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Abstract

The stock market is a complex and challenging field of research that has attracted
researchers from several fields, such as for instance engineering. This dissertation ap-
proaches stock market analysis from an engineering point of view. It is empirically shown
that techniques, such as neural networks, can be applied in many stock markets, as a
tool creating reasonably accurate stock forecasts. This approach was also analyzed in the
context of narrow markets. In this dissertation a broad definition of narrow market was
followed, encompassing not only stock markets with a small trading volumes, which can
potentially distort stock prices, but also markets that while having large daily trading
volumes have some other features, such as a relatively large proportion of retail investors
compared to institutional investors, that might result on price distortions. It is shown
that neural networks can be applied, for forecasting purposes, even in narrow markets.
However, some practical issues, such as stale prices, should be taken into account. The
topic of technical indicator selection is also discussed in this dissertation. There is an ever
increasing amount of technical indicators that are used in an attempt to discern future
stock prices trends. Some of those indicators can generate contradicting signals. Therefore,
it is important to choose the right combination of technical indicators when taking stock
investment decisions. In this dissertation it is presented a new combinatorial algorithm
for stock selection. It is shown, using this algorithm, that predictions are more accurate
than using all the technical indicators together. It should also be noticed that using
all the possible combinations it is not feasible given the enormous amount of potential
combinations. Therefore, it is of clear importance to have algorithms that can generate
adequate combinations of those technical indicators.

The adaptation and application to stock forecasting of a forecasting technique based
on local data is also shown in this thesis. It has been shown that this technique generates
forecasts that are better than some commonly used benchmarks. At the core of this
approach there is the assumption that stock prices then to follow, at least to some degree,
historical patterns. Besides accuracy, an advantage of this technique is that it generates
forecasts relatively fast, not requiring a time consuming training phase. Having a better
understanding of the likely losses of the trade can help the investor to have a more
complete investment decision process. Thus, it is also important, particularly from a risk
management point of view, to have techniques that generate probability distributions
for the predictions, that can be used to obtain intervals that are guaranteed to contain
the future real prices with a prescribed probability. In this dissertation a probabilistic
price interval estimation strategy has been adapted and applied to the problem of finding
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k-step ahead price intervals, getting better results than those obtained with well known
techniques.

Having good forecasting techniques is only a part of the investment process. After a
buy or sell decision has been made it is important to carry out that trade efficiently in
what it is commonly referred as “best execution”. There are multiple factors to take into
account after the purchase (or sell) of a stock is decided, for instance in which period of
the day (or over how many days) to carry out the trade. This is also related to the idea of
avoiding distorting the market with the trade, i.e., a large order might unintentionally
distort market prices. In this dissertation it is presented an approach that generates better
results than frequently used benchmarks, such as for instance the Time Weighted Price
(TWAP) or the Volume Weighted Price (VWAP). The approach is based on the concept
of receding horizon optimization, well known in the predictive control community, but
not used in the optimization of the execution of large trade orders. The technique can
accommodate both market and limit orders and has shown a great potential economic
impact in the execution of such large orders.
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Resumen

El mercado de valores es un campo de investigación complejo y desafiante que ha atráıdo
a investigadores de varios campos, como por ejemplo la ingenieŕıa. Esta disertación aborda
el análisis bursátil desde el punto de vista de la ingenieŕıa. Se mostrará emṕıricamente
que técnicas, como las redes neuronales, se pueden aplicar en muchos mercados bursátiles,
como una herramienta que crea estimaciones del precio de las acciones razonablemente
precisas. Este enfoque también se analizó en el contexto de un mercado estrecho. En
esta disertación se siguió una definición amplia de mercado estrecho, abarcando no solo
mercado de valores con pequeños volúmenes de negociación, que potencialmente pueden
distorsionar los precios de las acciones, sino también los mercados que, si bien tienen
grandes volúmenes de negociación diarios, tienen algunas otras caracteŕısticas, como una
proporción relativamente grande de inversores minoristas en comparación con los inversores
institucionales, que podŕıan dar lugar a distorsiones en los precios. Se mostrará que redes
neuronales se puede aplicar incluso en mercados estrechos. Sin embargo, deben tenerse en
cuenta algunas cuestiones prácticas, como los precios obsoletos.

El tema de la selección de indicadores técnicos también se discute en esta disertación.
Hay una cantidad cada vez mayor de indicadores técnicos que se utilizan en un intento de
discernir las tendencias futuras de los precios de las acciones. Algunos de esos indicadores
pueden generar señales contradictorias. Por lo tanto, es importante elegir la combinación
correcta de indicadores técnicos al tomar decisiones bursátiles. En esta disertación se
presenta un nuevo algoritmo combinatorio para la selección de indicadores técnicos. Se
mostrara que las predicciones, usando este algoritmo, son más precisas que las estimaciones
generadas usando todos los indicadores técnicos juntos. También debe tenerse en cuenta
que usar todas las combinaciones posibles no es factible dada la enorme cantidad de
combinaciones posibles. Por lo tanto, es de clara importancia tener algoritmos que puedan
generar combinaciones adecuadas de esos indicadores técnicos.

También se presenta en esta disertación una aplicación de una técnica estad́ıstica
basada en datos locales para fines de estimación del precio de las acciones. Se mostrará
que esta técnica genera previsiones que son mejores que algunos bechmarks de uso común.
En el núcleo de este enfoque está la suposición de que los precios de las acciones siguen,
al menos hasta cierto punto, patrones históricos. Además de la precisión, una ventaja de
esta técnica es que genera pronósticos relativamente rápidamente, ya que no requiere una
fase de entrenamiento que consume mucho tiempo. Tener una mejor comprensión de las
pérdidas probables de la operación puede ayudar al inversor a tener un proceso de decisión
de inversión más completo. Por lo tanto, también es importante, especialmente desde el
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punto de vista de la gestión de riesgos, contar con buenas técnicas de previsión que generen
distribuciones de probabilidad para las predicciones, que puedan utilizarse para obtener
intervalos que garanticen contener los precios reales futuros con una probabilidad prescrita.
En esta disertación se ha adaptado y aplicado una estrategia de estimación de intervalos
de precios probabiĺısticos al problema de encontrar intervalos de precios por delante de
k-paso, obteniendo mejores resultados que los obtenidos con técnicas bien conocidas.

Tener buenas técnicas de previsión es sólo una parte del proceso de inversión. Después
de que se haya tomado una decisión de compra o venta es importante llevar a cabo esa
operación de manera eficiente en lo que coménmente se conoce como “mejor ejecución”.
Hay múltiples factores a tener en cuenta después de que la compra (o venta) de una acción
se haya decidido, por ejemplo, en qué peŕıodo del d́ıa (o durante cuántos d́ıas) se va a llevar
a cabo la operación. Esto se relaciona con la idea de evitar distorsionar el mercado con la
operación, es decir, una orden grande podŕıa distorsionar involuntariamente los precios de
mercado. En esta disertación se presenta un enfoque que genera mejores resultados que los
puntos de referencia utilizados con frecuencia, como por ejemplo el precio ponderado por
tiempo (TWAP) o el precio ponderado por volumen (VWAP). El enfoque se basa en el
concepto de retroceso de la optimización del horizonte, bien conocido en la comunidad de
control predictivo, pero no se utiliza en la optimización de la ejecución de grandes órdenes
comerciales. La técnica puede acomodar órdenes de mercado y ĺımite y ha demostrado un
gran impacto económico potencial en la ejecución de órdenes tan grandes.
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Chapter 1

Introduction

This thesis deals with some associated problems found when trying to devise investment
and trading strategies. Successful trading strategies require not only tools to generate
reasonably accurate forecasts, but also techniques to execute trading orders in an adequate
way. The stock market has attracted researchers from very different fields creating multiple
different types of investment strategies and techniques. The purpose of this chapter is
not only to show the motivation, objectives and general layout of the thesis, but also
to state a minimal background in some of the most basic concepts in finance, that are
required by engineers and scientists that want to research in stock forecasting and trading.
There are two major approaches to investing: fundamental investing and quantitative
investing. The core concept behind fundamental investment is that there exists an intrinsic
value for a security [Lee et al., 1999, Lai and Wong, 2015, Tiwari, 2016]. Quantitative
investing [DeFusco et al., 2015], on the other hand, relies on historical prices and statistical
tools to find the value of a security.

1.1 The value of a security

A key problem in investing is to be able to estimate the value of a company or, in general,
the value of a security1. Two main styles of investing rely on two different interpretations
on what constitutes the value of a security. In fundamental investing the value of a security
is identified as its intrinsic value, following assumption 1.

Assumption 1 (Fundamental investing - Intrinsic value). There is a relationship between
intrinsic value and actual securities prices [Lee et al., 1999] and in the long term securities
prices, tend to their intrinsic value.

1In this thesis a security is any financial instrument related to a company or institution that can be
traded on the financial markets and produces an income for the investor. The securities used in this thesis
are mainly stock shares, but all the methods and concepts can be applied to any traded security, e.g.,
debt bonds.
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1.1. THE VALUE OF A SECURITY

Once assumption 1 is accepted, fundamental investor seek to buy securities priced
under their intrinsic value, so that they can profit by selling them once the price reaches
the intrinsic value. This style of investing is also called value investing.

This intrinsic value is, in simple terms, the theoretical real value of a security or, in
other words, the discounted value of the future cash flows of this security [Shrieves and
Wachowicz Jr, 2001,Lundholm and O’keefe, 2001]. In practice, there are several ways to
estimate this intrinsic value [Bask, 2020,Budagaga, 2020] that generates certain degree of
uncertainty. A usual way to calculate the intrinsic value of a security is

Pintrinsic =
n∑
i

DFi · CFi (1.1)

where Pintrinsic is the intrinsic price, the CFi are the cash flow and DFi the discount
factor of cash flow i. Discount factor (DF ) are typically express as a number DF ∈ [0, 1],
with DF=1 denoting that there is no discount while a DF=0 denotes that there is a 100%
discount. Note that this intrinsic value does not necessarily coincide with the price of that
security in the market.

There are several issues regarding the intrinsic value approach, such as the need to
forecast the cash flows of the company for several years into the future [Sougiannis and
Yaekura, 2001] which makes estimates rather challenging. The average length of this
explicit forecast of future stream of cash flows varies from analyst to analyst, but in most
cases they are forecasted for 10 to 30 years. Needless to say that this is an extremely
difficult task. For example, very few analysts, if any, would have forecasted the stream of
cash flows for Amazon in 1994 when it was founded. Amazon still does not have 30 years
in business. Similarly, very few analyst would have forecast in 2005 the demise of Lehman
Brothers a few years later. Furthermore, calculating the intrinsic value of a stock not only
requires estimating (explicitly) the cash flows of that company for a long period of time
but it also entails to estimate the terminal value i.e., and estimate of the cash flows after
the explicit forecast period. There are multiple approaches to calculate the terminal value
but they typically assume one (or multiple) growth rates after the initial explicit forecast.
This can lead to very significant difference in the values obtained for the intrinsic value.

Another important factor to take into consideration when estimating the intrinsic value
of a security is that the cash flow are discounted. This discounting accounts for the time
value of money. The idea is that the same amount of money is likely more value now than
in the future. This reflects not only inflation but also tries to account for the certainty
of the cash flows. The longer the forecast time the less certain that those cash flows are.
This can be clearly illustrated with a relatively extreme example. A 100 USD now are
clearly worth more than the promise of 100 USD to be received 100 years later. Therefore,
it is reasonable to add some type of discounting to the cash flows that are used to estimate
the intrinsic value of a stock. This idea is commonly referred as the Time Value of Money.

There are several ways in which this discounting can be done in practice with several
factors that can potentially affect it such as expected inflation, real inflation, actual interest
rates, expected interest rate and even expectations on the broad monetary policy. It is also
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1.1. THE VALUE OF A SECURITY

frequent to use indirect ways to calculate these discounts such as for instance the value of
futures contracts2, for instance, using a 12 months futures contract and comparing it with
the values for two six months futures contracts. This can also be done annually with for
instance a two year futures contract and two one year futures contracts. Theoretically, and
assuming that the no arbitrage assumption holds3, there should be no profit to be gain (or
loss) from choosing between holding a two year futures contract or two one year futures
contracts. Otherwise an arbitrage could be done exploiting this risk-free opportunity. The
discount factor would be then estimated from the difference between the total price of two
consecutive one year future contract and the price of a two year future contract.

Another disturbing aspect of this valuation process is that, while in theory the intrinsic
value of a security should be an objective value, given the different approaches that
are followed in practice to estimate it, as well as the discretion that have the analysts
when estimate some of the inputs to the model, it is unlikely that two investors reach
independently identical values. Furthermore, it is common to have rather different estimates
even among professional stock price forecasters from the main investment banks such as
JP Morgan, Goldman or Credit Suisse. These forecasters usually follow a bottom up
approach, in which the forecaster builds its model starting with the sales and cost of the
company rather than looking at overall macro trend in the economy. But, it is also possible,
although less frequent in the field of stock forecasting, to follow a different approach based
on a top down analysis, in which the forecaster starts by analyzing the macro economic
conditions and then moves gradually to the company level. Either approach finds usually
a different price and there is not an agreement on which is best. In a bottom up approach
the usual criticism is that the analyst might miss overall macro tendencies when doing the
analysis of the company. On the other hand, a common criticism of a top down approach
is that it is less specific i.e., less accurate, for a company level analysis. Regardless of the
approach used, the intrinsic value of a security should be understood as a theoretical value
which a well informed and rational investor would pay for the stock. This concept is at
the core of fundamental investing, more precisely of value investing, which is the approach
followed by some of the most renowned investors like Warren Buffet. It should be noted
that the intrinsic value of a security changes over time, as more information is gradually
released, such as for instance the annual or quarterly reports of the company but that, as
assumption 1 states, in the long term security prices trend to their intrinsic value.

The other major investing style is that which rely on a quantitative pricing scheme
of the value of a security, known as quantitative investment [DeFusco et al., 2015]. In
this type of investment strategy, the objective is not to estimate the intrinsic value (true
value) of a security, but the price (or price trend) that the stock will follow over a certain
time horizon, which tends to be short to midterm investment [Atsalakis and Valavanis,
2009, Ince and Trafalis, 2008]. In this investing style, rather than assuming that there is
an intrinsic (real) value of the security, it is assumed that security prices are dictated by

2Futures contracts are contracts to buy or sell a security at a future date. For instance, an investor
might decide that wants to purchase a certain amount of stock A but rather than doing it immediately
enters a contract for those shares to be delivered (ownership change) six months later. In fact there is a
Spot Market, where securities are currently traded and the Futures market in which the securities are
traded at a later date in the future with a contract arranged in the present.

3Basically this assumption states that the value of two securities with the same price must be the same.
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1.2. MAIN FINANCIAL THEORIES RELATED TO STOCK FORECASTING

demand and supply forces and that the value is identified by the price of the security. This
imply that statistical and machine learning tools are applicable for its analysis. In simple
words, in quantitative analysis the investor uses statistical and learning tools applied to
historical prices and other quantitative indicators in order to estimate future prices and
trends, without having to know the internals of the companies that are represented by the
security, i.e., without having to look for the book value. Quantitative investment involves
a large set of different strategies, based on statistical analysis and machine learning. Thus,
this investment approach has attracted researches from the fields of mathematics, statistics
and engineering.

Fundamental investing is the traditional way of approaching investments and there are
a large number of investors and financial institutions following this approach. Quantitative
investment on the other hand is relatively more recent, and has experienced a considerable
expansion in the last few decades as computers became more adapt to process large
amount of information. Currently there is a large amount of financial institutions following
this type of investment approach. Usually, the investment time frame of a fundamental
investor tends to be longer than the investment time frame of a quantitative investors. In
fact, it is common for quantitative investor to have daily or intraday time horizons while
fundamental investors tend to have monthly, yearly or even decades time horizons, in hope
that assumption 1 will finally hold.

1.2 Main financial theories related to stock forecast-

ing

There are two, competing, financial theories that underscore the differences between
quantitative and fundamental analysis and that have implications in stock forecasting.
These theories are:

• Efficient market hypothesis.

• Behavioural finance.

In the following sections a brief introduction of these two competing theories are presented
as well as their implications for stock investing.

1.2.1 The theory of the market efficiency

This theory is based on the market efficiency hypothesis that has, in turn, three variants:
the strong, semi-strong and weak market efficient hypothesis. These ideas basically related
to the degree in which current information is reflected on the price of a security. This
degree affects to the feasibility of stock forecasting based on different tools.

Definition 1.1. Weak form market efficiency. All the information contained in
historical prices is already contained in security prices.
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1.2. MAIN FINANCIAL THEORIES RELATED TO STOCK FORECASTING

If the weak form market efficiency theory is right then it is not possible to outperform
the market using historical data, such as stock prices and volume. Therefore quantitative
analysis is not a valid approach for stock investing.

Definition 1.2. Semi-strong form market efficiency. All the information contained
in historical prices as well as in the analysis of the company fundamentals is already priced
in equity prices.

If the semi-strong form market efficiency theory is correct then both quantitative and
fundamental analysis are both inappropriate tools for stock investing. In this way no
amount of analysis based on historical data or in the analysis of the company fundamentals,
such as for instance its accounting data, financial statements and business model, can be
used to create an accurate stock forecasting model.

Definition 1.3. Strong form market efficiency hypothesis. All the information,
both public and private, is already priced in equity levels.

If the strong from market efficiency hypothesis is correct then no amount of analysis,
regardless of the type, can be used to generate accurate forecasting models. Not even
insiders of the company, such as for instance a CEO, can generate an accurate stock
forecast and benefit from it using all the public and private information available to them.

Clearly, depending on which hypothesis, if any, is true, the stock forecasting, already
perceived as a very difficult task, can be, in fact, impossible at all. However, there are other
approaches to financial theory that suggest that the markets are not completely efficient
because investors are subject to biases and do not have access to all the information that
can potentially impact the price of the stock of a company [Shiller, 2000]. Thus, forecasting
the stock price using historical data would be a difficult but possible task.

1.2.2 The behavioral finance theory

Behavioral finance is based in the idea that stock prices are dictated by the buy or sell
decisions of individuals that are dominated, not by a perfect analysis of all the information
available that can possibly impact the price of a stock, but by human biases. There are a
large amount of human biases related to stock investing, such as for instance confirmation
bias, loss aversion, overconfidence or irrational information processing. These are terms
precisely defined and understood in the context of behavioral finance. For instance,
confirmation bias relates to the idea that an investor, when he/she has decided what
type of trade to do will look for information that confirms that trade i.e., looking for
confirmation, and will unconsciously discard information that puts into question the trade.
Overconfidence is frequently referred as a bias, common among male investors, based on
not reassessing the investment thesis, assuming that it is undoubtedly correct. Irrational
information processing relates to the idea of having a situation in which the investor cannot
properly process the facts related to a trade. This term should not be confused with
the issue of information asymmetry. Information asymmetry occurs when two different
investors have substantially different levels of information related to a potential trade. A
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1.2. MAIN FINANCIAL THEORIES RELATED TO STOCK FORECASTING

classical example of information asymmetry could be the difference between a professional
investor and a retail (individual) investor. A professional investor is likely to have access
to more information, such as for instance analyst research reports or better databases,
than an individual investor but this is however not necessarily an example of irrational
information processing as the retail investor could, at least in principle, analyze all the
available information presented to her/him in a rational way (regardless of how limited
that information might be).

Similarly, it is important to make the distinction between loss aversion and risk aversion.
Every rational investor should be risk adverse. In this context risk adverse means that the
investor will prefer to achieve certain return (X) taking certain level or risk (R1), rather
than achieving the same return (X) taking a higher level or risk (R2) (with R2 > R1).
It should be noted that behavioral finance does allow for the existence of investor that
prefer to take higher levels of risk for the same return (thrill seekers), due to psychological
characteristics. Loss aversion on the other hand, is different from risk aversion, and it
is related to the reward/physiological pain relationship. In the context of investing loss
aversion, in simple term, means than an investor experiences more physiological pain when
losing in an investment certain amount (A) then physiological pleasure when gaining the
same amount (A). This might lead to overly cautious investment approaches, as well as
holding to losing position for longer than expected. An example of this is an investor
which, after experiencing a significant loss in an investment, rather than selling the stock
(making the loss real but avoiding potential additional losses) keeps the position in an
(illogical) hope that the stock will recover its value because the amount of emotional pain
is too large to cut the losses.

An implied assumption in behavioral finance is that not all the information available
is effectively logically and immediately analyzed. and therefore, contrary to the efficient
market hypothesis, investment techniques can generate accurate forecasts. [Ritter, 2003]
mentioned that, in the context of behavioral finance, it is assumed that some market
participants do not behave in a fully rational manner. In [Thaler, 2005], it is mentioned
that example of the internet bubble at the beginning of the twenty first century, in which,
according to the author, it is difficult to argue that all market participants were behaving
in a fully rational way. [Glaser et al., 2004] showed how some of these physiological biases,
intrinsic to behavioral finance, can be modelled. Furthermore, as human behavior follows
patterns it is potentially possible to use statistical techniques.

1.2.3 Implications of the efficient market hypothesis and behav-

ioral finance theories

It should be noted that there is currently no market consensus regarding the validity of
either the efficient market hypothesis or behavioural finance, with two major universities,
the University of Chicago and the University of Yale, both in the US, representing two
opposite schools of thought in this regard. Nobel laureate professor Eugene Fama, from
the University of Chicago, and several of his colleagues at the same university are the
main proponents of the market efficient hypothesis. In fact, professor Fama received the
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1.3. THE RANDOM WALK

Nobel Prize in economics in 2013 for the “empirical analysis of asset prices”. Interestingly,
the same year, professor Robert J. Shiller, from the University of Yale, also received the
Nobel Prize (they shared the Nobel Prize) for his work on behavioral finance, which is an
opposite theory to the market efficiency.

The acceptance in the academic community of the efficient market hypothesis has
fluctuated considerably. The theory was rapidly accepted in the seventies when it was
first introduced becoming the dominant theory during the following few decades. This
started to change by the end of the twenty century with the advent of new theories, such
as behavioral finance, with authors such as [Malkiel, 2003] mentioning the change in status
quo. There is an extensive literature regarding the topic of market efficiency. However, as
just mentioned, there is less academic consensus about its validity than in the previous
decades. There are for example mixed results when analyzing the stock market of different
countries during different periods, see for instance [Kim and Shamsuddin, 2008].

1.3 The random walk

Another approach that is frequently followed in finance is modelling the stock price as
a random walk. The objective of this approach is not so much trying to forecast stock
price, as in a random walk it is assumed that forecasting the stock price in the next period
(T+1) is not possible, but having a model that roughly gives an indication of the possible
trends of the stock. This is sometimes used as a benchmark to measure the accuracy of
forecasts generated by other techniques, such as illustrated in [Pemy, 2012]. A popular
random walk model is the Brownian motion model [Pemy, 2012] that can be described by

X(k + 1) =X(k) +X(k)µt+ σX(k)ζ(k)
√
t (1.2)

X(0) =X,

where X(k) is the stock price in step k, ζ(k) is a random input with zero mean and unity
variance, σ the standard deviation, t the time fraction and µ the mean return. In figure 1.1
it can be seen an example of an actual stock modeled as a random walk and its real prices.
This figure shows how the Brownian motion (random walk) it is not strictly speaking a
forecasting model. In other words, the Brownian motion approach does not try to generate
at time (T ) an accurate forecast for the value of the stock in the next time step (T + 1) but
simply tries to provide an indication of possible values for the stock according to historical
volatility and returns.

