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ABSTRACT. We consider the terminal value problem (or called final value problem, initial inverse prob-
lem, backward in time problem) of determining the initial value, in a general class of time-fractional
wave equations with Caputo derivative, from a given final value. We are concerned with the existence,
regularity of solutions upon the terminal value. Under several assumptions on the nonlinearity, we
address and show the well-posedness (namely, the existence, uniqueness, and continuous dependence)
for the terminal value problem. Some regularity results for the mild solution and its derivatives of
first and fractional orders are also derived. The effectiveness of our methods are shown by applying
the results to two interesting models: time fractional Ginzburg-Landau equation, and time fractional
Burgers equation, where time and spatial regularity estimates are obtained.
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1. INTRODUCTION

1.1. Statement of the problem. As we know, the derivatives of positive integer orders of a differen-
tiable function are determined by its properties only in an infinitesimal neighborhood of the considered
point. Therefore, partial differential equations with integer-order derivatives cannot describe processes
with memory. The fact that fractional calculus is a powerful tool for describing the effects of power-law
memory [2]. If an integer-order derivative is replaced by a fractional one, typically Caputo, or Riemann-
Liouville, Grunwald, Letnikov, Weyl derivatives, then we have time-fractional PDEs. Historically, the
Riemann-Liouville and Caputo fractional derivatives are the most important ones. Time-fractional differ-
ential equations have recently become a topic of active research [3], and they also have many applications
for modeling physical situations or describing a wide class of processes with memory [4], such as transport
theory [5], viscoelasticity [6], rheology [7], non-Markovian stochastic processes [8], etc. In particular,
the fractional diffusion equations (with respect to the time derivative of fractional order 0 < a < 1)
are known to be models for sub-diffusive processes [9], and the fractional diffusion-wave/wave equations
(respectively 1 < a < 2) were used for super-diffusive models of anomalous diffusion, e.g., diffusion in
heterogeneous media [22].

In this paper, we consider the following fractional wave equation

o u(z,t) = —Au(z,t)+ Gt u(z,t)), ze, 0<t<T,
u(z,t) = 0, r€eIN0<t<T, (1)
ug(z,0) = 0, xeQ, 0<t<T,

where G is called a source function which will be defined later. The time fractional derivative 0f,
1 < a < 2, is understood as the leftsided Caputo fractional derivative of order a with respect to ¢, which
is defined by

1 b o2 .
ofv(t) = ———— —v(s)(t —s) " %ds
t () F(Q—(X) 0882()( ) ’
whereupon I' is the Gamma function. For a = 2, we recover the usual time derivative of second order
92 / Ot%. Let us assume that  is a nonempty open set and possesses a Lipschitz continuous boundary in
RN, N >1,T >0, and let A be a symmetric and uniformly elliptic operator on  defined by

Lo (& d
Av(z) = — Z EE Zamn(x)a—xnv(x) +q(z)v(x), z€Q,



where a;; € Cc! (ﬁ), qeC (ﬁ; [0,+oo)), and Gmn = Apm, 1 < m,n < N. We assume also that there
exists a constant by > 0 such that, for € Q, y = (y1,y2, ..., yn) € RV,

Z amn(x)ymyn > b0|y|2'
1<m,n<N

This paper considers the initial inverse problem of determining the initial value u(x,0) = ug(x) from its
final value u(z,T"). We focus to study existence, uniqueness and regularity of mild solutions of Problem
associated with the final value condition

u(z,T) = f(z), =€, (2)
where f belongs to an appropriate space.

The study of is mainly motivated by problems arising in anomalous diffusion phenomena. Anoma-
lous diffusion and wave equations are of great interest in physics. They are frequently used for the
super-diffusive models of anomalous diffusion such as diffusion in heterogeneous media. These fractional
differential equations have another important issue in the probability theory related to non-Markovian
diffusion processes with memory. Fractional wave equations also describe evolution processes interme-
diate between diffusion and wave propagation [37, [I0} [6]. In [6], it has been shown that the fractional
wave equation governs the propagation of mechanical diffusion-waves in viscoelastic media. Such waves
are relevant in acoustics, seismology, medical imaging, etc. The physical background for a time-space
fractional diffusion-wave equation can be seen in [30].

1.2. Motivations. If condition (2) is replaced by

u(z,0) = f(z), =€Q, (3)
then we have the direct problem or initial value problem (IVP) of . Some quasi-linear equations of the
form and with standard time derivative (a« = 2) have been extensively studied in the published
literature. The global well-posedness has been proved both in the subcritical case by Ginibre and Velo
[57], and in the critical case, by Grillarkis [58], Shatah and Struwe [59] 60], and references therein.

In fractional derivative cases, such as Caputo or Riemann—Liouville derivatives, Problem and
has been considered with G = 0 or G = G(z,t) by some authors see, e.g. [21], 26], 27, 37, 10] and also
[14, 15 [16].

Concerning Problem (/1)) and with derivative 95 for 0 < a < 1, some authors developed and
obtained interesting results. A. Carvalho et al. [45] established a local theory of mild solutions where
A is a sectorial (nonpositive) operator. B.H. Guswanto [46] studied the existence and uniqueness of a
local mild solution to a class of initial value problems for nonlinear fractional evolution equations. The
existence, uniqueness, regularity, and Carleman estimates of solutions are established in some previous
works (see, for instance, [20] 211, 22 BT, [33] 34]). Such research is rapidly developing, and here we do not
intend to give a comprehensive list of references.

To our knowledge, the study of the initial value problem for the fractional wave equations in the
nonlinear case is still limited. Recently, M. Yamamoto et. al. [22] studied Problem and with
a linear inhomogeneous source, i.e. G = G(z,t), and then further investigated local solutions with a
nonlinear source. M. Warma et. al. [36] considered the existence and regularity of local and global
weak solutions with a suitable growth assumption on the nonlinearity G. Very recently, the authors have
studied the uniqueness of inverse problems for a fractional equation with a single measurement in [32].
Except for the works [22] [35] [36], there are very few results on Problem —, as far as we know.

In practice, there are some physical models which are not subjected to initial value problems. Some
phenomena cannot be observed at the time ¢ = 0, and only can be measured at a terminal time ¢ =
T > 0. Hence, a final value condition appears instead of the respectively initial value one. It has great
importance in engineering areas and aimed at detecting the previous state of a physical field from its
present information. In a few sentences, we explain the presence of the equation u:(x,0) = 0. By [44],
the system — in the 2-dimensional case can be considered as a description for an imaging process,
namely, to recover an exact picture from its blurry form. The condition u;(x,0) = 0 means that the
distribution does not change on the interval (0,%y) when to is near zero. Therefore, the necessity of
studying terminal value problems or final value problems (FVPs) or backward problems is out of any
doubt.

The final value problem — with derivatives of integer-orders has been treated for a long time,
e.g., see [I'7, I8, 19]. In [I8], A. Carasso et. al. considered the following final value problem for the
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traditional wave equation (i.e. a = 2)

Ut == (A + k)2u, x € Q, O0<t< T,
u=Au = 0, red, 0<t<T,
w(z,0) = g(x), x € Q,
w(z, T) = f(z), x €,

where k is a given positive number which may equal several eigenvalues of —A, and f, g are given func-
tions. Up to date, little research has been done on the inverse problems of time-space fractional diffusion
equations. F'VPs for fractional PDEs can be roughly divided into two topics. The first one contains prob-
lems related to the ill-posedness and propose some regularization methods for approximating a sought
solution. We can list some well-known results, for example, J. Jia et. al. [4I], J. Liu et. al. [42], some
papers of M. Yamamoto and his group see [49] 50} 511, 52, 53], B. Kaltenbacher et. al. [39,40], W. Rundell
et. al. [64, [55], J. Janno see [47) 48], etc. The second topic contains problems concerning the existence
and regularity of solutions such as [26] (6]. Investigating the existence and regularity of solutions of
ODE/PDE models plays an important role in both the development of the ODE/PDE theory and their
applications in real-life problems. Furthermore, studying regularity helps to improve the smoothness and
stability of solutions in different spaces, and hence makes numerical simulations valuable. This second
topic has not been treated well in the literature.

As far as we know, there are only a few works analyzing Problem — and which provide existence
and uniqueness results, and regularity estimates. The main difficulty in the analysis of Problem —
and the essential difference from the traditional problems come from the nonlocality of the time-fractional
derivative 05. The major question for this work in our mind is:

What is the regularity of the corresponding solution u (output data) if the given data (input data) f,G
are regular?

Our goal in this paper is to find suitable Banach spaces for the given data (f, @) in order to obtain
existence and regularity results for the corresponding solution. The regularity estimates are important
in the analysis of time discretization schemes for Problem — in the future.

The difficulties of a final value problem can be briefly described as follows (see Remark for more
details). Firstly, since the fractional derivative 9, is non-locally defined on the time interval (0,t), we
cannot convert a final value problem to an initial-value problem by using some substitution methods.
Secondly, the formulation of mild solutions of a final value problem is more complex than the corre-
sponding initial problem. This positively promotes us to construct new solution techniques to deal with
Problem —. Some more details can be found in Subsection 3.1, where the explicit representation of
solutions relies on the eigenfunctions expansion and the Mittag-Leffler functions.

Let us describe the main results of this paper in two cases as follows. The first case is related to the
properties of solutions under a globally Lipschitz (GL) assumption on the nonlinearity corresponding
to two first theorems, while the second one concerns a critical nonlinearity corresponding to the third
theorem. In the first theorem, we obtain the regularity results of solutions and their derivatives of first
and fractional orders under the (GL) assumptions J# (see page 7). The key idea is based on a Picard
iteration argument and techniques to find appropriate spaces for f. Choosing spaces of f and G is a
difficult and nontrivial task when we study the regularity of the solution. Although applications of our
problem under 7] are not wide, the analysis and techniques here are helpful tools to study the next
results. Moreover, the existence of a mild solution in the space L* may not be obtained by considering
A, . This can be overcome by considering the (GL) assumption % of the nonlinearity which is presented
in the second theorem. The third theorem uses the contraction mapping principle to prove the existence
of a mild solution in the critical case. As we know, nonlinear PDEs with critical nonlinearities are an
interesting topic. We can mention [6I] and references therein. Studying the initial value problem for
in the critical case is also a challenging problem. Therefore, investigating the regularity of the mild
solution and its derivatives is very difficult.

1.3. Outline. The outline of this paper is as follows. In Section 2, we introduce some terminology used

throughout this work. Moreover, we obtain a precise representation of solutions by using Mittag-Leffler

functions. In Section 3, we investigate the well-posedness, and regularity of a mild solution to Problem

-. Three main results on the existence, uniqueness (in some suitable class of functions), regularity

of the mild solution and its derivatives are proved under suitable assumptions on the terminal data and

the nonlinearity. In Section 4, we apply the theoretical results to some typical fractional diffusion: Time
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fractional Ginzburg-Landau equation and Burgers equation. Finally, in Section 5, we provide full proofs
to the main theorems established in Section 3.

2. PRELIMINARIES

In this section we recall some properties that will be useful for the study of the well posedness of
Problem —. We start by introducing some functional spaces. Then we will recall some properties
of Mittag-Leffler functions. Let the operator £ be considered on L?(§2) with respect to domain D(L) =
We2(Q) N W22(Q), where L2(Q), Wy 2(2), W2(Q) are the usual Sobolev spaces. Then the spectrum
of L is a non-decreasing sequence of positive real numbers {/\j}jzl,z,,, satisfying lim;_ oo A; = oo.
Moreover, there exists a positive constant ¢z such that A; > cej?/? for all j > 1, see [23]. Let us denote
by {¢;j}j=1,2,... C D(L) the set of eigenfunctions of L, i.e., Ly; = A\jp;, and ¢; = 0 on 09, for all j > 1.
The sequence {@}r=1,2,... forms an orthonormal basis of L?(Q), see e.g. [24]. For a given real number
~v >0, we define the Hilbert space

o0
HY(Q) == v e L*Q): Z/\?'Y(U,%)Q < o0

j=1
((-,-) is the usual product of L?(Q2)) endowed with the norm ||v|\%p(ﬂ) =i )\?7 |{v, gpj>|2. We have
HO(Q) = L2(Q), and H2 () = W}*(Q). We denote by H~7(Q) the dual space of HY(Q) provided that
the dual space of L?(12) is identified with itself, e.g. see [25]. The space H~7(Q) is a Hilbert space
with respect to the norm HU”;I*’Y(Q) =20 )\;%(U, @)%, -, for v e H7(Q) where (.,.) _, - is the dual
product between H~7(Q2) and H”(£2). We note that

(3,0) = (D,0), for o € L*(Q),v € H'(Q). (4)

By identifying L?(Q) with its dual space, and making use of the inclusion H”(Q) < L?(£2), the embed-

ding H(Q2) < L?(Q) < H~7(2) holds for v > 0. Hence, it is suitable to call the space H*(2), s € R,
by a Hilbert scale space. For given numbers p > 1 and v € R, let LP(0,T;H”(Q2)) be the space of all
functions w : (0,T) — H"(€2) such that

T 1/p
lwll oo, 7 () = (/O ||w(t)|ﬁu(g)dt> < 0.

We denote by C([0,T];H”(€2)) the space of all continuous functions from [0, 7] to H”(€2) corresponding
to the usual supremum norm ||w||c(jo,7):5v (0)) = SUP<i<7 |[W(t)||m (); and denote by C° ([0, T]; H”(12)),
d € (0,1), the space of all Holder continuous functions from [0,T] to H” () with exponent §, namely,
w € C([0,T]; H”(R)) satisfies that

- [w(t) — w(s)|lm (o)
Hw”C“([O,T];HV(Q)) = sup <00

0<t,s<T, ts It —s|?

