2H,H − 1

2
) + 4λ2h2H+1

β(2− 2H,H + 1
2 )

2H − 1

)
G2
α

(
K3

(
R+ ‖ϕ‖2C (Hα)

) h1−2α
1− 2α

+
( h1−2αq

1− 2αq

) 1
q

K
1
p

2

)
≤ 3G2,
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and

2G2
αl1

h1−2α

1− 2α
+ 2

(
(2H − 1)h2H−1β(2− 2H,H − 1

2
) + 4λ2h2H+1

×
β(2− 2H,H + 1

2 )

2H − 1

)
G2
αK1

h1−2α

1− 2α
< 1.

Consider

B(R) =

{
u ∈ C

(
0, h;L2(Ω;Hα)

)
: u(0) = ϕ(0), sup

t∈[0,h]
E ‖u(t)‖2α ≤ R

}
.

B(R) is a bounded set in C
(
0, h;L2(Ω;Hα)

)
. We introduce the mapping Φ defined by

(Φu) (t) = S(t)ϕ(0) +

∫ t

0

S(t− r)f(r, u ∨r ϕ)dr +

∫ t

0

S(t− r)g(r, u ∨r ϕ)dBσ,λQ (r), t ∈ [0, h].

We split the proof into three steps.

Step 1. Φ maps B(R) into C
(
0, h;L2(Ω;Hα)

)
.

Let 0 < t < h and u ∈ B(R) be given arbitrarily. Then for τ > 0 small enough, we have

E ‖(Φu) (t+ τ)− (Φu) (t)‖2α
≤ 5E ‖S(t+ τ)ϕ(0)− S(t)ϕ(0)‖2α

+ 5E

∥∥∥∥∫ t

0

(
S(t+ τ − r)− S(t− r)

)
f(r, u ∨r ϕ)dr

∥∥∥∥2
α

+ 5E

∥∥∥∥∫ t+τ

t

S(t+ τ − r)f(r, u ∨r ϕ)dr

∥∥∥∥2
α

+ 5E

∥∥∥∥∫ t+τ

t

S(t+ τ − r)g(r, u ∨r ϕ)dBσ,λQ (r)

∥∥∥∥2
α

+ 5E

∥∥∥∥∫ t

0

(
S(t+ τ − r)− S(t− r)

)
g(r, u ∨r ϕ)dBσ,λQ (r)

∥∥∥∥2
α

:= I1 + I2 + I3 + I4 + I5.

(3.7)

Using conditions (A2)-(A3), we obtain

I1 = 5E
∥∥∥Aα(S(t)S(τ)ϕ(0)− S(t)ϕ(0)

)∥∥∥2
≤ 5G2

αe
−2δtt−2αE ‖S(τ)ϕ(0)− ϕ(0)‖2

≤ 5G2
αQ

2
αe
−2δtt−2ατ2α ‖ϕ‖2C (Hα) −→ 0 as τ → 0.

(3.8)
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Let ε > 0 be given arbitrarily. Then by Lemma 2, conditions (A1)-(A3), (B3), (C3) and Hölder’s inequality,

we can choose τ and η sufficiently small such that

I2 ≤ 10E

∥∥∥∥∫ t

t−η
AαS(t− r)

(
S(τ)− I

)
f(r, u ∨r ϕ)dr

∥∥∥∥2
+ 10E

∥∥∥∥∫ t−η

0

AαS(t− r − η)
(
S(τ)− I

)
S(η)f(r, u ∨r ϕ)dr

∥∥∥∥2
≤ 10G2

αE

(∫ t

t−η
e−δ(t−r)(t− r)−α

∥∥(S(τ)− I
)
f(r, u ∨r ϕ)

∥∥ dr)2

+ 10G2
αQ

2
αE

(∫ t−η

0

e−δ(t−r−η)(t− r − η)−ατα ‖AαS(η)f(r, u ∨r ϕ)‖ dr
)2

≤ 10G2
αE

∫ t

t−η

∥∥(S(τ)− I
)
f(r, u ∨r ϕ)

∥∥2 dr ∫ t

t−η
(t− r)−2αdr

+ 10G2
αQ

2
ατ

2αE

∫ t−η

0

‖AαS(η)f(r, u ∨r ϕ)‖2 dr
∫ t−η

0

(t− r − η)−2αdr

≤ 10G2
α (G+ 1)

2
l2

(
1 +R+ ‖ϕ‖2C (Hα)

) η2−2α

1− 2α

+ 10G4
αQ

2
αl2

(
1 +R+ ‖ϕ‖2C (Hα)

)
τ2αη−2α

(t− η)2−2α

1− 2α
< ε,

(3.9)

I5 ≤ 5Nt

∫ t

t−η
E
∥∥AαS(t− r)

(
S(τ)− I

)
g(r, u ∨r ϕ)

∥∥2
Q
dr

+5Nt

∫ t−η

0

E
∥∥AαS(t− r − η)

(
S(τ)− I

)
S(η)g(r, u ∨r ϕ)

∥∥2
Q
dr

≤ 5NtG
2
α

∫ t

t−η
e−2δ(t−r)(t− r)−2αE

∥∥(S(τ)− I
)
g(r, u ∨r ϕ)

