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Abstract

We first verify the global well-posedness of the impulsive reaction-diffusion equations on infinite
lattices. Then we establish that the generated process by the solution operators has a pullback
attractor and a family of Borel invariant probability measures. Furthermore, we formulate the
definition of statistical solution for the addressed impulsive system and prove the existence. Our
results show that the statistical solution of the impulsive system satisfies merely the Liouville type
theorem piecewise, and the Liouville type equation for impulsive system will not always hold true
on the interval containing any impulsive point.
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1 Introduction

Lattice system has the discretization characteristic in spatial or time variables [18]. It has wide

applications in the real world (see e.g. [17, 29]). The asymptotic theory of lattice system has been

extensively studied (see e.g. [13,25,28,36,47,48] and the references therein). Recently, reference [37,40]

investigated the invariant measures for discrete long-wave-short-wave resonance equations and discrete

Klein-Gordon-Schrödinger equations.

The statistical solutions and invariant measures are important objectives in the investigation of

the turbulence (see e.g. [12,16,22,23,33,35]). We first recall some relevant results about the statistical

solutions for evolution equations. Firstly, Foias et al. studied systematically the statistical solutions

and its properties for the three-dimensional (3D) incompressible Navier-Stokes (NS) equations in

[23, 24] (and the references therein). The limiting behavior of statistical solutions for the 3D NS α-

model when α → 0+ was investigated in [11]; Reference [31] constructed the statistical solutions for

the 2D NS equations; the abstract framework concerning the theory of statistical solutions for general
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evolution equations was given in [10, 12]; the statistical solutions and invariant measures for the 3D

globally modified NS equations was studied in [14, 30, 38, 41]; the sufficient conditions leading to the

existence of trajectory statistical solutions for autonomous evolution equations was established in [42],

and the results of [42] was applied to some concrete evolution equations in [43–46]. In addition, the

invariant measures for lattice system was studied in [37,40,49]. However, to the best of our knowledge,

there are no references studying the statistical solutions for impulsive differential equations.

This article studies the statistical solutions for the following impulsive reaction-diffusion equations

on infinite lattices

duk
dt

+ ν(2uk − uk+1 − uk−1) + λuk + f(uk) = gk(t), t > s, t 6= tj , k, j ∈ Z, (1.1)

uk(t+j )− uk(tj) = φkj(uk(tj)), k, j ∈ Z, tj ∈ R, (1.2)

with the initial conditions

uk(s+) = lim
θ→s+

uk(θ) = uk,s+ , s ∈ R, k ∈ Z, (1.3)

where uk(·) ∈ R is the unknown function, the functions f(·), gk(·) and φkj(·) are given and assumed

to satisfy some conditions, {tj}j∈Z is a given sequence of impulsive points satisfying

tj+1 − tj > η, j ∈ Z, and lim
j→+∞

tj = +∞, lim
j→−∞

tj = −∞, (1.4)

for a given positive constant η. In addition, ν > 0, λ > 0 are constants, and R and Z stand for the

sets of real and integer numbers, respectively.

The feature of the impulsive equations (1.1)-(1.3) is that its solutions have the first type of dis-

continuities at the given impulsive points {tj}j∈Z, are left continuous on R and are continuous on

{t ∈ R : t 6= tj , j ∈ Z}. Note that, instead of the initial condition uk(t)|t=s = uk,s, we impose the

limiting condition uk(s+) = uk,s+ in (1.3), which is natural for equations (1.1)-(1.2) since may be

s = tj for some j ∈ Z. Equation (1.2) describes the impulsive effect of the system, which leads to

the piecewise continuity of the solutions and produces difficult in the investigation of the impulsive

differential equations .

Equations (1.1)-(1.2) are discretization with respect to the spatial variable of the following reaction-

diffusion equations with fixed impulsive moments on the real line R:
∂u

∂t
− ν∆u+ λu+ f(u) = g(t), t > s, t 6= tj , j ∈ Z

u(t+j )− u(tj) = φj(u(tj)), j ∈ Z, tj ∈ R.
(1.5)

Let us mention some relevant results about the long-term behavior of the impulsive equations. For

instance, in [34], Schmalfuss studied the attractor for random dynamical system perturbed by impulses.

In [26], Iovane and Kapustyan used the theory of multi-valued process to investigate the impulsive

equations, establishing that autonomous equations with values of the impulsive perturbation vanishes

(called damped impulsive effects) has the L2 global attractor, and that each element within the global

attractor lies to some trajectory of the non-perturbed evolution equations. In [27], Iovane, Kapustyan

and Valero proved that non-autonomous equations without damped impulsive effects possesses the

L2 global attractor. Recently, Yan, Wu and Zhong in [39] studied the impulsive reaction-diffusion

equations (1.5) and proved the existence of the uniform attractors in Lp(Ω), L2p−2(Ω) and H1
0 (Ω).

The theory of impulsive differential equations, including the effects of impulses on dynamical

systems, has been intensively studied, and one can refer to [1–3, 5–9, 19–21]. For example, Ciesielski

studied the isomorphisms, semicontinuity and stability of the impulsive dynamical systems in [19,

20]. Bonotto and his cooperators studied systematically the impulsive semi-dynamical systems and
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impulsive systems, including the notations of various attractors, their existence and properties such

as upper-continuity, lower-continuity and stability, etc. We can refer to the series of articles [1, 5–8]

and the references therein. Nevertheless, up to our knowledge, it seems that there is no references

investigating the statistical solutions for impulsive differential equations or impulsive lattice system.

The main contribution of this article is the existence and piecewise Liouville type theorem of the

statistical solutions for the impulsive reaction-diffusion equations on infinite lattices. We are concerned

about the Borel probability measures of its solutions in the phase space. Firstly, we prove that the

impulsive equations (1.1)-(1.3) is global well-posed. Then we verify that the process generated by

the solutions operator has a pullback attractor and a family of Borel invariant probability measures.

Furthermore, we put forward the concept of statistical solution for the addressed impulsive system

and prove its existence. It seems that this is the first article investigating the statistical solutions and

invariant measures for the impulsive evolution system. Our results reveal that the statistical solution

of the impulsive system satisfies merely the Liouville type theorem piecewise, which indicates that the

Liouville type equation for impulsive system will not always hold true on an interval containing any

impulsive point. There are two main difficulties caused by the impulses in our investigations.

Firstly, the impulses naturally lead to the discontinuity of the solutions. This discontinuity will

result in some difficulties when we estimate the solution to obtain its global existence via the extension.

Also this discontinuity will cause some difficulties when we prove the pullback bounded absorbing

property and the pullback asymptotically nullness of the generated process {U(t, s)}t>s in the phase

space `2. These are because the Gronwall’s inequality is no longer valid on the interval containing

any impulsive point. To estimate the piecewise continuous solutions, we will extend the impulsive

inequality (see [3, Lemma 2.2]) to the function sets PC1(R,R)(see notation in §2).