Let us denote by C((0,T];H”(€2)) the set of all continuous functions which map (0, 7] into H”(Q2). For
a given number 1 > 0, we denote by C"((0,T];H"(Q2)) the space of all functions w in C((0,T];H"(2))
such that [[wl|cn (o, 7m0 () = suPo<i<r t"[|w(t) |1 (@) < 00, see [28].

2.1. Fractional Sobolev spaces. We recall some Sobolev embeddings as follows. Let €2 be a nonempty
open set with a Lipschitz continuous boundary in R, N > 1. Let us recall that the notation W*P(£2),
s€{0,1,2,...}, p > 1, refers to the standard Sobolev one, e.g. see [I]. In the case 0 < s < 1 is a positive
real number, the intermediate space W*?(Q) = [LP(2); W“’(Q)]s can be defined by

Ju(@) —u(@)|

W*P(Q) = qu € LP(Q) <
lx — o' +*

€ LP(Q x Q)}
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Since €2 is a nonempty open set and possesses a Lipschitz continuous boundary in RY, then the following
Sobolev embedding holds

1<p,q < o0,

, 0<y<o<oo,
WP (Q) — Wri(Q) if (5)
N N
L
p q
By letting p = 2, v =0 in , one obtains that W72(Q2) — L4(Q) with 1 < ¢ < 00, 0 < 0 < 00, and
o>N_ N Henceforth, setting 0 < o < & infers that 1 < q < 2N Summarily, we obtain the

2 2 N—20
following embedding

N 2N
01,2 a1 : < < < .
WoL2(Q) — L9 (Q) if 0701<2717(]17N_2(71 (6)
This implies WJ?(€2) < L9 (), and so L% (Q) = [L9 (Q)]* — [WJV2(Q)]* = W—712(Q) with respect
to =% < —01 < 0and ¢f > (Nz—jgal)(NE];]ol -7t = N?l—];[al' Thus,
N 2N
q2 02,2 : _ < > )
L (Q) — W (Q) if 5 <09 <0, qa = 20, (7)

On the other hand, the Hilbert scale spaces and the fractional Sobolev space are related to each other
by the following embeddings

H(Q) — W252(Q) — L*(Q), if s>0. (8)

2.2. On the Mittag-Leffler functions. An important function in the integral formula of solutions of
many differential equations involving Caputo fractional derivatives is the Mittag-Leffler function, which
is defined by

o)
Zk

Eop(z) = ; T(ak+ B)’ z € C,

for « > 0 and 5 € R. It will be used to represent the solution of Problem —. We recall the following
lemmas, for which their proofs can be found in many books, e.g. see [11, 12| [13]. The first one is very
basic and also useful for many estimates of this paper. The second one helps us to find the derivatives
of first order and fractional order a of the mild solution of problem (I])-(2). The third one is important
and helps us to deal with the Mittag-Leffler function corresponding to the final time 7. In the last one,
we combine the first and third ones to derive some more important estimates. The proof of this lemma
can be found in the Appendix. In this paper, we always consider T satisfies assumption @ below.

Lemma 2.1. Let1 < a < 2 and B € {1;a}. Then, there exist positive constants my, and M, depending
only on «, such that

My M,
< |Eap(—t)| <
T4 = Pas0= 5

Lemma 2.2. Assume 1 < a <2, A >0, andt > 0. Then, the following differentiation formula holds
a) OpEo1(—At%) = —M*"1E, o(=AtY), and 0y(t* ' Eno(—M*)) =t*"2E4 0-1(—=At?);

,  forallt>0.

b) OFEq1(—=Mt*) = —=AEq4 1(—At%), and O (t* ' Eq o (—At%)) = —M*T1E, o (—At?).
Lemma 2.3 (see [27]). Let 1 < oo < 2. If the number T is large enough, then
Eo1(—=\T*)#0, foralljeN,j>1, (9)
and there exist two positive constants my, and M, such that
m M,
— 2 < |E (- \TY) | < —2 .
L4+ AT = 1AT)| < 14+ )T

Lemma 2.4. Letl <a<2and0<0<1. Fort>0, and j €N, j>1, there hold that
a) tailEa,a(—AjZa) < Ma)\j—Qta(lfG)fl;
Eq1(—\jt)
Eqo1(=)\;T%)"
From now on, we will use a < b to denote the existence of a constant C' > 0, which may depend only
on «a,T such that a < Cb.

b) Ear(=Ajt*) < Momgt (AT 4+ T) A9t=20=0) with &, p(—A;t) =



3. EXISTENCE AND REGULARITY OF THE TERMINAL VALUE PROBLEM ([I)-(2))

3.1. Mild solutions. Solutions of partial differential equations can be considered in the classical, weak,
or mild sense. In this work, we will study mild solutions of FVP —.

There are many works considering the precise formulation of mild solutions to IPVs for time fractional
wave equations, such as |20} 21 22} 29] [30] 36}, 37, B8], 45], by using complex integral representations on
Banach spaces or spectral representations on Hilbert scale spaces of the Mittag-Leffer operators. To study
FVPs for time fractional wave equations, the precise formulation of mild solutions can be derived by using
spectral representations of the inverse Mittag-Leffer operators, such as [26] 54| 52| [47] [39] 4T], 42} [43]. In
what follows, we state a definition of mild solutions to FVP — where the precise formulation can
be obtained by some simple computations.

Additionally, for a given two-variables function w = w(x,t), we will write w(t) instead of w(.,t) and
understand w(t) as a function of the spatial variable x.

Definition 3.1. A function w in LP(0,T;H*(Q2)) or C"(0,T;H”(2)) (with some suitable numbers p >
1,v >0 or n > 0) is called a mild solution of Problem (I))-(2) if it satisfies the following equation

t T
u(t) =Ba(t. 1)1 + [ Pult =G u)dr — [ Bt DIPL(T = r)Gu(r)dr (10)
0 0
in the sense of H"(Q2), where, for 0 < ¢ < T, the solution operator B, P, are given by

Bo(t,T)v =) M@Mﬁ%, Po(t)o:= Yt Eaa(=Ait") (0, 0;);. (11)

Jj=1 Jj=1

where v = Y% (v, 0,)¢;.
Remark 3.1. A mild formulation of this IVP , (@) is given by

t

u(t) = BO1)F + / P, (t — r)G(r,u(r))dr, (12)

where BY (thw := 372 ) Fa1(=Ajt*)(w, ¢;)p;, see [20, 211 22, 29, 130, 36, 37, B8, 45), ete. It should
be pointed out some core differences between the IVP , (@, and the FVP —(@ for fractional wave
equations as what follows

e The solution operator B, (t,T) is weaker than B (t). Indeed, one can see that if v € L*(£2)
then B&O)(t)v € L>(0,T; L*(Q)) and

B.(t, T)o ¢ L=(0,T; L2(2)) U C((0, T); I(®)).
Therefore, it is actually difficult to establish the existence of mild solutions, especially in the
critical nonlinear case;

o Mild formulation of the FVP —(@ contains more terms than the IVP , (@ In particular,
estimating the last term of (10) requires very clever techniques in acting B4 (¢t,T), Po(t —7) on
G(r,u(r)). In the critical nonlinear case, it is very difficult to determine where does the quantity

Ba(t, T)Po(t —7)G(r, u(r))

belongs?, and also how to bound this quantity such that its integration on the whole interval (0,T")
18 convergent?

o The Gronwall inequality can be applied when we estimate solutions of the IVP , (@) Howewver,
it cannot when we estimate solutions of the FVP —(@ since (@ contains the integral on (0,T).

Hence, studying FVP —@ 18 a difficult task.

3.2. Well-posedness of Problem 1) in the globally Lipschitz case. In this section, we study
the well-posedness of Problem —, and regularity of the solution when we consider the following
globally Lipschitz assumptions on G:

(41) The function G : [0,T] x H*(2) — H"(Q) satisfies G(¢,0) = 0, and there exists a non-negative
function L; € L*(0,T) such that

|Gt w1) = Gt w2) e (o) < La(t) lwr — w2l () » (13)
for all 0 <t < T, and wy,ws € HY(Q).



(#3) The function G : [0,T] x C ([0, T]; H¥(2)) N L4(0,T;H"(Q)) — HYT1(Q) satisfies G(¢,0) = 0,
and there exists a non-negative function Ly € L*°(0,T') such that

Gt w1) = Gt wa) | o1y < Lafor = o

| : (14)
C([0,TH" (2))NLa(0,T5H7 ()

for all 0 <t < T, and wy,ws € C([0,T]; H¥(2)) N L2(0, T; H? (Q2)), where

Hw1 - w2H = |lw1 — wallc(o,5mv () + lv1 — V2l Lao, 7m0 ()5

C([0,T;H¥ (£2))NL4(0,T5H (2))
and v >0,¢g>1,0>0.

In order to establish our main results, it is useful to note that
a—-1 1 1

<=-—< =<1, as 1<a<?2.
2 «

Besides, we recall that the Sobolev embedding H"*(Q2) — H"(Q) holds as ¥ > 0 and € > 0, so there
exists a positive constant Cy (v, ) such that

0<

< Cl(V’9)|‘U||Hu+6(Q)? (15)

for all v € H**+?(Q). In addition, for the reader convenience, the important constants (which may appear
in some proofs) are summarily given by (AP.4.) in the Appendix.

The first result in Theorem ensures the existence of a mild solution in LP(0,7;H"(Q2)) under
appropriate assumptions on p, the final value data f, and the assumption (J4) on the nonlinearity G.
The idea is to construct a Cauchy sequence in LP(0,T; H” (£2)) which will be bounded by a power function
and must converge to a mild solution of Problem —. The solution is then bounded by the power
function. After that, time continuity and spatial regularities can be consequently derived. Furthermore,
we also discuss the existence of the derivatives J;, 05 of the mild solution in some appropriate spaces.

Theorem 3.2. Assume that f € H'?(Q) and G sastisfies (J4) such that || Ly || (o,) € (0,.47") with
a—1

||vH]HIV(Q)

v > 0 and 0 satisfying that < 0 < 1, where the constant A, is given by (AP.4) in the Appendiz.
o
Then Problem -@ has a unique mild solution

w e LP(0, T;HY () N C*=9 ((0,TT; HY (%)),
for allp € {l,ﬁ) which corresponds to the estimate
[[w(®)lge () < t_a(l_g)HfHHwe(Q)- (16)

The following spatial and time reqularities also hold:

—1 ’
a) Let 6 satisfy that a <0 < 6. Then u € LP(0,T;H""=(Q)), for all p € [1,@),

which corresponds to the estimate

[u(®)lgwso-o y SO Fllaro () -

b) Let1—0 </ <2— 6. Thenue Cmoto ([O,T];HV*V' (Q)) and

[|u(t) — u(t)] - (@) (t —t) "9 || flmero (-
Here ngi, is defined in the Appendiz.
a-1 } Then dyu € LP(0, T, H”_”l_é(Q)), forallp € [1
which corresponds to the estimate

10ru(t)

¢) Let0 < vy <minq1l—6;

1
Y a(l—0—-v1) )7
HHufulfé(Q) S0 fllguro -

a—1 a—1

1
d) Let -0 <y, < min{a — 0, } Then Ofu € LP(0, T;H”~v=~% (), for any p €

1, amin{(kelﬁyu);uf&)}), which corresponds to the estimate

Hﬁta“(t)HHu—ua—é(Q) < tfamin{(lfefl/a%(lfe)}Hf||Hu+6(Q)_

e



The hidden constants (as using the notation <) depend only on a,v,0,T in the inequality (@), on
a,v,0,0',T in Part a, on o, v,0,v',T in Part b, on a,v,0,v1,T in Part ¢, and on o, v,0,v,,T in Part

d.

Remark 3.2. We note that, inequality (@) also guarantees the continuous dependence of the solution
on the final value f. In fact, if we denote by u(f) and u(f) the mild solutions of Problem —(@
corresponding to the final value f and f, then one can see that

Hu(f) B u(f)’ Co(1-06) ((O,T];HV(Q)) 5 ”f - f”]HIV+9(Q)-

This concludes the well-posedness of Problem —@) on C*=9((0, T]; H"(Q2)).

Proposition 3.1. By Theorem[3.3, the smoothness of the mild solution can be summarized together as
w € {Urgpemin IO, T 0 (@) } 0 €200 (0, T H(2),

a(1-67)

and
Ou e Jipe 1 LP(0,T;HV 75 (Q)),
LP(0, T; HY 7~ % (Q)),

a(l— vy)

0—
(63
3t u e Ulgp<ﬁ

Vo)
where the values of the parameters are given in Theorem[3.3 Moreover, the spatial reqularity in Part b
shows how the best spatial reqularity that the mild solution u can achieve. Then, by using some suitable
Sobolev embeddings, one can derive the Gradient, Laplacian estimates for the solution on L1(Q) spaces.

Remark 3.3. In fact, one can investigate the continuity of the first order derivative Oyu which is estab-
lished in Part d of the above theorem. Moreover, if the nonlinearity G is continuous in the time variable
t, for instant, G verifies that

IG(t1,v1) = G(t2,v2) e (g S [t1 = t2POSYE PO 4oy — vy, o
then one can establish the continuity of the fractional derivative 05 of the solution.