∥∥2
Q
dr

+5NtG
2
αQ

2
α

∫ t−η

0

e−2δ(t−r−η)(t− r − η)−2ατ2αE ‖AαS(η)g(r, u ∨r ϕ)‖2Q dr

≤ 5NtG
2
α(G+ 1)2

∫ t

t−η
(t− r)−2α

(
k2(r) + k3(r) ‖u ∨r ϕ‖2C (Hα)

)
dr

+5NtG
4
αQ

2
α

∫ t−η

0

(t− r − η)−2ατ2αη−2α
(
k2(r) + k3(r) ‖u ∨r ϕ‖2C (Hα)

)
dr

≤ 5NtG
2
α(G+ 1)2

(
η1−2αq

1− 2αq

) 1
q

K
1
p

2 + 5NtG
2
α(G+ 1)2K3

(
R+ ‖ϕ‖2C (Hα)

) η1−2α

1− 2α

+5NtG
4
αQ

2
ατ

2αη−2α
(

(t− η)1−2αq

1− 2αq

) 1
q

K
1
p

2

+5NtG
4
αQ

2
ατ

2αη−2α
(
R+ ‖ϕ‖2C (Hα)

) (t− η)1−2α

1− 2α
< ε, (3.10)
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where 1
q + 1

p = 1, p is given in condition (C3), and we have used the notation

Nt := (2H − 1)t2H−1β(2− 2H,H − 1

2
) + 4λ2t2H+1 β(2− 2H,H + 1

2 )

2H − 1
.

For I3 and I4, in a similar way as above, we find that

I3 ≤ 5G2
αE

(∫ t+τ

t

e−δ(t+τ−r)(t+ τ − r)−α ‖f(r, u ∨r ϕ)‖ dr
)2

≤ 5G2
αE

∫ t+τ

t

‖f(r, u ∨r ϕ)‖2 dr
∫ t+τ

t

(t+ τ − r)−2αdr

≤ 5G2
αl2

(
1 +R+ ‖ϕ‖2C (Hα)

) τ2−2α

1− 2α
−→ 0 as τ → 0,

(3.11)

and

I4 ≤ 5Nτ

∫ t+τ

t

E ‖AαS(t+ τ − r)g(r, u ∨r ϕ)‖2Q dr

≤ 5NτG
2
α

∫ t+τ

t

e−2δ(t+τ−r)(t+ τ − r)−2αE ‖g(r, u ∨r ϕ)‖2Q dr

≤ 5NτG
2
α

∫ t+τ

t

(t+ τ − r)−2α
(
k2(r) + k3(r) ‖u ∨r ϕ‖2C (Hα)

)
dr

≤ 5NτG
2
α

(
τ1−2αq

1− 2αq

) 1
q

K
1
p

2

+5NτG
2
αK3

(
R+ ‖ϕ‖2C (Hα)

) τ1−2α

1− 2α
−→ 0 as τ → 0, (3.12)

where q and Nτ are given in (3.10). Thus, it follows from (3.7)-(3.12) that

E‖ (Φu) (t+ τ) − (Φu) (t)‖2α tends to zero as τ → 0, and consequently Φu ∈ C
(
0, h;L2(Ω;Hα)

)
.

Step 2. Φ maps B(R) into itself.

Let u ∈ B(R). Then we have for t ∈ [0, h],

E ‖(Φu) (t)‖2α ≤ 3E ‖S(t)ϕ(0)‖2α + 3E

∥∥∥∥∫ t

0

S(t− r)f(r, u ∨r ϕ)dr

∥∥∥∥2
α

+ 3E

∥∥∥∥∫ t

0

S(t− r)g(r, u ∨r ϕ)dBσ,λQ (r)

∥∥∥∥2
α

:= I6 + I7 + I8.

(3.13)

Thanks to conditions (A1)-(A2) and (B3), we obtain

I6 ≤ 3G2e−2δtE ‖ϕ(0)‖2α ≤ 3G2E ‖ϕ(0)‖2α , (3.14)
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and

I7 ≤ 3G2
αE

(∫ t

0

e−δ(t−r)(t− r)−α ‖f(r, u ∨r ϕ)‖ dr
)2

≤ 3G2
αE

∫ t

0

‖f(r, u ∨r ϕ)‖2 dr
∫ t

0

(t− r)−2αdr

≤ 3G2
αl2

(
1 +R+ ‖ϕ‖2C (Hα)

) t2−2α

1− 2α
.

(3.15)

Applying Lemma 2 to I8, we deduce from conditions (A2), (C3) and Hölder’s inequality that

I8 ≤ 3Nt

∫ t

0

E ‖AαS(t− r)g(r, u ∨r ϕ)‖2Q dr

≤ 3NtG
2
α

∫ t

0

e−2δ(t−r)(t− r)−2α
(
k2(r) + k3(r) ‖u ∨r ϕ‖2C (Hα)

)
dr

≤ 3NtG
2
α

(
t1−2αq

1− 2αq

) 1
q

K
1
p

2 + 3NtG
2
αK3

(
R+ ‖ϕ‖2C (Hα)

) t1−2α

1− 2α
,

(3.16)

where q and Nt are given in (3.10). Hence,

sup
t∈[0,h]

E ‖(Φu) (t)‖2α ≤ 3G2E ‖ϕ(0)‖2α + 3G2
αl2

(
1 +R+ ‖ϕ‖2C (Hα)

) h2−2α

1− 2α

+ 3

(
(2H − 1)h2H−1β(2− 2H,H − 1

2
) + 4λ2h2H+1 β(2− 2H,H + 1

2 )

2H − 1

)

×G2
α

(
K3

(
R+ ‖ϕ‖2C (Hα)

) h1−2α
1− 2α

+
( h1−2αq

1− 2αq

) 1
q

K
1
p

2

)
≤ R.