Secondly, due to the impulsive effect, the evolution equation containing impulsive is essentially

non-autonomous despite that the equation is autonomous (that is g is independent of time t). The

non-autonomous system has some intrinsic differences with the autonomous one. For example, the

non-autonomous system depends on both the initial time and the present time. As for the impulsive

problem, the `2-valued mapping t 7→ S(t, s)u is left-continuous for t ∈ [s,+∞) with each s ∈ R and

u ∈ `2, but ‖S(t, s)u−u‖ is still dependent of s. Factually, the solution S(t, s)u depends simultaneously

on initial time s when s → t−. This is due to the non-autonomy caused by the impulses. We will

use the structure of the discussed impulsive system to establish the following piecewise continuity of

the `2-valued mapping s 7→ S(t, s)u: it is continuous on {s < t : s 6= tj , j ∈ Z}, is left-continuous

on (−∞, t] and has the first kind of discontinuities at the impulsive points {tj}j∈Z. This type of

continuity of the `2-valued mapping s 7→ S(t, s)u plays a key role when we construct the invariant

measures {ms}s∈R for {S(t, s)}t>s on `2.

It is worth mentioning that the impulses will result in the discontinuity of the invariant measures

{ms}s∈R, that is, the function s →
∫
`2
ψ(u)dms(u) is not necessarily continuous for ψ ∈ C(`2). We

are thus prompted to amend the definition of statistical solution (see [12, Definition 3.2]) such that

it is suitable for the impulsive problem discussed here. It seems that the definition of statistical

solution formulated by us is also feasible for other impulsive differential equations. In our definition

of the statistical solution, the function s→
∫
`2
ψ(u)dms(u) is piecewise continuous and the statistical

solution {ms}s∈R satisfies merely the Liouville type theorem piecewise, which implies that the Liouville

type equation for impulsive systems will not always hold on the interval containing any impulsive point.

These phenomena are essentially due to the impulsive effects.

The rest of the article is arranged as follows. In §2, we first verify the global well-posedness of

the solutions to problem (1.1)-(1.3). In §3, we first establish that the solutions operator of problem

(1.1)-(1.3) forms a process {S(t, s)}t>s, which is continuous and has a bounded pullback absorbing set
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on `2. Then we prove that {S(t, s)}t>s has pullback asymptotically nullness and a pullback attractor.

In §4, we first prove some type of piecewise continuity of {S(t, s)}t>s with respect to s. Then we

refine [32, Theorem 3.1] to construct a family of Borel invariant probability measures for the process

{S(t, s)}t>s on `2. Furthermore, we verify that the family of invariant measures meets piecewise the

Liouville theorem and is exactly a statistical solution of the impulsive problem (1.1)-(1.3).

2 Estimates and well-posedness of the solutions

This section verifies some estimates and global well-posedness of problem (1.1)-(1.3).

Let’s introduce the mathematical settings of our problem. Besides the sets of real numbers R and

integer numbers Z introduced in previous section, we denote by Z+ the set of positive integers. We

will take

`2 =
{
v = (vk)k∈Z : vk ∈ R,

∑
k∈Z

v2k < +∞
}

as the phase space in our investigation, and endow `2 with the inner product and norm as

(v, u) =
∑
k∈Z

vkuk, ‖v‖2 =
∑
k∈Z

v2k, v = (vk)k∈Z, u = (uk)k∈Z ∈ `2.

Obviously, (`2, (·, ·)) is a Hilbert space. We introduce three operators A, B and B∗ as (Av)k = 2vk − vk+1 − vk−1, k ∈ Z, v = (vk)k∈Z,
(Bv)k = vk+1 − vk, k ∈ Z, v = (vk)k∈Z,
(B∗v)k = vk−1 − vk, k ∈ Z, v = (vk)k∈Z.

These operators have the following properties

(B∗Bv, u) = (Bv,Bu) = (Av, u), ∀ v, u ∈ `2, (2.1)

and {
‖Bv‖ = ‖B∗v‖ 6 2‖v‖, ∀ v ∈ `2,
‖Av‖ 6 4‖v‖, ∀ v ∈ `2. (2.2)

At the same time, to describe the type of continuity of the solutions for the impulsive differential

equations, we introduce two sets PC(I;R) and PC(I; `2) of piecewise continuous functions from

interval I ⊂ R to R and to `2 respectively as follows.

PC(I;R) ={y(·) ∈ R : y(·) is continuous for t ∈ I, t 6= tj , j ∈ Z, is left continuous for t ∈ I and

has the first kind of discontinuities at the impulsive points tj ∈ I, j ∈ Z}, (2.3)

PC(I; `2) ={u(·) ∈ `2 : u(·) is continuous for t ∈ I, τ 6= tj , j ∈ Z, is left continuous for t ∈ I and

has the first kind of discontinuities at the impulsive points tj ∈ I, j ∈ Z}. (2.4)

In addition, PC1(I;R) and PC1(I; `2) denotes the set of functions whose first derivative belongs to

PC(I;R) and PC(I; `2), respectively.

In order to write problem (1.1)-(1.3) in an abstract form, we set

λu = (λuk)k∈Z, g(t) = (gk(t))k∈Z, and φj(u(tj)) = (φkj(uk(tj)))k∈Z, j ∈ Z.

In addition, we define

f̃(u) = (f(uk))k∈Z, ∀u = (uk)k∈Z ∈ `2. (2.5)

4



Then f̃ is called the Nemytskii operator associated with f . Using these notations and operators, we

write equations (1.1)-(1.3) as

du

dt
+ νAu+ λu+ f̃(u) = g(t), t > s, t 6= tj , j ∈ Z, (2.6)

u(t+j ) = u(tj) + φj(u(tj)), j ∈ Z, (2.7)

u(s+) = us+ , s ∈ R. (2.8)

To ensure the well-posedness of problem (2.6)-(2.8), we assume that the functions f , g and φj =

(φkj)k∈Z satisfy the following conditions.

(H1) f(·) ∈ C1(R), f(θ)θ > 0, f(0) = 0 and f ′(θ) > −λ0 > −λ for a constant λ0 > 0, ∀ θ ∈ R.

(H2) For any k, j ∈ Z, φkj(0) = 0, and there is a constant L > 0 such that

|φkj(θ′)− φkj(θ′′)| 6 L|θ′ − θ′′|, ∀ θ′, θ′′ ∈ R, (2.9)

1

η
ln(2 + 2L2) < λ, (2.10)

where the constant λ is from equation (1.1) and η is from (1.4).

(H3) g(·) ∈ C(`2) and eσs
∫ s

−∞
eσθ‖g(θ)‖2dθ < +∞ for every s ∈ R, where

σ = λ− 1

η
ln(2 + 2L2) > 0. (2.11)

Some examples illustrating the existence of functions f and g satisfying (H1) and (H3), can be

found in [4] and [40, Example 3.1], respectively. It is also not difficult to see the existence of the

function φj = (φkj)k∈Z satisfying (H2).

With assumptions (H1)-(H3), we next verify that problem (2.6)-(2.8) has a unique local solution.

Lemma 2.1. Suppose that assumptions (H1)-(H3) hold true. Then for every given initial time s and

initial value us+ ∈ `2, there uniquely exists a solution to problem (2.6)-(2.8) which satisfies

u(·) ∈ PC([s, T ); `2) ∩ PC1((s, T ); `2),

where T > s. Furthermore, lim
θ→T−

‖u(θ)‖ = +∞ provided T < +∞.

