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Abstract—This paper presents a simple modulation algorithm
which accomplishes the voltage balance across the capacitors
of a Cascaded H-bridge (CHB) converter using zero voltage
injection. CHB converters are widely used in renewable energy
production, specially in solar plants due to its modularity. This
advantage can also become a trouble when the power generated
by the solar cell or consumed by a load is not equal among the
three phases, leading to an unbalanced situation. A well-known
technique consists in injecting a zero sequence voltage according
to the power distribution. A simple modulation algorithm is
presented in this paper including a mathematical proof. The
proposed algorithm has been tested by simulation with a five-
level CHB converter. At the end of the paper, a modification is
introduced to improve the converter efficiency.

I. INTRODUCTION

MULTILEVEL converters have found a wide range
of applications from power converter for renewable

energy integration to electric vehicle uses as they have been
growing in popularity [1]. Nowadays Several multilevel
converters topologies have been presented and the number
of levels it can be reached seems never ending. Generally,
a multilevel converter uses several capacitors to provide
differents levels of voltage. This fact lets to use power
semiconductors of lower operating voltage, reducing losses
and allowing a power semiconductor device to be used in a
higher voltage application. However, having more than one
capacitor leads to the necessity of controlling the voltage
difference among them, increasing the control complexity.
Because of this, a external control is usually used to balance
the different voltage capacitors.

Among the different multilevel converter topologies, this
papers focus on the Cascaded H-bridge (CHB) converter [2].
A CHB converter is composed of a string of H-bridges,
allowing every cell to set null voltage, the direct or the reverse
voltage drop of the capacitor between its terminals. Due to
the modularity that CHB converter offers, different string of
solar panels can be connected to each H-bridge cell, being
possible to reach the optimum power point individually [3]. If
the number of levels of the three-phase converter is more than
3 then there are more than one H-bridge per phase, hence the
unbalance issue not only appears as an inter-phase problem but
also as an in-phase one. In [4] the in-phase balance is analyzed
and a solution is presented for a single-phase five-level CHB
converter from a power distribution perspective.

There are many results in the literature which focus on
how to achieve the dc-link voltage balance for the cells of

different phases for a three-phase system [5]. Therefore, this
paper would focus on balancing the total dc-link voltage using
zero voltage injection, which can only be used in a three-
phase system [6], [7]. This technique consists in adding a
zero voltage sequence, which has no effect on the current
tracking, to the reference voltage obtained by the current
control allowing to charge or discharge the capacitors on a
specific phase by selecting the phase and the amplitude of it.

In [8] a zero sequence voltage injection and a negative
sequence voltage injection are presented together with its
control scheme as a methodology to solve the unbalance.
In [9] a zero sequence voltage injection is included in
a phase-shift PWM and a CHB converter is tested with
this modulation technique. In [10] the inphase balance is
presented in an one-cycle control in addition to the tracking
of the zero component calculated to correct the unbalance.
In this paper, a 3-phase five-level CHB converter is analyzed
under differents loads for each phase and a voltage balance
algorithm is presented. The main advantage of the presented
algorithm is its simplicity compared to the solutions cited
previously and the guarantee it works under the conditions
obtained by the mathematical proof.

To evaluate the performance of the converter and the
algorithm it is assumed that it is connected to a balanced
symmetrical grid. In Section II, the model of the five-level
converter is discussed together with the proposed balancing
algorithm. Section III presents the mathematical proof re-
sulting in the conditions under which the voltage balance is
guaranteed. Afterwards, in section IV a modification in the
algorithm which reduce the voltage ripple of the neutral point
is presented. Section V shows the results of the simulation and
the value of the simulation parameters. Finally, a conclusion
about the algorithm and future work is provided.

II. PROBLEM STATEMENT AND CONTROL LAW MOTIVATION

In this section a five-level CHB Converter (Fig. 1) will
be presented with the equations of its model. This system
is composed by two H-bridge cells per phase and they are
connected to the grid Uabc through an inductor L. Variables
Ia, Ib and Ic are the phase currents which are defined positive
as inputs to the converter. Inside each cell there is a capacitor
denoted as Cij where i ∈ {a, b, c} and j ∈ {1, 2} according
to the phase and the position of the capacitor. Each cell has a
parallel constant power load and the current through the load
is named Idcij with the same criteria than the capacitors.
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Fig. 1. A five level CHB grid-connected converter

There are four switching devices in every H-bridge cell.
Considering the switching-on signal of two of them comple-
mentary there are 4 possible stages, which are also depicted
in Fig. 1. Thus, a five-level CHB converter yields 16 possible
conmutation stages per phase which are shown in Table I. In
this table the switching stages are classified according to the
switching-on signals – firstly the S1 and S2 signal of the top
cell (S1T S2T ) and then, the same signals of the bottom cell
(S1B S2B). Depending on the value of the Voltage output of
each stage, a state number is associated to it. Within the same
state several redundant stages exist, thus a substate number is
associated to each of them.