Step 3. We show that Φ : B(R) 7→ B(R) is a contraction mapping.
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Let u, v ∈ B(R), then we obtain that for any t ∈ [0, h],

E
∥∥ (Φu) (t)− (Φv) (t)

∥∥2
α
≤ 2E

∥∥∥∥∫ t

0

S(t− r)
(
f(r, u ∨r ϕ)− f(r, v ∨r ϕ)

)
dr

∥∥∥∥2
α

+ 2E

∥∥∥∥∫ t

0

S(t− r)
(
g(r, u ∨r ϕ)− g(r, v ∨r ϕ)

)
dBσ,λQ (r)

∥∥∥∥2
α

≤ 2G2
αE

(∫ t

0

e−δ(t−r)(t− r)−α ‖f(r, u ∨r ϕ)− f(r, v ∨r ϕ)‖ dr
)2

+ 2Nt

∫ t

0

E
∥∥∥AαS(t− r)

(
g(r, u ∨r ϕ)− g(r, v ∨r ϕ)

)∥∥∥2
Q
dr

≤ 2G2
αE

∫ t

0

‖f(r, u ∨r ϕ)− f(r, v ∨r ϕ)‖2 dr
∫ t

0

(t− r)−2αdr

+ 2NtG
2
α

∫ t

0

e−2δ(t−r)(t− r)−2αE ‖g(r, u ∨r ϕ)− g(r, v ∨r ϕ)‖2Q dr

≤ 2G2
αl1

t1−2α

1− 2α
sup
r∈[0,t]

E ‖u(r)− v(r)‖2α

+ 2NtG
2
αK1

t1−2α

1− 2α
sup
r∈[0,t]

E ‖u(r)− v(r)‖2α ,

(3.17)

due to conditions (A2), (B2), (C2) and Hölder’s inequality, where Nt and q are given in (3.10). This implies

that

sup
t∈[0,h]

E ‖(Φu) (t)− (Φv) (t)‖2α ≤
(

2G2
αl1

h1−2α

1− 2α
+ 2NhG

2
αK1

h1−2α

1− 2α

)
sup
t∈[0,h]

E ‖u(t)− v(t)‖2α .

Therefore, by the Banach fixed point theorem we obtain the existence of a unique local mild solution to (3.1)

on [0, h], and thus the proof of this theorem is completed.

Now we show the global existence of mild solutions to (3.1).

Theorem 2 Let 0 < α < 1
2 and assume that assumptions (A1)-(A3), (B1)-(B3) and (C1)-(C3) hold. Then

for each ϕ ∈ C (Hα) there exists a unique global mild solution u(t) to (3.1).

Proof For any initial data ϕ ∈ C (Hα), it follows from Theorem 1 that there exists a unique local mild

solution u to (3.1). Consider

H(ω) := {T ∈ [0,∞) : u(·, ω) is a unique local mild solution to (3.1) on [0, T ]} .

Let supH(ω) = Tmax(ω). To show that u(·) is a global mild solution, we need to prove that Tmax =∞ a.s.

For sufficiently large k, let us define the stopping time

tk(ω) = inf {t ∈ [0, Tmax(ω)) : ‖u(t, ω)‖α > k}
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with the usual convention inf ∅ := ∞, where ∅ denotes the empty set. It is clear that tk is a nondecreasing

sequence and tk → t∞ ≤ Tmax almost surely as k → ∞. If we can show that t∞ = ∞ a.s., then Tmax = ∞
a.s., which implies that u(t) is globally defined. Since the sequence tk is increasing, t∞ =∞ a.s. is equivalent

to proving that for any T̃ > 0, P (tk ≤ T̃ )→ 0 as k →∞.

By conditions (A1)-(A2), (B3), (C1)-(C3), Hölder’s inequality and Lemma 2, we find that for any t ∈
[0, T̃ ],

E ‖u(t ∧ tk)‖2α (3.18)

≤ 3E ‖S(t ∧ tk)ϕ(0)‖2α + 3E

∥∥∥∥∫ t∧tk

0

S(t ∧ tk − r)f(r, u ∨r ϕ)dr

∥∥∥∥2
α

+3E

∥∥∥∥∫ t∧tk

0

S(t ∧ tk − r)g(r, u ∨r ϕ)dBσ,λQ (r)

∥∥∥∥2
α

≤ 3G2E ‖ϕ(0)‖2α + 3G2
αE

(∫ t∧tk

0

e−δ(t∧tk−r)(t ∧ tk − r)−α ‖f(r, u ∨r ϕ)‖ dr
)2

+3Nt∧tkG
2
α

∫ t∧tk

0

e−2δ(t∧tk−r)(t ∧ tk − r)−2αE ‖g(r, u ∨r ϕ)‖2Q dr

≤ 3G2E ‖ϕ(0)‖2α + 3G2
α

(t ∧ tk)1−2α

1− 2α
l2

∫ t∧tk

0

(
1 + ‖ϕ‖2C (Hα) + sup

s∈[0,r]
E ‖u(s)‖2α

)
dr

+3Nt∧tkG
2
α

∫ t∧tk

0

(t ∧ tk − r)−2α
(
k2(r) + k3(r) ‖ϕ‖2C (Hα) + k3(r) sup

s∈[0,r]
E ‖u(s)‖2α

)
dr

≤ 3G2E ‖ϕ(0)‖2α + 3G2
αl2

(
1 + ‖ϕ‖2C (Hα)