In Theorem under assumption (44 ), we do not obtain the regularity results of w in the spaces
C([0,T];H¥(2)) or L*>(0,T;H"(€2)). The main reason is that the information at the initial time w(0)
does not actually exist on H”(€2). To overcome this restriction, we are going to consider the existence of a
mild solution in the spaces C ([0, T]; H”(Q2)) or L>°(0,T; H"(£2)) by imposing the assumption (#2) on the
nonlineariy G. In addition, it is necessary to suppose a smoother assumption on the final value data f.
In the following theorem, we will build up this existence and also a regularity result for the mild solution
by using the Banach fixed-point theorem. Let us recall the fact that the embedding H**1(Q) — H(Q)
holds as 0 < o < v+ 1. So, there exists a positive constant Cs(v, o) such that

) < Ca(v, o) (17)

HUHH”(Q |UHIHIV+1(Q)’

for all v € HT1(Q).
Theorem 3.3. Let “T_l <0<1,0<v<o<v+landl <g< ﬁ. Assume that f € HT0+1(Q),

and G sastisfies (%) with Lo € (O,///{l) where Mo is given by (AP.4) in the Appendiz. Then,
Problem —@ has a unique mild solution

ue C([0, TH"(2)) N L0, T; H” (2)).
Moreover, there holds
1/q

T
sup ||u(t)HHV(Q) + (/0 ||u(t)|‘§ﬂa(mdt> S I lavet1()- (18)

0<t<T

Remark 3.4. Truly, the assumptions f € H*+*1(Q) and (%) are enough to obtain u € C([0,T]; H(Q)),
where |[u(t)||g+1q) St fort > 0. This combines with the embedding that ||u(t)|lge ) S ™, for
t > 0, which does not ensure w € L1(0, T;H?(Q)) since t=* € L1(0,T) and 1 < a < 2.

Otherwise, if f € H**0TY(Q) and G satisfies the assumption () as Theorem then using the
same techniques as Proof of Theorem (see the estimates —) shows that

[u®)llre @) S Nw®) a1 ) S =0 ¢ > 0.

We imply u € L1(0,T;H (Q)) since t—*1=9 € L9(0,T) for 1 < q < ﬁ and 0 < (1 —0) < 1.
8



3.3. Well-posedness of Problem -@ under critical nonlinearities. The previous subsection
states the results in the globally Lipschitz case, they cannot virtually be applied in many models such as
time fractional Ginzburg-Landau, AllenCahn, Burgers, Navier-Stokes, Schrodinger, etc. equations. In
this subsection, we state the well-posedness of Problem — under the critical nonlinearities case.

Theorem 3.4. Assume that o € (1,2), 0 € (-1,0), 0 < v < 140 and s > 0. Let ¥ such that
Y€ (w—o,1) and set u =v —o. Let ¢ satisfy

¢ < min (a_l — (1499 91 —s)—v+ 0’). (19)
The function G satisfies the next assumption (J3), that is, G : [0, T] x H*(2) — H7(Q2), G(0) =0 and
1G(tv1) = G(tv2)[lme (o) < L3(t)(1 + loallfe @) + ||U2||i§nv(n))|\vl — valm (@) (20)
where Ly satisfies that Lz(t)t*¢ € L°°(0,T). Set
Zapr(R) = {w € CoV(O, T H(Q)), wllces o, ryme ) < R}
If f e HH=9(Q), f 20, and Ko7 € (0,min {35 ;N7 }) with Ko = | La(t)t°|| 1~ (0.1, where

the constants are formulated by (AP.4) in the Appendiz, then Problem —(@ has a unique mild solution
u € Xa0,07(R) satisfying in addition

—a
()i ) S T (1]
Moreover, we obtain the following spatial and time regqularities

a) Let 0 < <1 and a¥ — 1 < B < ad, then tPu € LP(0, T; HTW'=9)(Q)), for all p € [1, ﬁ),

with respect to the estimate

Hv+(1-9)(Q) - (21)

||u(t)||Hv+(0'ﬂ9)(Q) S t_aﬂ ”f”Her(lfﬂ)(Q) .
b) Let 9 <n <9 +1 thenu e C"i([0,T);H""(Q)) and
[[ul®) — u(t)]

where Ner; 18 defined in the Appendiz.

The hidden constants (as using the notation <) depend only on o, u,9,(, s, T in the inequality , on
a, i, 3,9, ¢, 8, T in Part a, and on a, i, 9,m,¢,s,T in Part b.

S (t _ t) MNeri

HY -7 (0) Fllga-0(q) -

Remark 3.5. One can actually establish the existence of the derivatives Oyu and 05 of the solution as
follows

i) Assume that 9 < Y21 and let 91 € [0, “=5HL), then dyu(t) € HTH1=H(Q) for each t > 0 which
corresponds to the estimate

e —p—a=1
100 (®)llggo-or -1y S P75 | Fllggoam o ey (22)

ii) Assume that 0 < 2=20%L qnd let ¥, € [“=gt2, Y=FH5)  then Ofu(t) € H7T==2(Q) for each
t > 0 which corresponds to the estimate

— max _pd2). —
1OZU(E) g s 2y S ¢ Pl 0N a@I= )0y ). (23)

4. APPLICATIONS

In this section we apply the theory developed in this work to some well-known equations. The
classes of time fractional Ginzburg-Landau equation and time fractional Burgers equation, are studied in
L1(Q) (¢ > 1) settings via interpolationextrapolation scales and dual interpolationextrapolation scales
of Sobolev spaces. We will discuss both time and spatial regularity of solutions by considering

e The time continuities of solutions on L%(f2) spaces with respect to the intervals (0,77, [0,T];
e The Gradient and Laplacian estimates for the solutions on L9(2) spaces.
9



4.1. Time fractional Ginzburg-Landau equation. We discuss now an application of our methods
to a final value problem for a time fractional Ginzburg-Landau equation which is stated as follows

Ofula,t) + Lule,t) = pOula, ) u(e,t), €9, te(0,T),
u(z,t) = 0, xed, te(0,T), (24)
dru(z,0) = 0, x € Q,

associated with the final value data and where s > 0 is a given number.

The Ginzburg-Landau equations were introduced to describe the behavior of superconductors [62].
Their fractional generalizations have been suggested by [63], and some models and applications of time
fractional generalizations can be found in [64] and references therein. We also refer the reader to [65] 66]
for complex Ginzburg-Landau equations.

In the following result, Theorem [3.4] will be applied to obtaln a mild solution of Problem .
where time and spatial regularity estlmates in two cases 0 < s < + 4 and s > 4

Theorem 4.1. Assume that 2 < N < 4.

4
a) The case 0 < s < ~° Let the numbers o, v, o, u, 9, ¥ respectively satisfy that

N N oN N +4 N +4 A-N
s toen R ) tre 9 1
Q€<038:|7V€|:4 5,4),#6(#0, ] >7 6(/1’3 ) ) |:+ ] >7

where p = v — o and po = max{v;s(§ —v)}. If f € H"O=9(Q), and p(t) < C,t® with b >
—min {1 — (14 )0; (¥ — p) — s9} and C, is small enough, then Problem has a unique mild solution
u such that

(Time regularity) v € C*’((0,T]; L*()) N C"eri ([0, T); HY~"(Q)) where 9 <n <9+ 1. This

solution satisfies the estimate

[t +~) — U(t)Hva(
'yﬂcri

e Q
£ w(t)l| ooy Leso + M50 S 1F lgeri-0 (0 - (25)

(Spatial regularity) For each t > 0, u(t) belongs to Whants () and verifies the estimate

v HVu ||L3N = + ¢V H(—A)'ﬂ _ﬂu(t)HL4(9) N ||f||Hv+(1—v9>(sz)' (26)
4
b) The case s > z N Let the numbers v, o, u, 9, 9" respectively satisfy that
N 1 N N +4 N +4 4— N
_ -, = — |, ¥ — ), Y e |9+ ——,1
ye[4 25’4)’”6(%’ 3 >7 E(u, 3 >7 E[—i— 3 )

whereupon 1 = v — o and po = max {v;s (% -v)}. Iffe H*+(=9(Q), and p(t) < Cpt® such that
b> —min {1 — (14 s)0; (0 — p) — s¥} and C, is small enough, then Problem has a unique mild

solution u such that
(Time regularity) v € CV((0,T); LN*(Q2))NC e ([0, T); HY~"(2)) where 9 < n < 9+1. This
solution satisfies the estimate
l[u(t +~) —u(t)
f}/n(ww

o H]HIV (2
¢’ [w(®)ll L vs o) Leso + ( )1t>0 S I lgera-9(q) - (27)

(Spatial regularity) For each t > 0, u(t) belongs to Wlﬁ(ﬂ) and verifies the estimate
=7 [ Fu(t) (=80 u(t) | vy S I v or oy (25)

Proof. a) This proof will be based on applying and improving Theorem actually. We firstly exhibit
some explanations justifying that the assumptions in this part are suitable.

+ Y|

[t——
©)

1 Ns N(%
e 0 < p< — since i < M = — as the assumption s < —;
2 8 8 2
3N —4 Ns s 3N —4 8N
e 0<p< s since S < (3;’5{4) =—3 by the fact that 8 > SN 1

10



>N SN e N N_N i tion v > Y — € and p < 8
° — sin — > - = mption — — > an —
V_Ssceu_4 521 g Sas e assumptio u_4 Sa o< 3
N +4 N
e The interval (,uo, + ) is not really empty. Indeed, it is easy to see from v < ” and
N N+4 N+ 4
— < + that v < a . Moreover, we have

4

N < N N o <1<N+4
=y (28 — e
"\ =7\1 " \1 75 ¢S9S T8

. . N o . 1
by using assumption v > T and noting that o < 3
S

N +4
g

4— N
e The interval [19 + 3 1) is also not empty as ¥ <

N
e The number o belongs to ( - O) since 0 = v — pu < po — 1 < 0, and furthermore
N o N+4+4_ N 3N—-4 N+4 N
R e - --7

4 s 8 4 8 8 4

N 3N —4
by using the assumption v > i 2 and the fact that o< 3 s.
S

Secondly, we obtain some important Sobolev embeddings which help to establish the existence of
a mild solution. By applying the embeddings —, and using the dualities [H~7(Q)]" = H(Q),
[W=272(Q)]" = W27:2(Q), one can see that

N 2N 2N
e The Sobolev embedding L~ () — W2%2(Q) holds as -5 < 20 <0, =

N_—40 N -2(20)

e The Sobolev embedding H~7(Q) < W~292(Q) holds as —o > 0, which consequently implies
W29:2(Q) < H ().

As a consequence of the above embeddings, we obtain the following Sobolev one
LY % (Q) < H(Q). (29)
By the assumption s (% — 1/) < o < p, we have

2N(1+s) = 2N(1+5s) < 2N(1+s) 2N
N—-40 N—-4(v—p) " N-dv+4s(¥—v) N-4
Therefore, using yields that

.2 2N (1+5) . N 2N(1 + S) 2N
) —o < — < .
W=4(Q) — L™ ~-1= () since 0_21/<2, N 1 =N _1
Besides, using (8)) invokes that H(Q) < W?2¥:2(Q), as v > 0, which consequently infers the embedding
2N (1+s)
H"(Q2) — L ~-2 (Q). (30)
Thirdly, let us set the nonlinearity G(t,v) := p(t)|v|°v, and show that G satisfies (43). Indeed, it is
obvious that |G(t,v1) — G(t, v2)| is pointwise bounded by (1 + s) (|v1]® + |v2|®) |[v1 — v2|, and so one can
derive the following chain of estimates

1G(t,v1) = G(t, v2) o () S NG (v1) — G(UQ)HL "z ()

<000 | [lollon = val g + lenllon = v

2N
LN-45(Q LJV—40'(Q):|

S o(t) <||U1|52N<1+s> + llv2|® 2xvage) ) v — w2l 2xase
L N-3s (Q) L N-3c (Q) L N-3c (Q)

< 2(t) (o1l + o2l ) lor = 220y
where the embedding has been used in the first estimate, the pointwise boundedness in the second
estimate, the Holder inequality in the third one, and the embedding (30)) in the last estimate. Therefore,

we can take the Lipschitz coefficient in the form K(t) = Kginp(t) with some positive constant Kgip.
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Furthermore, the assumption b > — min {i — (14800 —p) — 519} ensures that there always exists a
real constant ¢ such that

—b<C<min{;—(1+s)19; (ﬁ—u)—sﬁ},

then one derives K (t) < CPKGint_aCt“(b"’Q < Kot~°¢, where Ky = CPKGinT‘X(b*‘O. We conclude that
¢ and G satisfy assumptions of Theorem It is obvious that all assumptions of this theorem also
fulfill the assumptions of Theorem Thus, applying Theorem [3.4] invokes that Problem has a
unique mild solution u € C*?((0,T];H*(Q)) N C e ([0, T]; H*~"(£2)) with C, small enough. Now, the

assumption v > i ¢ implies that
s

2N 2N _ 2N 2N
N-dv = N-a(§F-9) (9~ (45)

(31)

where g < E Hence, as () is a bounded domain, we have that L%(Q) — L*(Q). Besides, applying
the embedding @ again combined with the above embedding allow that
W22(Q) — L¥ 1 (Q) — LY(Q),
where we note that 0 < 2v < %, % = #1\(121/) Therefore, we deduce that
ue C((0,T); L*(Q)) N C"eri ([0, T); HY ()
where 9 < <9+ 1 as in Part b of Theorem [3.4] and

lut +7) = u(®) (e
D 1150 S Il -0y -

¢ u(®)ll sy Leso +

’)/ Neri
This shows inequality . Finally, we need to prove inequality . Indeed, we have
4—N 4— N
'19/—'192 as 19’6 |:'19+8,].>, (32)
N N 4-N 1
which associates with v > 5 that v+ (¢ —9) > 5 + 5 =3 Therefore, we obtain

e The Sobolev embedding H* T =9 (Q) < W2 +2(7"=9):2(Q) holds as v + (¢ — ) > 0.
e The Sobolev embedding W2/ +2(9'=9).2(()) s Whants () holds by using the embedding (5] as

4N
IN —sy > 1 and 2v + 2(¢ —9) > 1, where we note from that

4—N N N N
2y+2(19’—19)—122y+2<> —l=w - =

8 4 2‘@'

Two above embeddings consequently infer that the Sobolev embedding H”‘HW—W(Q) < Whan-sm Q)

holds. Hence, we deduce from Part a of Theorem m that u(t) € Whan s (©2) with respect to the
estimate

t()éﬂl

N s () +

tmg,HVu@)HL <_A)ﬂ,_ﬂu(t)HL4(Q) 5 ||f||HV+(1*19)(Q) )

which finalizes the proof of Part a of this theorem.

b) We note from Part a that the number g belongs to the interval (O7 %) In this part, we try to extend
the method in Part a with o = % It is important to explain the similarities and differences between the
numbers in this part from Part a as follows
) N 1 N 1 N . N 1 4
ouzgsmceVZ— > = — by employing v > — — — and s <

4 2574 2(&) 8 4 2s =N

N +4
e The interval (ﬂo» + ) is not really empty since

8
N (N (N 1 1 _N+4
——v — ) =< —

*\ 1 =%\ 4 2 2 8



N
e The number o belongs to (—4, O) since

N 1 N+4_ N 1 N +4 1 N
V> — — -~ ——— 2 — -7 o — 52"
4 2s 8 4 2(%) 8 2 4

by al 1 >N L d <4
v also employing v > 1 5, ands< .