Proof. Since u 7−→ Au, u 7−→ λu are bounded linear operators from `2 to `2 and g(·) ∈ C(`2), we just

need to show that the function f̃(·) defined by (2.5) is locally Lipschitz with respect to u. Let B ⊂ `2

be a bounded subset, then by using (H1) and the differential mean-value theorem, we have that

‖f̃(u)− f̃(v)‖2 =
∑
k∈Z
|f ′(θk)|2|uk − vk|2 6 Lf (B)‖u− v‖2, ∀u, v ∈ B, (2.12)

where θk locates between uk and vk, and Lf (B) = sup
θ∈[0,3 supu∈B ‖u‖]

|f ′(θ)| is a constant which depends

only on f and B. By the classical theory (see e.g. [3, Theorems 2.3 and 2.6]) of the impulsive

differential equations, we get the results of Lemma 2.1.

To prove that the above local solution exists globally on [s,+∞), we will use the following impulsive

inequality to estimate the solution and the extension theorem (see [3, Theorem 2.6]).
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Lemma 2.2. Let ξ(·) ∈ PC1(R;R) satisfy
dξ

dt
6 q(t)ξ(t) + p(t), t 6= tj , j ∈ Z,

ξ(t+j ) 6 κjξ(tj), j ∈ Z,
ξ(s+) 6 ξ0, s ∈ R,

(2.13)

where q(·), p(·) ∈ PC(R;R), κj > 0 and ξ0 are constant. Then

ξ(t) 6 ξ0
∏

s<tj<t

κj exp
( ∫ t

s

q(ϑ)dϑ
)

+

∫ t

s

∏
ϑ6tj<t

κj exp
( ∫ t

ϑ

q(θ)dθ
)
p(ϑ)dϑ, ∀ t > s, (2.14)

where
∏

s6tj<t
κj denotes the product of the numbers tj for the integer j such that tj ∈ [s, t), and in the

case the number of the members of the sequence {tj}j∈Z lying in [s, t) is zero,
∏

s6tj<t
κj = 1.

Proof. This lemma is an extension of [3, Lemma 2.2] which considers the case ξ(·) ∈ PC1(R+;R).

Here we consider the function ξ(·) ∈ PC1(R;R) since we investigate the pullback asymptotic behavior

and consider s → −∞. We can prove this Lemma via an induction argument. In fact, for a given

s ∈ R, there exists some j0 ∈ Z such that s ∈ (tj0 , tj0+1], then by assumption ξ(·) satisfies the

differential inequality in (2.13) on (s, tj0+1). Applying the Gronwall inequality on (s, tj0+1) and using

the left-continuity of ξ(t), we see that ξ(·) satisfies (2.14) on (s, tj0+1]. Then we consider (2.13) on

the interval (tj0+1, tj0+2], with the initial value ξ(t+j0+1) 6 κtj0+1
ξ(tj0+1). Also applying the Gronwall

inequality on (tj0+1, tj0+2) and using the left-continuity of ξ(·), we see that ξ(·) also satisfies (2.14) on

(tj0+1, tj0+2]. Analogously, we can prove that ξ(t) satisfies (2.14) on (tj0+k, tj0+k+1] for any k ∈ Z+.

The detailed proof is omitted here.

Directly from Lemma 2.2, we get

Lemma 2.3. Let ξ(·) ∈ PC1(R;R) satisfy
dξ(t)

dt
+ αξ(t) 6 q(t), t 6= tj , j ∈ Z,

ξ(t+j )− ξ(tj) 6 βξ(tj), j ∈ Z,
ξ(s+) 6 ξ0, s ∈ R,

(2.15)

where q(·) ∈ PC(R;R), α > 0, β > 0 and y0 are constants. Then

ξ(t) 6 ξ0(1 + β)i<s,t>e−α(t−s) +

∫ t

s

(1 + β)i〈ϑ,t)e−α(t−ϑ)q(ϑ)dϑ, ∀ t > s, (2.16)

hereinafter i < s, t > and i〈ϑ, t) denote the number of members of the impulsive points {tj}j∈Z lying

in the intervals (s, t) and [ϑ, t), respectively.

Lemma 2.4. Suppose that assumptions (H1)-(H3) hold true. Then for each given s ∈ R and us+ ∈ `2

the corresponding solution (guaranteed by Lemma 2.1) of problem (2.6)-(2.8) meets

‖u(t)‖2 6 ‖us+‖2e−σ(t−s) +
1

λ

∫ t

s

e−σ(t−θ)‖g(θ)‖2dθ, s < t 6 T, (2.17)

hereafter σ is the constant given by (2.11).

Proof. We denote by u(·) = u(·; s, us+) the solution of problem (2.6)-(2.8) with the initial value us+

at initial time s. Using u(·) to take inner product of (2.6) with in `2 gives

1

2

d

dt
‖u‖2 + ν‖Bu‖2 + λ‖u‖2 + (f̃(u), u) 6

λ‖u‖2

2
+
‖g(t)‖2

2λ
, t 6= tj , j ∈ Z. (2.18)
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By (H1), (f̃(u), u) =
∑
k∈Z

f(uk)uk > 0. Thus, (2.18) implies that

d‖u(t)‖2

dt
+ λ‖u(t)‖2 6

1

λ
‖g(t)‖2, t 6= tj , j ∈ Z. (2.19)

Now, for the impulsive condition, we have by (H2) that

‖u(t+j )‖2 =
∑
k∈Z
|uk(t+j )|2 =

∑
k∈Z

(
uk(tj) + φkj(uk(tj))

)2
6 2

∑
k∈Z
|uk(tj)|2 + 2

∑
k∈Z
|φkj(uk(tj))|2

6 (2 + 2L2)
∑
k∈Z
|uk(tj)|2 = (2 + 2L2)‖u(tj)‖2. (2.20)

Applying Lemma 2.3 to (2.19)-(2.20) for ξ(t) = ‖u(t)‖2, we obtain

‖u(t)‖2 6 ‖us+‖2(2 + 2L2)i<s,t>e−λ(t−s) +
1

λ

∫ t

s

(2 + 2L2)i〈θ,t)e−λ(t−θ)‖g(θ)‖2dθ, ∀ t > s. (2.21)

Now (1.4) implies that

i < s, t >6
t− s
η

and i〈θ, t) 6 t− θ
η

.

Thus, we have by (2.10)-(2.11) that

(2 + 2L2)i<s,t>e−λ(t−s) 6 e−σ(t−s) and (2 + 2L2)i〈θ,t)e−λ(t−θ) 6 e−σ(t−θ). (2.22)

Inserting (2.22) into (2.21) gives (2.17). This ends the proof.

Now, combining Lemmas 2.1 and 2.4, we obtain the global existence and uniqueness result of the

solutions to problem (2.6)-(2.8).

