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Chapter 1

Introduction

It might sound surprising that the gecko’s ability to adhere to surfaces [1],
the friction that so often plagues tiny components in nanomachines [2, 3],
the density anomaly of water [4], and the early stages of planets formation
[5] have a common origin in the zero-point fluctuations of quantum fields
[6]. These fluctuations are the basis of the weakest type of the interatomic
and intermolecular forces which allow the formation of condensed mat-
ter, named dispersion forces [7]. Dispersion forces are inherently present
in our daily life. In nature, they are at the heart of important phenomena
in chemistry, physics and biology, being the cause of adhesion, surface
tension, strength of solids and stability of both colloidal suspensions or
biological membranes [8, 9, 10, 11], amongst others. They are also re-
sponsible for the organization of bio-systems like cellulose, lignin, and
proteins, and they are the reason why geckos can climb in walls and ceil-
ings [12, 13, 14, 15].

In nowadays technology, accelerometers integrated in smartphones or
high precision positioning devices are examples of specialized cases in
which dispersion forces play a main role, becoming more important as
the distance between the interacting bodies is reduced [16, 17, 18, 19,
20]. Continuous miniaturization of devices has been a common fact in
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the last decades. With this miniaturization, high accuracy in the control of
forces acting on, for example, micro- and nanoelectromechanical systems
(MEMS and NEMS), has become essential for their optimized design.

Another fascinating phenomenon fruit of the confinement of quantum
fluctuations is the Casimir effect [21]. Briefly speaking, the Casimir ef-
fect occurs when two or more bodies are placed at nano- and micro-scale
distances perturbing the available vacuum modes. Since the vacuum en-
ergy density varies when one of the objects is displaced with respect to the
others, a force results. Such force is the so-called Casimir force. As it will
be described in detail along this thesis, this force was originally predicted
for perfectly conducting plates, but when realistic materials are consid-
ered, such force remains. In what follows, this force occurring amongst
macroscopic bodies at nano- and micro-scale distances will generally be
referred to as the Casimir-Lifshitz force, FC−L.

In this regard, the influence of attractive FC−L in NEMS and MEMS,
which are the basis of computers, smartphones, and similar electronic de-
vices, has been particularly analyzed in literature since they are the cause
of main failures due to stiction between the components. One of the first
evidences of this undesirable attractive interaction in devices was reported
by Srivastava in 1985 [22], pointing that the Casimir-Lifshitz energy in
the gate-region capacitor of a field-effect transistor device was 10 % of
the electrostatic energy. By then, the scale of the systems was too large
to have a critical impact, but nowadays, with the shrinking of devices, the
role of the Casimir-Lifshitz interaction becomes decisive in the stability
and device performance [16, 23, 24, 25]. Typically, the effect of FC−L
on micro and nanodevices is studied in simple systems like parallel plate
capacitive switches (Fig. 1.1(a)), and cantilevers (Fig. 1.1(b)). In them,
external forces such as FC−L or electrostatic forces, affect the dynamic
of a movable part of the device which in turn is restored to its original
position due to an elastic force. The stability is given by the balance
between the elastic force and the applied external forces, and when the
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Figure 1.1: (a) Scheme of a MEMS consisting on a plane-parallel capac-
itive switch with one of the plates attached to a spring. (b) Scheme of a
cantilever deflected an angle θ with respect to a reference position when
no external forces are applied.

latter overcomes the former, the movable part collapses and irreversible
adheres to the opposite surface. This phenomenon is known as jump into
contact and results in the uselessness of the device. Repulsive Casimir-
Lifshitz interactions or reducing the attractive intensity of FC−L could
avoid adhesion and permanent stiction between movable parts in devices.
Because of that, a deep knowledge of the underlying fundamental con-
cepts of such forces is essential for understanding nature mechanisms,
as well as for the future of advanced technologies, such as MEMS and
NEMS, optoelectromechanics and microfluidic devices, sensors, or opti-
cal communications.

Recent experimental advances have allowed acquiring novel insight
into the nature of such dispersion forces [26] while proving their poten-
tial to attain quantum levitation between macroscopic bodies [27], settling
this topic in the focus of the scientific community and making the com-
prehension of this quantum interaction essential for the development of
the forthcoming tinier technology.

Interestingly, the nature (attractive or repulsive) and strength of the
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Casimir-Lifshitz force can be engineered, amongst others, through the
optical properties of the interacting materials, a characteristic that makes
it specially attractive from the Materials Science point of view. The aim
of this thesis is to exploit theoretically the possibilities of the Casimir-
Lifshitz interaction in the plane-parallel geometry when a fluid material
mediates the interaction by tuning and designing the optical characteris-
tics of the interacting plates.

In what follows, a deep analysis of the relevance of the optical prop-
erties of the materials involved on the Casimir-Lifshitz interaction in the
plane-parallel geometry is presented.

1.1 Dispersion forces: from Casimir effect to
Lifshitz theory

Apart from the ionic and covalent bonds, between two neutral atoms or
molecules (without net electrical charge), there is also a much weaker
binding force commonly named van der Waals force. Typically, these
kinds of forces are classified in three types: (a) Kessom forces, between
atoms or molecules with permanent electric dipoles, (b) Debye forces, be-
tween an atom or molecule with permanent dipole and a neutral atom or
molecule, and (c) London forces, between two neutral atoms or molecules
without permanent dipole moment that instantaneously acquire a dipo-
lar moment (a quantum mechanical phenomenon) and interact with each
other. This last type of forces are also named dispersion forces, since
their average dipolar moment is zero but the dispersion of the values is
non-zero.

Dispersion forces may become very intense at the nano- and micro-
scale, depending on the number of atoms or molecules involved and their
polarizabilities, as well as the geometry of the system and the temperature.
The origin of these forces lays on the fact that vacuum, despite the absence
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Figure 1.2: Schematics of the different types of dispersion forces: (a)
non-retarded London-van der Waals, (b) retarded Casimir-Polder and (c)
Casimir interaction.

of matter and radiation, is not empty. According to quantum field theory,
vacuum may be described as a quantized electromagnetic (EM) field, that
is, as a set of oscillators of all frequencies (ω). This implies that the
energy at the ground state of one of those harmonic oscillators is not zero,
and instead, it takes the value ~ω/2 meaning that vacuum has an energy
density different from zero which is the basis of the quantum fluctuations
[6, 28].

The attraction between two atoms or molecules is attributed to the
instantaneous dipolar moment produced by the moving electrons clouds
(due to quantum fluctuations). This instantaneous dipolar moment pro-
duces fluctuating EM fields that, in turn, induce an instantaneous dipolar
moment in the other atom or molecule, and vice-versa. In average, the
dipolar moment of the atom or molecule is zero, but in the quantum the-
ory developed by London in 1930 [29], the dispersion of the dipolar mo-
ment operator is distinct from zero, leading to correlations between the
EM field fluctuations generated in both atoms or molecules.