By using the same methods as Part a, one can establish the existence and uniqueness of a mild solution u
to Problem in CY((0, T); HY ()N Ceri ([0, T]; HY~7(2)) with C,, is small enough. Next, inequality
(31) can be modified as
2N S 2N
N—-4v = N-4(&-14)

Hence, we obtain the Sobolev embedding
W22(Q) < L7 (Q) < LV%(Q),

which implies inequality 1) Moreover, we also have v + (¢ — ) > % by noting the assumption
VANS [19 + %7 1) and the fact that v > %. Then, we obtain the Sobolev embedding

HY ' =9)(Q) < Whan s (Q),
and inequality also holds. We finally complete the proof. (]

Remark 4.1. In fact, considering N & {2;3;4} for time fractional Ginzburg-Landau equations, the
problem is not easy. The main reasons are: requirements for the numbers v, u, 9,9’ and applying Sobolev
embeddings. For instance, in the assumptions on o,v, u, 9,9, we need (N + 4)/8 < 1, which holds for
N < 4; we need 8 > 31% 7 tn the beginning of Proof of Theorem 4.1, which holds for N > 2.

4.2. Time fractional Burgers equation. In this subsection, we deal with a terminal value problem
for a time fractional Burgers equation which is given by

Ofu(x,t) + p(t)(u- V)u(z,t) Au(z,t), reQ, 0<t<T,
u(z,t) = 0, 0<t<T, (33)
Opu(z, 0) = 0, x € Q,

associated with the final value data . Here f and p are given functions, and the operator A is —A
which acts on L2(Q) with its domain W,*(Q) N W22(Q).

H. Bateman first introduced Burgers equation [67]. J.M. Burgers used it to model turbulence [68],
which has been commonly referred to as Burgers equation. This equation also appears when investigating
flow through a shock wave propagating in a viscous fluid [69]. We refer the reader to [70, [7T] and references
therein for the standard Burgers equations, and to [72] [73] with time derivatives of fractional orders.

In the following theorem, we will apply Theorem to obtain a mild solution of Problem , and
then obtain the spatial regularity with an L?(2)-estimate for Vu and a HY (9)-estimate for (—A)? ~7u.

Theorem 4.2. Assume that 3 < N < 4 (N is the dimension of Q). Let the numbers v, o, u, 9, ¥
respectively satisfy that

1 N N +4 N +4 4— N
-, — U — ], Ve |9+ ——,1
V€|:274>7 ,U/€|:M27 ] )a E(Ma S )7 €|: + S 7)7
where p = v — o and pg = max{y N+2 V} If p(t) < C,tb wzthb>—m1n{ ,u,a 219} fe

HY+(=9)(Q), and C) is small enough. Then Problem (.) has a unique mild solution u such that
a) (Time regularity) Let 9 <n <9+ 1. Then we have

w e Co((0,T); L= (Q)) N C e ([0, T]; HY (),
and time regularity result for u holds

IIu(t +7) = u(®)llg (o
2 (Q) rynm-i
13

t? lu@)ll

S gy - (34)



b) (Spatial regularity) For each t > 0, u(t) belongs to Whav s (Q) and satisfies the following
estimate

|| Vu(t)|| J+ [ (—A)? Vu(t))|

L3N ( HY (2) S HfHH”Hl_ﬁ)(Q)' (35)
Proof. In order to prove this theorem, we will apply Theorem [3.4] and then improve the time and spatial
regularities of the mild solution. Let us set G(t,v) = —p(t)(v- V)v and show that G satisfies assumption
(#4) corresponding to s = 1. Firstly, we analyze the values of the numbers v, o, u, 9, ¥ as follows

4 N N+4
e The interval {sz ; >is not empty since v < 3 asy<Z§ ; (here N < 4), and
N +2 N +2 1<N—|—2 N N+4
4 2 4 8 8

N —4 N —4 1
e The numbers = ;, N2 _041/ are greater than 1. Indeed, u > pus > v > ok and

N—-40 N+2-4v N+2-4(4)
= 1> — 22 41> 1;
dp — 2 4 —2 * 4p — 2 *
N —4 4p—2
7= K +1>1

N+2—4v N+2—4v
Moreover, these are the dual numbers of each other.

Therewith, one can obtain the following chains of the Sobolev embeddings by applying , @, and .
Indeed, we have

2 N 2N 2N
e The Sobolev embedding L% (Q) = W?72(Q) holds as —5 < 20 <0, =

N —40 N —2(20)’
and W?292(Q) — H?(Q) as o < 0, and so that

L™ (Q) — W272(Q) — H(Q). (36)

e The Sobolev embedding HY(€2) < W2¥2(Q) holds as v > 0, and W2*2(Q) — Wb~ (Q) as

1 N
v> 2 2v—1= 5~ N/ (m> which implies the following Sobolev embedding
HY(Q) < W22(Q) — Wh i (Q). (37)
2 N 2N 2N
e The Sobolev embedding W?2:2(Q) — LTJL(Q) holds as 0 < 2v < o 1< 2 s N "
(v < p), and henceforth
HY(Q) < W22(Q) — LTz (Q). (38)

e The Sobolev embedding H*+t(¥' =) (Q) « W2 H2(9'=9).2(Q) <5 W2-%:2(Q) holds since v +

1 4—-N 4—-N
(0 —9) > 5 + 5 = 1-— by using the assumption ¥’ € [19 + —5 1). In addition,
N N 4N
WQ_%’Q(Q) < Whavsa (Q) as2— T >1,2- i =3 _N/<3N — 4). Therefore, we obtain
the following Sobolev embedding
HY O =9 (Q) oy W20 =92(Q) <y W27 5:2(Q) o Whava (Q), (39)
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On account of the above embeddings and the Holder inequality, we deduce the following chain of estimates

G w0) = Gy < 00 (101 - T 01 = )l )+ 101 = 02) - Tl
< (1) <||(v1 V)01 — )]
$ 000 (ol i, 3 g 19001 = )]

Te A5 LN e N+2 ™ ()

gy 10 =02 Vel )

+ o fWHL& e o 19021, i, o)

2N
L1u-2(Q) LN+2-1v ()

[Vl

L4H 2 (Q) LN+22]\141/(Q)>

= 0(0) (ol g, g 19 01 = )]

+ [lv1 — val

< 0(®) (01l o + 12 vy ) N1 = w2l -

where the chain has been used in the first estimate, the triangle inequality in the second estimate,
the Holder inequality with the dual numbers 11}:1; , Nﬁgf‘iu in the third one, the chains and
in the last one. This means that G is really a critical nonlinearity from H"(Q) to H?(§2) with respect
to s =1 and N(vy,v2) = [|[vi g (o) + [[v2]lgy (). Furthermore, we can write K () = p(t) Kpur with some

positive constant Kp,,. Let us take ( satisfying that

1
—b<§<min{—u;a—219}7

then one has K (t) < Kot ¢, where Ky = C, Kp,,T*(**%). Due to the above arguments, we consequently
conclude that G fulfills assumption (.#43). One can check that all numbers in this theorem obviously
satisfy the assumptions of Theorem . Hence, we can apply Theorem and the chain (38]) ensures
that Problem has a unique mild solution

we C((0,T); LT= (Q)) N C ™ ([0, T]; HY (),

with C, being small enough. Besides, the boundedness and Part b of Theorem ({3.4)) can be combined
to imply the following estimate

[u(t +7) = u@® g0
L%(Q) ’yncri

27 [|u(t)]

S lhrimo ey

i.e., inequality is easily obtained. We now prove the spatial regularity. Indeed, Part a of Theorem
(B-4) can be rewritten as (—A)? ~Pu(t) € H(Q) with respect to the estimate

[(=2)" " u(w)]| Ol gy S N1
On the other hand, by using the chain , we deduce that
IVu@®l, sty ) S N=2)" " u(d)

on S || _A)ﬂ'_
L4=2(Q)

H1/+(1—'0)(Q) .

—ad
3N 1( H” () 5 = Hf”HVJr(l*ﬁ)(Q))

which implies inequality . ([

Remark 4.2. Considering N ¢ {2;3;4} for time fractional Burgers equation is not an easy task by
the following reasons: requirements for the numbers v, u, 9,9 and applying Sobolev embeddings. In the
future, we will develop our method to deal with the cases N & {2;3;4}.

5. PROOF OF THEOREM [3.2] THEOREM [3.3] AND THEOREM [3.4]

In this section, we provide full proofs for Theorem Theorem and Theorem In Subsection
we prove Theorem by using some new techniques of the Picard approximation method. In
Subsection we show Theorem by applying Banach fixed point theorem. And we end the section
by proving Theorem in Subsection For the sake of convenience, some important constants, which
will be used in the proofs, will be listed in part (AP.4) of the Appendix.
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5.1. Proof of Theorem Let us begin with the proof of Theorem [3.2] by using Picard’s approxima-
tion method. We construct a Picard sequence defined by Lemma With some appropriate assump-
tions, we will bound the sequence by a power function. Then, we can prove it is a Cauchy sequence in a
Banach space as Lemma[5.2] Now, we consider two following lemmas.

Lemma 5.1. Let the Picard sequence {w(k)}k:m,_“ be defined by w(l)(t) = f, and

WD () = By (L T) f + /t P, (t — r)G(r,w™ (r))dr
0

T
- / Bu(t, T)Po(T — r)G(r,w® (r)dr, 0<t<T. (40)
0
Then, for allt >0, k € N, k> 1, it holds
k —a(l1-60
[P O], 0 <M ) (41)
where N is given by (AP.4.) in the Appendiz.
Lemma 5.2. Let {u(k)}k:1 o be the sequence defined by Lemma then it is a bounded and Cauchy
sequence in the Banach space LP(0,T;H"(2)) with p € [1, ﬁ)
Proof of Lemma[5.1 Let us consider the case k = 1. Firstly, || f|ly. ) is bounded by C1 (v, 0)|| flz+o ()
upon the embedding (L5). Furthermore, it is straightforward from (AP.4.) in the Appendix that

N1 > C1(v,0)t*0=9) by noting the number a(1 — 6) is contained in the interval (0,1). These easily imply
the desired inequality for k = 1. Assume that holds for k£ = n. This means that

n —a(l-0
[, 0 NN S o, (42)

We show that holds for k = n 4+ 1. Thanks to definition (11, using the fact that {¢;} is an
orthonormal basis of L2(f2), and then using Lemma one arrives at

.0

. 1/2
—1pa(1-0) (ab —0\,—a(1-0) 2v A2
. < M m;'T (T + X9t (ZA]» (f5) )

j=1
_ Mamnga(l—Q) (TQQ + A;G)t—a(l—e) ||fHHU(Q)
< Mo T (T2 4 A7)0y (1,0) || s

where we have used the Sobolev embedding H**?(Q) — H¥(Q). Next, let us estimate the integrals by
using assumption (.41). The idea is to try to bound them by the convergent improper integrals. Indeed,
one can show that

t t [e%s}
/Pa(t—r)G(r,w(")(r))dr g/ D (= 1) Eaa(=A(t = 1)) G5(r, 0™ (1) dr
0 HY () 0 |lj=1 H¥ ()
t
< Ma)fe/ t —p)e-0-1 HG r,w(") r ‘ dr
1 O( ) ( (r)) .
t
< WalmomMaAT® [ =)0 o) dr 43)
0 H ()

where we denote G ; (1, w(™ (r)) = (G(r,w™(r)), ;). On the other hand, the quantity &, r(—\;t*)(T —
1) By o(=Xj (T — 7)%) is obviously bounded by M (T — r)*(1=0)=13=¢(1=0) que to Lemma Here,
the constant M is given by (AP.4) in the Appendix. We then obtain the following estimate

/ ! Bo(t, )P (T — r)G(r,w™ (r))dr
0

HY ()
T oo
< [T = A B o =N (T = 1)G e )|
0 |[j=1 H¥ ()
T
s||L1|\Lw(O,T)M1t—a<1—9>/ (T =)0t )| ar, (44)
0 H ()
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where we note that the constant M is given by (AP.4.) in the Appendix. According to the above
inequalities, we need to estimate the integral fg(t — ) d=0=1 () (r)||H,,(Q) dr. To do this, we will
apply the inductive hypothesis (42). Moreover, by also using the fact that 1 < T71=9¢=2(1=0) for all
0<t<T,and fot(t — r)e(1=0)=1p=a(=0)dpr is equal to 7/sin(ra(l — 6)), we consequently obtain the
following estimates

t t
/ (t =)=t )| dr < N1||f||Hu+e(Q)/ (t — r)e=0)-1p—a(i=0) gy
0 0

HY (02)

71'T0‘(1_0) ol
§N1||f||Hv+9(Q)S gme0=0), (45)

in(ra(l —6))

Here, in the last equality, we use (AP.1.) in the Appendix. By similar arguments as above, we obtain

/t Po(t —r)G(r,w™ (r))dr + /T Bo(t, T)Po(T — r)G(r,w'™ (r))dr
0 0

H (Q)
< || L] pos 0,7y N1 fllgmro ). (46)

From some preceding estimates and by some simple computations, we can find that

t
Hw(”ﬂ)(t)‘ e H /O P (t — )G (r,w™ (r))dr

<|IBut,T ’
HV(Q)_H ot T)f

H (2)

4 /0 Bt TYP(T — )G ™ (1)

HY (Q)
< (MlMojlcl(Vv 0) + ||L1||L°°(0,T)//Z1J\f1)t_a(1_9)Hf||Hv+9(Q)
= N1t = OO £l gvo .-
By the induction method, we deduce that holds for any k =n € N, n > 1. (]

Proof of Lemma[5.3 Since p € [1, ﬁ), we know that the function ¢ — t~*(1=9) is L?(0, T')-integrable
which implies that {u(")} is a bounded sequence in LP (0, T; H” (€2)). Hence, it is necessary to prove {u(”)}
is a Cauchy sequence. By using the notation u(™*) := ¢(+¥) — (") and using triangle inequality, one
has the following estimate

t
w90 ) < M0 MaAT? [ (=)D ) g g

H> (2
T
+ \|L1||Lc,o(O,T)/wlt*a(l*")/O (T =) O u P (1) || g, g

Similarly to the proof of Lemma [5.1} one can use the inductive hypothesis to estimate the above right
hand side. Then by iterating the same computations in Lemma we can bound [[u(t1F)(¢) (@) by

the quantity 27 (|| L4 ||LW(07T)L//1)"1€_“(1_9). Summarily, one can obtain the following conclusion by the
induction method
n—1
[[u#) (t)HHV(Q) < 2N1(||L1||Loo(o,T)«///1) ted=0), (47)
which completed the proof by letting n — oo. O

Proof of Theorem[3.4 We firstly prove the existence of a mild solution w in the space L?(0,T;H"(Q)),
and then obtain its continuity in the following steps (1 and 2). After that, we will present the proofs the
Parts a - d in the sequel.