Theorem 2.1. Suppose that assumptions (H1)-(H3) hold true. Then, for each given s ∈ R and

us+ ∈ `2, there uniquely exists a solution u ∈ PC([s,+∞); `2) ∩ PC1((s,+∞); `2) to problem (2.6)-

(2.8) satisfying

‖u(t)‖2 6 ‖us+‖2e−σ(t−s) +
1

λ

∫ t

s

e−σ(t−θ)‖g(θ)‖2dθ, ∀ t > s. (2.23)

We next establish that the solution of problem (2.6)-(2.8) depends continuously on its initial value.

Theorem 2.2. Suppose that assumptions (H1)-(H3) hold true. Denote by u(j)(·) = u(j)(·; s, u(j)s+ ),

j = 1, 2, the solutions of problem (2.6)-(2.8) corresponding to the initial values u
(j)
s+ (j = 1, 2). Then

‖u(1)(t)− u(2)(t)‖2 6 ‖u(1)s+ − u
(2)
s+ ‖

2e−(σ+λ−λ0)(t−s), ∀ t > s, (2.24)

hereinafter the constant λ0 is from (H1).

Proof. Let u(j)(·) = u(j)(·; s, u(j)s+ ) (j = 1, 2) be the solutions of problem (2.6)-(2.8) with the initial

values u
(j)
s+ , j = 1, 2, and set v(·) = u(1)(·)− u(2)(·). Then v(·) satisfies

dv

dt
+ νAv + λv + f̃(u(1))− f̃(u(2)) = 0, t 6= tj , j ∈ Z, t > s, (2.25)

v(t+j )− v(tj) = φj(u
(1)(tj))− φj(u(2)(tj)), j ∈ Z, (2.26)

v(s+) = u
(1)
s+ − u

(2)
s+ , s ∈ R. (2.27)
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Using v to take inner product with (2.25) in `2 yields

1

2

d

dt
‖v‖2 + ν‖Bv‖2 + λ‖v‖2 + (f̃(u(1))− f̃(u(2)), v) = 0, t 6= tj , j ∈ Z. (2.28)

By (H1) we have

(f̃(u(1))− f̃(u(2)), v) =
∑
k∈Z

f ′(θk)(u
(1)
k − u

(2)
k )vk > −

∑
k∈Z

λ0v
2
k = −λ0‖v‖2, (2.29)

where θk is located between u
(1)
k and u

(2)
k . Inserting (2.29) into (2.28) gives

d

dt
‖v(t)‖2 + 2(λ− λ0)‖v(t)‖2 6 0, t 6= tj , j ∈ Z. (2.30)

For the impulsive condition of ‖v(·)‖2, we have by using (H2) that

‖v(t+j )‖2 =
∑
k∈Z

v2k(t+j ) =
∑
k∈Z

(
vk(tj) + φkj(u

(1)
k (tj))− φkj(u(2)k (tj))

)2
62
∑
k∈Z

v2k(tj) + 2
∑
k∈Z

(
φkj(u

(1)
k (tj))− φkj(u(2)k (tj))

)2
=2
∑
k∈Z

v2k(tj) + 2
∑
k∈Z

L2
(
u
(1)
k (tj)− u(2)k (tj)

)2
6(2 + 2L2)‖v(tj)‖2. (2.31)

Applying Lemma 2.3 to (2.30)-(2.31) for ξ(t) = ‖v(t)‖2 implies

‖v(t)‖2 6 ‖vs+‖2(2 + 2L2)i<s,t>e−2(λ−λ0)(t−s), ∀ t > s. (2.32)

Now, from (2.22) we see that

(2 + 2L2)i<s,t>e−2(λ−λ0)(t−s) 6 e−(σ+λ−λ0)(t−s). (2.33)

Inserting (2.33) into (2.32) implies (2.24). The proof of Theorem 2.2 is complete.

3 Existence of the pullback attractor

In this section, we first show that the solution operator of (2.6)-(2.8) forms a process {S(t, s)}t>s
which is continuous and possesses a bounded pullback absorbing set on `2. Then we verify that

{S(t, s)}t>s has pullback asymptotically nullness and a pullback attractor.

From Theorem 2.1 we find that the solutions operator

S(t, s) : us+ ∈ `2 7−→ S(t, s)us+ = u(t; s, us+) (3.1)

of problem (2.6)-(2.8) forms a process on `2, hereafter u(·; s, us+) stands for the solution of problem

(2.6)-(2.8) with the initial condition us+ at initial time s. Theorem 2.2 tells us that the process

{S(t, s)}t>s is continuous on `2, that is, the map S(t, s) : `2 7−→ `2 is continuous for every given t and

s with s 6 t.

In this article, Z(`2) denotes the family which contains all subsets of `2. We will use Dσ to denote

the class of families D̂ = {D(θ) : θ ∈ R} ⊆ Z(`2) which satisfies

lim
θ→−∞

(eσθ sup
u∈D(θ)

‖u‖2) = 0. (3.2)

For the basic theory of process and pullback attractors, one can refer to [15]. Since the definitions

of pullback Dσ-absorbing set, pullback Dσ-asymptotically nullness and pullback Dσ-attractor for a

continuous process are well known, we omit them here.
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Lemma 3.1. Suppose that assumptions (H1)-(H3) hold true. Then the process {S(t, s)}t>s defined

by (3.1) possesses in `2 a bounded pullback Dσ-absorbing set.

Proof. Set

Rσ(s) :=
(
1 +

1

λ

∫ s

−∞
e−σ(s−θ)‖g(θ)‖2dθ

)1/2
, s ∈ R. (3.3)

Then the family of time-dependent closed balls B̂(s) = {B(s) = B(0, Rσ(s)) : s ∈ R} is the bounded

pullback Dσ-absorbing set, where B(0, Rσ(s)) is the closed ball in `2, with center zero and radius

Rσ(s). Factually, for any D̂ = {D(θ) : θ ∈ R} ∈ Dσ and any us+ ∈ D(s) for s ∈ R, we find from

(2.23) and (3.2) that there is a time s1 = s1(t, D̂) < t yields

‖U(t, s)us+‖2 6‖us+‖2e−σ(t−s) +
1

λ

∫ t

s

e−σ(t−θ)‖g(θ)‖2dθ

61 +
1

λ

∫ t

−∞
e−σ(t−θ)‖g(θ)‖2dθ, ∀ s < s1. (3.4)

This ends the proof.

Lemma 3.2. Assume that (H1)-(H3) hold true. Then the process {S(t, s)}t>s defined by (3.1) has

pullback Dσ-asymptotically nullness in `2.

Proof. By the Urylohn lemma (see e.g. [23, Theorem A.6]), there exists a smooth function χ(·) ∈
C1(R+;R+) satisfying 

χ(θ) = 0, 0 6 θ 6 1,
0 6 χ(θ) 6 1, 1 6 θ 6 2,
χ(θ) = 1, θ > 2,
|χ′(θ)| 6 χ0( positive constant), θ > 0.