) T̃ 2−2α

1− 2α

+3G2
αl2

T̃ 1−2α

1− 2α

∫ t

0

sup
s∈[0,r]

E ‖u(s ∧ tk)‖2α dr + 3NT̃G
2
α

( T̃ 1−2αq

1− 2αq

) 1
qK

1
p

2

+3NT̃G
2
αK3 ‖ϕ‖2C (Hα)

T̃ 1−2α

1− 2α
+ 3NT̃G

2
αK3

∫ t∧tk

0

(t ∧ tk − r)−2α sup
s∈[0,r]

E ‖u(s)‖2α dr,

which implies that

E ‖u(t ∧ tk)‖2α ≤ Π1T̃ + 3G2
αl2

T̃ 1−2α+ 1
q

1− 2α

(∫ t

0

(
sup
s∈[0,r]

E ‖u(s ∧ tk)‖2α
)p
dr

) 1
p

+3NT̃G
2
αK3

( T̃ 1−2αq

1− 2αq

) 1
q

(∫ t∧tk

0

(
sup
s∈[0,r]

E ‖u(s)‖2α
)p
dr

) 1
p

, (3.19)



18 Yejuan Wang et al.

where we have used the notation

Π1T̃ := 3G2E ‖ϕ(0)‖2α + 3G2
αl2

(
1 + ‖ϕ‖2C (Hα)

) T̃ 2−2α

1− 2α

+ 3NT̃G
2
α

( T̃ 1−2αq

1− 2αq

) 1
qK

1
p

2 + 3NT̃G
2
αK3 ‖ϕ‖2C (Hα)

T̃ 1−2α

1− 2α
.

It follows from (3.19) that for any t ∈ [0, T̃ ],(
sup
s∈[0,t]

E ‖u(s ∧ tk)‖2α
)p
≤ 3p−1

(
Π1T̃

)p
+3pG2p

α l
p
2

( T̃ 1−2α+ 1
q

1− 2α

)p ∫ t

0

(
sup
s∈[0,r]

E ‖u(s ∧ tk)‖2α
)p
dr

+3pNp

T̃
G2p
α K

p
3

( T̃ 1−2αq

1− 2αq

) p
q

∫ t∧tk

0

(
sup
s∈[0,r]

E ‖u(s)‖2α
)p
dr

= 3p−1
(
Π1T̃

)p
+Π2T̃

∫ t

0

(
sup
s∈[0,r]

E ‖u(s ∧ tk)‖2α
)p
dr, (3.20)

where

Π2T̃ := 3pG2p
α l

p
2

( T̃ 1−2α+ 1
q

1− 2α

)p
+ 3pNp

T̃
G2p
α K

p
3

( T̃ 1−2αq

1− 2αq

) p
q .

Applying Gronwall’s lemma to (3.20) we obtain that for all t ∈ [0, T̃ ],(
sup
s∈[0,t]

E ‖u(s ∧ tk)‖2α
)p
≤ 3p−1Πp

1T̃
eΠ2T̃ t,

and consequently,

sup
s∈[0,T̃ ]

E ‖u(s ∧ tk)‖2α ≤ 3
p−1
p Π1T̃ e

Π
2T̃
T̃

p .

According to the definition of tk, ‖u(tk)‖α = k. This implies

k2P (tk ≤ T̃ ) ≤ E ‖u(tk)‖2α I{tk≤T̃} = E
∥∥∥u(T̃ ∧ tk)

∥∥∥2
α
I{tk≤T̃}

≤ E
∥∥∥u(T̃ ∧ tk)

∥∥∥2
α
≤ 3

p−1
p Π1T̃ e

Π
2T̃
T̃

p .

Since Π1T̃ and Π2T̃ are independent of k, we have limk→∞ P (tk ≤ T̃ ) = 0. This implies that (3.1) has a

unique global solution u(t) on [0,∞).

Thanks to Lemma 3, the following result is obtained by similar arguments to those in theorems 1 and 2.
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Corollary 1 Let 0 < α < 1
2 and assume that assumptions (A1)-(A3), (B1)-(B3) and (C1)-(C3) hold. Then

for each ϕ ∈ C (Hα), there exists a unique global mild solution to (3.1) with cylindrical U-valued FBM BHQ
or Brownian motion BQ instead of Bσ,λQ .

In particular, as we will analyze in Section 5 the long time behavior of our model in the particular case of

additive noise, i.e. when we replace g by φ : [0,∞) 7→ L0
Q(U ,H) in (3.1), we will state now how the previous

results read in this case. For φ : [0,∞) 7→ L0
Q(U ,H) we assume the following condition:

(D1) There exists a constant p ∈
(

1
1−2α ,∞

)
such that∫ ∞
0

‖φ(r)‖2pQ dr := K <∞.

By modifying slightly the proofs of theorems 1 and 2, we have

Corollary 2 Let 0 < α < 1
2 and assume that assumptions (A1)-(A3) and (B1)-(B3) hold true. If φ :

[0,∞) 7→ L0
Q(U ,H) satisfies (D1), then for each ϕ ∈ C (Hα), there exists a unique global mild solution to

(3.1) but with g replaced by φ.