When the atoms or molecules are close enough, the correlation be-
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tween the oscillations of the instantaneous dipole and the induced dipole
does not depend on the speed of light (c) anymore, being a simultaneous
interaction named non-retarded London - van der Waals force, (some-
times literature also refers to this non-retarded interaction just as van der
Waals force). As the separation between atoms or molecules becomes
larger, typically larger than 10 nm, the correlation of the oscillating elec-
tronic clouds depends on the time the interaction takes to propagate, in-
versely proportional to c, leading to relativistic retardation effects first
studied by Casimir and Polder between an atom and a wall [30]. That in-
teraction is known as the Casimir-Polder force. After this result, Casimir
applied the same idea to describe theoretically the attraction between two
perfectly metallic plates in vacuum [21], what is known as Casimir Ef-
fect. Figure 1.2 shows schematics of canonical systems displaying the
three types of dispersion forces: (a) the London - van der Waals force, (b)
the Casimir-Polder force, and (c) the Casimir force

1.2 Casimir Effect
In 1948, Casimir theoretically predicted that two perfectly conducting
metallic plates, in vacuum, at 0 K, and separated at nano- and microscale
distances are strongly attracted as a consequence of the quantum fluctu-
ations of the EM field in vacuum [21]. As it was previously pointed out
above, the origin of the Casimir Effect is the quantum fluctuations of the
EM field, which can be seen as temporal changes of the vacuum energy
at a point in space, or as virtual photons that appear and disappear in
vacuum instantaneously, without contradicting Heisenberg’s uncertainty
principle, ∆E∆t ≥ ~/2. The cavity formed by the perfectly conducting
plates considered by Casimir are boundaries in the space that limit the EM
field fluctuations between them, i.e., those boundaries limit the possible
energy or wavelength values that can exist inside the cavity, discarding
longer enough wavelengths that do not fit inside the cavity (see scheme

6



Figure 1.3: Scheme of the Casimir effect between two perfectly metallic
plates in vacuum.The unbalanced EM field inside and outside the cavity
causes an effective attraction of the plates.

in Fig. 1.1). The unbalanced EM field inside and outside the cavity gives
rise to a difference of radiation pressure on each face of the plates, causing
an effective attraction of the same. Such attractive force is the so-called
Casimir force and its effect is a macroscopic manifestation of the quantum
field theory. Casimir developed this idea when dealing with the stability
of colloidal suspensions in water, in which each particle repels and attracts
each other due to electrostatic and van der Waals forces, respectively. He
was trying to address the different power laws for the attractive force be-
tween particles at short and long separation distances, when he came up
with the idea that the presence of two large particles (boundaries) would
modify the quantum fluctuations of EM field in the space between them.
Linking this idea with the simplest system of two perfectly metallic plates
in vacuum, he obtained the mathematical expression for the force per unit
area (FC) between the infinitely thin plates separated a distance d in the
micro and nanoscale:

FC = − π2 · ~c
240 · d4

(1.1)

The above expression, which gives the force in units of N/m2, sim-
ply depends on the separation distance between the plates and universal
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constants, ~ and c proving the quantum and relativistic nature of the force,
whose intensity rapidly decays with d and is negative for attractive forces.
To show the order of magnitude of the force per unit area, for separation
distances of d = 10 nm, a force per unit area of FC ≈ 1.3 atm is attained.
For simplicity, and following the terminology commonly employed in the
Casimir-Lifshitz scientific community, in this thesis the word ’force’ will
refer to a ’force per unit area’.

Although nowadays the Casimir effect is well accepted and used in
diverse fields like condensed matter physics, quantum field theory, mathe-
matical physics and renormalization techniques, quantum chromodynam-
ics or cosmology, it took nearly six decades since the theoretical predic-
tion of Casimir to have sufficiently precise and conclusive experimen-
tal measurements to demonstrate its existence. Later on, Lifshitz, ini-
tially using fluctuating fields [31], and afterwards in collaboration with
Dzyaloshinskii and Pitaevskii employing the quantum field theory [32],
developed in a couple of seminal papers a unified theory describing si-
multaneously the non-retarded London-van der Waals interaction in the
limit of rarefied medium and short separation distances, d ≤ 10 nm (see
schematics in Fig. 1.2 (a)), the retarded Casimir-Polder interaction be-
tween an atom and a wall for larger separation distances, d ≥ 10 nm (Fig.
1.2 (b)), and the Casimir effect for two metallic plates with ε → ∞ (Fig.
1.2 (c)). Moreover, this generalized theory describes the force amongst
objects of arbitrary shape made of realistic materials and at any tempera-
ture.

1.3 Casimir-Lifshitz force
The Casimir force expressed in Eq. 1.1 describes the interaction be-
tween two perfectly metallic plates. When realistic materials (present-
ing losses at specific frequencies) are considered, the force persists, but
such description is not accurate anymore. In order to take into account
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losses of metals and dielectric macroscopic materials, Lifshitz extended
the Casimir theory and included in his formalism [31] the complex dielec-
tric function, ε = ε′(ω) - i ε′′(ω), accounting for dispersion and absorption
optical properties. Since then, the interaction was known as Casimir-
Lifshitz force (FC−L). In his theory, Lifshitz described the long-range in-
teraction between diverse materials as a consequence of the correlation of
fluctuating EM fields which exist inside the materials and extend beyond
their boundaries. To develop the theory, Lifshitz solved Maxwell’s equa-
tions for macroscopic materials at T = 0 K, and introduced the fluctuation-
dissipation theorem [6], which states that the correlations of the fluctuat-
ing EM fields, expressed in terms of the electric field

−→
E , are directly

proportional to the dissipation of the materials ε′′:

〈Ei(r)Ej(r′)〉 = 2~ε′′(ω)δi,jδ
3(r − r′) (1.2)

In the above expression, 〈...〉 denotes spatial average, i and j run over
the x, y and z field components, r and r′ denote points in space, and δ
stands for the Dirac delta function. Interestingly, the strength of the force
depends on the reflectivity of the interacting surfaces, being stronger for
higher reflectance surfaces. Most metals are excellent broadband reflec-
tors, and thus, the interaction between metallic plates is usually much
stronger than that between dielectrics. However, as it will be shown in
detail in Chapter 2, because the force is extremely broadband, the fact
that a material is transparent in the visible spectrum does not necessarily
mean that it will present a reduction of the force intensity. Moreover, the
contributions of frequencies to FC−L are highly oscillatory, and include
both attractive and repulsive components [33, 34], hindering the calcu-
lations concerning numerical convergence, and blocking intuition from
optics in order to tune the intensity and nature of the interaction with ma-
terials optical properties.

Lifshitz theory is also valid for bodies of arbitrary shape, despite an
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analytical expression is only provided for the plane-parallel configuration.
For curved surfaces, for instance, as that would be the case of colloidal
particles or gas bubbles, it is possible to use the so called proximity force
approximation (PFA) which was first applied by Derjaguin and collab-
orators [35] in FC−L measurements between two fused quartz surfaces,
one flat and the other with spherical shape. They showed that the force
acting between a plate and a body of finite curvature can be expressed
in terms of the force between two planar semi-infinite walls. It was also
demonstrated that the force is much more intense in the plane-parallel
configuration than in geometries incorporating spheres.

The first experimental attempt to measure the Casimir-Lifshitz force
with real materials was reported by M. Sparnaay in 1958 [36], who ob-
served, through capacitance measurements, the attractive force between
pairs of metallic plates made of aluminium, chromium, and steel and
chromium. However, results were not conclusive due to, among other
difficulties, the inaccuracy in the plates alignment. Such difficulty was
overcome by Dejarguin and co-workers [35], by considering curved sur-
faces of different radii to avoid limitations on the parallelism between the
interacting bodies. After some other attempts without conclusive mea-
surements of the Casimir-Lifshitz force[37, 38, 39], some relevant exper-
imental results were finally attained several decades after the theoretical
prediction thanks to the improvement in precision and sensitivity of the
techniques employed. Some examples are the experiments by S. Lam-
oreaux et al. [40], who measured the force between a lens and a plate
both coated with gold, using a torsion pendulum; by U. Mohideen et al.
[41], who employed for the first time an atomic force microscope and
measured the force between a sapphire plate and a sphere attached to the
cantilever coated with metals such as aluminium, chromium and gold;
or the work by by R. Decca et al. [42], who achieved the highest ex-
perimental precision of the Casimir-Lifshitz force employing a microme-
chanical torsional oscillator. Interestingly, the spanning of the Casimir-
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Figure 1.4: Scheme of a plane-parallel system with a material (that might
be different from vacuum) between the interacting bodies.

Lifshitz interaction to current technologies was reported in 2001 with the
first MEMS actuated by FC−L [43]. In fact, few examples demonstrat-
ing repulsive Casimir-Lifshitz forces have been reported, being one of
the reasons the lack of knowledge about the value of the dielectric per-
mittivity at ’all’ frequencies (essential for evaluation of Casimir-Lifshitz
forces), which is only known for a few solids and liquids. Among them, a
limited number of material combinations that are chemically stable when
arranged together may display repulsive forces of this kind. Additional
outstanding experimental demonstrations of thermal contributions to the
Casimir-Lifshitz force [44] and the critical Casimir force [45] were also
achieved in the following decade. Further details about the experimen-
tal force measurements progress including real materials are provided in
Chapter 4.