TABLE I
SWITCHING STAGES PER PHASE OF A FIVE-LEVEL CHB CONVERTER

Switching − on Signals State− Substate V oltage Output
1111 1 VCi1 + VCi2

0111 21 VCi2

1011 22
1101 23 VCi1

1110 24

0101 31 0
1001 32
0110 33
1010 34
1100 35
0011 36

0100 41 −VCi2

1000 42
0010 43 −VCi1

0001 44

0000 5 −VCi1 − VCi2

Considering the stages displayed and the capacitor equation:

C
dVCi1
dt

= Ii(f1 + f23 + f24 + f35 − f36 (1)

− f43 − f44 − f5)− Idci1

C
dVCi2
dt

= Ii(f1 + f21 + f22 + f36 − f35 (2)

− f41 − f42 − f5)− Idci2
Where i ∈ {a, b, c} and fxy is the unitary percentage of a

switching cycle corresponding to the case where the two cells
were in the state x and substate y. Every state (x) consists
of a number of substates (y), except for the states 1 and 5
which has no substate and the y annotation is not needed.
The signal fx represents the unitary percentage of the whole

x state. According to this definition the following constraints
have to be fullfilled:

4∑
y=1

fxy = fx, x ∈ {2, 4};
6∑
y=1

f3y = f3;

5∑
x=1

fx = 1

Taking the phase average dc-link values and adding up the dc
currents, the following two variables are defined:

VCi =
VCi1 + VCi2

2
(3)

Idci = Idci1 + Idci2 (4)

where i ∈ {a, b, c}. Adding (1) and (2) and using (3) and (4)
yields:

C
dVCi
dt

=
Ii
2

(2f1 + f2 − f4 − 2f5)− Idci
2

(5)

where (2f1 + f2 − f4 − 2f5) is equal to the output waveform
mi ∈ [−2, 2], which is set by the current control. With this
definition, eq. (5) can be written as:

C
dVCi
dt

=
Iimi

2
− Idci

2
(6)

To characterize the interphase issue two error signals has to
be defined:

Vd1 = Vdc − VCa (7)
Vd2 = Vdc − VCb (8)

where Vdc = VCa+VCb+VCc

3 . Thus, derivating (7) and (8) and
combining them with (6) yields:

C
dVd1
dt

=
1

6
(−2Iama + Ibmb + Icmc + γ1) (9)

C
dVd2
dt

=
1

6
(Iama − 2Ibmb + Icmc + γ2) (10)

where γ1 is equal to 2Idca − Idcb − Idcc and γ2 is equal to
−Idca + 2Idcb − Idcc. By adding a new component x to the
signals ma,mb and mc in (9)-(10) and considering Ia + Ib +
Ic = 0 results in:

˙Vd1 =
1

6C
(−2Iama + Ibmb + Icmc + γ1 − 3Iax) (11)

˙Vd2 =
1

6C
(Iama − 2Ibmb + Icmc + γ2 − 3Ibx) (12)

The addition of this new signal x equals a zero component
injection given the fact that the value is the same for the three
phases. To determine what is the value of x that reduces the
error signals Vd1 and Vd2, a Lyapunov function candidate is
defined:

W = |Vd1|+ |Vd2| (13)

The target is to reduce the value of W as much as possible,
which equals to make Ẇ the most negative value achievable.
Special attention should be paid to (13) as it is not differen-
tiable around Vd1 = 0 and Vd2 = 0. Thus, differentiating (13)
assuming constants signs:

Ẇ = sign(Vd1)V̇d1 + sign(Vd2)V̇d2 (14)
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Ẇ · 6C =sign(Vd1)(−2Iama + Ibmb + Icmc + γ1) + sign(Vd2)(Iama − 2Ibmb + Icmc + γ2)− 3x(sign(Vd1)Ia + sign(Vd2)Ib)
(15)

Combining (11) and (12) into (14), (15) is obtained. In
order to avoid overmodulation, the highest and lowest value
achievable for x is limited by (mi + x) ∈ [−2, 2]. Inspired
by the last term of (15) and considering this limitation, the
resulting algorithm would conclude as:

if (sign(Vd1)Ia + sign(Vd2)Ib) ≤ 0

then x = −2−min(ma,mb,mc) (16)
else x = 2−max(ma,mb,mc)

This algorithm can be used in any control methods which
involves the output waveform (mi) computation. Once mi is
computed as usual, the x value is calculated using (16) and
added afterwards. The algorithm (16) relies on its simplicity
as no further computation is required.