Similar to Corollary 1, we have

Corollary 3 Let 0 < α < 1
2 and assume that assumptions (A1)-(A3), (B1)-(B3) and (D1) hold. Then

for each ϕ ∈ C (Hα), there exists a unique global mild solution to (3.1) with φ instead of g and cylindrical

U-valued FBM BHQ or Brownian motion BQ instead of Bσ,λQ .

Remark 1 Notice that our results concerning infinite delays can easily cover the case of bounded ones. More

precisely, in the case of bounded delay, we consider the Banach space C
(
− r, 0;L2(Ω;Hα)

)
with the norm

‖ψ‖
C
(
−r,0;L2(Ω;Hα)

) =
(

sup
θ∈[−r,0]

E ‖ψ(θ)‖2α
) 1

2

, ψ ∈ C
(
− r, 0;L2(Ω;Hα)

)
,

where r is a fixed number. Then we replace C (Hα) by C
(
− r, 0;L2(Ω;Hα)

)
, and by a similar argument as

above, the existence and uniqueness of global mild solutions to (3.1) also hold true for bounded delay case.

Now we present an example to illustrate the type of delays that can be considered in our framework.

Namely, we will consider two functions f and g containing a distributed delay and a variable delay, respec-

tively.

Let O be a bounded open domain in Rn with smooth boundary ∂O. Let U = H = L2(O), and let A = −∆
on the domain O with Dirichlet boundary condition.

Let F : [0,∞)× (−∞, 0]×O 7→ O and G : [0,∞)× L2(O) 7→ L
(
L2(O), L2(O)

)
be measurable functions

satisfying the following assumptions:

(a) There exists a function L1 : (−∞, 0] 7→ [0,∞) such that

|F (t, s, u)− F (t, s, w)| ≤ L1(s) |u− w| , ∀t ≥ 0, s ≤ 0, u, w ∈ O,
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where |·| denotes the norm of Rn and
∫ 0

−∞ L1(s)ds <∞.

(b) There exists a function L2 : (−∞, 0] 7→ [0,∞) such that

|F (t, s, v)| ≤ L2(s) (1 + |v|) , ∀t ≥ 0, s ≤ 0, v ∈ O,

where
∫ 0

−∞ L2(s)ds <∞.

(c) There exists a constant K1 > 0 such that

‖G(t, v)−G(t, w)‖
L
(
L2(O),L2(O)

) ≤ K1 ‖v − w‖ , ∀t ≥ 0, v, w ∈ L2(O),

where ‖·‖
L
(
L2(O),L2(O)

) denotes the norm of L
(
L2(O), L2(O)

)
.

(d) There exist a nonnegative function K2 ∈ Lp(R+) with p ∈
(

1
1−2α ,∞

)
and a constant K3 > 0 such that

‖G(t, v)‖ ≤ K2(t) +K3 ‖v‖ , ∀t ≥ 0, v ∈ L2(O).

Then we define

f(t, ξ)(x) :=

∫ 0

−∞
F
(
t, s, ξ(s)(x)

)
ds

and

g(t, ξ) := G
(
t, ξ(−ρ(t))

)
with ρ ∈ C

(
R; [0,∞)

)
, for each t ∈ [0,∞), ξ ∈ C (Hα) and x ∈ O. In this case, the delay terms f and g in

(3.1) become

f(t, ut) :=

∫ 0

−∞
F
(
t, s, u(t+ s)

)
ds

and

g(t, ut) := G
(
t, u(t− ρ(t))

)
.

In the sequel C denotes an arbitrary positive constant, which may be different from line to line and even

in the same line.

For any ξ, η ∈ C (Hα), by conditions (a) and (b), we obtain

E ‖f(t, ξ)− f(t, η)‖2 = E

∥∥∥∥∫ 0

−∞

(
F
(
t, s, ξ(s)

)
− F

(
t, s, η(s)

))
ds

∥∥∥∥2
≤ E

∥∥∥∥∫ 0

−∞
L1(s) |ξ(s)− η(s)| ds

∥∥∥∥2
≤
∫ 0

−∞
L1(s)ds

∫ 0

−∞
L1(s)E ‖ξ(s)− η(s)‖2 ds

≤
(∫ 0

−∞
L1(s)ds

)2
‖ξ − η‖2C (Hα)
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and

E ‖f(t, ξ)‖2 = E

∥∥∥∥∫ 0

−∞
F
(
t, s, ξ(s)

)
ds

∥∥∥∥2
≤ E

∥∥∥∥∫ 0

−∞
L2(s) (1 + |ξ(s)|) ds

∥∥∥∥2
≤ C

(∫ 0

−∞
L2(s)ds

)2
+ C

∫ 0

−∞
L2(s)ds

∫ 0

−∞
L2(s)E ‖ξ(s)‖2 ds

≤ C + C ‖ξ‖2C (Hα) .

Hence, f satisfies (B1)-(B3).