1.4 Repulsive Casimir-Lifshitz force and levi-
tation

One of the most interesting results derived from the Lifshitz theory is
the fact that FC−L may be repulsive, having important implications in
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fundamental physics and technology [32, 46, 47], since, for instance, it
would prevent adhesion and stiction between movable parts in NEMS
and MEMS which are the reason of main failures in this kind of devices
[48, 3]. Moreover, the possibility of having repulsive FC−L rapidly led
to the idea of quantum trapping, a phenomenon in which FC−L evolves
from repulsion to attraction as the separation distance between bodies in-
creases. Moreover, if the repulsive FC−L is strong enough to counteract
the effect of gravity if the system is in presence of the gravitational field,
quantum levitation, might occur.

Until the extended theory was developed, the Casimir-Lifshitz inter-
action was predicted to be always attractive between parallel plates, typ-
ically separated by vacuum or air (i.e ε′′ = 1). Actually, the interaction
between two plates made of the same material will always be attractive.
Several approaches might be applied to obtain repulsive Casimir-Lifshitz
forces between two bodies in vacuum. Examples cover the consideration
of interacting objects with alternative geometries, such as an elongated
metallic particle approaching a metal plate with a hole drilled on it [49],
the employment of metamaterials, like chiral or magnetodielectric meta-
materials carefully designed [50], or the operation with materials whose
dielectric functions fulfill certain relations, as it will be extensively ex-
plained in the coming sections. This thesis will focus on the latter ap-
proach and will consider the plane-parallel geometry based on stratified
realistic materials having a liquid medium between the interacting plates.
Figure 1.4 displays a scheme of a general plane-parallel system consist-
ing of two bodies whose dielectric functions are ε1 and ε3, separated by
a liquid with ε2. According to Lifshitz results, repulsive forces might be
attained if the dielectric function of the interacting materials fulfill one of
the following conditions:

ε1 < ε2 < ε3 (1.3)

12



or
ε1 > ε2 > ε3 (1.4)

Importantly, these conditions must be satisfied in a wide range of the
so-called Matsubara frequencies (further details are provided in Chapter
2). In short, an integral over the full spectral frequency range (ω ∈ [0,∞])
of the dielectric function of materials is computed, making it difficult to
find combinations of materials that obey the previous conditions.

The first experimental results of repulsive Casimir-Lifshitz interac-
tions were measured six decades after the theoretical prediction with the
use of an atomic force microscope (AFM) between the tip of the can-
tilever, or a sphere attached to it, and a flat substrate, all immersed in a
liquid at small separation distances (below 10 nm) [51, 52, 53, 54, 55]. It
was also demonstrated that the inclusion of a fluid different than air be-
tween the interacting materials decreased the intensity of the force [56].

For larger separations distances, above tens of nanometers, repulsive
FC−L was first theoretically predicted [57] and afterwards measured with
the use of an AFM [58] between a gold sphere and a silica substrate all
drowned in bromobenzene. Several considerations were needed to suc-
cessfully perform this experiment: i) calibrating the AFM measurements
in liquids [56], ii) studying the effect of discrepancies among theoreti-
cal and real dielectric properties of materials [59], and iii) analyzing the
effect of residual electrostatic forces [60].

Most of the experimental measurements of repulsive FC−L were per-
formed in the sphere-plane geometry in order to avoid alignment prob-
lems. Concerning the plane-parallel geometry, the first experimental evi-
dence was recently attained [27] by using a completely different approach
based on spectroscopic measurements in a quantum trapping scenario. In
it, an optical resonator was built with a thin metallic film immersed in a
fluid over a substrate due to the balance of gravity and repulsive FC−L.
Casimir-Lifshitz forces were indirectly attained through reflectance mea-
surements by adjusting the equilibrium distance at which the metallic film

13



levitated.
All those advances prove the possibility of manipulating the strength

and nature of FC−L, shedding light on fundamental aspects of FC−L and
laying the groundwork for technological applications. Particularly, stable
quantum levitation can be used as a platform for a variety of applica-
tions such as contact-free nanomachines, ultrasensitive force sensors, and
nanoscale manipulations. Next, levitation will be deeply analyzed in a
plane-parallel geometry.

1.5 Levitation phenomenon in the plane-parallel
geometry

Let us consider a simple plane-parallel system with two plates (one of
them a self-standing thin film) facing each other in a fluid as it is displayed
schematically in Fig. 1.5. Typically, the thickness of the thin film (d)
and the separation distance (d0) between it and the substrate, range from
tens to hundreds of nanometers. In this simple case, it is considered that
the forces acting on the thin film are gravity (Fg), buoyancy (FB), and
FC−L. It might also be taken into account the effect of other forces acting
on the system, such as the double layer force (Fdl), arising near charged
surfaces in liquid solution, or the effect of surface roughness and patch
potentials, described in detail in Section 2.2 and Section 2.3, respectively.
However, for the sake of simplicity, in what follows, those effects will be
neglected to analyze fundamental concepts of the levitation phenomenon.
Definitions of Fg, FB, and FC−L are given in Eq. 1.5, 1.6, and Eq. 2.1
(extensively explained in Section 2.1), respectively.

Fg = −gρfilmd (1.5)

FB = gρfluidd (1.6)

14



Figure 1.5: Scheme of a plane-parallel system consisting of a self-
standing thin film of thickness d immersed in a fluid standing above a
substrate at a separation distance d0.

In the above expressions, g is the standard gravity, and ρfilm and
ρfluid, the density of the suspended film and the fluid, correspondingly.
Note that units of ρ are kg/m because of the infinite area considered of
both the substrate and the thin film. Following the sign convention of the
Casimir effect, positive values of the force correspond to repulsive forces,
and negative ones to attractive FC−L. The expression of the force balance
at equilibrium is then given by:

FT (deq, T ) = Fg + FB + FC−L(deq, T ) = 0 (1.7)

with FT the total force acting on the suspended film, and deq the equilib-
rium separation distance at which the thin film stands over the substrate
in thermal equilibrium at a fixed temperature, T .

In Eq. 1.7, the balance of forces is zero and the system is at me-
chanical equilibrium. This equilibrium can be either stable or unstable,
depending on the sign of the forces acting on the thin film. Figure 1.6 il-
lustrates both scenarios of stability. Panel (a) displays a situation in which
the suspended film is at stable equilibrium. In this case, the density of the
levitating film is higher than that of the fluid, and so, the intensity of grav-
ity is larger than that of the buoyancy force. In this situation, if the thin
film approaches the substrate, the repulsive FC−L restores the equilibrium
position deq, whereas, if the thin film moves away from the substrate, Fg
brings it back to deq. Panel (b) presents the opposite case, in which FC−L
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Figure 1.6: (a) Stable equilibrium distance (b) Unstable equilibrium dis-
tance.

between the thin film and the substrate is attractive, but the buoyancy
force compensates both gravity and FC−L, as the density of the fluid is
larger than that of the thin film. In this case, the system is at an unstable
equilibrium position, and if the film deviates from deq it will stick to the
substrate due to the attractive FC−L if d0 < deq, or it will float if d0 > deq.

In this thesis, the balance of FC−L, Fg, and FB is theoretically ana-
lyzed in plane-parallel geometries based on stratified materials that can
be easily found in nature and whose dielectric functions relations enable
repulsive Casimir-Lifshitz forces.

1.6 Casimir-Lifshitz force and Materials Sci-
ence

Materials Science is an interdisciplinary branch of Science based on Physics,
Chemistry and Engineering, focused on the development of novel mate-
rials. Originally, Material Science was devoted to the study of metallurgy
an ceramics, focusing on the relation between the process of fabrication,
the microstructure and the resulting properties of materials. However,
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soon those analyses were extended to all kinds of materials, including
semiconductors, polymers, biomaterials, nanomaterials, and optical and
magnetic materials, among others. Designs of such materials are com-
monly inspired by the surrounding world, mimicking or reproducing the
same structures or complexity found in nature, but also new materials are
created by adding advanced functionalities to the already existing ones.