The implied basic assumption in a random walk is that the stock price follows a random
process that cannot be forecast with accuracy. The random walk approach is followed in
some well known financial techniques such as for instance option valuations. In fact the
1997 Nobel Prize in economics was obtained by Robert C. Merton and Myron S. Scholes
for their work on the Black-Scholes-Merton4 model on option valuation. However, it should
be noted that, similar to the previous section, there is no scholar consensus [Cooper,

4Professor Black, who died before 1997, was not awarded with the Nobel as this prize can only be
granted to researchers that are alive at the time of the prize decision.
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Figure 1.1: Sample of a stock price modeled as a random walk.

1982,Dupernex, 2007] regarding the validity of the random walk theory with multitude
of papers both supporting it, such as [Fama, 1995], and strongly rejecting it, such as [Lo
and MacKinlay, 1988,Frennberg and Hansson, 1993,Chaudhuri and Wu, 2003,Poshakwale,
2002,Hoque et al., 2007]. The discrepancies in views in the existing literature regarding the
random walk hypothesis is rather substantial. Much of the discussion seems to be related
with the specific market (country) and period analyzed with, overall, more support for the
stock market following a random walk in the mid to late twenty century in the United
States and, to some degree in the United Kingdom as well. There is however considerable
amount of literature supporting that stock markets in several European markets as well
as emerging markets, particularly in the twenty first century. Other factors, such as the
liquidity of the market (narrow markets compared to deeper markets) has been proposed
as factors impacting the random walk hypothesis on stock prices.

The random walk hypothesis and the efficient market hypothesis are not unrelated. If
market are fully efficient, therefore all the information (both private and public) is already
incorporated in stock prices and hence stock should follow a random walk, i.e., a random
process in which historical information (both quantitative and fundamental) cannot be
use to develop an efficient trading strategy. The diverging views over the last few decades
regarding the market efficient hypothesis has caused many scholar to question the, once
widely accepted, random walk hypothesis with, as previously mentioned, that in at least
some markets stocks do not appear to follow random walks. This is in fact one of the
major open questions in finance and has been debated since the 1960s. Some proponents
of random walks have equated stock investing with monkeys randomly throwing darts to
the financial pages (figure 1.2) of the newspaper as there is no possible way of picking
stocks in a sustainable way. In other words, if stock markets can be accurately described
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as a random walk, then the strong form market efficiency hypothesis is likely true, and it
would be extremely difficult, likely impossible, to generate accurate stock forecasts and
hence trading strategies. It should be noted, however, that there appear to be investors,
such as for instance Warren Buffet that seem to consistently outperform the stock market
during a multi-decade investment career.

Perhaps the main takeaway of the literature review regarding both the efficient market
hypothesis as well as random walk is that, while in previous decades they were financial
dogmas, there is currently an increasing amount of literature against both of these ideas.
The difference in methodologies, as well as on the data analyzed, make direct comparison
among papers rather challenging. Furthermore, it is possible that the validity of these two
concepts depends on the time period analyzed, i.e., with possible regime changes from
one period to the next, as well as of the stock market analyzed. As previously mentioned
there seems to be more support for the validity of these ideas in the US market while,
there appears to be less empirical data supporting them in some European and emerging
markets. A factor that should be also be taken into account is the potential for data
mining, i.e., looking for a data set that corroborates the assumptions of the researcher,
rather than trying to validate (or disprove) assumption with multiple datasets.

Another important factor that will be addressed later in this dissertation is the quality
of the underlying data, with some narrow markets having issues such as stale prices. If the
underlying data is not reliable, then the conclusions from the models will not be reliable
either. Stale data is usually related to lightly traded markets. In some narrow markets
there is no trading in all securities everyday with the data showed in some data providers
been the data from previous days. Less extreme cases are also important, for example,
there might be only a few trades carried out by a few retail (individual) investors with the
price recorded by data providers obtained from such trades. However, this price might not
be representative of the price level at which an institutional investor can actually carry
out a (large) trade. These are just some examples of data issues that can impact the
results of the analysis, and that can potentially generate erroneous conclusions regarding
the validity of the efficient market hypothesis and/or the random walk hypothesis.

1.4 Motivation and objectives

While there is a large number of equity forecasting tools as well as trading techniques
there is no consensus in the literature of the best possible approach. Therefore, developing
techniques that improve, even is slightly, in the current techniques or that add some benefit,
such as for example an algorithm that can be trained quicker than existing approaches, or
with better forecasts, can have valuable practical applications. Stock trading is a highly
complex process which can be impacted not only by multiple factors, such as human biases.
Nevertheless, the potential rewards of even a small improvement over current techniques
can be substantial as the frequency of the trading and the amount of shares traded magnify
potential gains.
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Figure 1.2: Dart throwing to the financial pages.

Statistical analysis of the stock market can be used not only to try to increase profits but
also as a risk management tool. Risk management is becoming an increasingly important
field of research as practice. In every trade there is some risk that the investor will lose
money. Developing techniques that help managing or, at least realistically quantify the
exposure of the investor to the market, is of clear practical value. All major international
banks have large department with multimillion dollar budget allocated to such function.

Another motivation behind this dissertation is the need to developed better trading
models. Besides improvement in stock price forecasting there are other considerations to
be taken into account when trading. In fact, the term “best execution” is increasingly
important in the financial sector. Best execution refers to providing to the client an
adequate trading techniques, after the buy or sell decision has been taken. The trading
quality (after investment decision is made) is typically measured by comparing the average
price obtained with a benchmark. Frequently used benchmarks are the Time Weight
Average (TWAP) and the Volume Weighted Average (VWAP), which will be used in
chapter 5.

Based on these motivations the main objectives of this dissertation are as follows:

• Create forecasting techniques for stock prices.

• Develop techniques with applications in trading risk management.

• Devise trading techniques based on optimization and forecasting.

• Asses the application of learning techniques to stock forecasting.

• Develop algorithms for automated selection of technical indicators,

• Evaluate the applicability of forecasting techniques in stock markets with peculiarities,
such as for instance narrow markets.
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1.5 Main results

• Neural networks were successfully applied to markets such as the Indian stock market,
generating reasonably accurate forecasts.

• The applicability of neural networks in narrow markets has been tested, concluding
that they are suitable tools, identifying, however, practical issues such as stale prices,
that could generate forecasts that superficially appear to be accurate, but that do
not realistic represent the price at which an actual trade can be placed .

• A new algorithm to select an adequate combination of technical indicators for stock
forecasting purposes has been presented. The combination of technical indicators
obtained in the simulations generated more accurate forecast than when using directly
all the technical indicators available.

• A technique, based on local data, was applied for the first time, to the task of stock
forecasting. The technique does not need training and the computational burden
is quite low. Furthermore, the estimates were more accurate than some frequent
benchmarks.

• Interval forecasting based on dissimilarity functions has been applied for the first
time to the problem of price interval forecasting, adapting the technique to this
particular problem, using only local data to better handle big datasets. This type of
application can have direct practical applications in the field of risk management,
as having a better understanding of the potential losses, with a related probability
distribution, can help managing investments in a more balanced way. The results
have been favourably compared to a well known technique.

• Techniques for trading optimization. After the purchase or sell of a stock is decided
by the investor it is important to carry out in an efficient way in what is frequently
described as “best execution”. There are multiple factors to take into account such
as for instance the potential impact of the order in the market and the need to
divide the order into smaller trades. In this dissertation a technique to carry out
such type of execution has been presented. The technique is based on forecasting
and optimization and can accommodate different types of stock orders. The results,
from the application to the Chinese Stock Market, show significant savings over two
well known price benchmarks.

1.6 Thesis overview

This dissertation is structured in six chapters plus appendixes. Beyond this first intro-
ductory chapter, the second chapter of the dissertation is devoted to show how neural
networks can be applied for stock forecasting purposes, generating accurate forecasts in
several markets. A section of this chapter is dedicated to analyze the applicability of
neural networks to narrow markets.
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In chapter three it is presented an algorithm for the automated selection of technical
indicators. There is a large amount of technical indicators available with some of those
indicators generating conflicting signals. Given this large amount of indicators it is not
feasible to check all possible combinations. It is also shown empirically in this chapter that
it is possible to obtain a combination of indicators that produce more accurate trading
signals than using directly the entire set of indicators.

In chapter four a technique, based on local data, has been applied for stock forecasting
purposes. This technique is based on the idea of using historical data that best approach
the current stock situation. It has been illustrated by applying it to the Dow Jones
Industrial Index. For completeness purposes other techniques, such as neural networks,
were also used to determine a base benchmark for the technique. In this chapter it is
also show how to apply to price interval forecasting a technique that build a probability
distribution around a stock price forecast. This approach can have applications on risk
management techniques.

In chapter five it is presented a technique for the implementation of trades. After the
investor has decided to do a trade, this trade has to be executed in an adequate way, in
pursuit of a “best execution”. Factors such as not distorting the market price with an
excessive large trade (which can be potentially be divided into smaller trades) must be
taken into consideration. The proposed technique, based on forecasting and optimization,
has proved to obtain better results than the TWAP and VWAP prices in several stocks
from the Chinese Stock Market.

Finally, in chapter six the conclusions, in the form of a summary of contributions, and
some directions for future work are presented.

1.7 Publications

The list of research papers in indexed journals as well as conference papers carried out
during this dissertation are as follows:

Journal papers

• Alfonso, G.; Ramirez, D.R. A Nonlinear Technical Indicator Selection Approach for
Stock Markets. Application to the Chinese Stock Market. Mathematics 2020, 8,
1301. Impact factor 1.747, JCR ranking: Q1 (2019).

• Alfonso, G.; Ramirez, D.R. Neural Networks in Narrow Stock Markets. Symmetry
2020, 12(8), 1272. Impact factor 2.645, JCR ranking Q2 (2019).

• Gerardo Alfonso, A. Daniel Carnerero, Daniel R. Ramirez, Teodoro Alamo. Stock
forecasting using local data. IEEE Access 2021, vol.9, pp.9334-6344. Impact factor
3.745, JCR ranking Q1 (2019)
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International conference papers

• Alfonso, G.; Ramirez, D.R. Forecasting the Indian Stock Market by Applying the
Levenberg Marquardt and Scaled Conjugate Training Algorithms in Neural Networks.
CSAE 2017. The International Conference on Computer Science and Application
Engineering. Shanghai. China.

Unpublished papers

• Gerardo Alfonso, A. Daniel Carnerero, Daniel R. Ramirez, Teodoro Alamo. Receding
horizon optimization of large trade orders. Submitted to IEEE Access (2021).
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Chapter 2

Neural networks in stock prediction

This chapter is based on the following journal publication:

• Alfonso, G.; Ramirez, D.R. Neural Networks in Narrow Stock Markets. Symmetry
2020, 12(8), 1272

As well as from a conference presented at an international conference

• Alfonso, G.; Ramirez, D.R. Forecasting the Indian Stock Market by Applying the
Levenberg Marquardt and Scaled Conjugate Training Algorithms in Neural Networks.
CSAE 2017. The International Conference on Computer Science and Application
Engineering. Shanghai. China.

2.1 Introduction

A large amount [Granger, 1992, Shively, 2003, Wang et al., 2012b] of stock forecasting
techniques have developed overtime, with an increase in the number of such techniques
in recent years, as asset prices became easily available and computer power, not only
significantly increased, but also became more affordable. Among the different quantitative
and machine learning techniques applied to stock forecasting, one of the most popular are
neural networks [Zhang et al., 1998,Zhang and Suganthan, 2016,Cao et al., 2018,Refenes
et al., 1994, Ballings et al., 2015, Kanas, 2001, Lahmiri, 2016, Li et al., 2016, Li et al.,
2016,Quah and Srinivasan, 1999,Guresen et al., 2011,Moghaddam et al., 2016,Qiu and
Song, 2016,Kimoto et al., 1990,Yoon and Swales, 1991,Zhang, 2007,Naeini et al., 2010,Chen
et al., 2016,Qiu et al., 2020]. Neural networks are very flexible tools that do not require
any previous modeling of the underlying system. However, there is a large amount of
factors to take into consideration when building a network. Among these, the most
important basic characteristics necessary to define a neuronal network are, the number
of neurons and layers and the learning algorithm (supervised learning), that will be used
to train the network. Artificial neural networks are composed by artificial neurons that
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Figure 2.1: Typical Artificial Neuron. Where I1 to Ii are the inputs, W1 to Wi the related
weights, b1 the bias and Out the output.

are mathematical expression inspired on the function of biological neurons. A sample of a
typical artificial neuron can be seen in figure 2.1.

There are typically at least three steps when creating a neural network. In the first step
the basic network architecture is chosen. In the second step, when the basic structure is
already in place the network is trained. The training process entails some type of algorithm
that iteratively adjust the weights of each neuron in an attempt to generate forecast that
are as close as possible to the actual value. In order to do this it is necessary to have an
error function, measuring the distance between the forecasted and actual values. This
error is what the supervised learning algorithm tries to minimize. After that, in the last
step, the network is used to create forecasts from previously unseen data (set aside during
the training phase), and the forecasting accuracy is calculated. This last step is typically
done to avoid the issue of over-fitting which can cause the network to generalize poorly or,
in other words, perform poorly when applied to new (unseen) data.

The remaining of the chapter is organized as follows: section 2.2 presents a brief review
of the training algorithms used in the chapter. The application of neural networks to stock
forecasting in narrow markets is discussed in section 2.3. Finally, section 2.4 presents the
application of neural networks to forecast one of the main indexes of the Indian stock
market.

2.2 Training Algorithms

The choice of the learning algorithm as well as the number of neurons used can have a very
significant impact on the results. In this section a very brief description of the training
algorithms used for the neural networks is shown. All of them are well-known algorithms
with applications in several areas. All the actual implementation of the algorithms used in
this chapter are those of the Matlab Neural Network Toolbox, so, for clarity purposes, its
notation and acronyms are followed.
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Quasi Newton back propagation

The quasi Newton (BFG) [Dennis Jr and Schnabel, 1996] is a powerful and relatively fast
training algorithm as it skips the exact computation of the second derivatives that it is
necessary in the Newton’s method. The objective is to minimize a performance index,
f(X), which measures forecasting accuracy as a function of X, the network bias and
weights. The basic rule to iteratively adjust the value of X is

Xi+1 = Xi − γi
Hi

∇f(xi)
, (2.1)

where the parameter γi is selected to minimize the performance along the search direction,
Xi are the weights and bias at iteration i, Hi is an approximate Hessian of f(Xi) and
∇f(xi) is its gradient [MathWorks, 2010].

Conjugate gradient

Conjugate gradient methods, are popular training algorithms that update the weights
according to the basic rule

Xi+1 = Xi + γidi, (2.2)

where γi plays the same role as in BFG method and di is a vector in the direction of the
gradient, which is in turn updated according to

di = −∇f(Xi) + φidi−1,

being φi a constant with a different value depending on the conjugate gradient method
considered. In the case of the Fletcher Reeves (CGF) algorithm [Al Baali, 1985] the scalar
φ is calculated as

φi =
∇fT (Xi)∇f(Xi)

∇fT (Xi−1)∇f(Xi−1)
. (2.3)

On the other hand, in the case of the [Khoda et al., 1992,Zhang et al., 2006] Polak Ribiere
(CGP) variant the parameter is computed using

φi =
(∇f(Xi−1)−∇f(Xi−2))T∇f(Xi)

∇fT (Xi−1)∇f(Xi−1)
(2.4)

Another of the conjugate gradient variant, and more complex, is the Fletcher Powell (CGB)
algorithm [Powell, 1977]. Powell describes the idea as automatically resetting the search
direction (restart) and it is done according to some conditions on the orthogonality of the
gradient at successive steps. First, the algorithm uses a test to determine when to reset,
i.e., the reset is performed if

|∇fT (Xi−1)∇f(Xi)| > 0.2||∇f(Xi)||2. (2.5)
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If this condition hold, the search direction is reset to the negative of the gradient. Second,
the search direction is computed from the negative gradient, the previous search direction,
and the last search direction before the previous reset.

Gradient Descent

Gradient decent algorithms are among the most popular training techniques for neural
networks due to their relative simplicity, and they use the gradient as the main component
for the changes in each iteration. Three different types of gradient descent algorithms are
used in this chapter. The first one was the gradient descent with momentum (DM), as
implemented by Matlab function. This algorithm adds momentum considerations in an
attempt to avoid the issue of local minima. The rule to compute dXi, i.e., the change of
Xi is

dXi = midXi−1 + li(1−mi)
∇f(Xi)

dXi

, (2.6)

where li and mi are respectively the learning rate and the momentum constant. The
momentum constant, which is in the [0, 1] range, is used as the pole of a low pass filter
that allows the network to ignore small changes in the performance function, thus avoiding
local minima. The learning rate on the other hand is increased as long as the performance
function decreases and decreased if it increases.

Another training algorithm used was the gradient descent with adaptive learning
(DA) variant. In this approach the learning rate is dynamically adjusted, taking into
consideration the accuracy of the forecasts in each iteration. The resulting updating rule is

dXi = li
∇f(Xi)

dXi

, (2.7)

where li is the learning rate which is adjusted to higher values as long as the performance
function decreases and decreased otherwise.

A third variant used was a combination of the previous two. This method is called
gradient descent with momentum and adaptive learning (DX) and its update rule is

dXi = midXi−1 + limi
∇f(Xi)

dXi

, (2.8)

which can be seen as a rule that combines both the momentum and adaptive learning
concepts of the previous rules.

Other methods

Other methods, such as the Levenberg Marquardt (LM) approach, have been also used
in this chapter. This is a relatively simple approach with moderate computational
requirements. The basic rule to iteratively update the weights and bias is

Xi+1 = Xi + (JTJ + µiI)−1JT ξ, (2.9)
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where µi is a parameter which is adjusted to ensure that the performance function decreases
at each iteration, J is the Jacobian of f(Xi) and ξ is the network error. When the µi is
zero, the algorithm is equivalent to Newton’s method. When µi is large, the update is that
of gradient descent with a small step size. Newton’s method is faster so the parameter µi is
decreased after each successful step (the performance function decreases) and is increased
only if the update would increase the performance function. In this way, the performance
function always decreases at each iteration of the algorithm.

Another method used was the [Battiti, 1992] Secant approach (OSS). This is a frequently
used technique in which the iterative change in values is dictated by a function of the
current gradient and the gradient in the previous iteration. In this approach the update
rule is

dXi = −∇fi(Xi) + κAdXi−1 + κB (∇f(Xi)−∇f(Xi−1)) , (2.10)

where κA and κB are constants.

The last technique used was resilient backpropagation (RP). This is another frequently
used training algorithm in which the update at each iteration is defined by

dXi = ∆XT sgn(∇f(Xi)), (2.11)

where sgn denotes the signum function. At each iteration the elements of ∆X are modified.
If an element of the gradient changes sign from one iteration to the next, then the
corresponding element of ∆X is decreased by a predefined amount. Conversely, those
elements of the gradient that maintain the same sign from one iteration to the next,
indicate that the corresponding element of ∆X must be increased by another predefined
amount.

2.3 Neural networks for stock forecasting in narrow

markets

A narrow stock market can be defined in several ways. Narrow markets tend to be
defined in the literature in the sense of a thin market, or in other words markets with
low liquidity. It should be noted that in the context of this dissertation, narrow market
is understood as, not only, encompassing relatively illiquid markets but also markets
that, while having relatively ample liquidity might present significant price distortions
due to structural factors, such as having a large percentage of the traded volume done
by individual investors, making price discovery more difficult1. An example of a thin,
or in this context context narrow, market could be the equity market in Switzerland.
Switzerland has a very large, particularly when compared to its overall GDP, financial
sector but its domestic stock market is relatively small. Bruand [Bruand and Gibson-Asner,

1In fact, markets with a large proportion of institutional investors are usually considered as reflecting
prices in a more rational way than in markets were the predominant investors is retail. The underpinning
of this idea is that institutional investors have better information and more training and, hence, would
make, on average, more reasonable investment decisions.
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1998] selected this market as representative of a thin market2. In this chapter moderately
narrow markets such as the one in Switzerland and very narrow markets, for instance
Namibia are analyzed separetely. There is ample existing literature describing the use of
neural network as a forecasting tool in deep stock markets. Narrow stock markets, perhaps
because they tend to be located in less developed economies, have attracted considerably
less academic research. Having tools that can generate acceptably accurate stock forecasts
can be useful for the development of the stock market in those narrow markets. In turn,
the development of the stock market can also potentially help the development of the
economy of that country. Therefore, it seems of importance to analyze if well-known
techniques, such as neural networks, are actually applicable for stock market forecasting
purposes on narrow markets.

One of the objectives of this chapter is to get a better sense of the feasibility [Wang
et al., 2011], under relatively realistic assumptions, of the applicability of neural networks
as a forecasting tool in narrow markets. Even in this type of narrow market, it will showed
that neural networks are robust enough to generate relatively accurate forecasts. The
forecasts obtained in this type of market were comparable to those of deeper market
but, at least in most cases, of moderately lower accuracy. These results are consistent
across a wide range of learning algorithms and other network features such as the number
of neurons. However, practical considerations such as potentially suboptimal trading
infrastructure and stale prices should be taken into considerations.

It should be taken into account that some of the most narrow markets might have
stale prices. The reason is that some quoted prices are not representative of an actual
trade in the day analyzed but of trades on previous days as there was no or very little
trading activity on the day analyzed. For instance, data providers companies might use
the latest price traded for that stock, even if in the day analyzed that security did not
actually traded. Similarly, it is possible that there is only a very small trade, perhaps
by a limited amount of retail investors. This type of trade would generate a misleading
price, particularly for an institutional investor trading relatively large amounts. Stale
prices might cause the price level of the index to have an estimated volatility lower than
its real volatility as a frequently used measure of the volatility of the stock is the standard
deviation of the price of the stock. If the stock is not traded for a period of time, i.e., a
few days, and the data provider uses a constant price for all those days, then the volatility
of the stock (or index) will be artificially low and not representative of the actual market
values. This should be taken into considerations when developing investment strategies.
As the price does not appear to change (stale prices) the forecast, at least on paper, might
look particularly precise but in practice the investor following an strategy based on such
forecasts might obtain undesired results.

Two important conclusions frequently cited in the literature [Barnes, 1986] regarding
thin markets are that price discovery is more difficult, as prices do not necessarily reflect
the actual price of the stock, and that thin markets are more easily manipulated than
deep markets. For instance, an unscrupulous investor with a relatively small amount
of capital could “corner the market” becoming the dominant player in a security, thus

2This paper illustrates that narrowness is something that can be changed, e.g., by introducing new
financial instruments like derivatives, that in the case of Switzerland helped in improving liquidity.