For g, by using conditions (c) and (d), we have

E ‖g(t, ξ)− g(t, η)‖2Q = E
∥∥G(t, ξ(−ρ(t))

)
−G

(
t, η(−ρ(t))

)∥∥2
Q

≤ CE
∥∥G(t, ξ(−ρ(t))

)
−G

(
t, η(−ρ(t))

)∥∥2
L
(
L2(O),L2(O)

)
≤ CE

∥∥ξ(− ρ(t)
)
− η
(
− ρ(t)

)∥∥2
≤ C ‖ξ − η‖2C (Hα)

and

E ‖g(t, ξ)‖2Q = E
∥∥G(t, ξ(−ρ(t))

)∥∥2
Q

≤ CE
∥∥G(t, ξ(−ρ(t))

)∥∥2
L
(
L2(O),L2(O)

)
≤ CE

(
K2(t) +K3

∥∥ξ(− ρ(t)
)∥∥)2

≤ C(K2(t))2 + C ‖ξ‖2C (Hα) ,

where ‖·‖Q denotes the norm of L0
Q

(
L2(O), L2(O)

)
. Then (C1)-(C3) hold true for g.

4 The effect of noise on SPDEs with delay

In this section we consider the effect of nonlinear noise on the following stochastic evolution equation

with infinite delay: {
du(t) = −Au(t)dt+ ηg(t, ut)dB

σ,λ
Q (t), t > 0,

u(t) = ϕ(t), t ∈ (−∞, 0],
(4.1)

where A, ϕ and Bσ,λQ are as in problem (3.1), g satisfies conditions (C1)-(C2) and g(t, 0) = 0 for any t > 0,

and the number η is a positive parameter; this is the so-called level of the noise.

The following theorem shows that the upper excitation index of the solution u of (4.1) at time t is less

than 2p̃.
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Theorem 3 Let 0 < α < 1
2 . Suppose that assumptions (A1)-(A3), (C1)-(C2) and g(t, 0) = 0 for any t > 0

hold. Then there exists a constant p̃ ∈
(

1
1−2α ,∞

)
such that for each ϕ ∈ C (Hα),

lim sup
η→∞

log log ‖ut‖C (Hα)

log η
≤ 2p̃, (4.2)

where u(·) denotes the solution of (4.1).

Proof Firstly, observe that (C2) and g(t, 0) = 0 (∀t > 0) ensure that

E ‖g(t, ξ)‖2Q ≤ k1(t) ‖ξ‖2C (Hα) . (4.3)

Combining this with (A1)-(A2), we deduce from Lemma 2 and Hölder’s inequality that

E ‖u(t)‖2α ≤ 2E ‖S(t)ϕ(0)‖2α + 2η2E

∥∥∥∥∫ t

0

S(t− r)g(r, ur)dB
σ,λ
Q (r)

∥∥∥∥2
α

≤ 2G2e−2δtE ‖ϕ(0)‖2α + 2η2G2
αNt

∫ t

0

e−2δ(t−r)(t− r)−2αE ‖g(r, ur)‖2Q dr

≤ 2G2e−2δtE ‖ϕ(0)‖2α + 2η2G2
αNtK1

(∫ t

0

e−2δq̃(t−r)(t− r)−2αq̃dr
) 1
q̃
(∫ t

0

‖ur‖2p̃C (Hα) dr

) 1
p̃

≤ 2G2e−2δtE ‖ϕ(0)‖2α + 2η2G2
αNtK1 (2δq̃)

2αq̃−1
q̃
(
Γ (1− 2αq̃)

) 1
q̃

(∫ t

0

‖ur‖2p̃C (Hα) dr

) 1
p̃

, (4.4)

where Nt is given in (3.10) and 1
p̃ + 1

q̃ = 1. Replacing t by t+ θ in (4.4), we obtain that

sup
θ∈[−t,0]

E ‖u(t+ θ)‖2α ≤ 2G2E ‖ϕ(0)‖2α + 2η2G2
αNtK1 (2δq̃)

2αq̃−1
q̃

×
(
Γ (1− 2αq̃)

) 1
q̃

(∫ t

0

‖ur‖2p̃C (Hα) dr

) 1
p̃

.

Therefore,

‖ut‖2C (Hα) ≤
(
2G2 + 1

)
‖ϕ‖2C (Hα) + 2η2G2

αNtK1 (2δq̃)
2αq̃−1
q̃

×
(
Γ (1− 2αq̃)

) 1
q̃

(∫ t

0

‖ur‖2p̃C (Hα) dr

) 1
p̃

,

and consequently,

‖ut‖2p̃C (Hα) ≤ 2p̃−1
(
2G2 + 1

)p̃ ‖ϕ‖2p̃C (Hα)

+ 22p̃−1η2p̃G2p̃
α N

p̃
t K

p̃
1 (2δq̃)

(2αq̃−1)p̃
q̃

(
Γ (1− 2αq̃)

) p̃
q̃

∫ t

0

‖ur‖2p̃C (Hα) dr.
(4.5)
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Gronwall’s lemma conduces us to

‖ut‖2p̃C (Hα) ≤ Π5e
Π6η

2p̃N p̃t t, (4.6)

where we have used the notations

Π5 := 2p̃−1
(
2G2 + 1

)p̃ ‖ϕ‖2p̃C (Hα)

and

Π6 := 22p̃−1G2p̃
α K

p̃
1 (2δq̃)

(2αq̃−1)p̃
q̃

(
Γ (1− 2αq̃)

) p̃
q̃ .

The conclusion (4.2) follows immediately from (4.6), and thus the proof is complete.