Examples of outstanding materials developed in Material Science are
graphene [61], furellenes [62], photonic and acoustic crystals [63, 64],
doped semiconductors with desired electronic properties[65], perovskites
[66], biocompatible polymers [67], quantum dots [68], spin valves [69],
and a large etcetera, which have applications on diverse fields such as
photovoltaics [70], tissue regeneration [71], magnetic storage [72], drugs
delivery [73], light emitting devices [74] or quantum computation [75].

Of particular interest for the thesis work herein presented are the mul-
tifunctional optical materials. Materials with designed and engineered
optical properties have allowed the control of the absorption, emission or
propagation of light in optical fibers [76], wave guides [77], antireflecting
coatings [78], plasmonic structures [79], photonic crystals [80] or nega-
tive refractive index materials [81].

The possibility of tailoring electromagnetic boundary conditions en-
ables a variety of optical phenomena and related applications, and in addi-
tion, it allows to engineer dispersion forces, such as the Casimir-Lifshitz
force. Particularly, the intensity and nature of FC−L can be tuned by
controllably modifying the optical properties of the interacting materi-
als. In this regard, optical design may allow the development of mate-
rials with specific functionalities and characteristics, allowing a further
comprehension of the underlying physical and chemical processes in dis-
persion forces. For instance, based on attractive van der Waals forces,
Material Science has allowed the creation of bio-inspired materials that
let humans climb vertical walls as geckos do [82], and new functional-
ities have been added to already existing nanomachines designed to be
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driven by the Casimir-Lifshitz force [43].
However, as it was mentioned before, it is not straightforward to find

combinations of materials presenting repulsive FC−L as intuition cannot
be applied when Matsubara frequencies are computed. Moreover, since
the dielectric function of all materials in the system need to be known
over an ’infinite’ frequency range, restrictions on the possible materi-
als to be employed are maximized. Ultimately, these compact materials
must be chemically compatible with the fluid in which they are immersed,
and their thickness need to be easily determined in plausible experiment.
Different examples of materials combinations have been proposed in lit-
erature [83, 84, 85], including the use of chiral materials[86, 87, 88],
magnetodielectric metamaterials [50, 85, 89], superconductors [90], and
graphene [91].

In the same direction, another important challenge is to reduce the
strength of the attractive interaction to maximize the durability of MEMS
and NEMS. Many different approaches have been proposed in literature,
such as nanostructuring the surface of materials [92], modifying the di-
electric function of materials by changing the crystalline phase with tem-
perature [93], through the change of the carrier density shining silicon
[94, 95] or by means of external magnetic fields [96].

1.7 This thesis
This thesis tackles the theoretical study of the Casimir-Lifshitz force in
the plane-parallel geometry from the Materials Science point of view,
paying specific attention to the optical properties of the interacting mate-
rials. The main interest will be to control the intensity and sign of FC−L,
but also to find novel material designs that will provide insight into the
underlying fundamental physics, with potential applications in nanotech-
nology.

This thesis has a profound theoretical basis, but the systems under
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study have been conceived bearing in mind potential experimental appli-
cations, i.e., taking in consideration available materials and optical char-
acterization techniques. The devised self-standing thin films (in both sin-
gle or multilayer configurations) need to be compact, mechanically stable,
of smooth surfaces, of controlled thickness, and chemically compatible
with the fluid in which they are immersed.

In Chapter 2, the theoretical tools used along the thesis are presented.
Specifically, the methods applied for the calculation of FC−L in the plane-
parallel geometry and for the simulation of the optical response of the sys-
tems studied are described. The Lifshitz expression for the FC−L and the
Transfer Matrix method will be discussed in detail. Furthermore, semi-
analytical calculations of the EM field and the spatial distribution of ab-
sorption inside the optical materials under consideration are explained.

In Chapter 3, the effect on FC−L of temperature variation around room
temperature has been investigated in systems which present levitation due
to repulsive FC−L. At the end of the chapter, the connection between the
effect of temperature variations and the intrinsic optical properties of the
materials forming the system is analyzed.

In Chapter 4, based on the levitating systems analyzed in Chapter 3, a
careful design of an optical resonator is carried out in order to propose a
levitating system in which measurements of repulsive FC−L are possible
through optical spectroscopy. In addition, the effect of temperature in this
levitating system is analyzed.

In Chapter 5, the focus is put on how to control the strength and nature
(attractive or repulsive) of the FC−L by nanostructuring onoe of the inter-
acting planar bodies. The geometrical parameters of the nanostructure
allows to tune FC−L in intensity and sign, and its variations are explained
in terms of the optical interference occurring inside the material, which
gives rise to specific EM field distribution and absorption profiles inside
the nanostructure.
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Chapter 2

Methods and Materials

This chapter is devoted to the description of the expressions used in the
calculations of the forces acting on the systems here considered, and the
optical response of the same structured systems. First of all, the expres-
sion of the Casimir-Lifshitz force (FC−L) for the plane-parallel geometry
is presented, detailing important aspects such as the form it takes for T
= 0 K and T 6= 0 K; the rotation from real frequencies (ω) to Matsubara
frequencies (ξ); and the importance of the dielectric function of materi-
als involved in the resulting FC−L. In addition, an example reproducing
results from literature will be also presented. Then, the theory of the
double-layer force (Fdl) is presented and the effect of surface roughness
and patch potentials is reviewed. Finally, regarding the optical response
of generalized multilayer structures, the Transfer Matrix Method is de-
tailed, which in turn allows to extract information about the distribution
of the EM field and the power absorbed in each layer of the system.
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2.1 Expressions of the Casimir-Lifshitz force
in the plane-parallel geometry

The expression of the Casimir-Lifshitz force can be derived following
two formalism. The first one consists in solving the Maxwell’s equations
for macroscopic materials, calculating the Maxwell stress tensor (T ) by
using the fluctuation-dissipation theorem, and finally taking the average
of the zz-component 〈Tzz〉 written in terms of Green functions. Another
approach considers the fully quantum nature of EM fields. In it, the dif-
ference in energy inside and outside the cavity formed by two bodies in-
teracting is calculated by solving the eigenvalues of the modes allowed
inside it. Originally, Lifshitz attained the closet expression for the plane-
parallel geometry, known as Lifshitz formula, from 〈Tzz〉 for a system like
the one depicted in Fig. 2.1. In it, εl is the dielectric function of the corre-
sponding l material, with l = 1 and l = -1 that of the interacting plates, and
l = 0, the material mediating the interaction [31]. The distance between
the semi-infinite bodies or, equivalently, the thickness of the material me-
diating the interaction is denoted by d0 and r(0,1)

j and r(0,−1)
j stand for the

simple Fresnel reflection coefficients of the top and the bottom interface
of material l = 0, for polarizations j = TE, TM . One of the most com-
mon versions of the Lifshitz force expression at T = 0 K in a system like
the one just described is given by the following equation [28]:

FC−L (d0) = − ~
2π2

∫ ∞
0

k⊥ dk⊥

∫ ∞
0

dω

Im

k0

∑
j=TE,TM

[
e2k0d0

r
(0,1)
j (ω, k⊥) · r(0,−1)

j (ω, k⊥)
− 1

]−1
 (2.1)

In the above expression, ~ is the Planck constant and k0 is the wavevec-
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Figure 2.1: Scheme of two semi-infinite materials (l = 1 and l = -1) inter-
acting by Casimir-Lifshitz force through material l = 0, which mediates
the interaction. Each material l is described by its dielectric function εl
whereas the thickness of material l = 0, or equivalently, the separation
distance between the semi-infinite bodies, is given by d0. r(l,l′)

j denotes
the simple Fresnel coefficient at the interface between materials l and l′.

tor component inside the mediating material, perpendicular to the inter-
faces. Also, k0 is is the wavenumber in the plane of the planar surface at
the interface, also perpendicular to k⊥ = (kx, ky). The expression for kl
is written as

kl = kl(ω, k⊥) =

[
k2
⊥ − εl(ω)

ω2

c2

]1/2

(2.2)

with c the speed of light. In addition, the simple Fresnel reflection
coefficients in Eq. 2.1, r(0,±1)

TM and r(0,±1)
TE are defined as:

r
(0,±1)
TM (ω, k⊥) =

ε±1(ω)k0 − ε0(ω)k±1

ε±1(ω)k0 + ε0(ω)k±1

(2.3)
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r
(0,±1)
TE (ω, k⊥) =

k0 − k±1

k0 + k±1

(2.4)

Numerically, the evaluation of Eq. 2.1 is not trivial, as it depends
exponentially on k0(ω, k⊥). According to Eq. 2.2, in the simplest case
in which ε0 = 1, k0 can take pure real values (if |k⊥| ≥ ω/c) or pure
imaginary values (if |k⊥| < ω/c) leading, in the last case, to a complex
exponential function with rapid oscillations difficult to deal with compu-
tationally.