19



2.3. NEURAL NETWORKS FOR STOCK FORECASTING IN NARROW MARKETS

distorting prices. Such a type of malpractice would be much more difficult in a deep liquid
market where the investor represents just a very small part of the total traded volume
and becomes in practice, at least to some degree, a price taker. A price taker in this
context is simply an investor which trades are too small, compared to the overall market,
to impact in a material way the price of the security traded. As an example, a retail
(individual) investor might well trade a few hundred shares in a large cap stock that can
potentially have millions of shares traded daily i.e., retail investor buying a few shares of
Coca Cola. It is unlikely that such trade would impact the price. On the other hand, a
large institutional investor, such as a pension fund, mutual fun or sovereign wealth fund,
might have position on a stock worth hundreds of million of dollars. Trading in or out of
those position can, at least in principle, have a significant impact on the share price.

The question if the stock market can be forecast using techniques, such as neural
networks, using historical prices is not a trivial one, regardless if the particular market
analyzed is considered narrow or otherwise. The efficient market hypothesis, created by
Fama [Fama, 1991], supports the idea that stock prices cannot forecasted using only inputs
such as historical prices and trading volumes. One of the underlying implied assumptions
of the efficient market hypothesis is that information flows, almost immediately, as stock
prices reprice, basically, instantly reacting to all new (private and public) information. In
this context, narrow markets are particularly interesting because it is conceivable that
the information flow in narrow stocks markets, like for instance in Tanzania, being slower
and arguably less efficient than in markets, such as the United States, that have a better
telecommunication infrastructure.

Assuming that markets are not completely efficient, in which case there is no point
in using any type of stock forecasting tool, then finding tools that generate relatively
accurate forecasts is of a topic of clear importance. As previously mentioned, narrow
markets have not received the same level of interest than deeper markets, with much
less existing literature covering those markets. Nevertheless, there are some interesting
articles in the topic. For instance, [Virtanen and Yli-Olli, 1987] treated the Helsinki Stock
exchange as a thin market and tried to determine if accurate forecasts could be done.
They concluded that forecasts were doable in this thin market, obtaining better results
for a one-month time horizon than for quarterly predictions. On the other hand, [Idowu
et al., 2012] found that neural networks are applicable tool for forecasting stock prices in
the Nigerian stock market, which is an example of a narrow markets. The neural network
used in this article was a feedforward network. An example of an application of neural
network in a moderately narrow market can be found in [Mostafa, 2010]. In this article
the author analyzed the stock market of Kuwait, concluding that neural networks are an
appropriate tool for that market. Another interesting article is from [Senol and Ozturan,
2009] that analyzes the stock forecasting abilities of neural networks in the stock market
of Turkey, which is another narrow market. [Senol and Ozturan, 2009] concluded that
their results seem to contradict the efficient market hypothesis. Similar results were found
by [Samarawickrama and Fernando, 2017] in the case of the stock market of Sri Lanka.
The similarity of these papers is that they tend to analyze one specific country without
considering similarities, such as classifying countries according to their level on narrowness.
They also tend to use a relatively small number of learning algorithms, and they usually
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do not compare those results with the ones obtained in other markets, such as the US or
Europe.

2.3.1 Stale prices and data availability

Stale prices and data availability are typically not real concerns in the stock markets of
many developed economies, but some equity markets, such as Namibia, do present some
data issues. In some periods there was no, or very little, trading in the Namibian index.
This leads to the classic issue of stale price, as the quoted price might not reflect the
current “true” price but the latest transaction that might have happened on a previous
day. A related issue is when trading has occurred on a stock on that day, but the amount
traded is too small to be useful as an indication of the current price for a trade. This is of
particular importance for institutional investors that tend to trade larger amounts than
retail investors.

Stale prices are likely to produce artificially good forecasts, as the estimate for the
volatility of the stock is likely underestimating the real volatility. In Figure 2.2 the
normalized traded volume for the 2012 to 2017 period can be seen. The normalization was
done by dividing the daily traded volume in the market by the maximum traded volume
in a single day during that period. During 120 days, representing approximately 8.0% of
the days, the traded volume did not reach 0.05% of the total peak traded volume. In 401
days, accounting for 26.8% of the total days, the traded volume did not reach 0.5%.

Figure 2.3 shows an extreme example for illustrative purposes. For the three months
period from 5 January 2011 to 31 March 2011, there were four days in which there appears
an ending price level for the index but there is no recorded traded volume. It should
be noted that this period was not included in the analysis, and that it is shown only as
an example. For the majority of the other indexes the issues of stale prices and data
availability were not as apparent as in the case of Namibia.

2.3.2 Methods

In this chapter equity indexes representative of countries that are classic examples of
markets with different levels of narrowness are considered. This will range from extremely
deep markets such as the U.S., represented with the Dow Jones index, to very narrow
markets such as the Tanzanian case. These ten countries were grouped into four categories
according to the perceived narrowness of its equity capital market. Those four categories
were:

1. Very deep

2. Deep

3. Moderately narrow

4. Narrow
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Figure 2.2: Daily traded volume for the Namibian index (2012 to 2017).

Figure 2.3: Traded volume and index value for the Namibian index (5 January to 31 March
2011).

The US equity market is so large and deep that it is really on a category of its own
and was the only country selected for the very deep category. The Dow Jones index was
selected as a representative index for the US equity market. The deep category is composed
of the FTSE (UK), DAX (Germany) and CAC (France) indexes. The moderately narrow
category contains the CSI (China), IBEX (Spain) and RIGSE (Latvia) indexes. These are
vastly different markets. The Chinese equity market is one of the largest in the world with
large daily trading volumes, but it is typically associated with narrow markets because of
the high proportion of retail (individual) investors compared to other markets in which
institutional investors account for the bulk of the trading volume. The Chinese equity
market is a liquid market, but it is likely not very efficient from a pricing point of view due
to this large proportion of individual investors. The market indexes for Tunisia, Tanzania
and Namibia were included in the narrow category. A list of all the indexes is showed in
Table 2.1.
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Table 2.1: Country equity indexes

Indexes Country Abbreviation
Very deep market

Dow Jones Industrial Average U.S. DJ
Deep market

FTSE 100 Index U.K. FTSE
Deustche Bourse DAX Germany DAX

CAC 40 Index France CAC
Moderately narrow market

IBEX 35 Spain IBEX
CSI 300 China CSI

OMX Rige Latvia RIGSE
Narrow market

Tunisia Stock Exchange Index Tunisia Tusise
FTSE Namibia Namibia Namibia

Tanzania All Share Index Tanzania Tanzania

When forecasting stocks or equity indexes one of the most important factors, together
with the chosen algorithm, is deciding what input to use. In this case it was decided
to use several moving averages. Moving averages are some of the most frequently used
indicators for stock performance [Adrian, 2015,Johnston et al., 1999,Gencay and Stengos,
1998,Larson, 2007,Raudys et al., 2013] and they are easily obtained. The moving average
at any given time is just the average price over a predetermined number of previous days,
that is,

MAN(t) =
1

N

N−1∑
i=0

p(t− i) (2.12)

where p(t) is the stock price at time t. Thus, the 50 day moving average will be the sum
of the closing prices over the last 50 days divided by 50. In Figure 2.4 an example for
the RIGSE index and its 50-day, 100-day and 200-day moving averages can be seen. The
neural network inputs used are the 250 most recent values of the moving average. The
target used in the training of the network is the price to be forecasted, thus the output of
the network is the price forecast, i.e.,

p̂(t+ 1) = NN(MAN(t),MAN(t− 1), . . . ,MAN(t− 249))

On the other hand, as the forecasting accuracy will depend on the structure of the neural
network, a relatively large amount of configurations will be tested, including ten different
learning algorithms as well as varying number of neurons.

The forecasting capability of neural networks for all the previously mentioned ten
indexes, representing very deep, deep, moderately narrow and narrow markets were
estimated. Daily closing prices of the indexes for the period from 2012 to 2017 were
obtained from Bloomberg. Also different moving averages will be considered in the
experiments, thus the 50, 100 and 200 day moving averages were also computed for each of
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Figure 2.4: RIGSE index and moving averages (stock moving average (SMA)).

the previously mentioned indexes. The structure followed for the neural network consisted
of one hidden layer. The amount of neurons was increased from 10 to 100 in steps of
5. Then, the network was created using an input of one of the moving averages and the
index as the target value. The process was repeated for all three moving averages (50-day,
100-day and 200-day). Due to different randomly generated initial conditions two neural
networks with the same inputs, output and structure are likely to generate slightly different
results (forecasts). In order to account for that 100 networks were estimated for each
configuration. Each of these forecasts was regressed against the actual target. In this way
a probability distribution for the R-square value was obtained. The standard procedure
of setting aside 15% of the data for testing purposes was followed. It will be shown that
increasing the number of neurons, for most cases, did not increase the accuracy of the
forecasts. The opposite was actually true in many cases with accuracy gradually declining.
A typical outcome can be seen in Figure 2.5.

In total 10 learning algorithms were used, see Table 2.2, as a forecasting tool for the
previously mentioned ten country stock indexes. The moving average was used as an
input for the neural network (the process was repeated for all the three moving averages
considered). As previously mentioned, 15% of the data was designated as testing data and
therefore not used during the training period. The R-squared values showed in the results
are the R-squared obtained when regressing the actual value with the estimated generated
for the testing data set. This is the standard procedure to try to ensure that the trained
neural network generalizes reasonably well when faced with new data, which is a critical
step for neural networks.
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Figure 2.5: Results for CAC index (France) using the 100-day moving average (MA) and
quasi Newton (BFG) training algorithm. After a certain point, around 30 neurons, the
forecasting accuracy, measured as the R-squared of the regression between the actual and
forecasted values, decreases as the number of neurons increases.

Choosing the appropriate learning algorithm for the neural network is of clear im-
portance but it will be showed that there appear to be some general trends for all the
ten learning algorithms analyzed, supporting the hypothesis that neural networks are
actually an appropriate forecasting tool for stock prices in narrow markets. Calculating
100 networks per index and per configuration allowed for the estimation of confidence
intervals. This was done in order to avoid having results that are relatively accurate but
that can be obtained because a one off or relatively unlikely events.

As an example, in Figure 2.6 it is shown the forecasting accuracy measured as the
R-squared of the regression between the actual and forecasted values, using the OSS
training algorithm, for all the indexes increasing the number of neurons and using the
50-day, 100-day and 200-day moving averages, which are denoted in the figures as MA50,
MA100 and MA200. This analysis was carried out for all the previously mentioned 10
training algorithms. The results for all the other training algorithms can be seen in figures
A.1 to A.9 (see appendix A).

It could be also useful to compare how, given a specific configuration and choice of
moving average, would the multiple neural network perform for each country, rather than
just comparing several networks and moving averages for the same country index. In
Figure 2.7 an example of this approach can be seen. This figure showed the accuracy of
forecasts using the BFG training algorithm for all the indexes analyzed. The results for
all other training algorithms can be seen in figures A.10 to A.18.
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Table 2.2: Training algorithm and standard Matlab abbreviation

Abbreviation Algorithm
BFG Quasi Newton training algorithm
CGB Conjugate Gradient (with restarts)
CGF Conjugate Gradient Fetcher Powell
CGP Conjugate Gradient Polak Ribiere
DA Gradient Descent (adaptive learning)
DM Gradient Descent (momentum)
DX Gradient Descent (momentum and adaptive learning)
LM Levenberg Marquardt
RP Resilient backpropagation
OSS Secant training algorithm

Figure 2.6: Forecasting accuracy comparison of different moving averages using the Secant
training algorithm (OSS). After a certain number of neurons, and regardless of the index
analyzed, the forecasting accuracy of the algorithms decreases when additional neurons
are added.
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Figure 2.7: Results using BFG training per country (using the 50, 100 and 200 days
moving average).

2.3.3 Results

Of the models analyzed the best results, from a forecasting accuracy point of view, were
those using the 50-day moving average and a relatively small number of neurons, typically
10. Increasing the number of neurons in the network did not increase the forecasting
accuracy. This result was relatively consistent among most of the indexes, regardless if
they belong to very deep, deep, moderately narrow or narrow categories, as well as across
most of the training algorithms analyzed. It is noteworthy that the Namibian case appears
to be the one with the best forecasting accuracy regardless of the choice of moving average.
The results in the Namibian case, a particularly narrow market, should be taken with
caution and present some unique characteristics. The forecasts for the Namibian case
appear to be remarkably accurate, but this could be related to the stale price issue and the
accuracy hence overstated. The result in this way could appear to be very accurate but
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a practical application of such a model for trading purposes could lead to disappointing
results if the price quoted does not match the price at which a transaction can be actually
done. It is also interesting to notice that in the case of Namibia, using the Levenberg
Marquardt method the forecasting accuracy appears to increase as the number of neurons
increases, which is not the case for the vast majority of other indexes and configurations.
In this case there also appears to be no statistically significant difference between using
the 50-day, 100-day or 200-day moving averages, which is again in direct contrast with the
results from most of the other indexes.

The case of Tanzania and Spain (IBEX) are examples of typical results with the
50-day moving average generating better results than any of the other indexes analyzed
and forecasting accuracy gradually decreasing as the number of neurons increases. It
should also be noted that the forecasting accuracy of the Dow Jones index, using the
same configuration, did marginally increase when the number of neurons were increased.
Another peculiarity showed by the Dow Jones index is that the selection of the moving
average (50-day, 100-day or 200-day) did not have a significant impact on the forecasting
accuracy for most of the configurations analyzed. On the other hand, in some other cases
like the Spanish (IBEX), there is a significant difference between using one moving average
or the other. This would translate in differences in the forecasting error. As an example,
the RMSE values for the case of the IBEX and the Dow Jones are showed in table 2.3.

Table 2.3: RMSE for the IBEX and the Dow Jones using a neural network with 20 neurons.
The RMSE values showed are the average of 100 simulations for each case.

Technical indicator IBEX Dow Jones
Moving Average (50 days) 422.9 363.1
Moving Average (100 days) 576.9 385.6
Moving Average (200 days) 775.0 399.2

In this table it can be seen that there is a relatively large difference of the RMSE
obtained using the IBEX index for the various moving averages while in the case of
the Dow Jones the values of the RMSE appear to be relatively close, regardless of the
moving average used. These different behaviours highlight the importance of input variable
selection, and that forecasting performance is affected in a case dependant way. While
the forecasting accuracy is good for all the indexes, regardless if it is a narrow market or
not, there are some apparent differences with for instance moderately narrow markets,
particularly in the case of the Spanish (IBEX) and Chinese (CSI) generating for most of
the configurations analyzed slightly poorer forecasts than in the case of the other indexes.
The difference appears to be particularly large in the case of the gradient descent with
adaptive learning.

In general terms the accuracy of the training algorithms was comparable. One of the
noticeable exceptions was the gradient descent momentum that generated the worst results
among all the training algorithms used. These poor results were obtained for all the 10
indexes and regardless of the number of neurons used. All the other training algorithms
provided comparable results for the indexes regardless on the classification of the index.
All the narrow and moderately narrow markets analyzed, with the previously mentioned

28



2.4. FORECASTING THE INDIAN STOCK MARKET

caveat for the Namibian market, generated forecasts that are comparable to deep and very
deep markets.

2.3.4 Discussion

Neural networks appear to be an applicable tool for stock forecasting purposes on narrow
markets with performance that is comparable but typically lower than in deeper markets.
Forecasts in some particularly narrow markets might appear to be very accurate but that
could be related to stale prices. This phenomenon appear when the quoted price is not
representative of an actual transaction on the analyzed day but of some transaction on a
previous day. This is typically associated with illiquid markets. Besides, for this type of
extreme case, it would appear that neural networks do a relatively good job forecasting
stock performance in the countries analyzed. The 50-day moving average provided results
that were at least statistically not worse than the 100-day or 200-day moving averages for
most of the neural network configurations analyzed. In fact, the 50-day moving average
was the best choice in some of the indexes, like the CSI.

For other, deeper, markets, such as the U.S. market, there appears to be less statisti-
cally significant differences between these different moving averages regarding forecasting
accuracy. It should also be noted that increasing the number of neurons did, in most
cases, not only not increase forecasting accuracy but it decreased it. This was a general
trend observed when using virtually all of the training algorithms with basically all the
ten stock indexes analyzed. This might be related to the issue of local minima in neural
networks. As the number of neurons increases the neural network might get stuck in a
local minimum, basically losing generalization power. Therefore, an important takeaway
is that naively increasing the level of complexity of a neural networks, by adding large
amounts of neurons to the network, is not likely to translate into more accurate stock
forecasts.

The fact that neural networks appear to be applicable for stock forecasting in narrow
markets suggest that while there are clearly very big differences between narrow and deep
markets they might also share some features that allow the successful use of the same
forecasting technique, such as neural networks, in both types of markets. As previously
mentioned the flow of information is likely very different in some of the narrow markets
analyzed, with relatively poor telecommunication and trading infrastructure, compared
to countries such as the United States, but, interestingly, it appears that regardless of
these obvious differences neural networks have comparable levels of applicability, for stock
forecasting purposes, in narrow and deep markets.

2.4 Forecasting the Indian Stock Market

The Indian stock market is experiencing fast growth and has peculiarities that differentiate
it from many other stock markets, particularly those in developed markets. Given the
potential size of this stock market and the growing importance of the Indian economy it
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seemed reasonable to look at what tools provide reasonably accurately stock prices forecast.
It is of clear practical and theoretical relevance to determine which type of algorithm to
use in order to try to forecast stock market trends. In recent times there has been an
increasing interest in applying neural networks to such aim.

In this section it is shown that a neural network using as an input the closing price in
the previous day and two different learning algorithms produce accurate forecast. This
simple but efficient approach generated a one day forecasting accuracy, measured as the
mean value of R2, of [0.9952, 0.9972] for the Levenberg-Marquardt training algorithm and
[0.9965, 0.9970] for the Scaled Conjugate learning algorithm. These results were obtained
using only 10 neurons in the neural network. Increasing the number of neurons to 500
did not improve the out of sample forecasting accuracy. It actually decreased, for both
algorithms. It would seem that at least for the period of time analyzed, from 2010 to 2016,
neural networks did a reasonably good job forecasting stock prices.

In order to forecast share prices it is necessary to decide what variables to use as
inputs as well as the forecasting technique to use. In this case it was decided to use
only historical values, rather than more complex indicators derived from historical values.
On the other hand, neural networks with one hidden layer and two different learning
algorithms, Levenberg-Marquardt and Scaled Conjugate Gradient, have been chosen as
the forecasting tool.

2.4.1 Methodology

The NSE Nifty 50 index is one of the most frequently quoted stock indexes in India and it
is composed by the top 50 companies by market capitalization in the Indian stock market.
The index is owned and maintained by India Index Services Products Ltd. and according
to their data represent approximately 63% of the total free float market capitalization of
the National Stock Exchange of India (NSE). All the share prices were obtained from the
data provider Bloomberg Professional. The data consist of closing daily prices for the
NSE nifty 50 for the period from 2010 to 2016.

The closing price of the index in the previous 250 days was used as the input for
forecasting the closing price in the following day, i.e.,

p̂(t+ 1) = NN(p(t), p(t− 1), . . . , p(t− 249))

As previously mentioned the LM and Scaled Conjugate gradient were used as the learning
algorithms. The neural network built had one hidden layer. Initially the number of neurons
was set to 10. The number of neurons was then increase, in steps of initially 10 neurons,
until reaching 100 neurons. From that point onwards the number of neurons were increased
in steps of 50 neurons until reaching total of 500 in an attempt to determine the effect of
such neural network parameter in the out of sample forecasting accuracy.

The forecasting accuracy for each neural network (learning algorithm plus number of
neurons) was tested in a series of 100 tests. The objective of this process was to estimate
an average value and a 95% confidence interval for the mean value of R2 as well as of its
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volatility. As prediction is the main objective of this analysis the values R2 were calculated
for the out of sample data, i.e., the data not previously seen by the neural network. All
the calculations were performed in Matlab using the neural network toolbox.

Figure 2.8: Output from NN using LM algorithm

2.4.2 Results

The analysis was performed using the NSE Nifty 50 index. The results support the idea
that neural networks are applicable to the Indian stock market, for the period from 2010
to 2016, for forecasting purposes. At a 95% confidence interval there was no statistically
significant difference between the forecasting accuracy of a neural network with 10 neurons
using the LM training algorithm and the Scaled Conjugate algorithm (table 2.4 and 2.5)
using the mean value of R2 as the metric for comparisons. Always as the same confidence
level, the standard deviation for the mean R2 was statistically significantly lower for the
Scaled Conjugate approach than for the Levenberg-Marquardt approach. Visually, the
goodness of the model can be appreciated in figures 2.8 and 2.9. The histogram of the
error can be seen in figures 2.10 and 2.11.

As previously seen for other markets, increasing the number of neurons by an order of
magnitude did not help improving out-of-sample forecasting accuracy. In fact, for both
the Scaled Conjugate and the LM approach the mean value, at a 95% confidence level,
for the mean value of R2 was lower when using 100 neurons than when using 10 neurons.
Similarly, the value for the standard deviation of the mean value of R2 was higher for
the case with 100 neurons when compared to the 10 neurons approach for both learning
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Figure 2.9: Output from NN using scaled conjugate algorithm

Figure 2.10: Error histogram from NN using LM algorithm
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Figure 2.11: Error histogram from NN using scaled conjugate algorithm

algorithms. The forecasting accuracy of neural networks in the Indian market, during
the period analyzed, is remarkable. It is possible that as neural networks become more
popular in the future and more investors use them their value as an investment tool might
decline but at the present stage there seems to be a useful tool3. It should also be noticed
that trading costs and liquidity considerations were not included in this analysis and they
are an area of future possible work.

The sensitivity of the approach was also studied increasing the number of layers. The
number of layers was increased from 1 to 50 with each layer containing 10 neurons. In
figure 2.12 it can be seen that the after certain number of layers the RMSE increases
substantially. This is most likely related to the issue of overfitting. Due to the rapidly
increasing magnitude of the RMS the first section of figure 2.12 (roughly from 1 to 12
layers) appears roughly flat while in fact there was a clear tendency for the error to increase
as the number of layers increased. In order to show this visually a zoom of the first section
of the graph was also presented. In this zoom it can be clearly be seen that the RMSE
appears to increase as the number of layers increases.

It is also important to consider the computational time required for each of the different
neural networks analyzed. In figure 2.13 it can be seen the time required for the neural
network to generate estimations for the Nifty 50 index as the number of layers is increased.
As expected, the general trend is for the time to increase as the number of layers increases.