Step 1: Prove the existence of a mild solution v in the space L”(0,T;H"(Q2)): Since L?(0,T; H"(£2))
is a Banach space and {u(")}n:1 , is a Cauchy sequence in LP(0,T;H"(£2)). Thanks to Lemmas

we deduce that there exists a function u € LP(0,T;HY(Q)) such that lim,, . u(™ = u. Now, we
show that u is a mild solution of the problem by showing that u = Ju, where

yees

t T
Ju(t) = Bu(t, T)f + /0 Po(t — r)Gr,u(r))dr — /0 Buo(t, T)Pu(T — )G(r,u(r))dr.  (48)
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Since the sequence {u(")} converges to w in LP(0,T;H"(2))-norm, there exists a sub-sequence {u("m)}
that point-wise converges to u, i.e., u(")(t) — u(t) in H”(Q)-norm for almost everywhere t in (0, T).
Let us denote by v("m) := 4("m) —qy. This fact and taking k — oo in the estimate allow us to obtain

N — 1
||V(nm)||HU(Q) <2M <HL1||L°°(0,T)«///1> te1=6), (49)

for almost everywhere ¢ in (0,7'). Moreover, we note from Lemma 3.3 that this sub-sequence is also
bounded by the power function t — ¢t~*(2=%_ These help us to apply dominated convergence theorem

as follows. Indeed, it is obvious that the quantities

t T
/ (t o ,r)a(lfe)fl||V(nm)||HV(Q)dT’ tfa(lfe) /O (T - T)a(170)71|‘v(nm)| dr

HY (Q) )

0

point-wise converge to zero as , and are bounded by LP(0,T)-integrable functions. Thus, the same
computations as show

p

/0 Pt — 1) (Glrut™™ (1) — Glr.u(r)) ) dr

LP(0,73HY (2))

T t p
= / / P.(t—1) (G(r, u™m) (r)) — G(r, u(r)))dr dt
0 0 H¥ ()
T t p
< A { A (t— T)a(lfe)*lHV(nm) HV(Q)dT} dt, (50)
and by reasoning similarly as in , we have the following bound
T P
/ Bo(t, T)Pa(T — 1) (Grul™ (1) ~ G(r,u(r) ) dr
0 L2(0,T3E ()
T T p
- / / Bo(t, T)Pa(T — ) (Grul™ (1) ~ Glru(r))dr| i
0 0 H(Q)
T T p
< /0 {ta(le) /0 (T — T)a(179)*1||v(nm) HV(Q)dT} dt. (51)

The right hand-side of and tend to zero when n,, goes to positive infinity. The above arguments
conclude that u satisfies u = Ju, and thus is a mild solution of Problem — in LP(0,T;H(?)). By
taking the limit of the left hand side of (with respect to {u("")}), we obtain

ull Lo o,7m ) S 1 f llmv+e (- (52)

Step 2: Prove u € C*U=9((0,T);H”(Q2)): We need to estimate u(t) — u(t) in H”(Q) norm, for all
0 <t<t<T. By the formulation , the triangle inequality yields that

[u@ —u],, o < | (BalET) - Boe.1)) £

H> (9 HY ()

+ /Ot (Pa(f— r)—Pu(t — r))G(r,u(r))dr

H¥ ()

+ /tPa(?—r)G(r,u(r))dr

HY (Q)

+ /OT (Ba(ﬁ T) — B (t, T))Pa(T = 7)G(r,u(r))dr

HY ()

= 19 e ) + 192w () + 193 [l () + 19 lm () (53)
In what follows, we will estimate the terms 97; for 1 < j < 4.
Estimate of M;: Using the fact that 9;E, 1 (—\jt*) = —M\jt* ' E, o(=\;tY), we find that

o (“Ai") = Baa (=23t") _ /?_ \ o1 Baa(ZAT)
) .
18
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The latter inequality leads to

Ajr9)
ot T )f‘ Are %f«p- dr
H( HY () Z al )\jTa) I )
T
S (/t Ta(el)ld?") [1f e+ )
ta(l 0) _ ta(l 0) A
where we have used the fact that
By o(=Xr) 14 M1
s a—1Ha,a J < M\ a—1 J < )\9 a(0—1)—1 55
I B (T < T T ez T (55)
By noting that 0 < a( —0) < 1, we now have t*0=9) — ¢2(1=0) < (¢ — )2(1=9) and furthermore
a1l — 9)t(1=0(1-0) > (1 — )tza (1=6). Consequently, thanks to the estimate (54), we arrive at
1990 [l ) S ¢ 2= (E = )0 fllvre - (56)

Estimate of My: It follows by differentiating 9, (pa_lEa,a(—)\jp“)) = p* 2Eq,q-1(=A;jp%), for all
p > 0 (see Lemma[2.2)), that

/0 ((f— 1) Baa (A5 = 1)%) = (t = 1) Baa(=X(t — 7’)"‘)) G;(r; u(r))dr

t ?fr
- / / PO 2B 1 (=X p™) G (1 u(r))dpdr (57)
0 t—r
This implies that
190 s 0y S / / 62 G u(r) | g dpdr

<@-net / ) ey S F = 0l oo, o)
S (- O fllm+o ) (58)

where we note that

t—r T \a—1 _ _ nya—1 7 pa-—1
[ g CT ez i
t a—1 oa—1

1

a—2

pa_2Eo¢,a—l (_)‘7/0(1) 5 p(x—2

Estimate of My: For all t < r < t, using the inequality |Eq o(—);(t —r)*)| < M, and the fact that
(t—r)>"1 < (t—t)*! show

t
o], < MalE= 05 [ UG D iy dr S =0 o0 (59)
t

HY (Q)

Estimate of My: Using , we obtain

a—1 Ea,a(_)‘jpa)

T — 04—1)\_
( T) jp Ea,l(_AjTa)

Boa(=X (T = 1)) Gj(r,u(r))e;

7

j=1

H ()
(T — r)*1=0)=1 pal=0)—1 G (r; u(r) e )
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By using the fact that t*(1=0) — (10 < ( — )e(1=0) apq (1-0)3a(1-0) > 420(1-0) e derive that

T t
19 [l (02) S/O /t (T = )00~ O=D=1 G, (7)) | ) dEdr
’i’a(l—e) _ ta(l—G)

~ a1l — §)te1-0)a(1-6)

T
/0 (T = )2 0= Gl u(r) e

T
S OT 200 [ O G () e (60)
0

It is easy to see that

T T
/o (T = 1) G () v ey / (T =)™ )l o dr

T
§ ||f||HV+9(Q)/ (T — T)a(l_g)_lr_a(l_e)dr
0
< 1l o -
The latter estimate together with lead to

90| () S 7220 — )| f o () (61)

Obtaining the estimate for u(t) — u(t): Combining , , , , leads us to

)~ u(@) e S 20O E 109 4 G|l vo .
which implies that v € C*(1~9) ((O7 TY; ]HI”(Q)), and the inequality can be obtained by using .
In what follows, we carry out the proofs of Part (a), (b), (c), (d).
Part (a). Prove u € LP(0,T} H”Jre*el(Q)), for any p € [1, ﬁ)

Lemma |2.4] yields the estimate

2 e 2
_ 20426026’ g \2
[Bae |, =35 Ear (=Xt (f.09)
g t—2a(1—9 ) Z )\?V‘FZ@*QG )\30 <f; ()0]_>2. (62)
=1

Therefore, B, (t, T)f € LP(0,T;H"+~ (2)). Further, we infer from assumption () and the estimate
(t—r)* " Ey o=t —7)%) < )\;(079 )(t — 7“)0‘(1_(9_9/))_1 as in Lemma H

where we used the definition of the Beta function as (AP.1.) in the Appendix, and the fact that
ot = p—a(1-0")a < —a1=0"), Now, we proceed to estimate the last term of u. Lemma 3.2 yields that

/0 Po(t — )G, u(r))dr < /0 (t = )20 G, u(r) g () A

Hv+6—6' (Q)

t
< / (t — )10+ =1, —a(1=0) g < y=a1=0') (63)

~
0

a0 (=Nt )T = 1) Baa (=X (T = r)*) S N O 0000(T — )20,
20



This invokes from assumption (747 ) that

/0 Bo(t, T)Po(T — r)G(r,u(r))dr

Hu+e—e'(Q)
, T
S0 [T = O G0, ) g
0

T
< tfoc(lfe') / (T o ,r,)a(lfe)flrfa(lfO)dT < tfa(lfe').
0

(64)

Taking the above estimates , , together, we imply that v € L”(0,T; HY 00 (Q)), for all

pE [1, ﬁ), and complete this part.

Part (b). Show that v € C ([O,T];HV”’/(Q)).

Let t and £ be such that 0 <t < t < T. By using equation and the embedding H” (Q) — H*~*' (),

we obtain
[u(®) = ()l ()
< 9 flge—v ) + 1Ml - () + 193]l o—vr (@) + 19l ()
S I e () + 1M allgo-vr () + 192l () + (|93 | v () -

For the right-hand side of (53), we thus need to estimate the terms |90 ||y, —./ @) 9l
now continue to consider the following estimates.

Estimate || [l ()¢ It is easy to show that

(%‘_ t)oz(9+u’—1)
a@+v —1)

Estimate ||9M4]gs— ()0 By a similar argument as in (61), we obtain

1971 |- () S [ £z +o (e2)

T 2
19 [l () < /0 /t (T — 7)o (=0) =1 pa@+r'=1)—1 G (r, u(r)llge ) dpdr.

Since 0 < a(f 4+ v/ — 1) < 2, we split it into the two following cases:
Case 1. f 0 < a(@ +1v' — 1) <1 then apply (a+b)? < a” +1%, a,b>0,0 < o < 1, we have

(50&(94’1/,71) B ta(0+1/'71) < (%’7 t)a(OJru'fl)'

From two latter observations, we find that

|l 0 S / J e e e T

a(0+v'—1) _ ta(GJrV -1)

<
~ al@+v' —1)

/0 (T — 1) =O=1 G, u(r)) g (o dr

T
< peot/ 1) / (T =)= G, u(r) g (g dr
0
< RO =D fllgro -

Case 2. f 1 < a(@ 4+ v/ — 1) <2 then, since 0 <t < t < T, we have

(%’)a(t?Jrl/ -1) ta(GJru' -1)

— [(f)a(@ﬁ/_l) _ ta(9+y’_1)—1('tv>:| N [t"‘(“”’—l)—l}{_ ta(e+u/—1)}

- t[(tN)a(ew'fl)fl - ta(9+’/71)71} + (1 — @ =D

< max (T; Ta(9+y’71)—1) {(?_ £+ D=1 (§ t)}

21
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Therefore

(t— t)a(ew/_l)10<a(9+u'—1)§1
(=2 "D 9) Licaorn 1<
Collecting the results , ,, , and , we deduce that u € C([O,T];H”‘”l (Q)) and

finish the desired inequality.

/]

194l () S Hv+0(Q)- (70)

Part (¢). Show that

(XU G] MRS £~ =01 £l gvo .-

In order to establish the result, let us define the following projection operator, for any v = Z]Oil (v, ©;)0;
and any M > 0,

M
Puvi= Y (v,95)9;
j=1
and the two following operator
o
Nt B o (=A%)
Di1at,Tv = 1 cied W UV, 004, 71
1,0(( ) Jz:; EQJ(_AJTOL) < g0.7>g0] ( )
-@2,o¢ (t)’U = Z taiQEOt’a_l(—)\jta)@/, (pj><pj. (72)
j=1

Noting that Pjs has finite rank, we have the following equality after some simple computations

t
8t73Mu(t) = .@170‘(75, T)PMf + / .@270‘@ — T)PMG(T, u(r))dr
0

T
—/0 P,at, TVP(T — r)PrG(r, u(r))dr. (73)

200 — 1
One can infer from 0 < 1; <1 -6 that 0 < 11 < a

a—1

— 0. Hence, this can be associated with

1
<60 < 1that 1 <0+ v; + — < 2, and this implies that
e!