III. MAIN RESULT

Theorem 1. Consider the voltage differences dynamics (11)-
(12) with the output waveforms given by the current control
and the value of x given by (16). If 0.26Pt < Pc < 0.406Pt
and Pt(0.874 − 2p) < Pc < Pt(1.1261 − 2p) – where Pt is
equal to the system input power; Pa, Pb and Pc is equal to
the power demanded by the phase a, b and c respectively; and
p = Pb

Pt
– then, the voltage differences Vd1 and Vd2 tend to

band around zero.
Proof. it will be proved that ∆W is always negative when

evaluated at the grid frequency rate. This statement is only
valid when the absolute values of the error signals at the
beginning of the evaluated grid period is high enough to
prevent them from changing their sign for the whole grid
period.

A. Assumptions

To begin with, it is assumed that the total voltage and
current controllers have reached the steady state, thus the input
power is equal to the load demand and the currents and output
waveform signals are senoidals. It is also assumed that there
is no exchange of reactive power between the grid and the
system. The balance of the cells in the same phase is not the
aim of this paper, so the loads of each cell within the same
phase are assumed equal.

Ia = Acos(wt) ma =
Vref
VCa

cos(wt− φ)

Ib = Acos(wt− 2π

3
) mb =

Vref
VCb

cos(wt− 2π

3
− φ)

Ic = Acos(wt+
2π

3
) mc =

Vref
VCc

cos(wt+
2π

3
− φ) (17)

Where A is the current amplitude, Vref is the amplitude
of the reference voltage and φ is the constant phase angle
difference between the output waveform and the grid volt-
age. From now on, Vrefa = Vrefcos(wt − φ), Vrefb =

Vrefcos(wt − 2π
3 − φ) and Vrefc = Vrefcos(wt + 2π

3 − φ).
It is also assumed that the loads absorb a constant amount of
power (18).

Idca =
Pa
VCa

; Idcb =
Pb
VCb

; Idcc =
Pc
VCc

(18)

B. Case analysis

Four possible cases are obtained when assuming a constant
sign of the error signals. By introducing (17) and integrating
the possible cases in (15) over a grid period, four inequalities
are obtained: (19) and (20); which have to be accomplished
in order to succeed in proving the good behaviour of the
algorithm. To summarize, two integrals – H for the left side
of the inequality and F (x) for the right side of the inequality
– have to be evaluated for each case.∫ T

0

Hdωt <

∫ T

0

F (x)dωt (21)

1) Lower bound for F : In this subsection, a lower bound
for F is found in order to consider the worst scenario for the
achievement of (21).

Considering the behaviour of x according to the sign of
the error signals and the current expressions, the minimum
value of the integral can be calculated, proportional to A,
depending on the value of φ. The evaluation of the two cases
of
∫ T
0
F (x)dωt in (19) and also in (20) results in the same

value due to the bahaviour of x.

Finally, evaluating
∫ T
0
F (x)dωt with every possible value

of φ, Fig. 2 is obtained. Hence, the lowest value are directly
read from it.

For the two cases of (19) these values correspond to (22)
and for the two cases of (20) these values correspond to (23):∫ T

0

±3x(Ia + Ib)dωt > 4.11A (22)∫ T

0

±3x(Ia − Ib)dωt > 7.13A (23)

2) Upper bond for H: In order to compute an upper bound
for
∫ T
0
Hdωt some aproximations will be made, always from

a conservative view.
Taking into account that the input power is equal to the

power demanded by all the loads, it is evident that the signs
of the error signals show if the power demanded by a phase
(a, b or c) is over or under the third part of the incoming
power. For example, consider the case Vd1 > 0 and Vd2 = 0,
this would mean that VCa is under the average level (Vdc)
while VCb is equal to the average level and thus VCc is over
the average level.