A characteristic of neural networks is that they are initialized with a random set
of initial weights. This random initialization can have a very significant impact on the
training process as well as on the accuracy of the forecasts. For instance it is likely that, by
chance, one random weight initialization might lead to a better (more accurate) forecast)

3From market efficiency considerations, as the number of investors that use a forecasting tool rises, the
tool’s capability for exploiting the market inefficiencies decreases.
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Table 2.4: R2 values using LN training (95% confidence)

N. of neurons mean R2 σ R2

10 [0.9952, 0.9972] [0.0043, 0.0056]
20 [0.9961, 0.9988] [0.0058, 0.0076]
30 [0.9944, 0.9978] [0.0073, 0.0095]
40 [0.9821, 0.9950] [0.0277, 0.0361]
50 [0.9700, 0.9830] [0.0280, 0.0364]
60 [0.9648, 0.9689] [0.0088, 0.0115]
70 [0.9631, 0.9695] [0.0138, 0.0179]
80 [0.9945, 0.9777] [0.0714, 0.0930]
90 [0.9345, 0.9709] [0.0783, 0.1019]
100 [0.9233, 0.9779] [0.0783, 0.1019]
150 [0.9256, 0.9781] [0.1129, 0.1470]
200 [0.9178, 0.9832] [0.1406, 0.1831]
250 [0.9211, 0.9648] [0.0940, 0.1224]
300 [0.9137, 0.9678] [0.1163, 0.1515]
350 [0.8801, 0.9457] [0.1410, 0.1837]
400 [0.8715, 0.9356] [0.1378, 0.1795]
450 [0.8706, 0.9224] [0.1140, 0.1450]
500 [0.8679, 0.9314] [0.1365, 0.1778]
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Figure 2.12: Output error from NN using scaled conjugate algorithm (includes a zoom of
the results from 1 to 12 layers)
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Table 2.5: R2 values using Scaled Conjugate training (95% confidence)

N. of neurons mean R2 σ R2

10 [0.9965, 0.9970] [0.0010, 0.0014]
20 [0.9974, 0.9982] [0.0016, 0.0022]
30 [0.9921, 0.9961] [0.0080, 0.0112]
40 [0.9903, 0.9945] [0.0084, 0.0118]
50 [0.9888, 0.9917] [0.0058, 0.0081]
60 [0.9838, 0.9912] [0.0148, 0.0207]
70 [0.9822, 0.9856] [0.0068, 0.0095]
80 [0.9850, 0.9901] [0.0102, 0.0143]
90 [0.9816, 0.9899] [0.0166, 0.0232]
100 [0.9845, 0.9890] [0.0098, 0.0130]
150 [0.9753, 0.9881] [0.0256, 0.0359]
200 [0.9777, 0.9854] [0.0154, 0.0216]
250 [0.9759, 0.9833] [0.0148, 0.0207]
300 [0.9619, 0.9845] [0.0452, 0.0633]
350 [0.9532, 0.9732] [0.0400, 0.0560]
400 [0.9552, 0.9711] [0.0318, 0.0445]
450 [0.9555, 0.9728] [0.0346, 0.0484]
500 [0.9432, 0.9632] [0.0400, 0.0560]

just by random luck. It is also likely that some random initialization might lead to less
accurate forecasts as well as more computational time. This random behavior can be seen
in figure 2.13. While the trend is clear, suggesting that the computational time increases as
layers are added, there is also a random component that generate for some neural network
architecture particularly high computational time (higher than for neural networks with
higher number of layers).

For this application it would appear that increasing the number of layers does not only
increase the required computational time but it also does not improve the accuracy of
the forecast. Furthermore, it also appears that the accuracy of the forecast decreases as
the number of layers increases. It is likely that this is related to the issue of overfitting.
Overfitting might occurs when there is an excessive large amount of neurons or an
excessively complex neural network which is unable to properly extrapolate the model
generated using the training data when faced with new (unseen) testing data.
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Figure 2.13: Neural network training time vs. number of layers
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Chapter 3

A technical indicator selection
approach with application to the
Chinese stock market

This chapter is based on the following journal publication:

• Alfonso, G.; Ramirez, D.R. A Nonlinear Technical Indicator Selection Approach for
Stock Markets. Application to the Chinese Stock Market. Mathematics 2020, 8,
1301.

3.1 Introduction

Trend indicators are quantitative time series, typically related with historical prices or
trading volumes, which are used as a tool for forecasting future stock prices. The basic
idea of using technical trend indicators is investing in a systematic way based on some
quantitative rules. This is a rather different approach from traditional investment. In
traditional stock investment the investor picks a company which he/she thinks that have
strong fundamentals and it is going to outperform. This typically involves longer investment
time horizon as the stock prices moves to some value that the investors considers as the
objectively true value of the stock [Wafi et al., 2015]. Such assumptions are not made
in technical trading. Technical trading is based on finding typically short term trends in
the stock market. This is hence typically related to short term, rather than long term,
investment. Some scholars, such as [Lo et al., 2000, Bettman et al., 2009, Wong et al.,
2003,Chong et al., 2014] have found that technical indicators provide investment value
but there seems to be no strong consensus. Over the years investors have found a large
amount of indicators ranging from simple moving averages [Chitra, 2011] over a specific
period of time to more exotic and complex indicators [Khaidem et al., 2016]. Some of
the common features found in these indicators are that they tend to use historical prices
as well as in some cases historical trading volumes. The implied assumption is that, at
least to some degree, historical performance can be used to forecast future stock prices.
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It should be noted that, as mentioned in the context of the market efficiency hypothesis,
there is not a wide consensus in agreeing with such an assumption.

Over the last few decades there has been an increase in non-linear forecasting techniques,
such as for instance neural networks. The non-linearity of the stock market performance
has been mentioned by many researchers such as for instance [Vrbka and Rowland, 2017].
In fact, the non-linearity of the stock market was one of the reasons behind choosing
neural networks (a non-linear approach) by [Vrbka and Rowland, 2017] as a model to
forecast stocks prices in Prague Stock Exchange. In this paper the authors successfully
applied multilayer perceptron and radial basis networks to that particular stock market.
The nonlinearity of these models makes the choice of the input variables an even more
important question than in the case of linear models. Thus, the impact of the selection of
technical indicators in the forecasting performance is something that must be considered.

An important development in recent years is the very large increase in data available
in many disciplines. It is relatively frequent to have a high number of variables that can
potentially have an impact in non-linear processes, see [Guyon and Elisseeff, 2003]. There
is substantial research covering the topic of variable selection using linear methods, such
as for instance [Hocking, 1976], but these techniques might not be ideal when intended
for non-linear modelling. There is relatively little literature covering the issue of variable
selection of non-linear processes from a combinatorial approach. The basic assumption
is that in non-linear processes the way in which different independent variables interact
with each other can be highly complex. Identifying which combination of variables work
better for a non-linear problem is clearly not trivial, see [Yuan and Lin, 2006]. There
are some interesting methods, such as for instance [Rech et al., 2001], using polynomial
approximation. The drawback of this type of approach is that it is only applicable when
there is a relatively small number of variables. On the other hand, [Ye and Sun, 2018]
proposed an iterative method in which starting from all the variables considered one,
of the variables is dropped and the resulting set of variables is used, using neural networks,
and then the results compared.

The stock market, as many other fields, has seen a large increase in the number of
data available. More specifically, many researchers and practitioners have developed large
amount of technical indicators. Getting into the details of these indicators is beyond the
scope of this chapter but it is important to mention that they are typically constructed
using historical data such as for instance the closing price of a stock. A moving average is a
well-known technical indicator [Qin et al., 2014,Glabadanidis, 2015,Bruni, 2017,Stanković
et al., 2015,de Souza et al., 2018,Lin, 2018,Wang and Kim, 2018]. A simple moving average
can be constructed as the average of the closing price of a certain stock or index over a
certain period of time. There are multiple different technical indicators and strategies based
on those indicators with diverse levels of profitability [Brown and Jennings, 1989,Gencay,
1998,Bokhari et al., 2005,Park and Irwin, 2007].

The issue of technical indicator selection is immediately posed when facing the task of
finding a good strategy for stock price forecasting. As stated in chapter 2, neural networks
are a very popular tool for such task. One of the frequently mentioned drawbacks of neural
networks is the issue of local minima [Baldi and Hornik, 1989,Gori and Tesi, 1992,Bianchini
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et al., 1994,Yu and Chen, 1995] which can cause the neural network to generalize poorly or
in other words, generate poor forecast when faced with new data. In this regard there has
been a focus on reducing the dimensionality of the data to avoid having the neural network
stuck in this local minima [Hinton and Salakhutdinov, 2006,Wang et al., 2012a,Becker
et al., 2020,Kiarashinejad et al., 2020,Breger et al., 2017]. A strategy focused on finding
the combination of technical indicators with the best forecasting accuracy would be very
useful in this context.

In this chapter it is proposed a combinatorial approach for variable selection applied
to stock market technical indicators. Given the number of possible technical indicators
that are available today, is clear that not all possible combinations can be tested. A pool
of 35 technical indicators is used, so the number of possible combinations is staggering.
Because of that the proposed approach resorts to randomization. The algorithm starts
by generating a preset number of combinations each with a size of half the number of
available indicators. The reason for using such size is because the maximum number of
combinations for a given n and k, that is the binomial coefficient n choose k, is attained for
k = bn

2
c. This is evident by inspecting the Pascal’s Triangle, but can be proved using the

properties of the Newton binomial. From this initial set of combinations, new combinations
are generated randomly retaining the best ones in an iterative process that ends when the
stop condition is met.

The proposed method is shown to improve the baseline approach, that is using all
the available indicators, when applied to the task of predicting market trends. As a case
study for the proposed method, this chapter focuses on the Chinese stock market. China
stock market is a very dynamic and of increasingly importance due to the economic grow
of China. The most relevant Chinese stock indexes have been considered. The strategy
described in this chapter has obtained good results and better combinations of technical
indicators have been identified for such indexes.

The remaining of the chapter is organized as follows: Section 3.2 presents the proposed
approach. Section 3.3 shows the application of the proposed approach to the China stock
market. Finally, the results are discussed in Section 3.5.

3.2 Technical Indicator Selection Approach

Let X i
T (t) be tuple of T values of the i-th technical indicator from a pool of up to N

nonlinear technical indicators computed at the time period t (usually the time period is
measured in days, but could be weeks, months or whatever), such as for instance a moving
average:

X i
T (t) = {X i(t− (T − 1)), X i(t− (T − 2)), ..., X i(t)}, (3.1)

where X i(t) is the value of the i-th technical indicator evaluated at time t.

Let RT (t) be a vector that groups the direction of the change of the price of a stock
or index, in the period from t− (T − 1) to t, that is RT = {0, 1}T with 0 meaning that
the stock increases or remains constant at the end of a period, 1 meaning otherwise.
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Additionally, let φ̂ define a nonlinear mapping from X i
T (t) to RT (t)

φ̂(X1
T (t), X2

T (t), . . . , XN
T (t)) = R̂T (t), (3.2)

where R̂T (t) is an estimation of RT (t). In order to guarantee that an estimator φ̂ can be
found is necessary to assume the following:

Assumption 2 (Ground truth function existence). It is assumed that, φ, a mapping from
X i
T (t) to RT (t) exists.

Technical indicators in the stock market can produce contradictory signals and some
non-linear techniques can have local minima issues when using high dimensionality input
variables, (large N or T value). Therefore it might be convenient to find a combination of
the technical indicators X i

T rather than using all N available indicators. A combinatorial
selection approach for technical indicators, which do not have to be linear variable
combination in non-linear processes, is presented.

The steps are as follows:

1. Split the available instances of X i
T (t) and RT (t) data into two subsets, an estimation

subset Se , {X i
T,e(t), RT,e(t)} and a validation1 subset Sv , {X i

T,v(t), RT,v(t)}.

2. Generate Cs, a set of M combinations of bN
2
c random numbers in the range

{1, 2, . . . , N} denoted from i1 to ibN
2
c. Check for repetition within each combi-

nation. If there is repetition, leave out the repeated numbers and keep generating
random numbers in the aforementioned range until there is no repetition. Simi-
larly, check that there are no repeated combinations and proceed to replace the
redundant ones.

3. For each of the M combinations in Cs, denoted as I ∈ Cs, perform the following steps:

(a) Compute φ̂, i.e., the estimated non-linear classification mapping, using any
technique of choice. In this case, the nonlinear mapping will have as arguments
X i
T (t),∀i ∈ I. Using neural networks as an example, this step involves training

a neural network with the training data set {X i
T,e(t), RT,e(t)} with i ∈ I.

(b) Evaluate φ̂ over the validation set. Let R̂T,v denote the estimated classification
output of RT,v.

(c) Calculate the error ξT (t) of the non-linear classification approach for each
instance in the validation set, so that

ξT (t) =

{
0 if R̂T,v(t) = RT,v(t),

1 Otherwise

with the resulting total error being:

ξTotal =

∑
∀t∈Sv ξT (t)

card(Sv)
, (3.3)

1To keep the notation as clear as possible here the term validation is used with the meaning of test
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where card(Sv) denotes the cardinality of Sv. This is therefore the total error
for the initial random combination of technical indicators chosen in step 2.

(d) Randomly generate a single value ia ∈ {1, 2, ..., N} that would denote a technical
indicator candidate to be added to the combination chosen in step 2. Check
for repetition with the previously generated N

2
values. If there is repetition,

randomly generate another value ia. Repeat this step until there is no repetition.

(e) Randomly generate a single value ir ∈ {i1, . . . , iN
2
}. This value will be used

later to denote a technical indicator to be removed from the combination chosen
in step 2.

(f) Form a new combination of technical indicator indexes Iup as Iup , I ∪ {ia}.
In the same fashion, form a new combination Idown as Idown , I −{ir}. If some
of these combinations are already in Cs repeat either step 3d or 3e until a
combination different from those of Cs is obtained.

(g) As in step 3a, compute two new mappings, denoted φ̂up and φ̂down using this case
as inputs arguments the technical indicators given by the index combinations
Iup and Idown respectively.

(h) As in step 3c compute the resulting total error of evaluating the two mappings
computed in the previous step over the validation set. Denote these total errors
as ξTotalup and ξTotaldown .

(i) Given the three previous index combinations I, Iup, Idown and their resulting
total errors ξTotal,ξTotalup and ξTotaldown pick the two combinations with the smallest
error.

(j) Substitute the initial combination I by the two combinations picked in the
previous step. This will double the number of combinations in set Cs, i.e., Cs
will contain 2M combinations after this step.

4. Retain the M combinations in Cs with the smallest error and discard the remaining
M combinations with greatest error.

5. Find the minimum ξTotal of all the combinations I ∈ CS.

6. Repeat step 3 starting from 3d until a certain stop condition is met. Here it is
proposed to check if a certain objective error is achieved or a maximum number of
iterations is met, so that an infinite loop is avoided.

Remark 1. This strategy can be easily parallelized as the tasks in step 3 can be done
independently for each combination, hence can be done in parallel, with one exception.
The latter part of step 3f, that is the rejection of repeated combinations, cannot be done in
parallel and must be done sequentially in a separate step outside of step 3.

Remark 2. The number of combinations in Cs, that is M , and the number of iterations
are related in the sense that similar performances can be achieved by using a greater M
and fewer iterations or vice versa. Besides the differences in performance due to the
randomized nature of the proposed strategy, a practical difference can lead to one choice
or the other. With a greater M one can exploit the parallelizable nature of the algorithm,
whereas in the case of a high number of iterations that cannot be made.
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To illustrate the proposed approach consider a simple example with just two combina-
tions (i.e., M = 2) and one iteration. If for instance, it is assumed that there are a total of
6 technical indicators to choose from, i.e., {X1

5 , X
2
5 , X

3
5 , X

4
5 , X

5
5 , X

6
5}, where the sub-index

5 means that each of the indicators are evaluated over five periods of time. There is also a
related classification vector R5 identifying up and down movements in the stock at each
time t (in this case R5 ∈ {0, 1}5). First, the algorithm selects randomly 2 combinations of
3 initial technical indicator indexes. For example:

Cs = {I1, I2} = {{3, 5, 6}, {1, 2, 3}}

Then the non-linear classification error is estimated for this configuration; let us assume that
the obtained value is (with a slight abuse of notation the parameters of each combination
will denote in this example the set of the parameters of both combinations):

ξTotal = {0.6, 0.5}

Then the indexes ia and ir are computed for each combination:

ia = {1, 4} ir = {6, 2}.

The addition of the new technical indicator index is done randomly, ensuring that there
is no repetition, i.e., each input variable (technical indicator) is used only once. The index
removed is also computed randomly. Then the combinations Iup and Idown are formed:

Iup = {Iup1 , Iup2 } = {{3, 5, 6, 1}, {1, 2, 3, 4}}

Idown = {Idown1 , Idown2 } = {{3, 5}, {1, 3}}

Note that in every combination generated so far no index is repeated and that there are
not repeated combinations. Once the new combinations are formed, their total classifying
errors are computed:

ξTotalup = {0.7, 0.3}

ξTotaldown = {0.4, 0.2}

ξTotal = {0.6, 0.5}

For every combination in Cs two combinations (from I, Iup and Idown) with the smallest
error are chosen. From the first combination, Idown1 and I1 are chosen. On the other hand,
from the second combination Iup2 and Idown2 are chosen. Therefore, the augmented Cs will
consists of:

Cs = {Idown1 , I1, I
up
2 , Idown2 }

with their errors:
ξ = {0.4, 0.6, 0.3, 0.2}
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The combinations are ordered using the error as sort criterion:

Cs = {{Idown2 , Iup2 , Idown1 , I1}

ξ = {0.2, 0.3, 0.4, 0.6}

Now the numbers of combinations can be reduced to its original number (M = 2)
picking the two with the smallest error:

Cs = {{Idown2 , Iup2 }

with errors:
ξ = {0.2, 0.3}

Then at the end of this first iteration the algorithm would pick the combination
Idown2 as the best technical indicator combination, as it has the lowest error (0.2). Thus,
the technical indicators proposed to forecast the direction of the change of price will be
{X1

5 , X
3
5}.

In practice, the number of combinations and iterations will be determined by the
computing power available. The process thus will be repeated until a stop criteria is
reached (that is, a maximum number of iterations or a target classification error).

3.3 Chinese Equity Market Application

Data and Methodology

The Chinese equity market is an increasingly important market propelled by the large
economic expansion of the Chinese economy over the last few decades. The Chinese equity
market is divided into two major stock exchanges. The Shanghai and the Shenzhen Stock
Exchange with several major stock indexes describing the performance of those markets.
It should be noted that there is no overlap between the Shanghai Stock market and the
Shenzhen stock market i.e., there are no companies listed in both markets simultaneously.
There are two main type of stocks. A-share and B-share. A-share is the main type of stocks
while B-share are stocks that were originally created to allow foreign investors participate
in the China onshore equity market. There hasn’t been any new IPO in the B-share in
recent years and it is unlikely that there will be any in the future as it is a market been
phased out. Therefore, it seem reasonable to focus the analysis on the A-share market. 6
different stock indexes describing the Chinese stock were used.

These indexes reflect a wide spectrum of the Chinese equity market including small,
large and medium caps. For example, the A50 is one of the most frequently used indexes
for Chinese large cap stocks while the CSI 800 is a mid to small cap index describing
companies listed in mainland China. For completeness purposes, and to limit some form of
regional bias in the results, other international (non-Chinese) stock indexes (see Table 3.1)
such as the Euro Stoxx 50, which is a frequently used index to describe the equity market
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Table 3.1: Stock indexes.

Indexes

A50 FTSE China A50 index composed of
the largest Chinese companies.

CSI 300 Largest 300 companies listed in
the Shenzhen and Shanghai Stock Exchanges

CSI 800 Largest 800 companies listed in
the Shenzhen and Shanghai Stock Exchanges

Shanghai Composite Index composed of all the stocks
listed in the Shanghai Stock Exchange

Shenzhen Component Index composed of the largest 500 companies
in the Shenzhen Stock Exchange

SSE 50 Index composed of the largest 50 companies
in the Shanghai Stock Exchange

Euro Stoxx 50 Index composed by 50 of the largest companies
from 11 Euro zone countries

New York Composite Index composed of all the stocks listed
in the New York Stock Exchange

in Europe, and the New York Composite index which I used as a representative of the
equity market in the United States were also used.

As described in the previous section the selection approach is used to forecast the
direction of the movement of the stock index (up or down) in the next time period rather
than the exact end price for that period. Daily closing prices for all the indexes mentioned
in Table 3.1 were collected from the Bloomberg database for the period from 14 February
2007 to 30 March 2020. The returns of those index can be seen in Figure 3.1. Positive or
zero returns will result in an RT value of 0 and 1 otherwise.

The proposed approach was used to identify an appropriate combination of technical
indicators trying to describe the performance of the equity market. Stock technical
indicators are indicators typically based on historical performance of the stock as well as
the traded volume of that stock. There is an ever increasing amount of technical indicators
in the existing literature which can generate contradictory signals. 35 commonly used
stock technical indicators (see Table 3.2) extracted from the database Bloomberg were
used.

There is a very large amount of technical indicators ranging from simple moving
averages (see figure 3.2) to proprietary indexes in which the actual algorithm describing
the indexes is not publicly disclosed. It is also common to add volume information (see
figure 3.3) as high or low volume can give an indication of possible stock price movements.

In figure 3.2 it can be seen that the moving average acts as a smoothing of the actual
stock price. The longer the time frame for the moving average the smoother output that
this technical indicator will generate. It is common to use more than one moving average.
The intuition behind this approach is using different time windows as indicators for mid
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Figure 3.1: Returns of the indexes (measured in percentages).
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Table 3.2: Technical indicators. Ct denotes the current price and Lt and Ht are the
minimum and maximum prices in period t and MA means moving average. The exact
formulas for some of the indexes are proprietary with the indicators for specific stocks
obtainable from databases such as Bloomberg. Source: Blomberg, Kim [Kim, 2003].

N Indicator Description

1 SMAVG (50) 50 days simple MA.
∑49

i=0 Ct−i

50

2 SMAVG (100) 100 days simple MA.
∑99

i=0 Ct−i

100

3 SMAVG (200) 200 days simple MA.
∑199

i=0 Ct−i

200
4 Volume Total traded volume

5 Stochastic %K (14-day)
Ct−min(Lt−n,∀n∈{1,...,14})

max(Ht−n,∀n∈{1,...,14})−min(Lt−n,∀n∈{1,...,14})

6 %D (3-day) 3 days MA of stochastic %K.
∑2

i=0Kt−i

3

7 %D (5-day) 5 days MA of stochastic %K.
∑4

i=0Kt−i

5

8 Slow %D (3-day) MA of the 3 days %D.
∑2

i=0Dt−i

3

9 Slow %D (5-day) MA of the 5 days %D.
∑4

i=0Dt−i

5
10 Momentum (10-day) Change in price over a 10 days period. Ct − Ct−10

11 Moving average (5D) 5 days MA of 10-day Momemtum.
∑4

i=0Mt−i

5
of Momentum (10-day)

12 ROC (daily) Change in price in % over 1 day period. Ct
Ct−1

100

13 Moving average (5D) of ROC 5 days MA of ROC.
∑4

i=0 ROCt−i

5

14 Williams (14) 14 days Williams’ indicator.
max(Hn,∀n∈{1,...,14})−Ct

max(Hn,∀n∈{1,...,14})−min(Ln,∀n∈{1,...,14})
15 A/D oscillator Accumulation distribution indicator.