—O—1—L 14, 40—
ta—l Ea,a(_)\jta) <ta_1 <1+)\jTa)2 0—v1—3 (1+)\jTa>a+ 1+60—1
Eo1(=\T) |~ 1+ At 1+ Ajte
14, 10-
St_a(l_e_yl))\]€‘+ 140 1. (74>
It is easy to see that
2 M/
ve2u— 2 | =Nt B, o (=A%) 2
o(t,7) (P = Par) - AP ZAY PaaTAT)
D10, T) Py —Pur ) f y For(—\,T) (fs5)

HY M w (@) j=MAL

M/
S 2007 N AR (f0) (75)
j=M+1
On the other hand,
t
/ Dot — 1) (PM, — ’PM) G(r,u(r))dr
0 YA (Q)
, a ] 1/2
< / -2 | S AT TR ) | dr
0 G=M+1
. o 1/2
< / =2 D AGEHru(r) dr. (76)
0 J=M+1

22



Now, let us estimate the third term on the right hand side of . We see that

/ D10, T)Po(T — 1) (PM’ _PM)G(r,u(r))dr

§/0( (ZAzyzul

M+1

HY "1 % (Q)

1
2

1 2
)AerVlJre/\j_g(T—r)’o‘eGj(r,v(r))‘ ) dr

) p ;
5faufefm)/ (Tr)“(”’“( > A?”G?(T’a”(”)> dr,
0

(77)
J=M+1

where we have used the estimates ’Eava(f)\j(T Y| < /\j_‘g(T — )7 and

o=t =Nt T B o (= A1)
o \ Eno(=X(T = 7)")G;
& Eo1(—XT) (=X (T = 1))G;(v(r))

5 (T _ T)—aOt—a(l—a))\;—ul

G(ro()|.  (78)

Applying the Lebesgue dominated convergence theorem, we deduce that three terms
D1,at,T)Pu f, / Do ot — )P G(r,u(r

are Cauchy sequences in the space H”_”l_é(Q). Then, we obtain three convergences in the space
HY~1~% () as follows

lim glya(t,T)’PMf = @Z,Q(t7T)fv
M —o0

/%atT o(T = )Py G(r,u(r))dr

lim

M—>oo/0 Dot — PPy G(r,u(r))dr = /0 Dot — r)G(r,u(r))dr,

T
N}im / D10t, T)Po(T — r)PuG(r,u(r))dr = / D10, T)Po(T —r)G(r,u(r))dr (79)
The above equality implies that 9;Paru(t) consequently converges to dpu(t) in HY =1~ a (). Further,
the following estimates also hold

”-@La(tv T)f”

-t gy ST o),
and

/0 Dot — r)G(r,u(r))dr

HY V17 ()
t
< / (t = )2 |G, ulr)) oy 4
t
<11 s / (£ — )20y < =000 £l
0

T
/0 D16, T)Po (T —1)G(r,u(r))dr

HY V& (Q)

T
< peli—0=m) / (T = 12001 G, u(r)) g
0

T
S0 fllggso / (T = r)e ==ty a =0y
0

S0 Fllgvo -

Here, we note that fot t—r)e2pmal=0gp < taf=1 apd ¢t20-1 = ta(—6-v)pa(l-r—73) < t_o‘(l_e_”l) in

1 — 1
the second estimate by using (AP.1.) in the Appendix and noting that 1 — vy — — > 0 as 1y < pE——
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Consolidating all the above arguments, we obtain that

m

T
<2t D] 0+ /O D10t T) Po(T — )G (r,ulr))dr

1
HY "1~ & (Q 1
( HY "1~ % (Q)

St ( 1)”J HH" 6((2)'
1
HY V1 a(ﬁ)

+ /Ot Dot — r)G(r,u(r))dr

1

Since 1 < 1—60 and 1 < 6 4+ vy + —, these straightforwardly imply that 0 < a(1 — 6 —14) < 1 and
@

Oyu € Lp(()’T;Hufmfi(Q)), for all p € [1, M) This completes Part c.

Part (d). Show that

107 u(®)]] S om0 0O £l o

HY Ve~ & (Q) ~
To study the fractional derivative of order « of the mild solution u, let us consider the following operators
given by

o~ By o (—Ajt)
@3,a(t,T)’w = Z E'?a 1(—AJTJO‘) <U), SDJ>SDJ7

j=1

@47(1(75)’(1) = Z )\jta_lEa,a(—)\jtaxw, (,0j>(pj.

j=1

By applying the projection (PM/ — PM> to the solution u, and then calculating the fractional differen-

tiation Of

t
OfPyu(t) = P3.o(t, T)Pu f +/ Dot —r)PuG(r,u(r))dr
0

T
- /0 D30, T)Po (T — )Py G(ryu(r))dr + Py Gt u(t)). (80)

200 — 1

1
By using the fact that — — 0 < — 0, it follows from the assumption a

-1 1
—0 < vy < ——0 that
o

!
—1 20 — 1 1

a —0 <y, < a — 6. Thus, we find that 1 < 0 4+ v, + — < 2. Therewith, the same techniques
a ! @

as (75) invoke that P (t,T)f exists in the space H*~“=~= () if f € H*?(£2), and

—a(Ltov,—
1250 (6 T) fllgva 2 g S E T o ). (81)

The proof for integrals fg Dy o(t — r)G(r,u(r))dr, and fT D3.0(t, T)Po(T — r)G(r,u(r))dr in the space
HY~Ve~a (€2) can be done by using the same argument of and by using assumption (.#7) and the
argument of Cauchy sequences. Aside from the above existence results, we can also verify the following
estimates

A

/0 Daalt — )G u(r))dr / (t = 1) G (r, u(r)) g A

HY Ve~ & (Q)

1o (E=ra=0)o (== 2) | fl oo

<
all_y —
<t G0 f o), (82)

1 o — .. .
where 1 —v, — — >0as v, < , and by a similar argument, we obtain

Henceforth, we find that ’

S 700 fllgvro ) - (83)
HY Vo~ & (Q)

/0 D30(t, T)Po(T —r)G(r,u(r))dr

< 7 o0=07va) || £l gt (q). Since v, < (XT, we have

~

o%ult ‘
P gt

al=0-vy) > a(l-0-21) =1 _9> 21 _9 >0 Inaddition, it can be deduced from
24



a—1

— 6 < v, that a(1 — 0 — v,) < 1. Hence, we straightforwardly infer that 0 < a(1 — 60 — v,) < 1.
!

-1 1
Moreover, it results from v, > aT — 0 that v — v, — - <v—(1-6) < v, and the Sobolev embedding
HY (€2) < H”~“>~% (Q) holds. This implies that

G u)l g —va-1 ) S NGE )l @) S t= OO fllo -

Combining the above inequalities finally shows that

||3tau(t)\|Hy Va_i(Q) <t amin{(1—0—v,);(1— 6)}Hf||HV+9(Q)

and Of'u € LP(O,T;IHI"_”Q_%(Q))7 for all p € {1, amin{(l_el_ya).(l_e)}) The proof is accomplished. [

Remark 5.1. Let us explain the uniqueness of the mild solution in Theorem[3.2. For this purpose, we
assume that uy,us are two mild solutions of Problem (l) (@ whzch satzsfy that u; = Juy and us = Jus.
We will show w1 = ug. Indeed, it follows from uy,uy € C*U () that

||U1 (’I“) — UQ(T)HHV(Q) < ||U1 — u2||Co¢(178)((()7T];HV(Q))T_OL(1_0), Vr e (O,T] (84)

Furthermore, by using the analogous arguments as in (w ' one can directly obtain the following
chain

[ur (t) — u2(W)llmr (@) < 1L1llo 0,7y Moy / ) Oy (1) — ua(r) ||z () dr

T
L e oy Mt =200 / (T = )29~y () — g () o ey I
0
—0 ™
< Hallzee 0,1y llua = uall a0 (o, 7ym0 () MaAt sin(ra(l—0))

a(1-6 4
+ (| L1l Lo 0,7y [lur — uzllgaci-o) 0,175 () Mat™® )ma

where we have used and the part (AP.1.) of Appendiz in the last estimate. Therefore, multiplying
two sides of the above estimates by t**=9 and then taking the supremum with respect to t € (0,T] give

[ur — uzllcaa-o (o, rpmv @) < 1 L1llLo 0,7y |lur — vzl cac-o (0, 17m7 ()
Since || L1 p<(o,7) € (0,.47"), it follows that |jus — uz || gac-0) ((o,r)mv ()) = 0. Consequently, uy = us.
5.2. Proof of Theorem The proof of Theorem relies on a contraction mapping principle. In
order to prove this, we first prove the following Lemma
Lemma 5.3. Let us pick QT_l <f0<l,0<v<o<v+4+landl <g< ; Assume that

a(l—0)
f e H"94(Q) and G sastisfies () with || La||p<o,r) € (0,45 ). Set

Fo(t) = Bu(t, T)f + /0 Po(t — r)Gr,o(r))dr — /0 Buo(t, T)Po(T — r)G(r,o(r)dr.  (85)

Then, for any v € C ([0, T); HY(2)) N L9(0, T; H7(K2)), it holds that
Fv e C([0,T];H(Q)) N L0, T;H ().

Proof of Lemma|5.5 We split this proof into the following steps.

Prove Jv € C ([0, T];H(Q)): Namely, we need to estimate the norm | Zv(t) — T(t)||mv () for all

0 <t<t<T. For more convenience, we will use notation M;, 1 <j<4as 1} again. However, the

estimates for 91, in Step 2 of the proof of Theorem ({3.2]) will be modified suitably to fit the assumptions

of f and G in this theorem. Indeed, a slight modification of the techniques in the estimates and
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(55) invokes that

—_— "
I < [ St g S | dr
= AT e
i
S (/ Tae_ld?”) Il f [l +o+1 (02)
t
(t —1)*1ocan<1
5 ~ a@_fa B Hf‘ Hv+6+1(Q)?
((t - t) + ’7) licag<o

1
<0<l

.y —
where we note that belongs to (0,1) , and it notes that 0 < a —1 < o < a < 2 as e

a
Next, estimates for the terms 91;, 2 < j < 4 will be based on assumption (.#4) of the nonlinearity G.
We see that

1Mol < / / P2, u(r)) oy
< / / 216, 0()) g1y ol
t—r

S HU|’C([O,T];H"(Q))nzq(O,T;Ha(Q))/0 /t_r p*2dpdr,

where the norm [|G(r, u(r))lyg. q) is certainly S-bounded by [|G(r, v(r))l|g.+1(q) due to the embedding
HY*+1(Q) < H(). Observe from the above estimate that the last right hand side clearly tends to zero
as ¢ tends to ¢t. Hence, the preceding estimate implies the continuity of the term 9%y on HY (). In
addition, the continuity of the term 93 is obvious by using similar arguments as in and assumption
(463). Precisely,

190 2o < / G gy A S E = DI[o]| ey 00 2 1)

Finally, we consider the term [|94||g~ (o). The idea is to combine similar arguments as in Step 5 and the
modification in the above estimates for 9t;. Here, the maximum of the spatial smoothness of G should
be estimated in the space H**1(Q2). Indeed, the following chain of the estimates can be checked

M4 llmv ()
T to oo 2 %
</ / (Z A T>Q1Ajp“1(fam<Ajp%Ea,a(Aj(Tr)%@(nu(r))]) dpdr
0 t .
< [ @t G0 o o

~ ||UHC([O,T];H”(Q))ﬁLQ(OvT;HU(Q)) [(t2)aa - (tl)aﬂ

(ta — t1)*1ocap<1 }

<

~ ||UHC([o,T];Hv(Q))qu(o,T;Hn(Q)) { ((tg _ tl)aeq T (ts — t1)) 11cap<s
The preceding estimates lead to Fv € C ([0, T]; H(£2)).

Prove Jv € L1(0,T;H(§2)): We observe that

o «a A'ta ? —2a(1— = o
| *ZV 17”) (Frpp)? SE720070 Y 020 (f, )2
) <t
< 2000 Z AZORIAZ(f N2 =200 2 (86)

j=1
Thus, B, (t,T)f € L(0,T;H(Q)) since t—*(1=9) ¢ L9(0, T;R).
Next, we estimate the second term of Jv where we will bound the operator norm of P, (¢t — ) on
H7 (Q) by My (t—r)*"", and then we estimate ||G(r,v(r))|lue (o) by |G(r, v(r))|lm+1 (o) upon assumption
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(%) and the embedding H**1(Q) — H(Q) as 0 < o < v + 1, see . Precisely, these arguments can
be performed as follows
q

/O Po(t — 1)G(r, v(r))dr

:/OT

< (Ca(v0)M,)" / ' ( / (= G o) s dr)th

La(0,T5H7 ()

/O Polt — )G, o(r))dr

q

dt
He ()

—\% g
< <||L2||L°°(07T)M1) ||”||c<[o,T];Hv(Q))mLa(o,T;Hv(Q))’ (87)
where the constant M is given by (AP.4) in the Appendix.