(3.5)

Consider any given D̂ = {D(θ) : θ ∈ R} ∈ Dσ, s ∈ R and us+ ∈ `2. Remember that u(·) =

u(·; s, us+) = S(t, s)us+ is the solution of problem (2.6)-(2.8) with the initial value us+ at initial time

s ∈ R. Let M ∈ Z+ and vk(·) = χ( |k|M )uk(·), k ∈ Z. Using v = (vk)k∈Z to take the inner product with

(2.6) gives

(
du

dt
, v) + ν(Au, v) + λ(u, v) + (f̃(u), v) = (g(t), v), t > τ, t 6= tj , j ∈ Z. (3.6)

By some simple computations, we have

(
du

dt
, v) =

1

2

d

dt

∑
k∈Z

χ(
|k|
M

)u2k,

(Au, v) = (Bu,Bv) =
∑
k∈Z

χ(
|k + 1|
M

)(uk+1 − uk)2 +
∑
k∈Z

χ′(
|k̃|
M

)
uk(uk+1 − uk)

M
,

(f̃(u), v) =
∑
k∈Z

χ(
|k|
M

)f(uk)uk > 0,

(g(t), v) =
∑
k∈Z

χ(
|k|
M

)gk(t)uk 6
λ

2

∑
k∈Z

χ(
|k|
M

)u2k +
1

2λ

∑
k∈Z

χ(
|k|
M

)g2k(t),

(3.7)

where the number |k̃| is located between |k| and |k + 1|. Inserting (3.7) into (3.6) and then using

(3.4)-(3.5) yields

d

dt

∑
k∈Z

χ(
|k|
M

)u2m(t) + λ
∑
k∈Z

χ(
|k|
M

)u2k(t) 6
1

λ

∑
k∈Z

χ(
|k|
M

)g2k(t) +
4χ0

M
R2
σ(t), t 6= tj , j ∈ Z, (3.8)
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where t > s1 > s and s1 is the pullback absorbing time as in Lemma 3.1. Now, for any ε > 0 we see

from (3.4) and (H3) that there exists an M1 = M1(t, ε) ∈ Z+ such that

4χ0

M
R2
σ(t) 6 ε2/3, ∀M >M1. (3.9)

Set ξ(t) =
∑
k∈Z

χ( |k|M )u2k(t) with M >M1. Then for the impulsive condition of this ξ(t), we have

ξ(t+j ) =
∑
k∈Z

χ(
|k|
M

)u2k(t+j ) =
∑
k∈Z

χ(
|k|
M

)
(
uk(tj) + φkj(uk(tj))

)2
62
∑
k∈Z

χ(
|k|
M

)u2k(tj) +
∑
k∈Z

χ(
|k|
M

)φ2kj(uk(tj))

6(2 + 2L2)
∑
k∈Z

χ(
|k|
M

)u2k(tj) = (2 + 2L2)ξ(tj), j ∈ Z. (3.10)

ξ(s+) =
∑
k∈Z

χ(
|k|
M

)u2k(s+) 6 ‖u(s+)‖2. (3.11)

Applying Lemma 2.3 to (3.8)-(3.11) for ξ(t) =
∑
k∈Z

χ( |k|M )u2k(t) with M > M1 and then using (2.22),

we obtain∑
k∈Z

χ(
|k|
M

)u2k(t)

6‖us+‖2(2 + 2L2)i<s,t>e−λ(t−s) +

∫ t

s

(2 + 2L2)i〈θ,t)e−λ(t−θ)(
1

λ

∑
k∈Z

χ(
|k|
M

)g2k(θ) +
ε2

3
)dθ

6‖us+‖2e−σ(t−s) +
e−σt

λ

∫ t

s

eσθ
∑
k∈Z

χ(
|k|
M

)g2k(θ)dθ +
ε2

3
, ∀ t > s1 > s, M >M1. (3.12)

From (H3) we see that for above ε > 0 there is an M2 = M2(ε, t) ∈ Z+ yields

e−σt

λ

∫ t

s

eσθ
∑
k∈Z

χ(
|k|
M

)g2k(θ)dθ 6
e−σt

λ

∫ t

−∞
eσθ
∑
k∈Z

χ(
|k|
M

)g2k(θ)dθ 6
ε2

3
, ∀M >M2. (3.13)

At the same time, since us+ ∈ D(s) and D̂ = {D(θ) : θ ∈ R} ∈ Dσ, it then follows from (3.2) that for

above ε > 0 there is a s2 = s2(t, ε, D̂) < t yields

‖us+‖2e−σ(t−s) 6 ε2/3, ∀ s 6 s2. (3.14)

Picking

M0 = max{M1,M2} and τ0 = min{s1, s2},

we obtain from (3.12)-(3.14) that

sup
us+∈D(s)

∑
|k|>M0

|(S(t, s)us+)k|2 = sup
us+∈D(s)

∑
|k|>M0

|uk(t; s, uk,s+)|2 6 ε2, ∀ s 6 s0.

This concludes the proof of Lemma 3.2.

We now have

Theorem 3.1. Let assumptions (H1)-(H3) hold true. Then the process {S(t, s)}t>s defined by (3.1)

possesses a pullback Dσ-attractor (denoted by) Â(θ) = {A(θ) : θ ∈ R}.

Proof. Since the process {S(t, s)}t>s is continuous on `2, the result of Theorem 3.1 is obtained directly

by using Lemmas 3.1, 3.2 and [40, Theorem 2.1].
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4 Existence of the statistical solutions

In this section we first verify that for each fixed t ∈ R and ũ ∈ `2 the `2-valued mapping

s 7→ S(t, s)ũ belongs to PC((−∞, t]; `2) and is bounded on (−∞, t]. Then we refine [32, Theorem

3.1] to construct a family of Borel invariant probability measures {mθ}θ∈R for the process {S(t, s)}t>s
on `2, via the generalized Banach limit and the pullback attractor Â(θ) obtained in Theorem 3.1.

Further, we establish that the family of Borel invariant probability measures {mθ}θ∈R meets piecewise

the Liouville theorem and is indeed a statistical solution of the impulsive equation (2.6).

We next will employ the notation c1 . c2 to stand for c1 6 cc2 for a general constant c > 0 that

just depends on the parameters from our problem and will not produce confusion. In addition, for

a given Borel probability measure ρθ on `2 and a function ψ ∈ C(`2),

∫
`2
ψ(u)dρθ(u) denotes the

Bochner integral.

Lemma 4.1. Suppose that assumptions (H1)-(H3) hold true. Then for each given t ∈ R and ũ ∈ `2

the `2-valued mapping s 7→ S(t, s)ũ is bounded on (−∞, t].

Proof. It is a direct consequence of Theorem 2.1. Actually, for each given t ∈ R and ũ ∈ `2, we have

‖u(t; s, ũ)‖2 6 ‖ũ‖2 +
1

λ

∫ t

−∞
e−σ(t−θ)‖g(θ)‖2dθ, ∀ t > s. (4.1)

Obviously, inequality (4.1) shows that ‖u(t; s, ũ)‖2 is less than a constant independent of s.

Next we establish three auxiliary lemmas concerning some type continuity of S(t, s)ũ with respect

to the parameters s and t.