Ht−Ct−1

Ht−Lt

16 MA (5) 5 days moving average.
∑4

i=0 Ct−i

5

17 MA (10) 10 days moving average.
∑9

i=0 Ct−i

10

18 Disparity 5 Ct
MAt

19 Disparity 10 Ct
MAt

20 OSCP MAt−MAn
MAt

21 CMCI (13)
(Ht+Lt+Ct)/3−

∑
(Ht−i+1+Lt−i+1+Ct−i+1)

3n

0.015(

∑
|Ht−i+1+Lt−i+1+Ct−i+1−

∑
((Ht+Lt+Ct)/3)|

n

)

22 RSI (14) on Close Relative strength index. 100− 100

1+ Average up
Average down

23 MA (250) 250 days simple MA.
∑249

i=0 Ct−i

250
24 Z-score Distance in standard deviations from MA
25 AMAVG(14,2,30) Exponential MA
26 EMAVG (5) on Close 5 days exponential moving average with exponential term 2

t+1

27 TMAVG (5) on Close 5 days triangular moving average with factor t+1
2

28 VMAVG (5) on Close Variable MA with smoothing based in volatility
29 MACD(12,26) T1 exponential MA (fast) minus T2 exponential MA (slow)
30 Hurst(25) Exponential MA with mean reversion assumption.
31 FG(5) Ratio of buying and selling strength (5 days)
32 Kairi (Simple,25) Deviation of prices from its MA
33 Elder Force Index Relationship between price and trading volume movements
34 JKHL Index Relationship between new high and lows smoothed by two MA.
35 RMI(Close,14,10) Relationship between overbought and oversold levels
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Figure 3.2: 50, 100 and 200 days moving average (CSI 500 Index).

and long term performance. It also should be notice that, by definition, the moving average
will roughly follow the trend of the actual stock price. This is clearly different of other
technical indicators such as for instance, oscillators.

The Chinese equity market has a large proportion of retail investors compared to
institutional investors. Therefore it would seem reasonable to assume that indicators,
such as momentum indicators, that are related to trend following investors (like retail
investors usually are) is a reasonable technical indicator to consider. Therefore the 10-day
momentum indicator (see figure 3.4) was included in the analysis. There is a large amount
of momentum indicators available with most of them based on the idea that the market
tend to follow, at least to some degree, the recent direction. It is easy to see that this
type of technical indicator can generate a signal that it is rather different from the one
obtained from a contrarian technical indicator, which are designed to try to indicate when
an existing trend is likely to end. It seems reasonable to include both types of indicators
as the market in fact shows these two types of behaviours.

As previously mentioned there is a large amount of momentum indicators, being some
of the basic distinctions among them the time frame over which the indicator is estimated.
For example, in some momentum technical indicators for daily forecasts the indicator is
built using historical data ranging from a couple of days to 300 days or even longer. Some
momentum indicators use information only about the recent minimum and maximum while
other use the entire stock prices time series for a predetermined period of time. There
is a very large amount of potential combinations that can be used to build momentum
technical indicators using historical data. The Williams indicator, seen in figure 3.5, and
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Figure 3.3: Volume (CSI 500 index).

the Relative Strength Index (RSI), seen in figure 3.6, are some other frequently used
momentum indicators included in the analysis in this chapter.

Some other technical indicators follow a completely different approach from momentum
indicators (trend following) and try to detect when a stock is overbought or oversold and
are hence defined as contrarian indicators. In figure 3.7 it can be seen one such indicator
(OSCP) that was included in the analysis. The Z-score, showed in figure 3.8, is also
typically used in stock forecasting as an indicator of the distance to typical values.

From the graphs it is clear that the behavior of some of these technical indicators are
clearly different and that can generate conflicting signals when used for stock forecasting
or trend signaling.

Another frequently used technical indicators are oscillators, such as the A/D oscillator
showed in figure 3.9. These are perhaps among some of the most frequently used technical
indicators, mentioned for instance in [Ahn et al., 2018,Ye and Huang, 2008], together with
moving averages.

Strictly speaking oscillators are a subtype of momentum indicators. The existing
literature seems to support their use, particularly in markets with a high proportion of
retail investors [Ni et al., 2015]. The idea, similarly to the case of overall momentum
indicators, is that individual investors tend to follow the direction of the market (rather
than taking contrarian views) in what is frequently called “Heard behavior” i.e., retail
investors tend to buy when they see other retail investor buying a vice versa with little
analysis regarding the future of the current trend. This type of trading can be potentially
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Figure 3.4: Momentum (CSI 500 index).

Figure 3.5: Williams (CSI 500 index).
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Figure 3.6: RSI (CSI 500 index).

Figure 3.7: OSCP (CSI 500 index).

50



3.4. RESULTS

Figure 3.8: Z-score index (CSI 500 index).

risky as the investor might buy at the peak or sell at the bottom which are clearly not
desirable outcomes.

There is also a relatively large amount of proprietary, or at least not fully publicly
disclosed, indicators such as for instance the Kairi index, the Elder Force Index and the
JKHL index. These three technical indicators can be seen in figures 3.10, 3.11 and 3.12.

The proposed approach was implemented in Matlab using neural networks as classifiers.
A total of 100 initial configurations times 2500 iterations were carried out for each index,
which translates in 250,000 neural networks per index and a total of 2,000,000 neural
networks (8 indexes). The neural networks used were back propagation classification
neural networks with one hidden layer with 25 neurons and trained with the Levenberg-
Marquardt rule. The value for the number of neurons was chosen as a result of the
preliminary sensitivity analysis on the number of neurons presented in Section 3.4.

3.4 Results

Previously to testing the proposed strategy, a preliminary sensitivity analysis on the
number of neurons has been carried out to find the most convenient number of neurons
in the hidden layer. The full set of 35 technical indicators was used, and the number of
neurons in the hidden layer was increased from 25 to 25,000 in steps of 25 neurons. Simply
increasing the number of neurons did not appear to increase the classification accuracy of
neural networks for the performance on stock index in the following period (t+ 1) (see
Figure 3.13) for any of the six indexes analyzed.
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Figure 3.9: A/D Oscillator (CSI 500 index).

Figure 3.10: Kairi (CSI 500 index).
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Figure 3.11: Elder Force Index (CSI 500 index).

Figure 3.12: JKHL Index (CSI 500 index).
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Figure 3.13: Sensitivity analysis of the error rate (using directly neural networks) as the
number of neurons is increased.
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On the other hand, Figure 3.14 shows an example of the evolution of the error rate
(misclassification of up/down days) in the training of one the neural networks. It can be
seen that training improves the fitting to the data up to a significant number of training
iterations, showing that the NN is really learning the ground truth function φ.

Figure 3.14: Example of the evolution of the error rate as the number of iterations increases.

The indicator selection approach is a combinatorial approach that can be used to select
an appropriate combination of variables in non-linear models, using techniques such as
neural networks. In the example illustrated the proposed approach was implemented in
six different Chinese stock indexes plus two world indexes.

The error rate obtained using the algorithm in combination with neural networks was
lower than the error rate obtained using directly neural networks including all the 35
available variables, see Table 3.3. The average improvement in the error rate (over all the
considered indexes) was 9.1%. It turns out that this is a very good result considering how
difficult is the task of predicting the movements of the market and the great amount of
benefits that can be realized even with a small improvement in the forecasting. Moreover,
in some of the indexes the improvement is quite high, in excess of 11% (A50, Shanghai
Composite and SSE50). A very interesting finding is that the baseline approach, that is,
considering all the technical indicators available for forecasting yields error rates greater
than 50% in some cases (A50, CSI800, Shanghai Composite, SSE 50 and Euro Stoxx
50). This means that tossing a coin produces better results than using the full pool of
indicators. The reason for that is that, as pointed out in Section 3.3, some of the technical
indicators produce contradictory signals.

The histogram indicating the frequency of appearance of the technical indicators in
the output of the algorithm for the various indexes shown in Table 3.3 can be seen in
Figure 3.15. It is evident that some of the technical indicators are picked more frequently
than others, thus they are more likely to provide better accuracy in the prediction of the
price change direction.
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Table 3.3: Classification errors (up and down index movements) of the proposed approach
using neural networks compared to the direct application of neural networks using all the
35 technical indicators.

Index Direct Proposed Improv. Combinations
(Error %) (Error %) (%)

A50 54.0 41.2 12.8 (1,2,4,6,7,10,12,13,14,15
19,21,23,25,34,35)

CSI 300 46.9 40.3 6.6 (2,3,4,7,8,11,12,13
15,19,21,25,26,29,34)

CSI 800 50.7 41.1 9.6 (2,4,5,6,9,12,13,16
17,20,22,28,30,32,33,34)

Shanghai Composite 52.3 40.1 12.2 (1,2,4,5,6,9,10,12,13,15
16,18,19,20,21,22,24,33)

Shenzhen Component 45.6 40.7 4.9 (2,4,5,8,10,12,14,19,21
22,25,28,29,30,33,34,35)

SSE 50 51.0 39.6 11.4 (1,2,3,7,9,10,11,12,20,21
22,24,25,27,28,30,32,35)

Euro Stoxx 50 50.1 41.8 8.3 (3,4,7,11,17,18,20,22
25,27,28,31,33,34)

New York Composite 47.2 40.7 9.0 (1,3,7,8,9,11,14,15,17,19
20,25,27,28,29,33,34)

Average 49.7 41.0 9.1
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Nevertheless, this does not imply that using only these more relevant indicators will
lead to a better forecasting. As an example the combination formed by the indicators with
highest frequency of occurrence in Table 3.3 and Figure 3.15, i.e., {2, 4, 12, 25, 34}, gives
an average improvement of 2.3% over the baseline approach, which is significantly worse
than that achieved by using the proposed combinations.

Figure 3.15: Histogram of the technical indicators appearance in the output of the
proposed algorithm.

Table 3.4 shows the improvement along the iterations on the algorithm. The average
improvement from the first iteration to the last was 7.1%. While this value clearly evinces
that the algorithm improves the initial combinations, a more rigorous test has been done.

A Wilcoxon test was carried out comparing the distribution of error rates obtained
in the first and last iterations for each index. The Wilcoxon test rejects the hypothesis,
for all the indexes analyzed, that the median of the error rates for the initial and final
distributions are statistically the same (Table 3.5), suggesting that the iterative process
does significantly improve accuracy.

The same approach was followed to compare the error rate using neural networks
directly (with all 35 technical indicators) with the error rate obtained using the technical
indicator selection approach (Table 3.6). The Wilcoxon test rejects the null hypothesis
that the median of the error rates obtained using these two methods are statistically
equivalent, suggesting that the proposed method statistically significantly improved the
forecasting accuracy of up/down stock index movements.

Remark 2 has been also taken into account, and the algorithm has also been used
with M = 2 and a total 125, 000 iterations which should be roughly equivalent to the
parameters used previously, that is 100 combinations and 2500 iterations. The average
improvement in this case was 8.7% which is marginally worse than that previously achieved.
The difference could be due to the lower diversity of the set of candidate solutions, but also
to the randomized nature of the strategy.
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Table 3.4: Classification errors (up and down index movements) of the selection approach
using neural networks.

Index Error Error Improvement
(Initial) % (Final) % %

A50 48.4 41.2 7.2
CSI 300 48.1 40.3 7.8
CSI 800 48.3 41.1 7.2

Shanghai Composite 46.9 40.1 6.8
Shenzhen Component 46.1 40.7 5.4

SSE 50 47.3 39.6 7.7
Euro Stoxx 50 49.7 41.8 7.9

New York Composite 47.5 40.6 6.9
Average 47.5 40.7 7.1

Table 3.5: Wilcoxon test comparing the error rate in the first and last iterations (p-values).

Index p-Value

A50 5.5467E-127
CSI 300 6.3542E-31
CSI 800 2.8497E-126

Shanghai Composite 6.4421E-115
Shenzhen Component 7.8451E-51

SSE 50 6.5487E-121
Euro Stoxx 50 4.6587E-114

New York Composite 7.6257E-112

Table 3.6: Wilcoxon test comparing the error rate using neural networks directly with all
the 35 technical indicators and the algorithm output.

Index p-Value

A50 6.7894E-172
CSI 300 5.6284E-161
CSI 800 3.5487E-155

Shanghai Composite 4.6672E-167
Shenzhen Component 3.4837E-175

SSE 50 4.45728E-156
Euro Stoxx 50 4.6524E-156

New York Composite 2.7845E-165
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The average total time per index (100 initial configurations times 2500 iterations) was
157,691 s. The calculation time for each index can be seen in Table 3.7. The calculations
were carried out in Matlab 2016 in an Intel, i5-3470, 3.2 GHz, 64 bit computer. The selection
approach requires a significant amount of computation time but it clearly is faster than
calculating all the possible combinations of technical indicators, which is for the example
presented not a feasible calculation in a normal computer.

Table 3.7: Calculation time.

Index Total Time (sec)

A50 159,132
CSI 300 177,876
CSI 800 144,195

Shanghai Composite 150,710
Shenzhen Component 169,498

SSE 50 156,739
Euro Stoxx 50 142,816

New York Composite 160,566
Average 157,691

3.5 Discussion

The proposed method can be a feasible approach, when trying to determine a combination
of variables or features to be used when forecasting the behaviour of non-linear processes.
In the particular example of the stock market, there is a very large number of technical
indicators that are intended to give the investor some indication of the future performance of
the stock. These indicators can generate contradictory signals and selecting the appropriate
combination of technical indicators can become a difficult task.

Reducing the dimensionality of the problem is also important to avoid issues such
as local minimum, that can cause poor generalization when applying techniques such as
neural networks. It is showed in this chapter that it is possible to use this approach in the
Chinese stock market (generating an appropriate combination of independent variables for
non-linear models), obtaining better results than directly applying neural networks to all
the available independent variables. This was tested using 6 Chinese stock index (as well
as two international indexes) and 35 technical indicators.

There was an average 9.1% improvement when using the combinatorial approach with
neural networks over the results using directly all the technical indicators and neural
networks as the non-linear forecasting technique. The formal statistical analysis comparing
the results using neural networks directly (all technical indicators) with the results from the
combinatorial approach using neural networks shows that there are statistically significant
difference for the error rates obtained at a 1%, 5% and 10% significance level, supporting
once more the hypothesis that the combinatorial approach using neural networks is a more
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appropriate tool for forecasting the direction of the stock market movement, at least for the
8 indexes analyzed, than using neural networks directly. Thus, for eight different indexes,
better combinations of the technical indicators have been found, offering a practical choice
to improve the forecasting accuracy and hence the expected benefits.

The total calculation time per index (100 initial configurations time 2500 iterations)
was 157,691 seconds. While this is a substantial amount of time it is a calculation that
can be done with a normal laptop computer. Moreover, many of the operations of the
proposed algorithm can be done in parallel further shortening the computation times.

Although a direct comparison is challenging, the approach of using the combinatorial
approach with neural networks seems to be generate better results for stock forecasting
purposes than other approaches used in the existing literature, such as for instance the
Box–Jenkins approach used by Groda and Vrbka [Groda and Vrbka, 2017], which the
authors considered not suitable. A more comparable paper is Kim and Han [Kim and
Han, 2000] that achieved a hit rate of 61% in the Korean market using genetic algorithm
in combination to neural networks which is comparable to the 59% rate obtained in the
Chinese market. Nevertheless comparison across different stock markets should be taken
with caution. For instance, it should be naive to believe that the same approach would
generate the same results in two markets as different as South Korea and China with
China being an open stock market dominated by institutional investors while the Chinese
market is a market dominated by local retail investors.

The selection approach was illustrated in the context of the stock market and using
neural networks but the approach is easily applicable to other fields. This is increasingly
important as the amount of data available in many fields has increased substantially over
the last few decades with an ever increasing need for tools to process large databases.
Besides neural networks other non-linear models, such as for instance support vector
machines or the forecasting techniques presented in the next chapter, can be used in the
proposed approach. This could be an interesting area of future work.
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Chapter 4

Stock forecasting using local data

This chapter is based on the following journal publication:

• Gerardo Alfonso, A. Daniel Carnerero, Daniel R. Ramirez, Teodoro Alamo. Stock
forecasting using local data. IEEE Access 2021, vol.9, pp.9334-6344. Impact factor
3.745, JCR ranking Q1 (2019)

4.1 Introduction

Stock price forecasting is a challenging field that has attracted researchers from different
fields including engineers and scientists. It is likely fair to say that there is not yet an
approach for stock forecasting that is accepted as superior, with the existing approaches
having their strengths and weaknesses.

Due to the financial relevance of stock price forecasting, many different techniques
have been applied to the problem. The almost random nature of the market have made
brownian motion [Osborne, 1959] and martingale models [Danthine, 1977, Barnett and
Serletis, 2000] one of the first choices.

Since the efficient market hypothesis is not proved, more elaborate techniques have
been used trying to exploit the market inefficencies. Among these techniques, in the
literature can be found applications with linear models [Zheng and Zhu, 2017], support
vector machines [Lin et al., 2013], genetic algorithms [Mahfoud and Mani, 1996] or more
frequently neural networks [Baba and Kozaki, 1992, White, 1988, Guresen et al., 2011]
and deep learning methods [Cao and Wang, 2019,Yu and Yan, 2020,Chen et al., 2020]
(for a recent survey on the topic see [Rao et al., 2020]). While neural networks are an
important stock forecasting technique it should be noted that, as in any other technique,
it has limitations. [Horák and Krulickỳ, 2019] did in this regard an interesting comparison
between the exponential time series alignment method and the time series alignment with
neural networks. The authors highlighted the importance of neural networks in the field
of stock forecasting mentioning that generally neural networks provide better forecast
than traditional methods. However, they also concluded that in their example, applied
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to a volatile stock, the traditional forecasting method generated better results than the
neural network. This highlights the importance of using the appropriate stock forecasting
techniques with papers in the existing literature finding less than optimal results for some
popular techniques. For instance, [Groda and Vrbka, 2017] concluded that the widely used
Box–Jenkins model is not an appropriate method in the case of stocks listed in the Prague
Stock Exchange.

In this chapter two quantitative techniques that have not been applied to the problem
of stock price and price interval forecasting are presented. One is an approach derived
from the predictive control strategy presented in [Salvador et al., 2020, Salvador et al.,
2018], which in turn can be related to the direct weight optimization approach [Bravo
et al., 2016, Roll et al., 2005b, Jianhong, 2015]. Direct weight optimization uses linear
estimators and convex optimization [Roll et al., 2005a], and has been applied in different
fields like predictive control [He et al., 2010], nonlinear system identification [Bai and Liu,
2007] or electron density analysis [Wu and Van Voorhis, 2005].

The proposed approach uses local data, that is, only a subset of the whole data available,
chosen among those past stock market states that are close to the current state. With such
subset, the approach computes an optimal linear combination of past states that equals
the current state, using such combination then to compute the price forecast. Unlike other
methods, like neural networks, the proposed approach do not use a training phase as the
subset and the linear combination is computed each time a forecast is needed. This allows
an easy adaptation to different market situations and also the updating of the database as
new data are available without having to retrain the estimator. Furthermore, the use of
local data results in a lower computational burden, as the cardinality of the subset will be
much lower than that of the whole data set.

The other technique proposed in the chapter is a probabilistic price interval strategy
previously presented in a more general context in [Carnerero et al., 2020]. This strategy
can be used to forecast stock prices but its main application is to provide price intervals
with a guaranteed probability of containing the real price. In this sense is complementary
to the first approach as it provides the guarantees that the previous one lacks. On the other
hand, although the algorithm is highly parallelizable, the computational burden is higher,
thus it does not replace the first approach if no guarantees are required. This approach
uses dissimilarity functions evaluated on local data to build an empirical probability
distribution of the predicted price. Thus using such distribution it is possible to build
price intervals using the desired percentiles and also predict the forecast using the median
of the distribution. This can be very useful for risk management purposes [Berkowitz,
2001], a field of increasing importance in finance.

Finally, as a case study, the techniques have been applied to the task of predicting
future values of the Dow Jones Industrial Average Index up to 5 days (i.e., a full week), and
also in the intraday market, validating the results in relation to two baseline approaches,
a persistence (martingale) predictor and a neural network based predictor. Furthermore,
quantile regression [Koenker and Hallock, 2001,Pradeepkumar and Ravi, 2017] has been
used as a third baseline approach to validate the predicted price intervals. The results
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prove that the proposed techniques are a valuable tool that can be added to the portfolio
of existing techniques for stock price forecasting.

The chapter is organized as follows: section 4.2 presents the first strategy for stock
price forecasting using local data. The probabilistic price interval strategy is shown in
section 4.3. Section 4.4 presents the results of these two strategies when used to forecast
the Dow Jones Average Industrial Index.

4.2 Stock Price Forecasting using Local Data

The first approach used in this chapter to forecast stock prices is based on the technique
presented for predictive control in [Salvador et al., 2020,Salvador et al., 2018].

Consider the evolution of the price of a stock as a time series p(t) ∈ P, being t the
time index expressed in the proper time unit, usually days in the case of the daily market,
and P the possible range of values for the stock price. The state of the price time series is
described as the value at time t of series of technical indicators, i.e.,

z(t) = (Z1(t), Z2(t), . . . , Znz(t)) ∈ <nz.

These technical indicators can be past values of p(t), stock price returns or more complex
metrics like moving averages or the relative strength indicator amongst others (see chapter
3). The objective is to be able to predict k-steps ahead the price of a stock, that is, to
obtain p̂(t+ k) at time t in such a way that it is as close as possible to p(t+ k).

The approach presented here uses a database of past values of z(t) and k-step ahead
stock prices. The database DBk for predicting k-steps ahead the price of p(t) will be
implemented as a table with NDB entries (i.e., rows), in which each entry contains a past
value of z(t) and the corresponding p(t+ k), as shown in table 4.1.

z(i1) p(i1 + k)
z(i2) p(i2 + k)
z(i3) p(i3 + k)

...
...

Table 4.1: Structure of the database DBk.

Note that the time indexes ij of the past states do not have to be ordered in any way or
be consecutive, thus they are not required to form a proper time series. The only requisite
is that the price associated to z(ij) is the one corresponding to k steps after time ij.

The proposed approach does not use the database to train or fit a predictor, as in
the training of a neural network. Thus, the database is not considered a training set
(except for the tuning of a reduced number of hyperparameters). Instead, it is used every
time a prediction is needed in an oracle fashion. Furthermore, the approach considered
in this section uses only a subset of the database, denoted as Ω(z(t)), to compute the
prediction p̂(t+ k). In this sense it is also different from techniques like neural networks in
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which the estimator is fitted using the whole training set. More precisely, given a distance
measurement function d(z(t), z(ij)), and cardinality parameter N , the elements of Ω(z(t))
are obtained selecting the N states z(ij) closer to z(t). Thus, the prediction is computed
using only local data.