Lifshitz extended his formalism to include thermal fluctuations always
present at T > 0 K [31], something necessary to describe, for example,
experiments at room temperature. The following subsection addresses
this extension and describes the modifications to the original expression
given by Eq. 2.1.

2.1.1 Rotation from real frequencies (ω) to Matsubara
frequencies (ξm) at T 6= 0 K

Let us consider first the case of a system at T = 0 K.
Rapid oscillations take place in the integrand of Eq. 2.1 for T = 0 K,

complicating the computation of FC−L. To avoid them, a closed integral
in the complex plane can be performed. By doing so, the available fre-
quencies are now expressed as a complex variable Ω = ω + iξ, where ω
and ξ are the corresponding real and imaginary parts.

According to Cauchy’s theorem, the closed integral (
∮

) of any func-
tion f(Ω) analytic in a region of the complex plane, for instance in the
first quadrant of the Ω complex plane, fulfills that∮

C

dΩf(Ω) = 0 (2.5)
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Figure 2.2: Scheme of the closed path in the complex plane Ω = ω + iξ,
for (a) T = 0 K and for (b) T > 0 K. Each closed path consist of three
segments: L1, L2 (straight) and CR (circular). In panel (b) at T > 0 K,
the integrand presents poles on the ξ-axis causing a slightly change in the
closed path.

where C is an arbitrary closed path lying within that region of the
complex plane in which f(Ω) is analytic. In the example presented in
Fig. 2.2(a), the closed path C consists of three segments, two straight and
one circular, denoted as L1, CR and L2. Specifically, L1 corresponds to a
segment along the positive real axis (0,∞), CR is the 90º arc with infinite
radius from the positive real axis to the positive imaginary axis, and L2

runs along the positive imaginary axis (i∞,0). However, in panel (b), at
T > 0 K, the closed path slightly changes as a consequence of the poles
that are introduced by the integrand in the ξ-axis, as it will be explained
below. [28, 97].

If f(Ω) vanishes in the arc, and it is real for f(iξ), as it has been
demonstrated for the integrand in Eq. 2.1 [28, 97], then

Im

∫ ∞
0

dωf(ω) =

∫ ∞
0

dξf(iξ) (2.6)

Therefore, Eq. 2.1 can be rewritten as
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FC−L (d0) = − ~
2π2

∫ ∞
0

k⊥ dk⊥

∫ ∞
0

dξ

k0

∑
j=TE,TM

[
e2k0d0

r
(0,1)
j (iξ, k⊥) · r(0,−1)

j (iξ, k⊥)
− 1

]−1

(2.7)

with kl expressed in terms of iξ and k⊥

kl = kl(iξ, k⊥) =

[
k2
⊥ + εl(iξ)

ξ2

c2

]1/2

(2.8)

and with

εl(iξ) = 1 +
2

π

∫ ∞
0

ωε′′l (ω)

ω2 + ξ2
dω (2.9)

Note that εl(iξ) is real for every iξ value. Observe also that kl(iξ,k⊥) is
real for any iξ and k⊥ values involved in Eq. 2.7, eliminating the complex
exponential from the integrand and, consequently, the rapid oscillations in
Eq. 2.7. At this point, I would like to bring your attention to the limits of
integration in Eq. 2.9. They are defined from 0 to∞, which is a real chal-
lenge from the experimental point of view, as dielectric functions must be
known for such a frequency range. However, using data in a sufficiently
wide spectral range, which must include main absorption bands, usually
results in a good approximation of the integrated dielectric function.

In addition, r(0,±1)
j in Eq. 2.7 are also expressed in terms of iξ and k⊥

as follows:

r
(0,±1)
TM (iξ, k⊥) =

ε±1(iξ)k0(iξ, k⊥)− ε0(iξ)k±1(iξ, k⊥)

ε±1(iξ)k0(iξ, k⊥) + ε0(iξ)k±1(iξ, k⊥)
(2.10)

25



r
(0,±1)
TE (iξ, k⊥) =

k0(iξ, k⊥)− k±1(iξ, k⊥)

k0(iξ, k⊥) + k±1(iξ, k⊥)
(2.11)

Up to now, FC−L expression are valid T = 0 K. In that case, the only
contribution to the fluctuations of the EM field are due to the zero-point
energy. At a finite temperature T > 0 K, thermal fluctuations of the EM
field also contribute to the Casimir-Lifshitz force. In what follows, it will
be shown how to calculate FC−L at any temperature T ≥ 0 K. Note that,
although the dielectric function of materials may be affected by tempera-
ture changes, for the materials and temperatures considered in this thesis,
variations with T will be negligible. Therefore, dielectric functions will
be considered unaltered under temperature changes.

According to Bose-Einstein statistics, the population of an EM field
mode of frequency ω at finite temperature T is:

p(ω) =
1

2
+

1

e~ω/kbT − 1
=

1

2
coth

~ω
2kBT

(2.12)

where the 1/2 term is associated to zero-point fluctuations, and 1
e~ω/kbT−1

to thermal fluctuations. Taking all this into account, the expression of the
Casimir-Lifshitz force at finite temperature expressed in real frequencies
can be rewritten as:

FC−L (d0, T ) = − ~
2π2

∫ ∞
0

k⊥ dk⊥

∫ ∞
0

dωcoth
~ω

2kBT

Im

k0

∑
j=TE,TM

[
e2k0d0

r
(0,1)
j (ω, k⊥) · r(0,−1)

j (ω, k⊥)
− 1

]−1
 (2.13)

This expression is equivalent to that given in Eq. 2.1. Again, FC−L
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depends exponentially on kl=0, and so, rapid oscillations are included in
the integrand. They can be eliminated by performing the integral in the
complex plane of frequencies Ω, as it was shown in Eq. 2.6. However,
in this case, the function coth ~Ω

2kBT
in the integrand introduces an infinite

number of poles for Ω = iξm, with ξm defined as:

ξm =
2πkBT

~
·m (2.14)

being m = 0, 1, 2,... ∞. These discrete ξm frequencies are com-
monly named Matsubara frequencies. The fact of having those poles in
the imaginary axis (showed as points in Fig. 2.2(b)) leads to the calcu-
lation of residues to compute the integral along the straight segment L2.
Because of that, the integral in frequencies ω in Eq. 2.13 is replaced by a
summatory over Matsubara frequencies iξm. Explicitly, the modification
in the expression is:

~
2π

∫ ∞
0

dξ ←→ kBT
∞∑
m=0

′
(2.15)

where the prime (’) indicates that the term with m = 0 is multiplied
by 1/2. This substitution gives rise to the expression of FC−L at T > 0 K:

FC−L (d0, T ) = −kBT
π

∞∑
m=0

′
∫ ∞

0

km0 k⊥ dk⊥ ·

·
∑

j=TE,TM

[
e2km0 d0

r
(0,1)
j (iξm, k⊥) · r(0,−1)

j (iξm, k⊥)
− 1

]−1

(2.16)
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with

kml = kl(iξm, k⊥) =

[
k2
⊥ + εl(iξm)

ξ2
m

c2

]1/2

(2.17)

In these expressions, the simple Fresnel coefficients r(0,1)
j (iξm, k⊥)

and r(0,−1)
j (iξm, k⊥) evaluated at the specific frequency iξm, given in Eqs.