Remark 2 In particular, let α = 0 in Theorem 3, then for each ϕ ∈ C (H) the unique mild solution u to (4.1)

satisfies

lim sup
η→∞

log log ‖ut‖C (H)

log η
≤ 2,

where

‖ψ‖C (H) =
(

sup
θ∈(−∞,0]

E ‖ψ(θ)‖2
) 1

2

, ψ ∈ C (H).

As a simple consequence of Theorem 3, in view of Lemma 3, we obtain

Corollary 4 Let 0 < α < 1
2 and assume that assumptions (A1)-(A3), (C1)-(C2) and g(0) = 0 hold. Then

there exists a constant p′ ∈ ( 1
1−2α ,∞) such that for each ϕ ∈ C (Hα), the unique mild solution u to (4.1)

with cylindrical U-valued FBM BHQ or Brownian motion BQ instead of Bσ,λQ satisfies

lim sup
η→∞

log log ‖ut‖C (Hα)

log η
≤ 2p′.

Remark 3 If we replace C (Hα) by C
(
− r, 0;L2(Ω;Hα)

)
, then the results in this section also hold true for

bounded delay case.

5 Exponential decay of solutions in mean square

In this section we are interested in the exponential decay to zero in mean square of the mild solutions.

Observe that in Lemmas 2 and 3, the right hand side of inequalities for the stochastic integrals with

respect to TFBM and FBM, respectively, are

(2H − 1)t2H−1β(2− 2H,H − 1

2
) + 4λ2t2H+1 β(2− 2H,H + 1

2 )

2H − 1
(5.1)

and

2Ht2H−1. (5.2)
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Comparing with the stochastic integral with respect to Brownian motion, (5.1) and (5.2) are dependent on t

and tend to infinity as t→∞. It is difficult to prove that the mild solutions to problem (3.1) with cylindrical

U-valued TFBM Bσ,λQ or FBM BHQ exponentially decay to zero in mean square. Hence in this section we

consider the following stochastic evolution equation with infinite delay:{
du(t) = −Au(t)dt+ f(t, ut)dt+ φ(t)dBσ,λQ (t), t > 0,

u(t) = ϕ(t), t ∈ (−∞, 0],
(5.3)

where A and Bσ,λQ are as in problem (3.1).

On the other hand, if we still consider the space C (Hα) given in Section 3, then we need to replace t by

t + θ in (5.10) and take the sup norm supθ∈[−t,0]E ‖u(t+ θ)‖2α, but the exponential decay terms e−2δt and

e−δt disappear when we take the sup norm. In this case, we cannot obtain the exponential decay property

for the mild solutions. However, this problem can be overcome if we use another space C γ(Hα) given later,

which was extensively applied to investigate infinite delay case, see, e.g., [5,26] and the references therein.

It is worth mentioning that considering this new space C γ(Hα) will allow us to prove exponential decay

of solutions, but will restrict the type of unbounded delay terms which can appear in the function f , for

instance, general variable delay terms cannot be considered, but with our current space C (Hα) we can

include both variable and distributed infinite unbounded delays but, in general, we may not be able to prove

exponential decay of solutions, as it is shown in [21] for the case of stochastic 2D-Navier Stokes with infinite

delay.

We define the abstract phase space C γ(Hα) by

C γ(Hα) =

{
ψ ∈ C

(
−∞, 0;L2(Ω;Hα)

)
: lim
θ→−∞

eγθE ‖ψ(θ)‖2α exists

}
,

where the parameter γ > 0. If C γ(Hα) is endowed with the norm

‖ψ‖Cγ(Hα) =

(
sup

θ∈(−∞,0]
eγθE ‖ψ(θ)‖2α

) 1
2

, ψ ∈ C γ(Hα),

then
(
C γ(Hα), ‖·‖Cγ(Hα)

)
is a Banach space.

We now need to state the following conditions:

(B1)′ For any ξ ∈ C γ(Hα), the mapping [0,∞) 3 t 7→ f(t, ξ) ∈ H is measurable.

(B2)′ There exists a nonnegative function l4 ∈ L∞(R+) such that for any ξ, η ∈ C γ(Hα) and t ≥ 0,

E ‖f(t, ξ)− f(t, η)‖2 ≤ l4(t) ‖ξ − η‖2Cγ(Hα) ,

and ‖l4‖L∞(R+) := L4 <∞.

(B3)′ There exist nonnegative functions l5 ∈ L1(R+) and l6 ∈ L∞(R+) such that for any ξ ∈ C γ(Hα) and

t ≥ 0,

E ‖f(t, ξ)‖2 ≤ l5(t) + l6(t) ‖ξ‖2Cγ(Hα) ,
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and ∫ ∞
0

eδrl5(r)dr := L5 <∞, ‖l6‖L∞(R+) := L6 <∞.

(C1)′ There exists a constant p ∈ ( 1
1−2α ,∞) such that∫ ∞

0

eδpr ‖φ(r)‖2pQ dr := Λ <∞.