Once the data that are to be included in Ω(z(t)) are selected, the proposed approach
proceeds to compute an optimal combination of all the z(ij) in Ω(z(t)) that matches
z(t), using the weights of such combination to compute p̂(t + k) as the corresponding
combination of all the p(ij + k) in Ω(z(t)). Furthermore, a regularization term, weighted
by a scalar γ ≥ 0, is included in the computation of the optimal combination. Algorithm 1
gives a formal description of the proposed approach.

Algorithm 1 k-step ahead stock forecasting using local data

Input: DBk, z(t), N and γ.
Output: p̂(t+ k) (estimation of price at t+ k).

1: Compute the distance d(z(t), z(ij)) for all z(ij) in the database DBk.
2: Create a list of the entries in DBk sorted according to the distances d(z(t), z(ij)).

Denote as zl and pl,k the state z(ij) and k-step ahead price p(ij + k) of the l-th entry
in this ordered list.

3: Build Ω(z(t)) using the first N entries in the ordered list, that is,

Ω(z(t)) , {(zl, pl,k)} ∀l ∈ {1, . . . , N}.

4: Solve the following QP problem:

min
λ1, λ2, ..., λN

N∑
l=1

λ2
l + γ|λl|

s.t.
N∑
l=1

λl = 1,

N∑
l=1

λlzl = z(t).

5: Compute p̂(t+ k) as:

p̂(t+ k) =
N∑
l=1

λlpl,k.

Remark 1. The distance d(·, ·) can be any measure of how close are the states z(ij) stored
in DBk to z(t). A typical choice would be the Euclidean distance, i.e., d(z(t), z(ij)) =
‖z(t)− z(ij)‖, but also could consider other aspects like the time span between states, i,e.,

d(z(t), z(ij)) = ‖z(t)− z(ij)‖+ ρ|t− ij|,

where the non negative scalar ρ would be a weighting factor. In this way recent data would
be prioritized in the selection process of step 3 in algorithm 1. Other aspects like seasonality
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could also be taken into account using the modulus operator, and, in general, many of the
resemblance measures used in cluster analysis [Anderberg, 1973].

The optimization problem in step 4 of algorithm 1 can be easily solved, specially when
γ = 0 as it results in a QP problem with equality constraints whose solution is that of a
system of linear equations. Moreover, steps 1 and 2 can be easily parallelized, thus efficient
implementations of algorithm 1 can be obtained.

Note that the fact that only local data is used to compute p̂(t+ k) makes the strategy
adaptive, being the definition of d(·, ·) the way to change how the strategy adapts to
the current price variations. Finally, the proposed approach does not require a training
phase (except for the possible tuning of the hyperparameter γ ≥ 0), thus new data can be
included in the database as they are available, without having to retrain the predictor. As
in Lasso approaches [Tibshirani, 1996], larger values of γ tend to maker a larger fraction
of the weights equal to zero, providing an enhanced local approach approximation. Thus,
γ is an hyperparameter that potentially improves the quality of the predictions.

4.3 Probabilistic price interval forecasting

The price forecasting approach presented in the previous section provides an easy and
convenient way of forecasting stock prices k-steps ahead. However, this approach does
not provide any measure on how the real price could deviate from the forecasted one
and also it does not have any guarantee on that deviation. In this section the approach
presented in [Carnerero et al., 2020] is adapted for stock price interval forecasting with
probabilistic guarantees. The proposed methodology computes an interval prediction for
the price p(t+ k) in which the lower and upper bound of the interval are computed taking
into account given probabilistic specifications. The use of local data is introduced here in
the strategy to better handle large databases. The reader is referred to [Carnerero et al.,
2020] for a full description of the procedures involved in the original strategy. Here it will
be shown the main concepts and implementation details.

The proposed strategy is based on building an empirical conditional probability distri-
bution for p(t+k) subject to z(t). Let pα be the α-th percentile and pα the α-th percentile
of such distribution. Then, the interval [pα, pα] will contain the price with a probability of
α−α
100

. Thus, finding the intervals amounts to compute the lowest and highest percentile
that define the desired interval for a given probability, e.g., for a probability of 0.8 the
desired interval will be [p10, p90]. On the other hand, if a forecast p̂(t+ k) is also needed,
it can be chosen as the 50th percentile of the distribution.

The key concept in this approach is that of dissimilarity function, a generalization of
the optimization problem in algorithm 1. A dissimilarity function measures how similar
the given pair (z(t), p) is to the set of pairs (zl, pl,k) of Ω ⊆ DBk. The formal definition of
dissimilarity function is given in the following.
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Definition 4.1. Given Ω ⊆ DBk, a scalar γ ≥ 0, z(t) and price p then the dissimilarity
function Jγ(·, ·, ·) will be defined as:

Jγ(z(t), p,Ω) = min
λ1,λ2,...,λN

N∑
l=1

λ2
l + γ|λl|

s.t.
N∑
l=1

λl = 1,

N∑
l=1

λlzl = z(t),

N∑
l=1

λlpl,k = p,

where, as in section 4.2, the N pairs (zl, pl,k) ∈ Ω denote the state z(ij) and k-step ahead
price p(ij + k) of the l-th entry in Ω.

The dissimilarity function Jγ has a lower value when it is easy to represent (z(t), p)
as a combination of the N pairs (zl, pl,k) of Ω and a higher value otherwise, for further
details see [Carnerero et al., 2020]. Notice that given z(t), the value of p that minimizes
the dissimilarity function Jγ(z(t), p,Ω) is equal to the k-step ahead forecast of Algorithm
1.

The other key concept in the approach is the empirical conditional probability density
function (ecp) [Carnerero et al., 2020], that uses the dissimilarity function of definition
4.1, and approximates the real distribution of p(t+ k) conditioned to z(t).

Definition 4.2. For a given Ω ⊆ DBk, γ ≥ 0, c > 0, z(t) and price p, the empirical
conditional probability density function (pdf) ecp is defined as:

ecpγ,c(z(t), p,Ω) =
e−cJγ(z(t),p,Ω)∫

P
e−cJγ(z(t),p̆,Ω)dp̆

,

where P is the set of all possible values of p(t+ k) for all t+ k.

Note that according to this definition, given z(t), the probability of p(t+ k) being in a
certain interval [pa, pb] is approximately equal to

pb∫
pa

ecpγ,c(z(t), p,Ω)dp.

In order to obtain the interval prediction [pα, pα], the hyperparameters γ and c are chosen
to make the approximation as sharp as possible for pa = pα and pb = pα.

The hyperparameter c affects how the prices are distributed around its expected values.
Higher values of c yield a more narrow pdf. Lower values of γ are appropiate when the
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real pdf is close to a normal distribution whereas higher values of γ are to be used if the
ditribution is flat and close to a uniform distribution. Thus, the family of empirical distri-
butions parameterized with c and γ encompasses a broad range of distributions [Carnerero
et al., 2020].

Note however that, in practice, the integral in definition 4.2 should be computed nu-
merically over a finite set of possible values of p(t+ k), denoted as Ps ⊂ P obtained from
a grid of Np values p̄i in the interval [pmin, pmax]

1 with p̄1 = pmin and p̄Np = pmax. Denote
the increment between two sucessive prices p̄i ∈ Ps as:

∆p̄ = p̄i+1 − p̄i

Then, the approximation of the ecp will be computed as

ecpγ,c(z(t), p,Ω) ≈ e−cJγ(z(t),p,Ω)

IS
, (4.1)

where the approximation of the integral can be computed using the trapezoidal rule2

obtaining

IS = ∆p̄

Np−1∑
i=1

e−cJγ(z(t),p̄i+1,Ω) + e−cJγ(z(t),p̄i,Ω)

2
.

Once the empirical distribution of p(t+k) is obtained, computing the desired percentiles
requires to find the value pα for which

pα∫
pmin

ecpγ,c(z(t), p,Ω)dp =
α

100
.

holds and repeating the operation for α to obtain pα. As in the previous case, these integrals
should be computed numerically. In the case of finding pα and using the trapezoidal
approximation, it reduces to solve:

iα = arg min
i

i (4.2)

s.t.
i∑

j=1

ϕj+1 + ϕj
2

≥ α

100∆p̄
,

where ϕj = ecp(z(t), p̄j,Ω) computed as in (4.1), and then

pα = p̄iα+1 ∈ Ps. (4.3)

1The choice of pmin and pmax can be done arbitrarily conservative, as the only requisite is that with a
high probability any p(t + k) verifies that p(t + k) ∈ [pmin, pmax]. However it is better to use reasonably
tight bounds that require a lower Np to sample the interval correctly.

2More accurate methods can be used instead of the trapezoidal rule, which has been chosen here
because of its simplicity and low requeriments on the function to be integrated.
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On the other hand, finding the lower percentile pα requires to solve:

iα = arg max
i

i (4.4)

s.t.
i∑

j=1

ϕj+1 + ϕj
2

≤ α

100∆p̄
,

and then
pα = p̄iα+1 ∈ Ps. (4.5)

The procedure to obtain the empirical distribution and price intervals can be outlined
as follows. First, it is assumed that some values for γ and c denoted as γ∗ and c∗ have
been chosen previously. Also, the value of the current market state z(t) and the desired
percentiles α and α are known. The procedure starts by computing the value of the
dissimilarity function for the given γ∗ and z(t) for all the possible values of p(t+ k) (i.e.,
∀p̄i ∈ Ps). These values of Jγ∗ are then used to compute the empirical probability density
function for the given γ∗, c∗ and z(t) for all the possible values of p(t+ k). Using these
computations it is possible to build the aforementioned empirical distribution of p(t+ k),
and then find the desired percentiles to build the price interval, and also the median to be
used as the price forecast. These steps are formally described in algorithm 2.

Algorithm 2 k-step probabilistic price interval forecasting.

Input: DBk, Ps, γ∗, c∗,z(t), α and α.
Output: p̂(t+ k) and the price interval [pα, pα].

1: Build Ω(z(t)) as in Algorithm 1.
2: Compute the dissimilarity function of definition 4.1 Jγ∗(z(t), p̄i,Ω(z(t)) for all p̄i ∈ Ps.
3: Using the previously computed values of the dissimilarity function, build the em-

pirical distribution by computing ecpγ∗,c∗(z(t), p̄i,Ω(z(t)) for all p̄i ∈ Ps using the
approximation given in (4.1).

4: Find the desired upper percentile pα ∈ Ps using the approximations given in (4.2) and
(4.3) with z(t), Ω(z(t)),γ∗ and c∗. In the same way, find the desired lower percentile
pα ∈ Ps using (4.4) and (4.5). Finally, using both methods with α = α = 50 obtain

p50 and p50 and compute the median as p50 =
p50+p50

2
.

5: Return the desired interval [pα, pα] and the price forecast p̂(t+ k) = p50.

Note that the database can be updated as new market data is available. This, together
with the use of local data, makes this strategy adaptive as in section 4.2.

There are different ways of chosing the values γ∗ and c∗. A possibility could be to
implement some form of local search that would find the values of c and γ that minimize
the prediction error in a validation set or even maximize the revenue when using the
forecast and price intervals in a trading strategy. However, these strategies would not
give the desired probabilistic guarantees on the computed price intervals. Thus here it
is proposed to use a maximum likelihood estimation procedure presented in [Carnerero
et al., 2020] and modified to use local data.
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The algorithm needs the sets of possible values of γ and c, denoted as Γ and C. The sets
can be chosen as sets of Nγ and Nc numbers from a grid in the intervals [γmin, γmax] and
[cmin, cmax] where the extreme points of these intervals can be chosen directly as tuning
parameters (e.g, they could be chosen using cross-validation with a test set). On the other
hand, Nγ and Nc should be set in relation to the computing power available.

The procedure starts by computing the dissimilarity function for all the possible
combinations of values of Γ and Ps and for every entry in the database using local data.
Then, with these values of the dissimilarity function, the ecp is used to compute the
empirical distribution for all the combinations of γ, c and market states in DBk. After
this, the desired percentiles are computed for each of the previously built distributions.
Then, for every combination of γ ∈ Γ and c ∈ C, the number of prices in DBk that fall
outside the quantiles of its distribution (that is, the number of quantile violations) are
computed. These numbers are used to associate to every γ ∈ Γ the greatest cγ ∈ C for
which the percentage of violations of both lower and upper quantile is less than α and
greater than α respectively. Finally, the optimal γ∗, c∗ are chosen as the one combination
among all the previously computed (γ, cγ) that maximizes the likelihood ratio. Algorithm
3 describes formally this procedure.

Algorithm 3 Computation of γ∗ and c∗.

Input: DBk, Ps, Γ, C, α, α.
Output: γ∗ , c∗.

1: For all the possible combinations of γ ∈ Γ, zl ∈ DBk and p̄i ∈ Ps compute the
dissimilarity function Jγ(zl, p̄i,Ω(zl)).

2: For all possible combinations of γ ∈ Γ, c ∈ C and zl ∈ DBk build its associated empir-
ical distribution computing ecpγ,c(zl, p̄i,Ω(zl)) for all p̄i ∈ Ps using the approximation
given in (4.1).

3: For all γ ∈ Γ, c ∈ C, zl ∈ DBk and their associated empirical distribution find the
desired percentiles as in algorithm 2, i.e, for every combination find pα ∈ Ps using (4.2)
and (4.3) and pα ∈ Ps using (4.4) and (4.5). Save the pα values in a vector denoted as
φ
γ,c
∈ <NDB and the values pα in a vector denoted φγ,c ∈ <NDB .

4: For every γ, c compute the number of prices pl ∈ DBk falling outside the interval
defined by [φ

γ,c
(l), φγ,c(l)]. Denote such numbers as vγ,c and vγ,c.

5: For each γ ∈ Γ, select the greatest cγ ∈ C for which

100vγ,cγ
NDB

≤ α and
100vγ,cγ
NDB

≥ α.

6: Compute

γ∗ = arg max
γ

NDB∑
l=1

log
(

ecpγ,cγ (zl, pl,Ω(zl))
)
.

using for every γ considered the cγ selected in the previous step. The optimal value of
c∗ is the cγ selected in step 3 for γ∗.
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There are other ways to compute the optimal γ∗ and c∗ with probabilistic guarantees,
such as algorithm 2 in [Carnerero et al., 2020] in which the interval length is penalized
aiming to smaller intervals.

Finally, note that although algorithms 2 and 3 have a higher computational burden
than algorithm 1, both are highly parallelizable as many of the operations performed on
every combination of data and parameters are independent of each other. In this way large
data sets, which are readily available by the stock market data providers, can be used.
Furthermore, the computation of the optimal γ∗ and c∗ does not have to be repeated if
the database is updated until the amount of updated data becomes a significant fraction
of the database.

4.4 Forecasting the Dow Jones Industrial Average in-

dex

The proposed approaches have been used in the problem of predicting the daily closing
prices and price intervals for the Dow Jones Industrial Average index. The dataset was
obtained from the data provider Bloomberg and is composed of the daily closing price
of the Dow Jones Index from 2005 to mid-2016. The data was divided into a database
DB, from 2005 to 2014, and a testing dataset, from 2015 to mid-2016. This latter period
has been chosen because there is not a clear market trend (bullish or bearish) that would
make forecasting easier. To lower the noise, all the raw prices in the database have been
smoothed using a 5-day Exponential Moving Average (EMA), which can be computed as:

pdEMA(t) =
2

d+ 1
p(t) + (1− 2

d+ 1
)pdEMA(t− 1),

with EMAD(0) = p(0) and being d = 5 in this case. Note that the smoothing applied
here is very light as the usual values of d for short-term forecasting are the 12 and 26 day
EMA [Upadhyay et al., 2016]. This would preserve fast price fluctuations although makes
forecasting more difficult.

The market state z(t) has been chosen to be composed of the last ten days prices
smoothed using the 5-day EMA approach, as well as the 5-day and 10-day relative difference
percentage of unsmoothed prices (RDP) [Thomason, 1999] i.e.,

RDPd(t) = 100
p(t)− p(t− d)

p(t)
,

being d equal to 5 and 10 respectively.

The approach of section 4.2 has been applied to the case study to forecast the closing
prices for up to 5 days, that is a full week of market sessions. The size of Ω(z(t)) was
N = 250 and γ = 0. The forecast and real prices are seen in figures 4.1 to 4.3. It can be
seen that the forecast is quite accurate for the first sessions and, as expected, it becomes
worse as k grows.
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Figure 4.1: Forecasted and real prices (5-day EMA) for 1 day and 2 days forecasting.
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Figure 4.2: Forecasted and real prices (5-day EMA) for 3 and 4 days forecasting.
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Figure 4.3: Forecasted and real prices (5-day EMA) for 5 days forecasting.

The approach for price interval forecasting has been also applied to the case study.
The parameters have been N = 250, Np = 1000, pmin = 6684.3, pmax = 19445, Nγ = 10,
γmin = 0, γmax = 5, Nc = 60, cmin = 0.25, cmax = 15. The 10-th and 90-th percentiles
were chosen for the price intervals, thus the probabilistic specification is that the intervals
contain the real price is 0.8. The results obtained are shown in figures 4.4 to 4.6 in which
the price intervals are represented as envelopes. It can be seen that although the price
intervals are quite tight for k = 1, they grow as k rises. This is congruent with the fact
that for farther prediction horizons the uncertainty on the forecasting is greater. Note
also that sometimes the real price is not inside the computed price interval. This is also
congruent to the fact that it should fall outside of the interval about 20% of the times.

Even if the results obtained seem correct at a glance, it is necessary some form of
validation. Thus, the results have been validated in relation to a persistence predictor,
i.e., martingale, that has been used as a baseline approach forecasting the prices as
p̂(t + k) = p(t). Furthermore, a multi-layer perceptron (MLP) with 20 neurons in the
hidden layer and trained with the Levenberg-Marquardt rule has been also used as a
baseline approach. Table 4.2 shows the mean squared errors (MSE) for proposed and
baseline approaches. It can be seen that the approach proposed in section 4.2 presents
the lower MSE of all approaches and that the forecast using the strategy of section 4.3
is the second best for k up to 4. Another parameter to be studied is the dispersion of
errors. Table 4.3 shows the standard deviations of the errors for all approaches. It can be
seen that, as in the case of the MSE, the approach of section 4.2 has the tighter errors
in all cases and that the forecasting using the median of the price distribution is the
second best for k up to 4. Thus, the errors are expected to be smaller with the proposed
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Figure 4.4: Price intervals for 1 to 2 days (5-day EMA).
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Figure 4.5: Price intervals for 3 to 4 days (5-day EMA).
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Figure 4.6: Price intervals for 5 days (5-day EMA).

strategies and more close to their mean values. This also results in lower uncertainty on
the quality of the prediction. Furthermore, the results show that the approach of section
4.2 is complementary to that of section 4.3 producing better forecasts with a much lower
computational burden. In fact, when implemented in Matlab on an Intel Core i7-4790
CPU computer, the computation time for the strategy of section 4.2 was 0.0037 seconds.
On the other hand, the implementation of Algorithm 2 took 0.3997 seconds on the same
computer, whereas the implementation of algorithm 3 required 4.5 hours to find γ∗ and c∗.
Note, however, that γ∗ and c∗ are computed only once provided that the database does
not suffer major changes.

Table 4.2: MSE obtained using the proposed and baseline approaches (5-day EMA)

Proposed Proposed
k Section II Section III MLP Persistence
1 3,294.8 3,520.5 3,577.0 5,296.4
2 12,433.2 13,607.3 14,190.8 16,867.4
3 26,659.0 28,574.7 30,829.6 31,975.0
4 45,475.9 46,931.0 50,794.9 49,072.4
5 66,859.6 71,300.9 77,017.5 66,943.4

Although the MSE and standard deviation is better for the approach of section 4.2,
it is practically equal to the MSE of the persistence predictor for k = 5. The reason
for this is that as the prediction horizon k grows, the price time series becomes more
similar to a random walk, making persistence predictors a good choice for price forecasting.
This is more evident when the smoothing of the prices is quite light, like in the previous
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Table 4.3: Standard deviation of the errors (σ); 5-day EMA

Proposed Proposed
k Section II Section III MLP Persistence
1 57.4 59.4 59.9 72.8
2 111.5 116.4 119.3 130.0
3 163.1 168.2 175.6 178.9
4 212.9 215.7 224.9 221.6
5 257.8 266.4 276.0 258.8

simulations. More typical periods in the EMA smoothing (12 and 26 days are common in
stock trading for short term forecasting) show how the proposed approaches make a better
job predicting the price trend than persistence predictors. Tables 4.4 and 4.5 show the
MSE and standard deviations for all the approaches when using a 15-day EMA smoothing.
These tables show that in this case the proposed approaches have always lower MSE and
tighter errors. Furthermore, the MLP is also better than the persistence for all k, whereas
in the case of the lighter smoothing it was worse for k equal to 4 and 5.

Table 4.4: MSE obtained using the proposed and baseline approaches (15-day EMA)

Proposed Proposed
k Section II Section III MLP Persistence
1 469.2 486.8 606.8 1,531.7
2 2,129.4 2,313.2 2,492.3 5,642.4
3 5,386.7 5,907.5 7,538.6 11,944.6
4 10,596.6 11,554.2 13,629.2 20,151.2
5 17,745.7 19,856.5 24,768.5 29,953.1

Table 4.5: Standard deviation of the errors (σ); 15-day EMA

Proposed Proposed
k Section II Section III MLP Persistence
1 21.6 22.1 24.6 42.1
2 45.9 47.9 49.9 78.7
3 72.8 76.0 85.6 113.2
4 101.8 105.9 114.2 145.9
5 131.4 138.5 152.8 177.1

The proposed strategies can also be used to forecast intraday stock prices. The Dow
Jones Industrial Average prices from 06/03/2020 to 11/03/2020 have been considered as an
example. Tables 4.6 and 4.7 show the MSE and standard deviation values when forecasting
half-hourly prices from this period. In these tests the longest forecasting horizon was 3.5
hours, thus k varies from 1 to 7. A 2.5-hour EMA has been used to smooth the prices
and the structure of market state z(t) is the same as before but changing daily prices and
RDP for their half-hourly counterparts. It can be seen that the strategy of section 4.2
performs as expected and that, in this case, there is no need for further smoothing to keep
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the performance better than the persistence predictor. On the other hand, the strategy of
section 4.3 has a higher MSE than the MLP (but lower than the persistence predictor).
Note, however, that the strategy of section 4.3 is used to produce interval forecasts rather
than price forecasts.