2.17, 2.10, and 2.11 also apply here.

2.1.2 Systems with arbitrary number of layers

Diverse physical situations in which Casimir-Lifshitz forces play an im-
portant role involve systems comprising several materials, and sometimes,
these materials can be considered to be built in layers. The expressions
for FC−L presented in previous sections can be generalized [98, 99, 100]
to systems with an arbitrary number of layers, each one labeled with l =
−L, ..., L (L = 1, 2, ...∞), and with the total number of layers given by
2L+1. Layers are symmetrically piled up above (positive subscripts) and
below (negative subscripts) the central material (l=0), which is the one
that mediates the interaction between top layers and bottom layers (see
scheme in Fig. 2.3). Each layer is described by its dielectric function
εl, density ρl, and thickness dl, being dL+1 and d−L−1 equal to infinite
as they account for semi-infinite materials. In this configuration, the re-
flection coefficients on the top and bottom interfaces of layer l=0, now
named multiple Fresnel coefficients R(+)

j and R(−)
j , respectively, are ex-

pressed as an iterative function of the corresponding simple Fresnel re-
flection coefficients of the interfaces above and below such material. The
new generalized expression of FC−L at a finite temperature is written as:
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Figure 2.3: Scheme of a mutilayer structure of an arbitrary number of lay-
ers for the FC−L calculation. Each layer is characterized by its dielectric
function εl, density ρl and thickness dl, where layer with l = 0 stands for
the material mediating the interaction between top layers and bottom lay-
ers. R±j are the multiple Fresnel coefficients on the top (+) and the bottom
(-) interfaces of the material mediating the interaction.
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FC−L (d0, T ) = −kBT
π

∞∑
m=0

′
∫ ∞

0

km0 k⊥dk⊥·
∑

j=TE,TM

[
e2km0 d0

R
(+)
j ·R(−)

j

− 1

]−1

(2.18)

with R(±)
j defined as:

R
(±)
j (m, k⊥) = Γ

(±)
l=0(m, k⊥) (2.19)

and the Γ
(±)
l functions expressed as:

Γ
(±)
l (m, k⊥) =

r
(l,l±1)
j + Γl±1e

−2kml±1dl±1

1 + r
(l,l±1)
j Γl±1e

−2kml±1dl±1
(2.20)

2.1.3 Dielectric function of materials

The dielectric function of a material, ε(ω), is a magnitude that describes
the response of a material to an external EM field of frequency ω. In
particular, it is the factor that relates the electric displacement field (

−→
D )

with the applied electric field (
−→
E ):

−→
D = ε

−→
E = ε0ε

−→
E = ε0

−→
E +

−→
P (2.21)

being ε0 the vacuum permittivity, ε the relative permittivity or dielec-
tric function, and

−→
P the polarization density.

As the materials response to an external EM field is not instanta-
neous and it obeys a causal process described by the Kramers-Kronig re-
lations, the dielectric function is expressed as a complex function, ε(ω) =

ε′(ω)− iε′′(ω), in order to specify the magnitude and the phase difference
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between
−→
D and

−→
E .

It is important to note that the dielectric function and the refractive
index of a material are related through the relation ε = ñ2 with ñ = n−ik,
so that ε′ = n2 − k2, and ε′′ = 2nk. The imaginary part of ñ, k is named
extinction coefficient and it accounts for the specific absorption loss of
the material.

The dielectric function is an inherent material property, and it has
been demonstrated its strong dependence on the sample preparation pro-
cess [101, 102]. The dielectric function can be experimentally measured
employing different techniques, and the technique to be applied will de-
pend on the frequency range of interest. Additionally, it can also be mod-
eled from limited tabulated experimental data by using a simple oscillator
models [103, 104, 105]. They are based on the equation of motion of clas-
sical electrons harmonically bounded to atoms interacting with an electric
field, resulting in a sum of absorption peaks with a Gaussian or Lorentzian
shape. These models were originally used when dealing with dispersion
forces because dielectric data at vacuum ultraviolet ranges were not able
to be measured or were not precisely known. Only recently, accurate
measurements have been achieved.

In Lifshitz theory, which solves the microscopic Maxwell’s equations,
the dielectric function enters directly in the formalism, playing a central
role as it is the term which contains the information about the interacting
materials.

As it was pointed out in the previous section, Lifshitz theory is much
simpler to compute considering the complex plane of frequencies than the
real axis. Because of that, also the dielectric function evaluated at imag-
inary frequencies using Eq. 2.9 should be employed in order to simplify
the calculation of FC−L.

Figure 2.4 illustrates examples of how the dielectric function changes
when real frequencies ω (panel (a)) rotate to imaginary frequencies iξ
(panel (b)), for SiO2 (orange line) and PS (light blue line) materials. Their
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Figure 2.4: (a) Dielectric function of SiO2 (orange) and PS (blue) at real
frequencies and (b) dielectric function evaluated at Matsubara frequencies
for several materials.

tabulated dielectric data in real frequencies are found in references [106,
107, 108, 109]. In addition, in panel (b) dielectric functions evaluated
directly at Matsubara frequencies are also shown for some other reported
materials [105]. In Fig. 2.5 it is shown the extinction coefficient k (panel
(a)), and the dielectric function evaluated at Matsubara frequencies ε(iξ)
(panel (b)) of SiO2, as a function of the angular frequencies. High k

values, which account for high absorption of the material, correspond to
high negative slopes of ε(iξ). In the figure, such behaviour is observed in
the UV and the IR frequency ranges, i.e., from 1013 to 1015 rad·s−1, and
from 1016 to 1017 rad·s−1. On the contrary, transparent frequency ranges
with k ≈ 0, correspond to zero slope regions in the ε(iξ) curve.

As it was mentioned in previous sections, the nature and intensity of
the Casimir-Lifshitz force strongly depend on the dielectric function of
the materials involved and their relation to one another. Some predic-
tions on the attractive or repulsive nature of FC−L might be established
when comparing the dielectric functions in Matsubara frequencies before
performing full calculations.

Along this thesis, one of the main goals will be to find materials com-
binations displaying repulsive Casimir-Lifshitz forces. To this end, the
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Figure 2.5: (a) Imaginary part of the refractive index, k and (b) dielectric
function evaluated at the Matsubara frequencies ε(iξ) for SiO2.

comparative relation expressed in Eqs. 1.3 and 1.4 for the dielectric func-
tions of the materials in the system will be pursued.

2.1.4 Semi-analytical calculations

Concerning the computation of FC−L, results reported by Elbaum and
Schick in 1990 [110] will be first reproduced. In their study, it is shown
how the Casimir-Lifshitz force would promote the growth of water as a
nanometer thick layer above an ice surface in air at T = 273.15 K. Three
materials compose the multilayer scheme, and FC−L can be estimated
through Eqs. 2.16 for 3 materials, or 2.18 for a generalized multilayer
structure. In the latter case, L would be equal to 1. Both expressions
present an integral in k⊥ from 0 to ∞ and a summatory over the Mat-
subara frequencies. Therefore, the convergence of the integrand must be
ensured for the upper limits of the integrals over ξm and k⊥, for the range
of separation distances considered. In Fig. 2.6(a), materials labeled as l =
1, 0, -1 will correspond to air, water and ice, respectively. The values of
the dielectric functions for those materials are the same used in Elbaum
and Schick’s paper and they are shown in Fig. 2.6(b).