Lemma 4.2. Suppose that assumptions (H1)-(H3) hold true, and let ũ ∈ `2 and s∗ ∈ R be fixed. Then

∀ ε > 0, ∃ δ = δ(ε, s∗, ũ) > 0, small enough, yields

‖S(t, s)ũ− ũ‖2 < ε, ∀ s ∈ (s∗, s∗ + δ), ∀ t ∈ (s, s∗ + δ). (4.2)

Proof. Consider any given ũ ∈ R and s∗ ∈ `2. We assume, without loss of generality, s∗ ∈ (tj0 , tj0+1]

for some j0 ∈ Z. Because we will integrate (2.19) on the interval that does not contain any impulsive

points from {tj}j∈Z, we next split the proofs into two cases.

Case 1 : s∗ ∈ (tj0 , tj0+1). In this case, we denote 0 < 2l = min{s∗ − tj0 , tj0+1 − s∗} and consider

s∗ + l > t > s > s∗.

Firstly, we prove that∫ t

s

‖dS(θ, τ)ũ

dθ
‖2dθ . c̃ = ‖ũ‖2 +

∫ s∗+l

s∗−l
‖g(θ)‖2dθ. (4.3)

Indeed, from (2.2) and (2.6) we see that for s 6 θ 6 t,

‖dS(θ, s)ũ

dθ
‖2 . ‖AS(θ, s)ũ‖2 + ‖S(θ, s)ũ‖2 + ‖f̃(S(θ, s)u)‖2 + ‖g(θ)‖2. (4.4)

By (2.12) and (H1)

‖f̃(S(θ, s)ũ)‖2 6 Lf‖S(θ, s)ũ‖2, (4.5)

where Lf = max
θ∈[0,L]

|f ′(θ)| and L = max
θ∈[s∗−l,s∗+l]

‖S(θ, s)ũ‖2 are constants independent of s and t since

S(θ, s)ũ is continuous for θ ∈ [s∗ − l, s∗ + l] ⊂ (tj0 , tj0+1). Inserting (4.5) into (4.4) first and then
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integrating the resulting inequality with respect to θ over [s, t], we have∫ t

s

‖dS(θ, s)ũ

dθ
‖2dθ .(1 + Lf )

∫ t

s

‖S(θ, s)ũ‖2dθ +

∫ t

s

‖g(θ)‖2dθ

.‖ũ‖2 +

∫ t

s

‖g(θ)‖2dθ . ‖ũ‖2 +

∫ s∗+l

s∗−l
‖g(θ)‖2dθ, (4.6)

where we have also used (2.19).

Secondly, we observe that

‖S(t, s)ũ− ũ‖2 =

∫ t

s

d‖S(θ, s)ũ‖2

dθ
dθ − 2

(
S(t, s)ũ− ũ, ũ

)
. (4.7)

On the one hand, again by (2.19) we have∫ t

s

d‖S(θ, s)ũ‖2

dθ
dθ .

∫ t

s

‖g(θ)‖2dθ. (4.8)

By (H3), g(·) ∈ L2
loc(R; `2), and thus there exists some δ′ = δ′(ε, s∗, g) ∈ (0, l) yields∫ t

s

d‖S(θ, s)ũ‖2

dθ
dθ .

∫ t

s

‖g(θ)‖2dθ <
ε2

2
, s∗ < s 6 t 6 s∗ + δ′. (4.9)

On the other hand, from (4.3) we conclude that the constant c̃ is independent of s and t. Using

Cauchy’s inequality and (4.3) gives∣∣∣(S(θ, s)ũ− ũ, ũ
)∣∣∣ =

∣∣∣( ∫ t

s

dS(θ, s)ũ

dθ
dθ, ũ

)∣∣∣ 6 ‖ũ‖ ∫ t

s

‖dS(θ, s)ũ

dθ
‖dθ

6‖ũ‖
(∫ t

s

‖dS(θ, s)ũ

dθ
‖2dθ

)1/2
(t− s)1/2 6 c̃1/2‖ũ‖(t− s)1/2, (4.10)

which implies that there is some δ′′ = δ′′(ε, s∗, ũ) ∈ (0, l) yields∣∣∣(S(θ, s)ũ− ũ, ũ
)∣∣∣ < ε2

2
, s∗ < s 6 t 6 s∗ + δ′′. (4.11)

Picking δ = min{δ′, δ′′}, we get (4.2) from (4.7), (4.9) and (4.11). The case s∗ ∈ (tj0 , tj0+1) is proved.

Case 2 : s∗ = tj0+1. In this case we denote 2l = tj0+2 − tj0+1 and consider s∗ < s 6 t 6 s∗ + l.

The main difference in the proof to case 1 is that the constants c̃ and L are replaced with

c̃′ = ‖ũ‖2 +

∫ s∗+l

s∗

‖g(θ)‖2dθ and L′ = sup
θ∈[s∗,s∗+l]

‖S(θ, s)ũ‖2,

respectively. Here L′ is also a constant independent of s and t, since S(θ, s)ũ is continuous for

θ ∈ (s∗, s∗ + l] ⊂ (tj0+1, tj0+2) and has right-hand limit at θ = s∗ = tj0+1. The remaining part of the

proof is analogous to that of case 1 and the details is omitted here.

Similarly to Lemma 4.2, we have

Lemma 4.3. Suppose that assumptions (H1)-(H3) hold true, and let ũ ∈ `2 and s∗ ∈ R be fixed. Then

∀ε > 0, ∃δ = δ(ε, s∗, ũ) > 0, small enough, yields

‖S(t, s)ũ− ũ‖2 < ε, ∀ s ∈ (s∗ − δ, s∗], ∀ t ∈ [s, s∗]. (4.12)

Now, we begin to investigate some kind of continuous property of the `2-valued mapping s 7−→
S(t, s)ũ for every given t ∈ R and ũ ∈ `2.
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Lemma 4.4. Suppose that assumptions (H1)-(H3) hold true. Then for each given t ∈ R and ũ ∈ `2

the `2-valued mapping s 7→ S(t, s)ũ belongs to PC((−∞, t]; `2), that is

(1) S(t, ·)ũ is left-continuous on (−∞, t];

(2) S(t, ·)ũ is continuous on (−∞, t] \ {tj : tj ∈ (−∞, t], j ∈ Z};

(3) S(t, ·)ũ has right-hand limit at the impulsive points τj ∈ (−∞, t], j ∈ Z.

Proof. Firstly, we prove item (1). Consider any given s∗ ∈ (−∞, t]. We shall establish the left-

continuity of S(t, ·)ũ at s = s∗. Indeed, we assume that, without loss of generality, s∗ ∈ (tj0 , tj0+1] for

some j0 ∈ Z. Then for any s ∈ (tj0 , s∗] we have

‖S(t, s)ũ− S(t, s∗)ũ‖ = ‖S(t, s∗)S(s∗, s)u∗ − S(t, s∗)ũ‖. (4.13)

Since, t and s∗ are fixed, S(t, s∗) : `2 7→ `2 is continuous. The left-continuity of S(t, ·)ũ at s = s∗

follows then from (4.2) and (4.13).