Theorem 4 Let 0 < α < 1
2 . Assume that the assumptions (A1)-(A3), (B1)′-(B3)′, (C1)′ and

γ > 2δ > 2Π9 (5.4)

hold, where Π9 := 3G2
αδ

2α−1Γ (1−2α)L6. Then, there exists a constant a > 0 such that for any mild solution

u of (5.3) with the initial condition ϕ ∈ C γ(Hα),

lim sup
t→∞

(1

t

)
log ‖ut‖2Cγ(Hα) ≤ −a. (5.5)

Proof Thanks to (3.2), we have

E ‖u(t)‖2α ≤ 3E ‖S(t)ϕ(0)‖2α + 3E

∥∥∥∥∫ t

0

S(t− r)f(r, ur)dr

∥∥∥∥2
α

+3E

∥∥∥∥∫ t

0

S(t− r)φ(r)dBσ,λQ (r)

∥∥∥∥2
α

:= I9 + I10 + I11. (5.6)

By condition (A1), we obtain

I9 ≤ 3G2e−2δtE ‖ϕ(0)‖2α . (5.7)

For I10, by conditions (A2), (B3)′ and Hölder’s inequality, we deduce that

I10 ≤ 3G2
αE

(∫ t

0

e−δ(t−r)(t− r)−α ‖f(r, ur)‖ dr
)2

≤ 3G2
α

∫ t

0

e−δ(t−r)(t− r)−2αdr
∫ t

0

e−δ(t−r)E ‖f(r, ur)‖2 dr

≤ 3G2
αδ

2α−1Γ (1− 2α)

∫ t

0

e−δ(t−r)
(
l5(r) + l6(r) ‖ur‖2Cγ(Hα)

)
dr

≤ 3G2
αδ

2α−1Γ (1− 2α)e−δtL5 + 3G2
αδ

2α−1Γ (1− 2α)e−δtL6

∫ t

0

eδr ‖ur‖2Cγ(Hα) dr.

(5.8)
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For I11, it follows from conditions (A2), (C1)′, Hölder’s inequality and Lemma 2 that

I11 ≤ 3NtG
2
α

∫ t

0

e−2δ(t−r)(t− r)−2α ‖φ(r)‖2Q dr

≤ 3NtG
2
αe
−δt
(∫ t

0

(t− r)−2αqe−δq(t−r)dr
) 1
q
(∫ t

0

eδpr ‖φ(r)‖2pQ dr

) 1
p

≤ 3NtG
2
αe
−δt(δq)

2αq−1
q
(
Γ (1− 2αq)

) 1
qΛ

1
p ,

(5.9)

where q and Nt are given in (3.10). Therefore,

E ‖u(t)‖2α ≤ 3G2e−2δtE ‖ϕ(0)‖2α + 3G2
αδ

2α−1Γ (1− 2α)e−δtL5

+ 3G2
αδ

2α−1Γ (1− 2α)e−δtL6

∫ t

0

eδr ‖ur‖2Cγ(Hα) dr

+ 3NtG
2
αe
−δt(δq)

2αq−1
q
(
Γ (1− 2αq)

) 1
qΛ

1
p .

(5.10)

By assumption (5.4), we have e(γ−2δ)θ ≤ 1 for θ ≤ 0. Multiplying (5.10) by eγθe−γθ and replacing t by t+ θ,

we obtain that

sup
θ∈[−t,0]

eγθE ‖u(t+ θ)‖2α ≤ 3G2e−2δtE ‖ϕ(0)‖2α + 3G2
αδ

2α−1Γ (1− 2α)e−δtL5

+ 3G2
αδ

2α−1Γ (1− 2α)e−δtL6

∫ t

0

eδr ‖ur‖2Cγ(Hα) dr

+ 3NtG
2
αe
−δt(δq)

2αq−1
q
(
Γ (1− 2αq)

) 1
qΛ

1
p .

(5.11)

Note that γ > 2δ, hence for all θ ∈ (−∞,−t],

eγθE ‖u(t+ θ)‖2α ≤ e
−γteγ(t+θ)E ‖ϕ(t+ θ)‖2α ≤ e

−γt ‖ϕ‖2Cγ(Hα) ≤ e
−2δt ‖ϕ‖2Cγ(Hα) . (5.12)

(5.11) and (5.12) imply that

eδt ‖ut‖2Cγ(Hα) ≤ Π7 +Π8Nt +Π9

∫ t

0

eδr ‖ur‖2Cγ(Hα) dr, (5.13)

where we have used the notations

Π7 :=
(
3G2 + 1

)
‖ϕ‖2Cγ(Hα) + 3G2

αδ
2α−1Γ (1− 2α)L5,

Π8 := 3G2
α (δq)

2αq−1
q
(
Γ (1− 2αq)

) 1
qΛ

1
p ,

and

Π9 := 3G2
αδ

2α−1Γ (1− 2α)L6.
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Applying Gronwall’s lemma to (5.13), we have

‖ut‖2Cγ(Hα) ≤ (Π7 +Π8Nt) e
(Π9−δ)t = (Π7 +Π8Nt) e

−at,

where a = δ −Π9. The proof is therefore complete.

Corollary 5 Let 0 < α < 1
2 . Assume that assumptions (A1)-(A3), (B1)′-(B3)′, (C1)′ and (5.4) hold. Then,

there exists a constant a′ > 0 such that for any mild solution u of (5.3) with cylindrical U-valued FBM BHQ
or Brownian motion BQ instead of Bσ,λQ and the initial condition ϕ ∈ C γ(Hα),

lim sup
t→∞

(1

t

)
log ‖ut‖2Cγ(Hα) ≤ −a

′.

Remark 4 If we consider C
(
−r, 0;L2(Ω;Hα)

)
instead of C γ(Hα) in this section, then by slightly modifying

the proofs in Theorem 4 and Corollary 5, we can obtain the exponential decay property of the mild solutions

to (5.3) in the bounded delay case.
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