Figure 2.7(a) shows, on the one hand, an example of one integrand as
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Figure 2.6: (a) Scheme of the three materials system consisting in a d0

thick layer of water in between semi-infinite air and ice slabs. (b) Dielec-
tric function of the three materials evaluated at Matsubara frequencies
extracted from Ref. [110]

Figure 2.7: (a) Integrand of FC−L in Eq. 2.16 as a function of k⊥ for
m = 0 and d0 = 2 nm. (b) Contribution of each Matsubara frequency to
FC−L. These contributions correspond to each term in the summatory in
Eq. 2.16, evaluating m = [1-10,000]. For m = 0 the contribution is 672
N/m². Positive and negative values will produce repulsive and attractive
contributions, correspondingly.
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Figure 2.8: FC−L as a function of d0 for the system considered in Fig.
2.6(a). Black solid line represents the resulting FC−L from Ref. [110],
whereas red circles display the numerical calculation carried out applying
Eq. 2.16.

a function of k⊥ for a given Matsubara frequency. The frequency selected
is the first m value defining Matsubara frequencies, i.e., m = 0, which
represents the largest contribution to FC−L. Calculations are performed
for an arbitrary separation distance of d0 = 2 nm. As it can be observed,
the integrand converges at large k⊥ values, using steps of 104 m−1. On
the other hand, panel (b) displays, as a function of Matsubara frequencies,
the discrete values obtained after the integration of the curves equivalent
to the one shown in panel (a), but for all m values, i.e., for m = 0, 1, ...
∞. Note that the contribution of m = 0 is 672 N/m2, a value not shown
in panel (b) due to the logarithmic scale. For large Matsubara frequencies
(as large as that given for m = 104), the curve in panel (b) decays to zero.
The final FC−L value will be the summatory of all discrete points in panel
(b). In this case, FC−L is 1347 N/m2 at d0 = 2 nm.

Original results in Ref. [110] are expressed in energy instead of force.
For comparison, those results have been here transformed to force values
and are shown in Fig. 2.8 for separation distances d0 = [1-4] nm. Recall
that both energy and force magnitudes are given per unit area. Reproduc-

35



tion of results is excellent. Once this example, and others in literature in-
cluding metals [101, 111] were reproduced, novel designs were explored.

As an aside, to give an idea of the computational cost to perform this
kind of integrals, it was checked that the calculation of FC−L for three lay-
ers at a given separation distance takes around 30 seconds in a computer
with an Intel Core i7 processor.

2.2 Electrostatic force
Together with FC−L, the electrostatic force, Fel, is a dominant force at
micro- and nanoscales. In fact, the electrostatic force between two metal-
lic plates separated d = 1 µm with a potential difference of V = 17 mV,
give rises to a coulomb interaction in the same order of magnitude as
FC−L. Because of that, Fel must be taken into account when analyzing
forces at the nanoscale, and generally, it should be eliminated in order to
be able to measure experimentally FC−L. In the particular case of a fluid
material mediating the interaction, which is the typical scenario addressed
in this thesis, in the plane-parallel geometry the electrostatic interaction
yields to the double-layer force, Fdl. This force appears when two sur-
faces present surface charge (σβ with β = 1,2 for each surface) and ions
of opposite electric sign dissolved in the fluid are attracted by coulombic
interaction. As a result, a layer of opposite charge is deposited near the
surfaces (see Fig. 2.9). The characteristic thickness of the ions deposited
layer is related to the Debye length, lD, defined as the inverse of the De-
bye screening wave vector KD, which is related to the distance at which
the electrical potential decreases a factor 1/e. To calculate the double-
layer force between the two surfaces with their respective ions layers, the
Poisson-Boltzmann approximation is used to describe the electrostatic po-
tential, and the double-layer force per unit area is obtained from it in the
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Figure 2.9: Scheme of the charge distribution between two plates sep-
arated by a fluid. Ions attache to the surface and counterions distribute
following a Boltzmann distribution.

limit of small potentials [112, 113].

Fdl =
2

εε0

σ2
1 + σ2

2 + σ1σ2(eKDd0 + e−KDd0)

(eKDd0 − e−KDd0)2
(2.22)

In the above expression, d0 is the separation distance between the sur-
faces, ε the dielectric function of the fluid, and KD is the inverse of the
Debye length lD defined as:

KD =
1

lD
=

√
2(Ze)2N

εkBT
(2.23)

with e the electron charge, and N and Z the number per unit volume and
the valence of the salt ions, respectively.

2.3 Roughness and patch potentials effect
Experimentally, samples are not perfect and the synthesis or fabrication
process may affect their properties making them unique. Apart from the
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optical properties mentioned in the previous section, a deep analysis in
literature regarding the effect of roughness and patch potentials in exper-
imental measurements of FC−L have been performed, showing that the
effect of both type of imperfections on FC−L depend on the fabrication
procedure.

On the one hand, regarding the roughness of surfaces, many efforts
were put on its analytical description and the quantification of its effect
on FC−L [114, 115, 116, 117, 111, 118, 119, 120]. All those methods
are based on the knowledge of the height profile of the two bodies inter-
acting, that is the self-affine roughness of each surface. Typically, that
profile is experimentally measured using an atomic force microscope giv-
ing a precise map of the topology of the sample. Using such information
as input some works apply a method that extract statistical parameters
based on a model for the height-height correlation of self-affine roughness
[117, 119], other works employ perturbation theory in order to estimate
the roughness correction to FC−L [114, 116, 115], and the most detailed
method [120] separates the problem into two regimes: heights smaller
and larger compared to the root-mean-square of height fluctuations of the
surface. Basically, the roughness correction to the FC−L is given by three
contributions FC−L = FPT + FPFA, the perturbation term FPT that de-
scribes the effect of roughness comparable to the root-mean-square and
the last two terms corresponding to high peaks and deep troughs estimated
by the proximity force approximation. Finally it is found that rough-
ness corrections become significant at separation distances below 100 nm
[119], attaining modest corrections such as 0.65% or 0.42% for two gold
coated plates interacting, with maximum heights of the roughness peaks
smaller than 25nm, separated 160 and 200 nm, respectively [111].

On the other hand, apart from the electrostatic force due to the resid-
ual potential difference between the interacting bodies, it is possible to
find a spatial variation of the surface potential in the sample caused by the
grains of the polycrystalline material. This spatial distribution of surface
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potential is named patch potentials and may cause discrepancies among
experimental measurements of FC−L and the theory. Again analytical
models have been developed to quantify that electrostatic force [121] and
its effect on FC−L measurements [122, 123]. In this case the experimen-
tal information about the spatial distribution of patch potential is deter-
mined through Kelvin Probe microscopy, which consists on contactless
measurements of the electrostatic interaction between a cantilever and a
sample [124, 123]. For typical patch sizes around 200 nm, the electro-
static force associated to the patch potentials between two golden coated
plates interacting at separation distance of 160 nm is a 0.037% compared
to FC−L and becoming even smaller at larger separation distance.

In the following, in this thesis the effect of roughness and patch po-
tential will be neglected since their effect have been proven to be very
small in the range of hundred of nanometers which is the typical values
of the separation distances here studied and in order to focus the analysis
on the effect of the optical properties of materials involved in the Casimir-
Lifshitz interaction.

2.4 Transfer Matrix Method
To analyse the optical properties of the systems under study, the Trans-
fer Matrix Method (TMM) will be used [125]. The TMM provides an
analytical description of the propagation of EM fields through isotropic
stratified materials. The method, based on the boundary conditions at the
interfaces between materials, solves the amplitude of the EM field at each
point of space. Specifically, along this thesis, the TMM is used to simu-
late the optical response of multilayer plane-parallel systems in terms of
the reflectance (R), absorptance (A), transmittance (T ), and the spectral
and spatial distribution of the EM field and the power absorbed.

Let us consider a multilayer structure made up of L layers as the one
shown in Fig. 2.10, where nl and dl are, respectively, the complex refrac-
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Figure 2.10: Scheme of a multilayer structure with N layers.

tive index and the layer thickness. Subscript 0 and L + 1 stand for semi-
infinite materials enclosing the multilayer structure. Inside the structure,
the EM field propagates along the x-axis, with the electric field (E) oscil-
lating either in the xy plane, named transverse electric mode (TE), or in
the xz plane, named transverse magnetic mode (TM ).

At each point of space, E can be described by Eq. 2.24 which is
based on the superposition of two monochromatic plane waves travelling
in opposite direction.