Secondly, we prove item (2). Without loss of generality, we just prove, in view of the result

of item (1), that S(t, ·)ũ is right-continuous on (tj0 , tj0+1) ∩ (−∞, t] for some j0 ∈ Z. Let s∗ ∈
(tj0 , tj0+1) ∩ (−∞, t] be given and s∗ < s < tj0+1 6 t. Using (2.24), we have

‖S(t, s∗)ũ− S(t, τ)ũ‖ =‖S(t, s)S(s, s∗)ũ− S(t, s)ũ‖
6‖S(s, s∗)ũ− ũ‖e−(σ+λ−λ0)(t−s). (4.14)

The right-continuity of S(t, ·)ũ at s∗ follows from (4.14) and the fact that S(·, s∗)ũ ∈ C((tj0 , tj0+1); `2).

Thirdly, the fact that S(t, s)ũ has right-hand limit at the impulsive points tj ∈ (−∞, t] is a direct

outcome of Lemma 4.2 and the invariance property of the process, by using Cauchy’s criterion for

convergence. The proof of Lemma 4.4 is therefore complete.

Combining Lemma 4.1 and Lemma 4.4, we declare that the process {S(t, s)}t>s possesses the

so-called PC-τ-continuity in the following sense: for each given t ∈ R and ũ ∈ `2 the `2-valued

mapping s 7→ S(t, s)ũ ∈ PC((−∞, t]; `2) and is bounded on (−∞, t].
We next will refine [32, Theorem 3.1] to construct a family of Borel invariant probability measures

for the process {S(t, s)}t>s on `2, via the generalised Banach limit and the pullback attractor Â(θ)

assured in Theorem 3.1. The definition of generalized Banach limit can be found in [23, 32]. For any

generalized Banach limit (denote by) LIMθ→+∞, we have the following property (see e.g. [23, (1.38)]

or [16, (2.3)])

|LIMθ→+∞%(θ)| 6 lim sup
θ→+∞

|%(θ)|, ∀ %(·) ∈ B+, (4.15)

where B+ is the set consisting of all real-valued bounded functions on [0,+∞). Note that in our

situation, we shall investigate the generalized Banach limits for s → −∞. Thus, for a fixed real

function % defined on the interval (−∞, 0] and a fixed generalized Banach limit LIMθ→+∞, we set

LIMθ→−∞%(θ) = LIMθ→+∞%(−θ). (4.16)

From now on, we denote by C(`2) the set of all real-valued continuous functionals on `2.

Theorem 4.1. Suppose that assumptions (H1)-(H3) hold true and v(·) : R 7→ `2 be a continuous map

satisfying v(·) ∈ Dσ. Then for each generalised Banach limit LIMθ→+∞ and for each ψ ∈ C(`2),
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there corresponds uniquely a family of Borel probability measures {mθ}θ∈R on `2 and the measure mθ

is carried by A(θ) and

LIMs→−∞
1

t− s

∫ t

s

ψ
(
S(t, θ)v(θ)

)
dθ =

∫
A(t)

ψ(u)dmt(u) =

∫
`2
ψ(u)dmt(u) (4.17)

=LIMs→−∞
1

t− s

∫ t

s

∫
`2
ψ
(
S(t, θ)u

)
dmθ(θ)dθ. (4.18)

Furthermore, mθ has the following invariant property∫
A(t)

ψ(u)dmt(u) =

∫
A(s)

ψ
(
S(t, s)u

)
dms(u), t > s. (4.19)

Proof. The idea of the proof is analogous to that of [32, Theorem 3.1]. The main difference is that we

replace the s-continuity of {S(t, s)}t>s in [32, Theorem 3.1] with the PC-s-continuity here. Obviously,

the s-continuity implies the PC-τ -continuity of the process.

Fix ψ(·) ∈ C(`2) and a continuous map v(·) : R 7→ `2 such that v(·) ∈ Dσ. For given t ∈ R, we

claim that for every compact [t0, t] the function s 7→ ψ(S(t, s)v(s)) is bounded on [t0, t] with each

t0 < t. In fact, on the one hand, from (1.4) we see that the impulsive points {tj}j∈Z belonging to

the interval [t0, t] are only a finite number. We denote these impulsive points by tj0+1, tj0+2, · · · ,
tj0+N for some N ∈ Z+. Then by Lemma 4.4, the function s 7→ ψ(S(t, s)v(s)) is continuous on

[t0, t]\{tj0+1, tj0+1, · · · , tj0+N}, is left-continuous on (t0, t] and has right-hand limit at the points t0,

tj0+1, · · · , tj0+N . Therefore, ψ(S(t, s)v(s)) is bounded on the compact interval [t0, t]. On the other

hand, from Lemma 3.1 we find that ψ(S(t, s)v(s)) is also bounded on the interval (−∞, t0 + 1] for t0

sufficiently large and negative, since v(·) ∈ Dσ and {S(t, s)}t>s has pullback Dσ-attracting property.

Hence, we have proved that the function ψ(S(t, s)v(s)) is bounded on (−∞, t] and the function

s 7−→ 1

t− s

∫ t

s

ψ(S(t, θ)v(θ))dθ

is bounded on (−∞, t]. In terms of this fact, we define

L(ψ) = LIMs→−∞
1

t− s

∫ t

s

ψ(S(t, θ)v(θ))dθ.

The remainder of the proof closely follows the one of [32, Theorem 3.1] and we omit the details

here.

Now, we are going to investigate the statistical solutions for equation (2.6). We first mention the

class T consisting of test functions related to the statistical solutions. Write equation (2.6) as

du

ds
= G(u, s) := g(s)− νAu− λu− f̃(u), s 6= tj , j ∈ Z. (4.20)

Then G(u, s) : `2 × R 7−→ `2. We require that the test function Φ ∈ T satisfies

d

ds
Φ(u(s)) = (Φ′(u),G(u, s)), s 6= tj , j ∈ Z, (4.21)

for every solution u(·) of equations (2.6)-(2.8). The definition of class T consisting of test functions is

similar with that of [43, Definition 4.2] and we omit it here.

We now specify the definition of statistical solutions for equation (4.20) and prove the existence.

Definition 4.1. A family {ρs}s∈R of Borel probability measures on `2 is called a statistical solution

of equation (4.20) if {ρs}s∈R satisfies:
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(a) for every ψ ∈ C(`2) the mapping s 7→
∫
`2
ψ(u)dρs(u) ∈ PC(R;R);

(b) for a. e. s ∈ R, the support of ρs is contained in `2 and the mapping u 7→
(
w,G(u, s)

)
is ρs-

integrable for each w ∈ `2. Moreover, the mapping s 7→
∫
`2

(
w,G(u, s)

)
dρs(u) belongs to L1

loc(R)

for every w ∈ `2;

(c) for each Φ ∈ T ,∫
`2

Φ(u)dρs(u)−
∫
`2

Φ(u)dρτ (u) =

∫ s

τ

∫
`2

(
Φ′(u),G(u, θ)

)
dρθ(u)dθ,

for s, τ ∈ (tj , tj+1) with s > τ and j ∈ Z.

Theorem 4.2. Suppose that assumptions (H1)-(H3) hold true. Then {ms}s∈R guaranteed by Theorem

4.1 is a statistical solution of equation (4.20).

Proof. We just verify that {ms}s∈R guaranteed by Theorem 4.1 satisfies the conditions (a)-(c) of

Definition 4.1.

Firstly, we establish item (a). Consider any j ∈ Z and any given s∗ ∈ (tj , tj+1].