Table 4.6: MSE obtained using the proposed and baseline approaches with intraday
half-hourly prices (2.5-hour EMA)

Proposed Proposed
k Section II Section III MLP Persistence
1 1,034.9 1,153.1 1,037.7 2,103.9
2 4,406.9 4,816.6 4,498.1 7,335.2
3 10,233.0 11,527.9 10,589.7 14,584.5
4 17,423.8 19,859.2 18,599.3 22,933.7
5 25,453.4 29,444.1 27,880.3 31,796.9
6 34,002.5 39,619.5 37,676.9 40,947.9
7 43,086.0 49,990.4 49,331.7 50,124.3

Table 4.7: Standard deviation of the errors (σ); 2.5-hour EMA

Proposed Proposed
k Section II Section III MLP Persistence
1 32.2 33.5 32.1 45.9
2 66.4 68.2 66.9 85.7
3 101.2 104.6 102.6 120.9
4 132.0 136.8 135.9 151.6
5 159.5 165.8 166.4 178.5
6 184.3 191.6 193.3 202.5
7 207.4 215.4 221.2 224.1

On the other hand, the previous results and baseline approaches are not useful to
validate the price interval forecasting obtained using the strategy of section 4.3. In order
to do so, the well-known quantile regression has been chosen as a baseline approach to
validate the interval forecasting. Table 4.8 shows the empirical probabilities and interval
width of the proposed strategy and quantile regression using the same data and theoretical
probability (0.8). It can be seen that the intervals computed using the proposed approach
contains the real price with a higher probability than the specified one, whereas the
quantile regression produces tighter intervals that do not meet the specified probability
for any k. Thus, the quantile regression fails in this case. However, in the case of the
intraday dataset both strategies work well (see table 4.9), being the proposed strategy a
bit more conservative. Note that some form of tightening could be used with the proposed
approach to make the intervals narrower while meeting the probability in practice, but
the resulting intervals will not have the probabilistic guarantee of the approach.
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Table 4.8: Empirical probability of the real price to be contained in the computed intervals
(the theoretical one is 0.8) and average width of the price intervals using the proposed
approach and quantile regression.

Empirical probability Average interval width
k Proposed Q. regression Proposed Q. regression
1 0.8679 0.6006 162.4802 99.8091
2 0.8459 0.6101 315.7218 190.5443
3 0.8553 0.6321 477.8004 287.5774
4 0.8648 0.6761 638.8747 397.3780
5 0.8805 0.6950 813.5661 489.7816

Table 4.9: Empirical probability and average width of the price intervals using the proposed
approach and quantile regression (intraday dataset).

Empirical probability Average interval width
k Proposed Q. regression Proposed Q. regression
1 0.8820 0.8614 88.5662 74.3958
2 0.8846 0.8373 178.6064 159.0279
3 0.8635 0.8279 275.3878 238.7693
4 0.8571 0.8214 378.3202 313.8665
5 0.8358 0.8119 443.9647 389.4412
6 0.8293 0.8084 516.9591 457.2965
7 0.8348 0.8138 576.9186 516.4660

Finally, the growing values of the forecasting error and its dispersion together with
the effect of smoothing the prices suggest, that although not a perfect random walk for
very short term forecasting, as the prediction horizon grows, the price time series becomes
more difficult to forecast, gradually approaching to a random walk.
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Chapter 5

Receding horizon optimization of
large trade orders

5.1 Introduction

Stock trading is becoming an increasingly complex field as investors try to maximize their
profits, and reduce their risks with increased emphasis in recent years on optimal execution.
After an investor has decided to buy or sell stocks, there remains many options on how
to execute this trade. There are two basic types of trading orders: 1) market orders and
2) limit orders. A market order is an order to be executed immediately at the prevailing
market price. The focus on this type of order is speed rather than price optimization.
Limit orders on the other hand focuses on price efficiency. A limit order necessarily has
an associated price over (below) which the buy (sell) order cannot be executed. It should
be noted that the usual convention for limit prices orders is described by the expression
“or better”. In other words, if the limit price on a buy limit order is 15 that the maximum
price that the investor would pay, but the actual transaction price could be any price
below that number. There is a tradeoff between speed of execution and price optimization.

It is also very frequent to split orders into smaller orders in an attempt to not to
impact the market. For instance, a buy order to purchase a large amount of stock could
push the price of the stock up if executed in one single block. The market impact of that
order can be potentially de reduced by splitting that single order in smaller orders, and
execute them over time rather than in one go. There are clearly many ways in which this
can be accomplished. One of the simplest approaches is called “Time Weighted Average
Price”, commonly referred as TWAP. A TWAP order will split the order in blocks of
shares of the same size, that are then executed at regular time intervals. For example, a
TWAP order to buy 1,000 shares could be divided into 10 orders of 100 shares, each to be
executed every 5 minutes. Therefore the complete trade takes 50 minutes to complete. An
investor using a TWAP order needs to specify the time period over which the order needs
to be executed. In the previous case this would be the previously mentioned 50 minutes.
A TWAP trade can use market or limit price orders. In a TWAP market order there is
almost certainty of execution as the transactions at each time interval is carries out at
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the prevailing market price. In the case of a limit order there is no certainty of execution.
This is better illustrated with an example. Let assume than a TWAP limit price order is
received at 10:00 with a time window of one 60 minutes. Let also assume that the order is
to buy 600 shares of a given stock and that the limit price is 15 RMB and the current
price is 14 RMB and that the approach followed uses 6 time windows of 10 minutes each.
The trader executing the transaction will send a buy order every 10 minutes. The trader
will continue executing trades every 10 minutes, as long as the price remain below the 15
RMB price. If the price however, exceeds 15 RMB no more trades will be executed until
the price comes back within the initially specified limit. Clearly, with a TWAP limit order
there is a risk that the trade cannot be completed. A TWAP trade is one of the simplest
orders. It implicitly assumes that there is a constant trading volume for the stock which
will not be typically the case.

A more sophisticated trade is a “Volume Weighted Average Price”, commonly referred
as VWAP. This type of order is very common as it represents around 50% of all the
institutional investors trading [Bofa, 2007]. In a VWAP order, rather than slicing the
original order in smaller trades of equal size (equal number of shares), a forecasted traded
volume for the desired interval is estimated. The trade is sliced into smaller trades,
executed at regular time intervals. The size of each (sliced) transaction is proportional
to the forecasted volume for that time interval. A critical step in this approach is to be
able to generate accurate volume forecasts. Something to take into account is that stock
market conditions can substantially change from historical values so it is important to
adjust the volume market forecast, likely obtained using historical data, with the actual
trading values obtained in that day.

A common variation of VWAP is VWAP Max, which is similar but with the further
constraint of not exceeding a maximum percentage of the total traded volume for that
stock, at any point in time during the trading. For example, a VWAP Max can have a 10%
maximum volume meaning that the trades executed on behalf of the client cannot exceed
10% of that total traded volume (during that time) for that stock. Finally, Enhanced
VWAP and Enhanced VWAP Max are not at fully standardized terms and refer to
variations from the VWAP Max trying to further optimize the price and/or tracking error.
This could entail modifications to the volume and/or price forecasts to try to improve the
speed or to try increase the chance of completing the transaction.

The objective of this chapter is to design trade algorithms to execute the trade at
the best possible price, while following the investor trade instruction, and subject to the
constraints that the different order types impose. The focus of this chapter is on large
orders that must be splitted to lower their impact on the market, as the Enhanced VWAP
and Enhanced VWAP Max orders which are also relatively sophisticated requiring volume
as well as price forecasts.

There is relatively limited existing literature in the topic of optimal execution of splitted
trade orders using learning techniques, with more papers covering stock forecasting by
means of different techniques like neural networks [White, 1988] or deep learning [Wang
et al., 2018], support vector machines [Hasibuan et al., 2019, Trafalis and Ince, 2000],
adaptive line combiners [Seidy, 2016] or local data based techniques like those of chapter 4.
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There are however some interesting articles in the field of trade execution optimization such
as for instance [Cui et al., 2009]. In this article the authors proposed a genetic algorithm to
optimize a limit order book used for price formation in an artificial stock market. Genetic
algorithms are also used in [Lim and Coggins, 2005] to generate trading strategies, not
based on forecasting, that are back-tested against historical data of Australian Stock
Exchange. Recurrent neural networks have been used in [Dixon, 2018] to predict price-flip
events in limit order books, by classifying sequences of observations of the book depths
and market orders.

Forecasting the traded volume has also been used in [Bia lkowski et al., 2008] to
improve the execution of VWAP orders. That is, by forecasting the traded volume one can
track the VWAP price matching it at the end of the chosen time window. On the other
hand, [Konishi, 2002] derives analytical solutions of a static optimal execution strategy of
a VWAP trade, in which the optimal execution strategy can be calculated by an iteration
of a single variable optimization, rather than by a multivariable optimization. In that
work the market is modelled using non-anticipating and brownian motion processes.

[Crawford et al., 2018] presented a high frequency trading system based on moving
averages and particle swarm optimization, used to determine the trading sequence that
maximizes the net returns over a series of consecutive time steps. Particle swarm optimiza-
tion has been also used by [Ding et al., 2015] to train a kernel based nonlinear predictor
that was also applied to forecast the VWAP price in the Shanghai market. Optimal control
methods have been also considered for generating the sequence of suborders in splitted
large orders. For instance [Pemy, 2012] presented an optimal VWAP algorithm based
on the linear quadratic regulator (LQR) subject to limits in the size of the suborders.
The linear model for the stock prices is based on brownian motion, a type of model
that has also been used by [Stace, 2007] to find the stock prices also in the context of
VWAP operations. Hamilton-Jacobi-Belmann methods and in general variational calculus
have been used in [Bertsimas and Lo, 1998,Forsyth, 2011,Forsyth et al., 2012] based on
brownian motion and random walks models. In a recent paper, [Mitchell et al., 2020]
studied optimal VWAP strategies using unconstrained optimization on models based on
the assumption that the stock prices can be modelled as martingales and the traded
volume as autoregressive processes. [Ye et al., 2014] used a dynamic time series approach
ARFIMA to forecast intraday trading volumes in the Chinese equity market, applied to
VWAP tracking, obtaining better results than static approaches. VWAP tracking has
also been tackled in [Liu and Lai, 2017], where an interesting combination of historical
averages and SVM to forecast intraday trading volumes in the gold and S&P 500 futures
markets was used. Another interesting approach to forecast trading volumes in a VWAP
tracking context has been presented in [Li and Ye, 2013]. In that paper the authors used
the fast Fourier transform algorithm to identify the periodic and the non-periodic part of
the trading volume, using historical values of 50 stocks contained in the Shanghai 50 stock
index. A similar approach is followed in [Song et al., 2014].

In this chapter it is proposed the use of dynamic optimization over a finite horizon and
based on price and volume forecasts, to obtain optimal sequences of suborders to fulfill
large trade orders. The optimal sequence is computed by minimizing a cost index, in which
several terms are taking into account. The technique is based on solving a optimization
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problem each time bucket of the time window in which the order has to be executed. Thus
at each time bucket a complete sequence of suborders for the remaining time window is
obtained, but only the first component of the sequence is effectively used. This strategy is
similar to the feedback receding horizon or predictive control strategy used in automatic
control [Rawlings et al., 2017], but with a shrinking prediction horizon. In the optimization,
besides the price and volume forecasts, the trading impact factor is considered along with
terms related to forecasting accuracy and the number of suborders (which can be useful
when trade commissions and fees are taking into account). The optimization, which uses
integer variables, is carried out by means of a particle swarm algorithm tailored to the
receding horizon nature of the proposed strategy. The forecasts are based on the local
data forecasting methods of chapter 4. Market and limit orders both in regular and Max
formats are considered in the chapter. Finally, as a case study, stocks from the onshore
Chinese A-share market are used to show the performance of the proposed strategy.

The rest of the chapter is outlined as follows: section 5.2 describes the problem
statement for each type of order. Section 5.3 presents the optimization algorithm. Section
5.4 presents the results of applying the proposed technique to the case study.

5.2 Problem statement

The objective of this chapter is to design a strategy to execute large stock orders that,
in order to limit its impact on the market, have to be splitted in a number of smaller
suborders. Thus, an order to buy M ∈ N0 shares will be executed by splitting the order
into up to Np suborders m(t+ k) ∈ N0 with k ∈ {1, . . . , Np} such that

Np∑
k=1

m(t+ k) = M. (5.1)

The proposed strategy will compute the splitting of the original order in an optimal way,
that is, achieving the lowest price. The strategy will be based on forecasting both the
price of the stock and its total traded volume over the time window, defined by Np, i.e.,
from t+ 1 to t+Np. Both forecasts will be used to compute a performance index that
should be optimized. Thus the strategy will rely on an optimization problem in which
a performance index V will be minimized. The formulation of V must weigh certain
aspects of concern such as the total cost of the order, but also the impact on the market
of each of the suborders. Besides that, given that forecasting accuracy is worse for long
prediction horizons, a term that would penalize the placement of big suborders far into
the time window will be included in V . Finally, a term that will penalize higher number
of suborders will also be considered. This can be useful if there are commissions and fees
that are paid per order independently of the traded volume. It can be also useful to avoid
a large dispersion of the suborders.

Let p̂(t+ k|t) be the price forecast for t+ k, v̂(t+ k|t) the total traded volume forecast
for t+ k and m(t+ k|t) the amount of shares to be bought at t+ k, meaning the notation
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t+ k|t that these values are computed at time t. Then the proposed performance index is:

V (m(t), p̂(t), v̂(t)) =

Np∑
k=1

(
p̂(t+ k|t) + α

(
m(t+ k|t)
v̂(t+ k|t)

)β )
m(t+ k|t)

+µ

Np∑
k=1

σkm(t+ k|t) + ι

Np∑
k=1

(m(t+ k|t) > 0), (5.2)

where α, β, µ, σ and ι are nonnegative tuning parameters and

m(t) = [m(t+ 1|t), . . . ,m(t+Np|t)]
p̂(t) = [p̂(t+ 1|t), . . . , p̂(t+Np|t)]
v̂(t) = [v̂(t+ 1|t), . . . , v̂(t+Np|t)]

the sequences of suborders, and price and traded volume forecastings respectively. Note
that the first term represents the forecasted cost of executing the order, and that in this
term a impact factor correction has been included. Impact factor correction represents the
influence of the suborder volume in the price for that time bucket. Impact factors can be
modelled as linear terms, like in [Pemy, 2012] or be more elaborate like the exponential
form used here based on [Almgren, 2003]. The second term assign a greater cost to
suborders that are far in the future because the prediction error grows with the prediction
horizon. Note that for this effect the exponential weight σk must have σ > 1. Finally, the
last term penalizes those orders that are splitted into many suborders more than those
which are executed with a lower number of suborders. This can helpful if some fees or
commissions grow as the number of suborders rises.

The proposed strategy aims to find the optimal sequence of suborders

m∗(t) = [m∗(t+ 1|t),m∗(t+ 2|t), . . . ,m∗(t+Np|t)], (5.3)

that minimizes the performance index V over the time window Np. The sum of all
suborders must be equal to the total number of shares to be traded (M) thus the equality
constraint

Np∑
k=1

m(t+ k|t) = M. (5.4)

must be taken into account. Also, as a measure to prevent the impact of big suborders,
the size of each suborder must satisfy:

0 ≤ m(t+ k|t) ≤ M

c
∀k ∈ {1, . . . , Np} (5.5)

with c > 1, being a typical value c = 10 (i.e., a suborder cannot excess a 10% of the
whole order). Then, the optimal sequence of suborders will be obtained by solving the
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optimization problem:

m∗(t) = arg min
m(t)

V (m(t), p̂(t), v̂(t)) (5.6)

s.t. (5.4) and (5.5).

Once problem (5.6) is solved one could apply the entire optimal sequence m(t) executing
the suborders m(t+ 1), . . . ,m(t+Np) at the corresponding time buckets. This approach
suffers from two related issues: first, as the time index k grows, the forecastings for p̂(t+k)
and v̂(t + k) have a higher prediction error. Thus the suborders m(t + k) will rely on
progressively more inaccurate forecastings and thus the computed optimal value will differ
from the ideal optimal value that could be computed if the real values of p(t + k) and
v(t+ k) would be known in advance. Second, as time advances, new real values of p(t+ k)
and v(t + k) are available, but they are not used. These new values could be used to
obtain better predictions of the remaining time window, allowing the computations of
suborders more closely to their ideal optimal values. Thus, in this chapter it is proposed
to use a feedback receding horizon optimization strategy, typical of predictive control
techniques [Rawlings et al., 2017], in which at each time bucket t problem (5.6) is solved
to obtain m∗(t) using only m∗(t + 1|t), and discarding the rest of the sequence m∗(t).
Algorithm 4 summarizes the proposed strategy for the case of market orders.

Algorithm 4 Optimal execution of large market orders.

Input: M,Np, α, β, µ, σ, ι, c.
1: repeat
2: Compute p̂(t) and v̂(t).
3: Solve (5.6) to obtain m∗(t).
4: Wait for next time bucket.
5: if m∗(t+ 1|t) > 0 then
6: Send m∗(t+ 1|t) to the market.
7: M ←M −m∗(t+ 1|t).
8: end if
9: Np ← Np − 1.

10: until M = 0

Remark 2. Note that the time window shrinks at each step, reducing the prediction
horizon, thus allowing to work with progressively better forecasts. Thus, not only new real
values of p(t) are taken into account, but also the task of forecasting prices and volume is
less demanding as time goes by.

Limit orders can be also executed with the proposed strategy provided that some
changes are taken into account. The main characteristic of limit orders is that the execution
of a suborder is conditioned to being it under the price limit stated by the client. The
result of this constraint is that limit orders do not have the guarantee of completion and
therefore, the degree of execution of the original order after the time window expires can
be lower than 100%. The changes needed to implement limit orders start with restricting
the time instants in which the optimization problem will be solved, to those in which the
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price forecast is under or equal the stated price limit, discarding those that do not meet
that limit. Let R be the set of time indexes for which the price forecast meet the price
limit pl, i.e.,

R = {i1, . . . , ir} such that p̂(t+ ij) ≤ pl j ∈ [1, r]. (5.7)

Then the restricted suborder sequence and price and volume forecast sequences are defined
as:

mR(t) = [m(t+ i1|t), . . . ,m(t+ ir|t)]
p̂R(t) = [p̂(t+ i1|t), . . . , p̂(t+ ir|t)]
v̂R(t) = [v̂(t+ i1|t), . . . , v̂(t+ ir|t)] .

Constraint (5.5) must be modified:

0 ≤ m(t+ ij|t) ≤
M

c
∀ij ∈ R (5.8)

Furthermore, as stated before, it can happen that the order cannot be completed because
the price forecast do not meet the price limit in enough time instants, i.e., if every suborder
must be at least 10% of original order and the price forecast is only under the limit in 7
time instants, the original order would be completed at most at a 70%. Thus the equality
constraint (5.4) would be substituted by∑

ij∈R

m(t+ ij|t) = M if r ≥ c, (5.9)

or by ∑
ij∈R

m(t+ ij|t) =
r

c
M, if r < c (5.10)

to take into account the case in which the order cannot be completely fulfilled. The
optimization problem (5.6) would be then modified to

m∗R(t) = arg min
mR(t)

V (mR(t), p̂R(t), v̂R(t)) (5.11)

s.t. (5.8) and

(5.9) or (5.10).

Note that the price forecasts for the complete time window are known in advance to the
solution of (5.11) so the choice between (5.9) or (5.10) can be easily made.

Algorithm 4 must be modified, because the price limit must be imposed not only in the
computation of m∗R(t) but also in the execution of the order. Furthermore, as suborders
must be also applied only in the time instants in R, problem (5.11) must solved only if
i1 = 1. Algorithm 5 shows the steps required for limit orders.
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Algorithm 5 Optimal execution of large limit orders.

Input: M,Np, α, β, µ, σ, ι, c, pl.
1: repeat
2: Compute p̂(t) and v̂(t).
3: Form R as in (5.7), and p̂R(t), v̂R(t).
4: if i1 = 1 then solve (5.11) to obtain m∗R(t).
5: end if
6: Wait for next time bucket.
7: if i1 = 1 & m∗R(t+ i1|t) > 0 & p(t+ 1) ≤ pl then
8: Send m∗R(t+ i1|t) to the market.
9: M ←M −m∗R(t+ i1|t).

10: end if
11: Np ← Np − 1.
12: until M = 0

Finally, market and limit orders described so far can easily be executed under the
“max” policy described in section 5.1 by imposing the additional constraint

m(t+ k|t) ≤ v̂(t+ k|t)
cmax

∀k ∈ {1, . . . , Np} (5.12)

to (5.6) or

m(t+ ij|t) ≤
v̂(t+ ij|t)
cmax

∀ij ∈ R (5.13)

to problem (5.11), being cmax > 1 the parameter that adjust the limit on the volume
fraction.

5.3 Optimization algorithm

In this chapter, it is proposed to use a Particle Swarm Optimization (PSO) algorithm
[Kennedy and Eberhart, 1995] to solve problems (5.6) and (5.11) defined in section 5.2.
The reasons for such a choice are the potentially high number of decision variables and the
fact that they are integer. Specifically, the implementation of the PSO algorithm is of the
PSO with “Constriction coefficients” or “Constriction factor” type [Clerc and Kennedy,
2002], with a tailored treatment of the suborder constraints. In a PSO algorithm, particles
represents potential solutions of the optimization problem to be solved. That is, they
are compounded of feasible values of the decision variables. Also, the effectiveness of the
particles is evaluated by means of a cost function or fitness function (as it is known in the
PSO literature). After computing the cost for each particle, particles evolve to another
generation following certain rules that are specific for each PSO algorithm. Usually, the
worst particles are attracted to better solutions whereas the best particles tend to stay
in their place. In the case of the proposed PSO algorithm, the particles are attracted to
the best solution found in their evolution and to the best global solution found among all
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the particles. This process is repeated until a sufficiently good solution is found, or an
iteration or time limit constraint is met.

In the proposed algorithm, every particle si stores the following data:

• Current suborder sequence, mi ∈ NNp

0 .

• Current cost function value, i.e., Vi = V (mi, p̂(t), v̂(t)). Note that in the algorithm
the forecasts of price and traded volumes are considered as input data, and therefore
must be computed in advance.

• Best past suborder sequence that has been found through the evolution of si denoted
as mb

i , and its associated cost function value, that is V b
i = V (mb

i , p̂(t), v̂(t)).

• The computed update velocity, ∆mi. Velocities will determine how the particles are
updated through the iterations of the algorithm.

The steps of the proposed algorithm will be exposed in the the following. First it is
necessary to give initial values to all the L particles in the particle set. This is done by
means of a random generation of the vectors mi of each particle si and the computation
of its associated costs. In this initial values the best suborder sequence and cost of each
particle will be obviously set to the initial mi and its associated cost. Also. the algorithm
needs to know the best cost so far, V best, that it is initially set to infinity, so that it gets
updated in the first iteration. Then the algorithm iterates through the following steps:

1. Compute the cost Vi for every particle si.

2. Update the best so far cost V b
i and the best so far sequence mb

i of each particle si if
necessary (that is, if Vi < V b

i ).

3. Find the particle with the lowest cost and update the best so far global cost V best if
necessary, also saving the associated sequence of suborders in a variable denoted by
mbest.