E = E(x)ei(ωt−βz) ≡ a(x)e−ikxx + b(x)eikxx (2.24)

In the above equation, a and b are the amplitude of the wave propagat-
ing rightwards and leftwards, correspondingly, while β and kx are the z-
and x-component of the wavenumber k, respectively. Applying Eq. 2.24
to the stratified structure results in a system of L+2 equations (Eq. 2.25):

E(x) =


a0e
−ik0x(x−d0) + b0e

ik0x(x−d0), x < d0

ale
−iklx(x−dl−1) + ble

iklx(x−dl−1), dl−1 < x < dl
aLe

−ikLx(x−dL) + bLe
ikLx(x−dL), x > dL

(2.25)
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where al and bl are the coefficients of the EM field inside each homo-
geneous layer and klx is the x-component of k, which is constant inside
each layer and is defined as:

klx = nl
ω

c
cos(θl) (2.26)

with θl the incident angle of radiation with respect to the x-axis in
layer l.

The system of equations can be written in a more compact notation
using products of matrices. Thus, at an interface between two materials,
the amplitudes on the left-side (al,bl) and right-side (al+1, bl+1) are related
through the dynamical matrix (D).(

al
bl

)
= D−1

l Dl+1

(
al+1

bl+1

)
(2.27)

Dl appearing in the above expression is defined next in Eq. 2.28 and
Eq. 2.29 for TE and TM polarizations, correspondingly.

Dl =

(
1 1

nlcos(θl) −nlcos(θl)

)
(2.28)

Dl =

(
cos(θl) cos(θl)

nl −nl

)
(2.29)

The productD−1
l Dl+1 represents the transmission matrix between ma-

terial layers l and l + 1, and the propagation of light inside the layer until
the next interface is described by matrix P .(

al
bl

)
= PlD

−1
l Dl+1

(
al+1

bl+1

)
(2.30)
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with

Pl =

(
eiφl 0

0 e−iφl

)
(2.31)

being φl the phase at the interface x = dl between layer l and l + 1

φl = klx · dl (2.32)

Therefore, each layer in the system introduces two interfaces, being
the propagation of light through each layer expressed by DlPlD

−1
l · The

subsequent product of matrices for the whole structure can be rewritten as
an unique matrix with elements Mij , relating amplitudes from both sides
of the stratified media as it shows Eq. 2.33 and 2.34.(

a0

b0

)
=

(
M11 M12

M21 M22

)(
aL+1

bL+1

)
(2.33)

(
M11 M12

M21 M22

)
= D−1

0

[
L∏
l=1

DlPlD
−1
l

]
DL+1 (2.34)

From the matrix elements Mij , one can extract information about the
optical response of the whole stratified system knowing which fraction of
the incident radiation is reflected R or transmitted T .

R = |r|2 =

∣∣∣∣M21

M11

∣∣∣∣2 (2.35)

T =
n′cos(θ′)

n0cos(θ0)
|t|2 =

n′cos(θ′)

n0cos(θ0)

∣∣∣∣ 1

M11

∣∣∣∣2 (2.36)

From conservation of energy, light that is not reflected nor transmitted
must be absorbed by the subsequent layers. Thus, the absorption of the
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system can be expressed as

A = 1−R− T (2.37)

2.5 Field distribution and power absorbed
In order to gain physical insight into the light-matter interaction, the spa-
tial distribution of the electric field intensity (|E(ω, r)|2) across materials,
and the optical power absorbed (Pabs) by each slab is inspected for strati-
fied structures in this thesis.

First, the spatial and spectral distribution of the electric field intensity
is obtained using the TMM described in the previous section. After that,
the spatial and spectral optical power absorbed by the material is extracted
by using the following expression:

PAbs(ω) =
1

2

∫ V

0

ωε0ε
′′
l (ω, r)|E(ω, r)|2 dV (2.38)

where ε′′l (ω) is the imaginary part of the dielectric function of the ma-
terial in layer l, and V is the total volume occupied by the whole stratified
structure.

Generally, the absorptance (A) of any system can be seen as the frac-
tion of the incident power (P0) that has been absorbed.

A =
PAbs
P0

(2.39)

being possible to separate the absorptance in each layer from the total
A by computing the path integral of the power absorbed per unit volume
(δA) between the corresponding limits of each layer. At normal incidence
and being z the perpendicular axis to the slab surface, the absorptance is
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given by:

A =

∫
δA dz (2.40)

In Chapter 5 it will be shown that this information sheds light into
results that, otherwise, could not be retrieved experimentally. For the
moment, as an example, Fig. 2.11 illustrates the kind of analysis to be
performed by means of the TMM. In it, as it is depicted in panel (a), a
stratified thin film comprising four layers of 10 nm thick, two made of
silicon dioxide (SiO2) (in orange) and two made of polystyrene (PS) (in
blue), are considered. Results for the spatial and spectral |E|2 and δA dis-
tributions are shown in panels (b) and (c), respectively, and the spectral
power absorbed in regions or layers denoted as I, II, III and IV are dis-
played in (d). Regions I and III correspond to SiO2 layers and II and IV to
PS slabs. Notice that in panels (b) and (c) light is considered to propagate
from the bottom (negative values of position) to the top (positive values of
position) of the panel. To guide the eye, white horizontal lines mark the
limits of each layer. As it will be discussed in Chapter 5, materials only
absorb light at wavelengths in which ε′′l (ω) 6= 0 and |E|2 is sufficiently
intense, resulting in the film absorptance (black line in pannel (d)) as the
summatory of the power absorbed by each layer (colored lines in pannel
(d)).
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Figure 2.11: (a) Scheme of the 40 nm thick thin film consisting in two
layers of SiO2 (orange) and two layers of PS (blue) interleaved. (b) Spec-
tral and spatial electric field intensity |E|2 distribution. White horizontal
lines delimit layer interfaces. (c) Spectral and spatial power absorbed per
unit volume. Labels I, II, III, IV stand for the four regions of space occu-
pied by material layers. (d) Spectral absorptance of each region of space
(colored lines) and spectral total absorptance of the thin film (black line).
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Chapter 3

Levitation of thin films due to
Casimir-Lifshitz interactions.

Analysis of temperature effects

The results of this chapter are gathered and published in the following
reference:

V. Esteso, S. Carretero-Palacios, and H. Mı́guez. Effect of temper-
ature variations on equilibrium distances in levitating parallel di-
electric plates interacting through Casimir forces. Journal of Applied
Physics, 119(14), 144301, 2016.
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3.1 Introduction

3.2 Levitation Phenomena in plane-parallel sys-
tems due to Casimir-Lifshitz and gravity
force balance

3.3 Temperature dependence of equilibrium dis-
tance at room temperature

3.4 Simple rules to predict temperature varia-
tion effects on deq

3.5 Conclusions
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Chapter 4

Optical resonators based on
Casimir-Lifshitz forces

The results of this chapter are gathered and published in the following
reference:

V. Esteso, S. Carretero-Palacios, and H. Mı́guez. Casimir-Lifshitz
Force Based Optical Resonators. The Journal of Physical Chemistry
Letters, 10(19), 5856-5860, 2019.
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4.1 Introduction

4.2 Fabry-Pérot optical cavities

4.3 CasimirLifshitz Force Based Optical Res-
onators

4.4 High Q-factor optical resonators for accu-
rate measurements of repulsive FC−L

4.5 Effect of room temperature variations on
the force balance and the optical cavity char-
acterization

4.6 Conclusions
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Chapter 5

Optical Interference Effects on
Casimir-Lifshitz Forces

The results of this chapter are gathered and published in the following ref-
erence: V. Esteso, S. Carretero-Palacios, and H. Mı́guez. Optical inter-
ference effects on the Casimir-Lifshitz force in multilayer structures.
Physical Review A, 101(3), 033815, 2020.
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5.1 Introduction

5.2 Periodic multilayer structures and their op-
tical response

5.3 Effect of thickness and number of layers
on Casimir-Lifshitz force

5.4 Tuning the Casimir-Lifshitz force with mul-
tilayer nanostructures

5.5 Conclusions
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