As the output waveform signals mi for i = {a, b, c, } are
equal but out of phase –similar to the phase currents– the
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Vd1 ≷ 0;Vd2 ≷ 0 :

∫ T

0

(
± 1

VCa
(Pa − IaVrefa)± 1

VCb
(Pb − IbVrefb)± 2

VCc
(−Pc + IcVrefc)

)
dωt <

∫ T

0

±3x(Ia + Ib)dωt

(19)

Vd1 ≷ 0;Vd2 ≶ 0 :

∫ T

0

(
± 3

VCa
(Pa − IaVrefa)± 3

VCb
(IbVrefb − Pb)

)
dωt <

∫ T

0

±3x(Ia − Ib)dωt (20)

Fig. 2. Values for both groups of
∫ T
0 F (x) depending on the value of φ

power supplied to each phase is equal among them, hence∫ T
0
IiVrefidωt = Pt/3 for i ∈ {a, b, c}. If the loads of a

phase demands a different amount of power then its average
capacitor voltage level (VCi) would change, increasing in the
case of demanding less power or decreasing in the case of
demanding more power. Therefore, in the case exemplified,
the phase a load is demanding more power than the third part
of the incoming power while the phase c load is demanding
less power.

By applying the same logic with the four possible cases of
error signals signs, Table II is obtained. When the error signal

TABLE II
RELATION BETWEEN THE THIRD PART OF THE INPUT POWER AND THE

POWER DEMANDED BY THE LOADS OF EACH PHASE, DETERMINED BY THE
SIGNS OF THE ERROR SIGNALS

Vd1 Vd2 Pa Pb Pc

> 0 > 0 > > <
> 0 < 0 > <
< 0 > 0 < >
< 0 < 0 < < >

signs are different, the power demanded by phase c can not
be determined only by the signs but it is not necessary as it
does not appear in (20).

The conclusion is that the upper bound of
∫ T
0
Hdωt can

be obtained maximizing all the terms that appear in it, since
they are all positive under its own case. In order to bound
them, it is considered that the average capacitor voltage
level of each phase can not underpass a minimum level of
voltage as a conservative measure; since they appear in the
denominator of (19) and (20). This value is equal to that which
allows to modulate a whole grid wave without overmodulating.
Denoting the RMS voltage value of the grid as V RMS

g , the
minimum value allowed will be VCimin

= V RMS
g /

√
2. By

equalling this value to VCa, VCb and VCc into (19) and (20):

Vd1 ≷ 0; Vd2 ≷ 0 :

∫ T

0

± 1

VCimin

(Pa + Pb − 2Pc)dωt (24)

Vd1 ≷ 0; Vd2 ≶ 0 :

∫ T

0

± 3

VCimin

(Pa − Pb)dωt (25)

Applying the definition of the total power Pt = Pa+Pb+Pc
to (24) and the variable p = Pt/Pb to (25):

Vd1 ≷ 0; Vd2 ≷ 0 : ± 2π

VCimin

(Pt − 3Pc) (26)

Vd1 ≷ 0; Vd2 ≶ 0 : ± 6π

VCimin

(Pt(1− 2p)− Pc) (27)

3) Comparision between integrals: By comparing the val-
ues of the integrals obtained: (26) with (22), (27) with (23);
and using the definition of power in an AC System where there
is no reactive power involved Pt = 3 A√

2
V RMS
g , which equals

to AVCimin
= Pt

3 , the restrictions for each case are obtained:

Vd1 > 0; Vd2 > 0 : Pc > 0.26Pt

Vd1 > 0; Vd2 < 0 : Pc > Pt(0.874− 2p)

Vd1 < 0; Vd2 > 0 : Pc < Pt(1.1261− 2p)

Vd1 < 0; Vd2 < 0 : Pc < 0.406Pt

These restrictions result in a power region depicted in Fig.
3 where the algorithm is capable of correcting the unbalance.

Fig. 3. Power region where the algorithm has been proven mathematically

IV. IMPROVING THE NEUTRAL POINT VOLTAGE RIPPLE

In order to improve the system efficiency in a solar system,
the voltage ripple of the neutral point (depicted as N in Fig.
1) has to be reduced. A current leakage exists between the
neutral point and the ground that might be modelled as a
capacitor, thus the bigger the voltage ripple is the greater the
losses are.
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The previous algorithm always applies the maximum ab-
solute value for x, thus in steady state, where the error
signals signs may change within a switching period, x can
be switched from his maximum value to his minimum value
from a switching instant to the next one. This would lead to
a high ripple of the voltage drop between the neutral point
and the ground (VNn). In order to reduce it, the switching
has to be smoother by restricting the algorithm behaviour. A
new variable Kx is defined for this porpuse, whose aim is
to reduce the value of the x applied. The variable Kx would
multiply x and its value would be reduced progressively by a
proportional control as the Lyapunov function (W ) gets closer
to the steady state:

x′ = Kx · x
Kx = sat(Kp(W − W̃ )) Kx ∈ [0, 1] (28)

where ‘sat’ is the standard saturation between zero and
one, x′ is the new applicable value of x, Kp is the control
parameter of the proportional control, W is the value of the
Lyapunov function defined in (13) and W̃ is the reference
that the modified algorithm will make the Lyapunov function
to reach in the steady state. The modified algorithm would no
longer try to reach the zero value of the Lyapunov function
but the value indicated by W̃ .