4. Compute the update velocity ∆mi for every particle and update the particles. The
computation takes into account mainly two terms, one attracts the particle to mb

i

and the other attracts the particle to mbest, i.e., the velocity of a particle i is
computed as

∆mi ← χ
(
∆mi + φ1r1

(
mb

i −mi

)
+ φ2r2

(
mbest − ui

))
, (5.14)

where χ, φ1 and φ2 are constants with values 0.7298, 2.0500 and 2.0500 respectively,
and r1 ∈ [0, 1] and r2 ∈ [0, 1] random numbers [Poli et al., 2007].

5. Update the sequence of orders of every particle si according to mi ← mi + ∆mi,
rounding the resulting mi component-wise to the nearest natural number.

88



5.4. CASE STUDY: CHINESE STOCK MARKET

6. Feasibility verification and particle modification. As the update of particles do not
take into account the problem constraints, feasibility verification and restoration
have to be performed after updating the particles. Handling inequality constraints is
straightforward, as it is only needed to limit the values of the suborders, according
to the maximum and minimum allowed. Equality constraints like (5.4), on the other
hand, require a more complex treatment, using the following strategy based on
random perturbations of the sequence of suborders:

(a) First, for every particle, compute

di = M −
Np∑
k=0

mi(k), (5.15)

that is, the amount of shares for which constraint (5.4) is violated.

(b) Then, for every particle, apply random perturbations to some randomly chosen
time buckets in the prediction horizon Np.

(c) Check that all particles verify the inequality constraints and correct if necessary.

(d) Compute again di, and repeat from 6b for those particles in which di 6= 0.

Once a stop condition is met (e.g., a total number of iterations or a limit in the change of
V best), the algorithm returns mbest as the solution. Algorithm 6 formally describes the
steps of the proposed PSO strategy.

Finally, constraints (5.12) or (5.13), required for “max”, can be handled easily by the
algorithm in the same way as constraints (5.5) and (5.8).

5.4 Case Study: Chinese stock market

The proposed approach has been validated using stocks from the Chinese Stock Market. A
brief description of some market rules of the Chinese Stock Market is given in the following.
The Chinese A-share market (main board) has several practical restrictions. Stocks traded
in the onshore Chinese A-share market can only be purchased in increments of 100 shares.
The portfolio of an investor can actually hold what is commonly referred as “odd lots”.
For example, an investor can actually own 217 shares of a given stock. This is because of
the result of corporate actions, such as stock dividends or conversion of convertible bonds.
This odd lots can be disposed of, but there are limitations. The investors can sell the
entire position (217 shares) or the odd lots (17 shares). The investor can also sell round
lots, i.e., 100 shares or 200 shares. However, the investor will not be able to sell a different
odd lot, such as for instance 8 shares. While this are limitations specific to the Chinese
A-share market there are similar limitations in many other stock markets.

The focus of this chapter is on the continuous trading period. Every working day
has two continuous trading sessions. The morning session, from 9:30 to 11: 30, and the
afternoon session. Additionally, there are two auctions. An opening auction, from 9:15
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Algorithm 6 PSO for large orders trading

Input: L, c,M,Np, p̂(t), v̂(t)
1: Initialize the variables and particles with random generation of the mi.
2: repeat
3: for i = 1 to L do
4: Compute Vi using (5.2).
5: if Vi < V b

i then
6: V b

i ← Vi.
7: mb

i ←mi.
8: end if
9: end for

10: Find m = arg min
i
Vi.

11: if Vm < V best then
12: V best ← Vm.
13: mbest ←mm

14: end if
15: for i = 1 to L do
16: Compute ∆mi according to (5.14).
17: mi ← round(mi + ∆mi).
18: for k = 1 to Np do
19: if mi(k) > M

c
then mi(k)← M

c
.

20: end if
21: if mi(k) < 0 then mi(k)← 0.
22: end if
23: end for
24: end for
25: for i = 1 to L do
26: f ← 0
27: while f = 0 do
28: Apply random perturbation to mi.
29: for k = 1 to Np do
30: if mi(k) > M

c
then mi(k)← M

c
.

31: end if
32: if mi(k) < 0 then mi(k)← 0.
33: end if
34: end for
35: Compute di as in (5.15).
36: if di = 0 then f ← 1
37: end if
38: end while
39: end for
40: until a stop condition is fulfilled.
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to 9:25, and a closing auction, from 14:57 to 15:00. The opening and closing auction set
the opening and closing prices for the day, and follow different rules than the continuous
trading session. This chapter focuses on the continuous trading session. Another important
rules to take into account in the Chinese equity market is the up/down limit of 10%. This
rules prevents any stock traded in the main board for increasing (decreasing) by more than
10%, compared to the previous day closing price. Please notice that there are different
rules for stocks listed in the Chinext and STAR Board, which are outside of the scope of
this thesis.

To validate the proposed strategy, nine stocks from the Chinese Stock Market have
been chosen, splitting the choices between small, mid or large capitalization stocks. Table
5.1 show the names and tickers of the nine stocks ordered according to their capitalization.
The validation consists on the optimization of market orders of 2, 000, 000 shares over

Table 5.1: Stock dataset. The following levels of market capitalization were followed for
stock classification: small (<80 bn RMB), mid (from 80 to 300 bn) and large (>300 bn).

Name Ticker Capitalization
Nanjing Port 002040 Small

Baotou Dongbao Biotech 300239 Small
Royal Flush Information Network 300033 Small

Advanced micro-fabrication equipment 688012 Mid
Tianqi Lithium 002466 Mid

Shangahi Pudong Development Bank 600000 Mid
Ping An Bank 000001 Large
Midea Group 000333 Large

Kweichow Moutai 600519 Large

a validation set of 20 two hour sessions randomly chosen from the range 1/4/2017 to
12/29/2020 (except the newer stock 688012 which is 1/2/2020 to 12/29/2020). The
validation data sets are shown in figures 5.1 to 5.9. It can be seen that the sessions in
each set show bearish, bullish and sideways trends. Furthermore, some of the sets, shown
in figures 5.2 and 5.3, include sessions in which the 10% limit was activated. Note that in
this situation the trading continues, albeit at most at that saturated price and, usually,
with small traded volumes.

The proposed trading strategy relies on forecasting of prices and traded volumes, but
it is not linked to any particular forecasting technique. Here it is proposed to use the
forecasting strategy of section 4.2. This predictor has proved to be more accurate than
other methods like modelling the stock as a brownian motion process or forecasting with
neural networks. In figure 5.10 it can be seen a sample of the obtained forecasted values, for
the stock Shanghai Pudong Development Bank (600000) during a 120 minutes time interval
(intraday), using the strategy of section 4.2 as well as neural network and brownian motion
process (random walk). The neural network employed had a single hidden layer with 30
neurons. The random walk simulation was obtained following equation 1.2, and using the
average return as the expected return (2.8%) and the historical standard deviation (0.1%)
as the measure of the volatility of the process. As expected, the Brownian motion was the
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Figure 5.1: Data set for 002040.
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Figure 5.2: Data set for 300239.
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Figure 5.3: Data set for 300033.
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Figure 5.4: Data set for 688012.
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Figure 5.5: Data set for 002466.
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Figure 5.6: Data set for 600000.
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Figure 5.7: Data set for 000001.
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Figure 5.9: Data set for 600519.

less accurate of all the forecasting techniques used. In order to forecast prices using the
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Figure 5.10: Sample of forecasts with the strategy of section 4.2, neural networks and
brownian motion.

strategy of section 4.2, the market state, denoted as zp(t) has been described as composed
by the last 100 prices and the last traded volume, i.e.,

zp(t) = [p(t− 1), p(t− 2), . . . , p(t− 100), v(t− 1)].
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On the other hand, to forecast the traded volume, the market state, denoted by zv(t) is
formed in this case by

zv(t) = [v(t− 1), v(t− 2), . . . , v(t− 100), p(t− 1)].

The components of both state vectors are smoothed with an EMA5 (see chapter 4) but
the target values (i.e., prices or volumes depending on which is to be forecasted) are
unsmoothed. The number of market states in the local data set used in the algorithm 1 of
section 4.2 has been chosen to be N = 250 and the weighting factor γ = 0.

The objective is to split the large stock order over each of the sessions of the validation
set, optimizing the buying price. The time bucket is 1 minute, thus the time window is
120 time buckets. Thus the proposed strategy must solve (5.6) with an initial prediction
horizon of Np = 120, that will shrink down to Np = 1 as the receding horizon optimization
is applied through the entire time window. Other parameters of V used in this case study
are α = 0.1, β = 1.2, µ = 0.5, σ = 1.07 and ι = 0. Note that in the Chinese Stock Market
there is no difference regarding to fees between splitting the order into many suborders,
few suborders or no splitting at all, thus ι = 0 reflects this. On the other hand, the PSO
algorithm has been used with 1000 particles of Np suborders. The stop condition was to
limit the algorithm iterations to 50.

To validate the resutls, two well known trading strategies will be considered for
comparison purposes. The first one is the VWAP price assuming knowledge of the traded
volume (which has to be forecasted in practice). This price is computed as

VWAP(t) =

Np∑
k=1

v(t+ k)p(t+ k)

v(t+ k)
. (5.16)

The second baseline strategy is the TWAP price, which is the average price of the stock
over the time window, that is,

TWAP(t) =

Np∑
k=1

p(t+ k)

Np

. (5.17)

Table 5.2 shows the average prices attained on the validation set of each of the 9
stocks proposed in this case study. The average price attained by the proposed algorithm
assuming that the real future values of price and traded volume is shown in column
“Proposed (hypothetical)”. Obviously, this price cannot be attained in practice, but it is
used to illustrate the maximum hypothetical performance, i.e., the minimum price, that
could be obtained by using the proposed approach. In practice, forecastings have to be
used, and the corresponding prices are shown in column “Proposed (forecasting)”. The
last two columns show the average VWAP and TWAP prices. It can be seen that the
proposed strategy obtains a lower price than VWAP or TWAP in all the validation sets.
Clearly, the prediction error in the price and volume forecasting reduces the difference,
but even with forecasted prices and volumes the proposed strategy obtains lower prices
than the baseline approaches. Regarding the capitalization of the stocks, it appears that
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Table 5.2: Average prices in the validation set (RMB)

Proposed Proposed
Stock (hypothetical) (forecasting) VWAP TWAP

002040 19.649 19.809 19.837 19.814
300239 5.216 5.228 5.245 5.242
300033 64.343 64.948 65.013 64.950
688012 183.609 187.181 188.341 187.799
002466 42.609 42.905 42.965 42.962
600000 12.741 12.758 12.771 12.769
000001 12.098 12.127 12.161 12.150
000333 51.505 51.697 51.806 51.774
600519 654.008 657.139 657.608 657.630

the proposed strategy gets worse results in the case of small cap stocks, but this could
be related to the differences in the price per share, getting better results in stocks with
a higher price per share. On the other hand, it is quite remarkable that for some of the
stocks, even the “hypothetical prices” are very close to VWAP or TWAP, e.g., stocks
with ticker 600000 and 000001. In this cases, there is clearly a very small margin of
improvement, meaning that in these cases it proved very difficult to beat the market on
the validation set. There are other stocks, like 688012, in which the hypothetical benefit
that could be obtained is greatly wasted by the prediction errors. Regarding this, it is
noteworthy that the prediction horizon is quite large in this case study, forcing the forecast
up to 120 steps ahead. This is much longer than usual, given the fact that most of the
stock forecasting applications focus in one step ahead predictions. On the other hand,
higher prediction errors do not always imply a worse result as long as the price trend is
correctly predicted. The reason for this is that in the proposed strategy price forecasting
accuracy is not what really allow better results, but the ability to forecast the position
of the lower prices in the time window. Finally, even in the price difference attained
in practice seem small, given the high number of shares traded in this type of orders,
the overall benefit can be significant. To illustrate this, consider table 5.3 in which the
savings of the proposed strategy over VWAP and TWAP are shown for the case of using
the real or forecast prices and volumes. The TWAP and VWAP values are some of the
most frequently used benchmarks for execution by institutional investors hence it seems
reasonable to compare the results using these benchmarks.

It can be seen that the savings are substantial in most cases and very substantial in
some cases like the stocks with tickers 688012 and 600519. Furthermore, considering the
savings that can be obtained over the many large orders that are traded over a year, it is
evident that even a modest improvement on the price can justify the use of strategies like
the proposed in this chapter. It should be noted that a typical institutional investor can
trade even hundreds of different stocks, further amplifying the saving effect.
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Table 5.3: Savings on the validation set over VWAP and TWAP (RMB).

Savings over VWAP Savings over TWAP
Stock (hypothetical) (forecasting) (hypothetical) (forecasting)

002040 7,520,000 1,120,000 6,600,000 200,000
300239 1,160,000 680,000 1,040,000 560,000
300033 26,800,000 2,600,000 24,280,000 80,000
688012 189,280,000 46,400,000 167,600,000 24,720,000
002466 14,240,000 2,400,000 14,120,000 2,280,000
600000 1,200,000 520,000 1,120,000 440,000
000001 2,520,000 1,360,000 2,080,000 920,000
000333 12,040,000 4,360,000 10,760,000 3,080,000
600519 144,000,000 18,760,000 144,880,000 19,640,000
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Chapter 6

Conclusions and future work

This final chapter presents the conclusions of this dissertation, in the form of a summary
of the main contributions of the thesis in the fields of stock forecasting, as well as trading
optimization, and some ideas for future works.

6.1 Summary of contributions

Besides the many differences between narrow and deep stock markets it appears that
neural networks are an efficient forecasting tool for both types of markets. Although
this appear to be expected as the price trends reduce to a time series in each case, the
differences between those markets could be rather large, with the basic expectation being
that their behavior and, hence, the appropriate tool for forecasting the dynamics of its
stock markets being rather different. This does not appear to be the case with neural
networks generating relatively accurate forecasts for narrow, moderately narrow, deep
and very deep markets , even after accounting for the issue of stale prices. Just to put it
into perspective, the results suggest that the same technique (neural network) of stock
forecasting is applicable to stock markets as different as the ones in Namibia, Tanzania
and the United States. It is interesting that the forecast for moderately narrow markets
are slightly less accurate than those for deep markets. This might be due to differences
in quality and reliability of the information and trading platform in those markets. It is
also interesting to observe that the results support the idea that the analyzed markets
are not perfectly efficient, as forecasting tools such as neural network are able, using only
historical data, to generate relatively accurate forecasts, which would seem to contradict
the efficient market hypothesis.

The applicability of neural networks as a forecasting tool in other markets, such as
for instance the Indian market, was also analyzed. In the case of the Indian market,
represented by the Nifty 50 index, several neural network architectures were tested. As
expected, simply increasing the number of neurons did not result in better, out-of-sample,
forecasts. It was also observed that for a relatively large period of time (2010-2016) there
was no statistically significant difference between the accuracy of the forecasts generated
using the Levenberg-Marquardt and the Scaled Conjugate learning algorithms.
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Another contribution of this dissertation is developing an algorithm for the selection of
technical indicators. There is a large amount of technical indicators developed for stock
market forecasting purposes. In some cases these indicators give contradicting signals. It is
also important to take into account that it is unfeasible to test all the potential combinations
of technical indicators, given the extremely large number of potential combinations. Thus,
it is necessary to use some form of search to find the best combination, without having to
test all of them. The proposed combinatorial method for variable selection is applicable
to the problem of forecasting the direction of stock market movements using non-linear
techniques such as neural networks. This approach aims to find combinations of technical
indicators that generates better results than directly using all the available variables.
Another relevant result is that better indicator choices have been researched for 8 different
indexes from the Chinese, US and European stock market. While the approach was tested
using neural networks it can be easily applied to other forecasting techniques. It can also
be generalized to other forecasting problems besides stocks. The calculation time for the
combinatorial approach is another factor to take into account as it is a computationally
demanding, but clearly more efficient than estimating the forecasts for all the possible
combinations.

Another contribution of this dissertation is the application to the task of stock forecast-
ing of a technique based on local data. Additionally, it has been applied another technique
that generates not only a stock forecast but also a probability distribution related to this
stock forecast. Having a probability distribution related to the stock forecast can be a
very useful tool for risk management purposes.

The first technique is related to direct weight optimization techniques and obtains the
forecast by using local data close to the current market state. The computational burden
is quite low and does not require a training phase, except for the tuning of γ. Moreover,
its results when applied to a well known case study have been validated in relation to
two well-known techniques, such as neural networks and persistence predictors. The
second approach computes the price intervals using a probabilistic approach, in which the
empirical conditional probability density function of the forecasted price is computed using
local data. The algorithm for doing this is easily parallelizable, making its computational
burden manageable. This approach has been also validated and compared favourably to
the well-known quantile regression approach. Both techniques have been proved to be
useful for the investors in terms of accuracy, and have other advantages like adaptation to
the current market situation. Thus, the proposed techniques have proved that they can be
added to the toolbox of stock market traders.

In the last chapter a trading strategy was proposed for large orders that have to be
splitted to minimize the impact on the market. The strategy is based on the well known
receding horizon optimization scheme used in predictive controllers. The strategy can be
adapted to a variety of market and limit orders and, although relies on forecasting the
future prices and traded volumes, is independent of the forecasting method used. The
strategy has been validated with an assorted set of Chinese stocks of different capitalization
levels. The results have been very positive despite the fact that the prediction horizon is
quite large. More precisely, the savings over two well known price benchmarks (TWAP
and VWAP) are quite significant.
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6.2 Future work

There are several areas of potential future work. In the field of stock forecasting, it
would be interesting to further analyze how the type of forecasting tool changes as the
forecasting time interval varies. The basic idea is that potentially a stock forecasting tool
that performs well with daily data might have a different performance when applied to
high frequency (intraday data) or when applied to a longer time horizon like weeks or even
months.

Another interesting avenue of future work would be to analyze the impact on the
presented forecasting tools of black swan events. Black swan event refer to unpredictable
but important events that move the stock market significantly. Trading forecasting tools
based on historical data can struggle when faced by an environment that has not occurred
in the time series used to train the algorithm.

The algorithm of chapter 3 could be improved by introducing some concepts borrowed
from particle swarm optimization like the updating speed used in chapter 5 or genetic
operators. However, there is no guarantee that these additions could have a relevant
impact in the performance of the algorithm. Keeping the random nature of the search
method, it could be interesting to use resampling strategies like that of [Kitagawa, 1996],
or updating rules like that of PSO algorithms.

Regarding the strategies applied in chapter 4, among the open questions that could
be considered as future work, one would be the study of which technical indicators work
best as market state, i.e., a feature selection study tailored for the proposed approaches.
This could be done using the algorithm of chapter 3, but it would be difficult because the
computational burden of the hyperparameter training phase of algorithm 3. In this regard,
the number of possible technical indicators is quite high, and clearly, some of them are
redundant, but from the results of 3, it can be inferred that among the most promising
technical indicators would be moving averages, either simple or exponential, the daily
return on capital, the traded volume and the proprietary JKHL index. Nevertheless, the
suitability of these technical indicators with the proposed techniques is something that
needs to be studied in future works.

The proposed strategy in chapter 5 will certainly benefit from future research on how
to reduce the impact of prediction errors. In this regard, most forecasting techniques are
focused on one-step price prediction, whereas the needs of the proposed strategy are quite
different. The topic of research would be to develop methods to forecast the position of
the c lower prices on a given time window, rather than predicting the prices themselves.
Also, it would be interesting to modify the strategy to be able to use prediction horizons
shorter than the time window without affecting the performance of the strategy.

Finally, it would be also interesting seeing how the trading optimization techniques
presented in this dissertation work in real practice. In order to do this, it would likely
required to have a collaboration with a financial institution with the infrastructure required
to carry out actual trading.
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Appendix A

Additional figures of chapter 2

A.1 Figures with results of testing different training

algorithms and number of neurons.

This section contains the figures for the results of using different training algorithms and
number of neurons when using neural networks to forecast the stock indexes proposed in
chapter 2. Each graph contains the evolution of the forecasting accuracy as the number of
neurons is increased for a given index. For instance, figure A.1 shows how the forecasting
accuracy, measured as R-squared, tends to decrease as the number of neurons increases
for all the equity index (see table 2.1) for the quasi Newton learning algorithm (BFG).
The abbreviations for each training algorithm can be seen in table 2.2.

Figure A.1: Forecasting accuracy comparison of different moving averages using the quasi
Newton (BFG) training algorithm (99% confidence interval).
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Figure A.2: Forecasting accuracy comparison of different moving averages using the
conjugate gradient (with restarts) training algorithm (99% confidence interval).

Figure A.3: Forecasting accuracy comparison of different moving averages using the
conjugate gradient Fetcher Powell training algorithm (99% confidence interval).
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Figure A.4: Forecasting accuracy comparison of different moving averages using the
conjugate gradient Polak Ribiere training algorithm (99% confidence interval).

Figure A.5: Forecasting accuracy comparison of different moving averages using the
gradient descent (adaptive learning) training algorithm (99% confidence interval).
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Figure A.6: Forecasting accuracy comparison of different moving averages using the
gradient descent (momentum) training algorithm (99% confidence interval).

Figure A.7: Forecasting accuracy comparison of different moving averages using the
gradient descent (momentum) training algorithm (99% confidence interval).
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Figure A.8: Forecasting accuracy comparison of different moving averages using the
Levenberg Marquardt training algorithm (99% confidence interval).

Figure A.9: Forecasting accuracy comparison of different moving averages using the
resilient backpropagation training algorithm (99% confidence interval).
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Figure A.10: Results using conjugate gradient (with restarts) training per country, 99%
confidence interval, using the 50, 100 and 200 days moving average.

A.2 Figures of results using different training algo-

rithms and different moving averages

In this section every figure is divided into three subplots. From top to bottom this graph
represents the analysis for the 50, 100 and 200 days moving averages showing how the
forecasting accuracy evolves as the number of neurons is increased. For instance, figure
A.10 illustrates the evolution of the forecasting accuracy of the conjugate gradient (with
restarts) learning algorithm for all the ten stock indexes considered.
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Figure A.11: Results using conjugate gradient Fetcher Powell training per country, 99%
confidence interval, using the 50, 100 and 200 days moving average.
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Figure A.12: Results using gradient descent (adaptive learning) training per country, 99%
confidence interval, using the 50, 100 and 200 days moving average.
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Figure A.13: Results using gradient descent (momentum) training per country, 99%
confidence interval, using the 50, 100 and 200 days moving average.
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Figure A.14: Results using Levenberg Marquardt training per country, 99% confidence
interval, using the 50, 100 and 200 days moving average.
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Figure A.15: Results using Secant training per country, 99% confidence interval, using the
50, 100 and 200 days moving average .
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Figure A.16: Results using resilient backpropagation training per country, 99% confidence
interval, using the 50, 100 and 200 days moving average.
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Figure A.17: Results using Polak Ribiere training per country, 99% confidence interval,
using the 50, 100 and 200 days moving average.
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Figure A.18: Results using gradient descent with momentum and adaptive learning training
per country, 99% confidence interval, using the 50, 100 and 200 days moving average..
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