In case s∗ ∈ (tj , tj+1), we prove that for each ψ ∈ C(`2),

lim
s→s∗

∫
`2
ψ(u)dms(u) =

∫
`2
ψ(u)dms∗(u). (4.22)

In fact, from (4.17) and (4.19) we infer that∫
`2
ψ(u)dms(u)−

∫
`2
ψ(u)dms∗(u) =

∫
A(s∗)

(
ψ(S(s, s∗)u)− ψ(u)

)
dms∗(u) for s > s∗. (4.23)

Since ‖S(s, s∗)u− u‖ → 0 as s→ s+∗ , ψ ∈ C(`2) and A(s∗) is compact in `2, equality (4.23) gives

lim
s→s+∗

∫
`2
ψ(u)dms(u) =

∫
`2
ψ(u)dms∗(u).

Similarly, we have∫
`2
ψ(u)dms∗(u)−

∫
`2
ψ(u)dms(u) =

∫
A(s)

(
ψ(S(s∗, s)u)− ψ(u)

)
dms(u) for s < s∗. (4.24)

Because ‖S(s∗, s)u− u‖ → 0 as s→ s−∗ , ψ ∈ C(`2) and ms(A(s)) 6 1 for each s ∈ R, equality (4.24)

gives

lim
s→s−∗

∫
`2
ψ(u)dms(u) =

∫
`2
ψ(u)dms∗(u). (4.25)

In case s∗ = tj+1, we use the same proof as (4.25) to obtain the left-continuity of

∫
`2
ψ(u)dms(u)

at s∗. To establish the existence of lim
s→s+∗

∫
`2
ψ(u)dms(u), we consider s∗ < s′ 6 s′′ < tj+2 and have

∫
`2
ψ(u)dms′′(u)−

∫
`2
ψ(u)dms′(u) =

∫
A(s′)

(
ψ(S(s′′, s′)u)− ψ(u)

)
dms′(u). (4.26)

Since ψ ∈ C(`2), ms′(A(s′)) 6 1, (4.26) and Lemma 4.2 imply the existence of lim
s→s+∗

∫
`2
ψ(u)dms(u).

Thus item (a) is proved.
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Secondly, we establish item (b). For each s ∈ R we have established that the support of ms is

contained in A(s) ⊂ `2. For every u,w ∈ `2, we define

Ψ(u) =
(
w,G(u, ·)

)
. (4.27)

Then Ψ(·) : `2 7−→ R. Next we verify Ψ(·) ∈ C(`2). Let ũ ∈ `2 be given and consider u ∈ `2 satisfying

‖ũ− u‖ 6 1. Then from (2.2), (2.12) and (4.20) we obtain

|Ψ(ũ)−Ψ(u)| = |
(
w,G(ũ, ·)− G(u, ·)

)
|

6 ν|
(
w,A(ũ− u)

)
|+ λ|(w, ũ− u)|+ |

(
w, f̃(ũ)− f̃(u)

)
|

6 (4ν + λ+ Lf )‖w‖‖ũ− u‖, (4.28)

where Lf , as in (4.5), is a constant depending on f and ‖ũ‖. (4.28) indicates that Φ(·) given by (4.27)

is continuous on `2. From (4.17) and (4.27) we see that the mapping u 7→
(
w,G(u, t)

)
= Ψ(u) is

mt-integrable for each w ∈ `2. Note that we have established in item (a) that the function

s 7→
∫
`2

(
w,G(u, s)

)
dms(u) =

∫
`2

Ψ(u)dms(u)

is piecewise continuous on R and its discontinuities {tj}j∈Z are of the first-kind. Thus it lies in L1
loc(R)

for each w ∈ `2.

Thirdly, we prove item (c). For any Φ ∈ T , we find from (4.21) that

d

ds
Φ(u(s)) = (Φ′(u), G(u, s)), s 6= tj , j ∈ Z.

Therefore, we have that

Φ(u(s))− Φ(u(τ)) =

∫ s

τ

(
Φ′(u(ϑ)), G(u(ϑ), ϑ)

)
dϑ, ∀ s, τ ∈ (tj , tj+1), s > τ, j ∈ Z. (4.29)

Now, for ζ 6 τ , we denote u(ϑ) = U(ϑ, ζ)ũ for ϑ ∈ [τ, s] and ũ ∈ `2. We use (4.29) to derive

Φ(S(s, ζ)ũ)− Φ(S(τ, ζ)ũ) =

∫ s

τ

(
Φ′(S(ϑ, ζ)ũ),G(U(ϑ, ζ)ũ, ϑ)

)
dϑ. (4.30)

By (4.17)-(4.18) and (4.30), we obtain by using Fubini’s Theorem and some calculations that∫
`2

Φ(u)dms(u)−
∫
`2

Φ(u)dmτ (u) =

∫
A(s)

Φ(u)dms(u)−
∫
A(τ)

Φ(u)dmτ (u)

=LIMK→−∞
1

τ −K

∫ τ

K

∫ s

τ

∫
`2

(
Φ′(S(ϑ, ζ)ũ),G(S(ϑ, ζ)ũ, ϑ)

)
dmζ(ũ)dϑdζ, tj < τ 6 s < tj+1.

Now employing (4.19), we obtain∫
`2

(
Φ′(S(ϑ, ζ)ũ),G(S(ϑ, ζ)ũ, ϑ)

)
dmζ(ũ) =

∫
`2

(
Φ′(S(ϑ, τ)ũ),G(S(ϑ, τ)ũ, ϑ)

)
dmτ (ũ), (4.31)

where the right-hand side of (4.31) does not depend on ζ. Hence,∫
A(s)

Φ(u)dms(u)−
∫
A(τ)

Φ(u)dmτ (u) =

∫ s

τ

∫
`2

(
Φ′(S(ϑ, τ)ũ),G(S(ϑ, τ)ũ, ϑ)

)
dmτ (ũ)dθ

=

∫ s

τ

∫
`2

(
Φ′(u),G(u(ζ), ζ)

)
dmζ(u)dζ, tj < τ 6 s < tj+1. (4.32)

The proof of Theorem 4.2 is complete.
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Remark 4.1. In the end of the article, we point out that, the statistical information of the discussed

impulsive system does not alter with time (i.e. Φ′(u(t)) = 0), provided that its statistical equilibrium

has been reached. In this situation, (4.32) implies∫
A(t)

Φ(u)dmt(u) =

∫
A(s)

Φ(u)dms(u), tj < s 6 t < tj+1,∀ j ∈ Z. (4.33)

Equality (4.33) reveals that the shape of the pullback attractor A(·) could change along with the evo-

lution of time from s to t, but the measures of A(s) and A(t) coincide with each other, that is, on

each interval (tj , tj+1), the total measure of the attractor A(·) is conservative along with the evolution

of time provided that the impulsive system has attained its statistical equilibrium. This is exact the

theory of Liouville Theorem in Statistical Mechanics. However, equation (4.32) will not always hold

true on the interval containing any impulsive point, which indicates that impulses will interrupt some

type of conservation of the evolutionary system. This phenomenon is in accord with our intuition to

the impulsive system.
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