Whenever the value of Kx is equal to 1, the modified
algorithm behaviour is identical to the original one, thus
the signals error would be reduced provided that the system
conditions are inside the power region. The value of Kx starts
declining when W reach a specific value (Wband) given by:

Kp(Wband − W̃ ) = 1 → Wband =
1

Kp
+ W̃

Therefore, the modified algorithm will make W to be below
Wband, since the original algorithm is applied when W is over
Wband.

V. SIMULATION RESULTS

The parameters of the simulation are shown in the table
III. Notice that the power of each phase are out of the power
region, which means that the algorithm is able to work in an
extended region in a real application and the region depicted
in Fig. 3 is a conservative result.

TABLE III
SIMULATION PARAMETERS

Parameter Value
Vdcref 300 V

Pa 7000W
Pb 5000W
Pc 8000W
L 3.3 mH
Vg 220 Vrms

Cdclink
2000 µf

The Fig. 4 shows the diagram block of the implemented
control. It consists in a voltage controller, which provide a
reference power (Pref ) from the desired dc-link voltage (Ṽdc)

and the average dc-link voltage (Vdc), that is transformed into
the reference currents in dq axis (Ĩd and Ĩq). This references
are compared with the real ones in the current control scheme,
resulting in two voltage references (Ṽd and Ṽq), that are back-
transformed to abc axis (Vrefa ,Vrefb and Vrefc ) and divided
by the average dc-link voltage of his phase branch (VCa

,VCb

and VCc ) to obtain the output waveforms (ma,mb and mc).
Next, (16) is applied and the modified output waveforms are
obtained (m′

a, m′
b and m′

c). The signals ω and ωt are the grid
frequency (rad/s) and the grid angle (rad) respectively. Qref
is set to 0. This control is deeper explained in [11].

Fig. 4. Block diagram of the control used

The sequence this simulation follows starts with a preload
stage with no loads. After it, the voltage and current controls
are activated, although the value of x is set to zero and no
loads are still connected. At t = 0.35 s the constant power
loads are activated and at t = 0.4 s the balancing algorithm
is activated.

In Fig. 5 the evolution of the DC voltages of each phase are
depicted along with the error signals Vd1 and Vd2 for both the
original and the modified algorithm. It can be seen that there
is a tendency to unbalance the capacitors from the moment the
loads are activated (t = 0.35 s). This tendency is supressed
and corrected from the moment the algorithm is activated (t =
0.5 s). In the modified algorithm simulation, the parameter
W̃ is equal to 35 and Kp = 0.1. As can be seen in Fig.
6, the inclusion of the algorithm does not take a remarkable
effect on the reference currents tracking. In Fig. 7 the ripple of
the voltage VNn is compared in both cases through a Fourier
analysis. It can be seen a considerable harmonics reduction
with the modified algorithm.

VI. CONCLUSION

The algorithm presented in this paper is a new and a very
simple way of using the zero current injection to balance the
capacitors in a CHB converter. A modification is introduced
in order to make it more appealing to Solar system integra-
tion. Despite of making the mathematical analysis for power
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Fig. 5. (a) Signals VCa, VCb and VCc with the original algorithm; (b) Error
signals Vd1 and Vd2 with the original algorithm; (c) Signals VCa, VCb and
VCc with the modified algorithm; (d) Error signals Vd1 and Vd2 with the
modified algorithm

Fig. 6. Evolution of the phase currents in simulation

consuming loads, the analysis can be replicated with power
generating loads like solar panels.

As future work, a conmutation reduction could be con-
sidered given the fact that this algorithm is focused on bal-
ancing the capacitors. This strategy opens a window to new
performance-improving strategies along with a basic solution
to the unbalance issue of CHB converters that could leads to
more complex, more sophisticated algorithm taking advantage

Fig. 7. Comparative in the VNn harmonics amplitude when applying or not
the modified algorithm

of the analysis this paper has made.
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