Next, we will estimate the L%(0,T;H(2))-norm of the last term of Jv. The idea is to combine
estimates for the operators B, (t,T) and P, (T — r). We can estimate that the operator B, (¢,T) maps
Ho+9(Q) into H7(Q), and the operator P, (T — r) maps H7(Q) into H+t?(Q). Therefore, by using
assumption (%), this term can be estimated on the space H(2). In the technical aspect, we also note
that the assumption 1 — 1/(aq) < 6 < 1 guarantees that (o« — 1)/a < 8 < 1, and so a(1 —0) € (0,1).
Moreover, the power function t~*(1=9)4 is clearly integrable on (0,T). Indeed, one can show the following
chain of estimates
q

La(0,T;H7 (2))
q

T
/0 Bo(t, T)Po(T — r)G(r,v(r))dr
dt

/T
0 He (Q)

T T q
< MZ,T,H/O 4—a(1-6)q (/0 [Pa(T —r)G(r,v(r))|lgoroq) dr> dt

T
/o B.(t, TP, (T — r)G(r,v(r))dr

T T 4
<Ml [0 ( / <T—r>a<”>1||G<r,v<r>>||Ha<mdr> at

—\4
B (”L?HL“(O,T)MZ) ||vHZ‘([O,T];HV(Q))QLG(O,T;HU(Q))’ (88)

where Mg 1,9 := To=0) (70 4 Af9)7 Maro = MaroM,, and the constant My is given by (AP.4)
in the Appendix. A collection of the derived estimates (86), (87), (88), reveals Fv € L9(0,T;H"(12)).
Finally, we wrap up the proof. (I

Proof of Theorem[3.3 In order to show that Problem — has a unique mild solution, we will prove
the operator 2 has a unique fixed point in C ([0,T]; H”(Q)) N L2(0, T;H?(Q2)). The proof is based on
the Banach contraction principle. We have

Tv — 702”

C([0,T];H> (2))NLe(0,T;H (2))

=|[Tv — Tv2||Lago.rme () + | Tv1 — Tvalloqo.1):mv ()

=My + N. (89)
To estimate M5, we apply the previous results in estimating and to obtain

t
My < ‘ / P.(t —7)(G(r,vi(r)) — G(r,v2(r))) dr
0 La(0,T;He ()
T
+ / B.(t, TP, (T —r) (G(r,v1(r)) — G(r,va(r))) dr
0 La(0,T5H7 (%))
< N[ Lallpeo,m) (M1 + M) [[or — U2"C([O,T];H"(Q))HL‘Z(O,T;H”(Q))' (90)

On the other hand, to bound the term g, we estimate the operator norm of P, (t —r) acting on H”(Q)
by My (t — )", and of B (t, T)Po(T — r) acting from HY(Q) to H**1(Q) by M2m_ (T* + \{'). By
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applying the embedding H" (Q) — H**1(Q) and assumption (%) we can deduce the following estimates

M < /0Pa(t—r)(G(r,vl(r))—G(T,vg(r)))dr

C([0,T;H" (2))

T
/ Bo(t, T)Po(T — 1) (G(v1 (1)) — G(vs(r))) dr

0

+

C([0,ThHY ()
t
< M, sup (/ (t =) G(r,v1(r) = G, v2(r))l| o dT)
0<t<T 0
Mgz o —1 T a—1
+—=(T"+ A1) ; (T = )" |G(r,v1(r) = G(r, v2(r) g (o) dr

(03

< ||L2HL°°(O,T)M3||'U1 — (91)

U2 HC([O,T];HV(Q))ﬂLq(O,T;HU(Q))'

A collection of the estimates , , implies that

val _~7U2H < HL2||L00(0,T)///2HU1 —UQH

C([0,T);H (2))NLe(0,T5H7 (2)) C([0,T)5H (2)NL3(0,T5H7 ()

Since || La||gec(0,1)-#2 < 1, we conclude that J is a contraction in C ([0, 7];H"(£2)) N L9(0, T H (Q2))
which ensures the existence and uniqueness of a fixed point. The desired inequality is easy to obtain.
Hence, we finalize the proof. O

5.3. Proof of Theorem To start with, let us prove the following lemmas.

Lemma 5.4. Assume that all assumptions of Theorem[3.4 are fulfilled.
a) Fort >0, and Ny given by (AP.4.) in the Appendiz, we have

IBa(t, T) fllge ) < Nt ™ f a0y (92)
Moreover, the following convergence holds
B.(LT)f =% Bo(t,T)f in HY(Q). (93)

b) Fort >0, w € Xq9,1, and No given by (AP.4) in the Appendiz, it follows

Moreover, the following convergence holds

< M Ko (T + R)t~ 7 ||w]| o (0,133 (0) (94)
B (9)

/0 Po(t — )G (r, w(r))dr

/()Pa(’t“—r)c;(nw( ))dr 22 i P, (t — 7)G(r,w(r)dr in H(Q). (95)

c) Fort>0, weXy9,r, it holds

Proof. Part (a).
By applying the first part of Lemma we obtain

| L[

j=1
where N3 is given by (AP.4.) in the Appendix. This directly implies inequality . Let us proceed to
prove the convergence . By the fact that E, o(—2) < (14 2%)7! for all z > 0, see e.g. [11} 12} 13],
one can apply the same techniques as in to show the following inequalities
B o(—\jr® 14 \T° 1o
alAT g TEATE o [ T (o7)
BatCATO™ g ey ==
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< MKy (T + RVt |wl| gas (01757 (@) - (96)
Hv+1-9(Q)

/0 P.(t —r)G(r,w(r))dr

) |?
>\ Ta)

— 2
17 SN2 | Fllgr a0 0y »




where 0 < (1 —4)/2 < (1 — u)/2 < 1. Hence, we derive that

¢ > Eqo(=Xjr?)
< a1 Z)\, a,al=Aj - d
HY () _/t " p= ]Ea,l(—)\jTa)f]% "
= HY ()

|Ba(E.7)f = Balt, 1)/ |

t
S ||fHHV+(1—19)(Q)/ r—o9=1 .
t

Since the integral in the above inequality tends to zero as ¢ approaches ¢ from the right, we obtain
and finish the proof of Part (a).

Part (b).

We divide this proof into two parts as follows.

Step 1. Prove inequality . It follows from Eq o(—A;j(t — 7)) < MuA;"(t — )" that

/0 P.(t—r)G(r,w(r))dr

H ()
t oo
< / (t =173 Baa (=25t = )Gy (w(r)gs||  dr
’ =t ()
t
<M, / (t = ) I G, w(r)) oy 4 (98)
0

where 0 = v — p. Since w € Xa,9,,,7(R) , we see that [|w(r)||m (o) < Rr~*”. Thus, we have in view of
that [|G(r, w(r)) |l (0 < Lg(r)(l + ||w(r)||§ﬂy(m) [w(r) |- Tt follows from (98) that

< My |[wl|gao (0,178 () La () (99)
1(0)

/0 P.(t—r)G(r,w(r))dr

where

~

t
Ls(t) = /O (t — r)e-n-1 (r*a‘? + Rsr*l“)aﬁ) Ly(r)dr. (100)

Our next purpose is to find an upper bound of Eg(t). In order to control this term, we observe from
0 <r < T that r=o? < Tsa¥p=(45)a? and from Ko = ||L3(t)t*| 10,1y that Ls(r) < Kor=®¢ which
yield the following estimates

t
Ls(t) < (T + R®) / (t — )@= =lp=(F9)ad o (1)
0
t
< Ko(T**" +R?) / (t — r)*(=m) =1y =al(1+8)040) g
0

By noting min{a(l — u) — 1; —a((14+8)0+¢)} > -1las0<pu <1, ¢ <al—(1+s)d, and using
(AP.1.) in the Appendix, we find that

t
/ (t — p)P(l= =1 a((+)0+0) g < gryol(1=)=(14)9C).
0
This implies that

Zg(t) < KO(Tsaﬂ +R5)J1/1Ta((1—y)—519—§) t—aﬂ7 (101)

where we have noted that ¢ < (1 —pu) — st since ( <a ! —9—s9 < (1—p)—sdasa"t <1and > pu.
The latter estimate together with and (100) imply that

/0 Po(t — )G (r, w(r))dr

S=/V2KO(TSQ19+Rs)t_o”9HwHCms((

) 0,T]H ()’
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where we recall that .45 is given by (AP.4) in the Appendix.

Step 2. Show that holds. By dealing with ||G(r,w(r))|[e ) using the same arguments in Step 1,
we derive that

oo

t ’{7'r
M) < / / 223 B 1 (=2gp®)Gs(ru(r))es || dpdr
0 t—r j=1 ]I-]IV(Q)

t t—r
S| G ) e ey
t—r

t t—r
5/ / (=) =2 (’Rr_(w +R1+sr—(1+s)aﬂ) Ls(r)dpdr
0 t—r

S

)

t
/ ((g_ pyall=m=1 _ (4 _ T)a(l—u)—l) p—o((L9)940) gy
0

where 901, is formulated by (53). By the fact that a(1 — p) > 0 and 1 — a ((1 + s)J 4+ ¢) > 0 and using
(AP.2.) in the Appendix, we know that the right hand-side of the latter inequality tends to zero, as t

approaches t. Hence, |9 || (o) =4 . Now, in the same way as above, we obtain

t 0o
1993 [|s2v () S/ (t—r)y* ! ZEa,a(—Aj(t—T)O‘)Gj(T,U(T))% dr
t = B (9)
’EN
S [ E= ) G oy dr
t
t
</ (F — r)2 (=0 =1,=a(A+9)9+0) . (102)
t

where M3 is formulated by . From that (t —r)*0=") < (t — 1)*(=9) as t < r < #, we bound the
right hand-side of ((102]) as follows

t
(RHS) of " < (?_ t)a(lfﬁ)/ (’tv_ T)a(ﬂfu)flTfa((1+s)19+ﬁ)dr
0

7
< (= )oi=9) / (T = 1)@= =Lpa((1+5)040) g
0

Noting that a(¥ —p) > 0 and 1 —a ((1 + )9 4+ ¢) > 0, we ensure that fg(f— )@= =1p—a((i45)9+0) gy

is convergent. The above observations imply that ||93||mv (o) 2% 0. Since

/ P (t —7)G(r,w(r))dr — / P.(t —r)G(r,w(r))dr = My + Mg,
0 0

we finish this step.
Part (¢). Inview of 0 <14 [(v — o) — 9] < 1, one can see that

/0 Po(t — 1)G(r, w(r))dr

Hy+(=9)(Q)

t
< M, / (t = 1) G i, w(r)) g ) A

t
< Mo Ko(T** 4+ R®)|wl| coo (0,731~ (9 / (t — r)=m=Lypmal(r)d+0) gy
0

SMQKO(Tsaﬂ_’_Rs)”w' ;HV(Q))(/Vlta((ﬁfu)f(lJrs)ﬂfC)

Ca9((0,T]
< Ko (T + R)t= 7 |wl| geo (0,178 (0) (103)
where we also recall that .45 is given by (AP.4) in the Appendix. This completes the proof. O
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Proof of Theorem[3.]} The proof will be based on a contraction mapping theorem on a Banach space.
For this purpose, let us define the mapping

2 xa,ﬁ,y,T(R) — xa,ﬂ,y,T(R)
given by

t

T
Duw=Bo(1,T)f + /0 Pt — 1)G(rw(r))dr — /0 Bo (1, T)Po(T — 1)G(r, w(r))dr. (104)

Since f € H**(1=9)(Q), the convergence in Part a of Lemma yields that the first term of 2 is
time-continuous for all 0 < ¢t <T. The estimate means that this term belongs to C?((0, T]; H”(9)).
Similarly, we observe from G satisfying assumption (##3) and the estimate , the convergence in
in Part b of Lemma [5.4] that the second term of .2 belongs to C*?((0,T]; H”(£2)). On the other hand,

using Part ¢ of Lemma [5.4 shows that the integral fOT P, (T — )G (r,w(r))dr belongs to H*T1=)(Q) |
so we deduce from Part a of Lemma [5.4] that

B.(t,T) /OT P (T — 7)G(r,w(r))dr belongs to C*?((0,T]; H” (). (105)

Therefore, the last term of 2 also belongs to C*?((0,T]; H"(12)).

Prove 2 maps X9, 7(R) into itself: Indeed, let wl, wh belong to the space X4 9., 7(R), then using
the formula (104) we can obtain the following chain of estimates

7 || 2w'(t) — Qwi(t)||HV(Q)
t
<t | [ Patt =) (GGl (1) - Gl (1)) e
0 H (£2)
T
07 [Bo(6T) [ PolT = 1)(Glrwl (1) - Glrow? () dr
0 HY (Q)
< MK (T +R) [Jwh — wh| Ca9 ((0,T);H ()
T
+ N / Po (T = 1) (G(r,wh(r) = Glr,w'(r) ) dr
0 Hv+(1=9)(Q)

< MEKo(T* + R¥)[|w' — w || gas (07717 (02

where on the right hand-side of (104)), we have used the inequalities of Lemma of Lemma
in the first estimate, and the inequality of Lemma in the second estimate. This implies that

120! = 20| o o e < KT + R fw" = s o710 c1)- (106)
By letting w? = 0 into the latter equality and noting that 2w*(t) = B,(t,T)f if w? = 0, we derive
120" = Ba (8, D) | g 0,780 () < Ko (T + R o 0,10 0
From and using the triangle inequality, we know that
T T ad
| 2w ch((o,T];Hv(Q)) < || 2w’ - Ba(t»T)chw((o,T];Hv(Q)) + Ozltlth 1Ba(t,T) flla o)

< MKo(T* + R*)|w'|| cov (0,150 (2)) + Nall flaera-9 (q)-
Since w' € X4.9.,.7(R), we have ||’LUT||CO¢19((0’T};HU(Q)) < R. This implies that

1 20| o (0. 79880 () < A2E(T* +R*)R + Na | fllm+a-0) @) - (107)

=7(R)

JE— — ~
Due to the assumption K T € (O, min {%JVQ ;./\/}}), we now show that there exists 0 < R < R
which is a solution to the equation 7(R) = R, where we denote by the constant

R (1 _%KOTM)”S

“\ (1 +s) MK,
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We note that the function R — 7(R) := 7(R) — R is continuous on (0,75) with the values 7(0) =
NQ”fHHV#»(l*ﬁ)(Q) and

F(R) = MKo(T** + R*YR + Nol| fllavs0-0 () — R
_ (%Koﬁs (1— WQKOTSM))ﬁ + N fllea- )

_ 1 N
= (1 _ :/1/2K0T8a19) <1+3 — 1> R+N2‘|f||HV+(1—19)(Q)

s Ny ~

= Na|| fllmw+-0) () — its (1 — FKoT") R
S (1 _%KOTSOL’L?
L+s (14 s)t/s(AKp)l/s

s 1+1/s

)1+1/s

= Na|| fllgo+a-9 (@)

< Na| fllgv+a-o () (1

207

where we note that 1 — A5KoT%*? > 1. Therefore, there exists 0 < R < R such that 7(R) = R. So it
follows from (107 that £ maps X4 9,.,7(R) into itself.

Prove 2 is a contraction mapping, then establish the existence of the mild solution: We note that

— ~ — 1 — N KT
J‘/QKO(Tsozﬂ +Rs) :</1/2K0 (Tsa19+ 2080 )

(1+ s) MK,
1 — M KoT5? —
s J— 2+ s
=1- 1 — MKoT%) < .
1+5( 2720 ) 21 2s

Hence, we can deduce from (106) that

| 2w < MKo(T* + R¥)|lw' — w!||cos (0, 71:m+ (2
< 24+ s

~ 24 2s

- Qwincw((o,n;mv(m)

||er - wi||Cm9((0,T];H"(Q))~

We imply that £ is a contraction mapping on X, 9,,,7(R) which has a unique fixed point w in this space.
This fixed point is the unique mild solution of Problem —. In addition, inequality can be easily
obtained. The remaining of the proof is split into the following steps.

Part a) Show that u € LP(0,T; H"+'=")(Q)) for all 1 < p < L=

It is easy to see the estimate |Ba(t,T) flg+w -9 q) S T [l gg+a-0 gy for all t > 0. Moreover, by
applying Lemma we obtain

T
Ba(t,T)/O P, (T —r)G(r,u(r))dr

Hv+(0'=9) (Q)

/0 P.(T — r)G(r,u(r))dr

St S | fllapra-o ) -

Hv+(1=9)(Q)

On the other hand, it follows from v+ (¢ —9) < v+ (1 —1) that the Sobolev embedding H**1 =) (Q) «
HY (' =9)(Q) holds. Hence, we can infer from Lemma |5.4f that

/0 P.(t —7r)G(r,u(r))dr

g ‘

¢
/ P.(t —r)G(r,u(r))dr
0 Hy+(1-9)(Q)

S flra-o@y ST M lara-o ) -
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7 ]_ ’
Summarily, the solution u € LP(0,T; H*+(""=9)(Q)) for all 1 < p < =Tl since t~*Y clearly belongs to
«@
1
LP(0,T;R) forall 1 <p < P The proof is finalized.
@

Part b) Show that u € C ([0, T]; H*~"(2)): Let t, t’ such that 0 <t < ¢t < T. Our purpose here is to

@ Since ¥ <np <¥+1and 0 <9 <1, the number
Hv =7

149 — 1-9
R/ consequently belongs to [0,1]. Hence, replacing 1 —

inequalities (@ Indeed, we have

find an upper bound of the norm Hu(tN) - u(t)‘

149 —
5 by + 5 " helps to improve the

< ren= I, (108)

~

‘ ana(fAj’l’a)
Ea,1(—)\jTa)

As a consequence of the above inequality, we have

t
" o a(n—19)—1
|B.E ) Ba(t,T)fHHH(Q) §||f||HV+(1,19)(Q)/t (=914,

(t— =N, —0y<i }

<o | (o
H @ (F—)et=0-1 1 4) licam-—v)<2

where the number «(n — 1) belongs to the interval (0,2). Employing Lemma allows that
{ (t— )DL 0vy<1 }
Hr+(1-9) (Q) ((t - t)oz(n—ﬂ)—l —+ ’7) 11<o¢(17719)<2

(,{_ t)a(n_ﬂ)10<a(n719)§1
((t - t)a(niﬂ)il + 7) 11<a(77—19)<2 7

T
(DU MRS /O Po(T — r)G(r, u(r))dr

S M llgvra-0 g {

provided that notation 9% is given by (53). Now, let us consider the terms My and M3. It indicates
from p < ¥ and ¥ < n that 0 < —o < n—v, and it results H(Q) — H”~"(£2). This suggests to estimate
the term 5. In actual fact, we have

t pt'—r
— / / o2 |G(r, u(r)) o ) dpdr
.,
t ?71“
S ||f||HV+(1—19)(Q)/O / P73 (7“70”9 + 1"7(1“)‘“9) La(r)dpdr
t—r

t
/S ||f||HV+(1—19)(Q) (t _ t)afl/o (,rfa(ﬁJrC) + r*a((lJrs)i?JrC)) dT’,

1
provided that L3(t) < Kot~¢ as G satisfies (20)). Since ¢ < — — (14 s)9, we derive that the integral on
a

the right-hand side of the previous expression is convergent. Hence, we obtain immediately the estimate
T -1
192 [|v—n (@) S llullcas (o0,mmv )y (E— 1)

and from the local property of G as in , we find that

7
[l S [ =) GOl o
Z/ ~
S I lgesa-o0 (@) / (t—r)t (7“_6“9 + 7”_(1“)0“9) L3(r)dr
t
t
< Hf||Hv+(1ﬂ9)(Q) / (- T)a_l (r—a(ﬂ-i-C) + r—a((l-‘rs)ﬂ-‘r()) dr < (t—t).
t

The above explanations imply « € C ([0, T]; H~"()). O
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6. DISCUSSION AND REMARK ON GLOBAL WELL-POSEDNESS

In this section, our main purpose is to establish the global existence and uniqueness of a mild solution
to Problem — by considering critical nonlinearities. We focus on the nonlinearities that appear
in application models, such as time fractional Ginzburg-Landau, Allen-Cahn, Burgers, Navier-Stokes,
Schrodinger equations, etc. By observing the applications in Subsections and the nonlinearities

G(t,v) = p(B)[ofv, or G(t,v) = —p(t)(v- Vo,
fulfill the following locally Lipschitz continuity
1G(t,v1) = G(t, v2)[[me (o) < L4(t)(||v1||§;[u(g) + [|v2]

see the proofs of Theorems and

Recall that Theorem had considered the space C*?((0, T]; H(Q2)) corresponding to the weighted
function t*?. In order to establish a global existence, we take inspiration from replacing t*’ by another
weighted function, which includes a suitable parameter m. For each m > 0, we set

by ) 01 = vl o, (109)

t
tem

@m(t) = ﬁ, t> O,

and define the following time weighted space
X0[®m] i= {w € L5 (0, TsH (@) | [[wlx, o120, =

t®, (¢)||w(t)]|ge H < }
(&) [lw®) llrv ) oy <

Theorem 6.1. Assume that o € (1,2), 0 € (—1,0), 0 < v < 140 and s > 0. Let ¥ such that
Y€ (v—o,1) and set p=v — . Let ¢ satisfy

¢ < min (ofl—(l—l—s)ﬁ; 19(1—5)—V+a>. (110)

The function G : [0,T] x H”(2) — H(Q) satisfies G(0) = 0 and with Ly(t)t* € L°°(0,T). Let
f e m*+=9(Q). There exists m > 0, k > 0 such that if | fllgz+ -0y () < K then Problem —(@) has a
unique mild solution

u € X, 9[®m] NLP0,T;H” (),
forp € [1,1/a), which corresponds to the estimate

1
Hu(t)HHV(Q) S m ||f||Hu+<1=0)(Q) , ae. t€(0,T). (111)

In order to prove Theorem we need the following lemma. Suppose that L, is defined by the above

theorem. Then, the following improper integral can be estimated similarly as Ls(t) (see definition (100)
and the estimate (101)))

t
Ea(t)i= [ (=)0 050 L i
0

t
S KQ/ (t — T)a(l_H)_lr_a((1+s)ﬂ+<)d7“, KO = ||L4(t)ta<HLoo(0_’T)
0

S[?Q«/Vlta((l_u)_(l-‘rs)ﬂ_o < [?QJ%TQ((l_H)_Sﬁ_C)t_(M?, (112)

for each t > 0. This argument will help to estimate the nonlinear function G. Furthermore, the operators
B.(t,T), P,(t) can be estimated analogously as the proof of Lemma In Lemma [6.2 below, these
tools will be used to establish relevant Lipschitz continuities for solution terms on a closed ball Uz of
the space X, [P,

Lemma 6.2. Assume that all assumptions of Theorem [6.1] are fulfilled. Let Ur be the closed ball in
Xy 9P| centered at zero with radius R > 0. There exists a constant mg > 0 such that

a) For all wh,wt € Ur and m > my,

| [/ Pute=n (Gt = G0 s

RS
< A2 ot —

Xy, 9[®Pm] vol®ml’

where N3 1= 4Ma[~(0</1/1T‘1((1—H)—319—C);
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b) For all w, w* € Ur and m > my,

RS
= %ﬁ ||wT - winxuyﬂ[@m] )

H /OT Ba(t, T)Pa(T 1) (Glr,wh(r) ~ Glr,wi (7)) ) dr

XV,19 [q)m]

where Ny = 4Ny My Ko N T (=)= (1+8)0—-C)

Proof. We firstly prove Part a. According to the definition of the space X, y[®,,], we can see that: if a
function w € Xy, 9[®r], then [[w(r)|lg ) < (r=*? /@m(r))|wlx, ,(®,.] for almost everywhere r € (0,T).
Therefore, by using assumption (109)), we can estimate the difference G(r, w'(r)) — G(r, w*(r)) in H? (Q)
as follows

|G w (1) = GlrywH (1) g0 ) < Lalr) (! (D)l + 0t () e ) ! (1) = w0 () s o
RT—(xﬂ s Rr—aﬂ s 7“_0“9

<L _— T ok

<10((5oe) + (Fom) Jane I -

for all wi, wy € Ur. Moreover, it is helpful to note that the function y — ye?¥ —e¥ +1 is increasing on the

interval (0, 00) since d(ye¥ —e¥ +1)/0y = ye¥ > 0 on (0,00). This implies the inequality ye¥ —e¥ +1 >0
for all y € (0,00), which ensures that e¥ — 1 < ye¥ for all y € (0,00). Subsequently,

Xy, 0(®m]’

1 em —1 1
= = < —
D,,.(r) rem T~ m

, Vr>0, m>0.

Due to the above arguments and using the same way as , we obtain the following chain

/0 Po(t—r) (G(r, wh(r)) - G(r, wi(r)))dr

Xz/,ﬁ [‘Dm]

/Ot P,(t—r) (G(r, wl(r)) — G(r, wi(r))>dr

= esssup t*V®,, (t) ‘
0<t<T

HY ()

t
< esssup tm?cI)m(t)/ (t— T)O‘(lf”)*lMa ||G(r,wT(r)) - G(r,wi(r))HHa(Q) dr
0

0<t<T
2MARP 4 f 1Py ()
< i 0" =l g, 85D — = La ()

IN

IMR® B (1) ~ e
ot g (csspmp T ) R0,

m? o<t<T M

where has been used with K := || Ly(t)t*¢ | o (0,7)- Let us consider the latter essential supremum.
By simple computations, the derivative of first order d®,, /0t is equal to the product of et/™ /(et/™ —1)?
and e!/™ —1—t/m. Hence, 0®,,/0t > 0 for all t > 0, and so ®,,(t) is increasing on (0, T]. This argument
yields that the supermum ess supy«;<p P (t) is bounded by @,,(T"). On the other hand, one can observe
the following limit o

D, (t ®,,(T T en
lim esssup m(?) < lim m(T) = lim — f =1. (113)
m—+4o0 g<y<T M m—+oo M m—+00 M em — 1
Therefore, there exists a positive constant mg such that
D, (¢
ess sup m(?) <2, VYm>my. (114)
o<t<T M



This shows Part a.

Now, we proceed to prove Part b. By applying the estimate in Part a of Lemma [5.4] and using
the same argument as in the estimate (103|), one can see that

T
/ Bo(t,T)Po(T — r) (G(r, wh(r)) - G(r, wi(r)))dr
0

Xu,ﬂ [q)m]

— esssup ta%m(t)H /O ' Bo(t,T)Po(T —7) (G(r, wt(r)) — G(r, w*(r)))dr

0<t<T

H (2)

0<t<T Hv+(1=9)(Q)

< ess sup./\/'gfI’m(t)H /0 T ) (Gt () — Gl wt(r) )

< esssupNgq)m(t)/ (T - T)O‘(ﬁ_”)_lMa HG(’F, wT(r)) — G(r, wi(r))HHg(Q) dr.
0

0<t<T

The norm of the difference G(r,w'(r)) — G(r,w*(r)) in H?(Q) can be dealt as Part a. Moreover, we
recall that (9 — p) > 0 and 1 — a((1 + )9 + ¢) > 0, see Proof of Part b of Lemma Hence, the
improper integrals below can be estimated similarly as (112]). In summary, we have

T
esssup No®,, (%) /0 (T - r)a(ﬂ_“)_lMa ||G'(7°7 wT(r)) — G(r, wi(r))HHU(Q) dr

0<t<T
2N Mo R® AT /T 91, —
22 arly Zm\r) _ T — pye@—p) =1, =Q+s)ad 1 (g
< <%Sjts<“%) et =l ) T r a(r)dr
2N, Mo R N AT ~ /T )1
2Na Mo R7 m _ % T @) =1, —a((1+5)9+) 4
< (%Sjjf%’ m )t =l e, Kol ) (T 1) r r
2No M R? P . ~
< W<esssup m(t)> ot —wtlly .y RoMT@-0= 000
m? o<t<T M .9 [®m]
Part b is then proved by the argument (114)). O

Next, we shall use Lemma to obtain Theorem where the contraction mapping principle is
suitably used to prove the existence and uniqueness. In fact, a small norm assumption on f is required.

Proof of Theorem[6.1} The limit in (113)) subsequently ensures that one can find a constant m satisfying

(T/m)ew /(em —1) < 2 and m > mg, where my is the constant obtained by Lemma In the following
arguments, we set R := 4./\/'2m\|f||Hu+(1719>(Q). Let us use the notation Ur as Lemma (6.2} and define the

mapping 2. Ur — Ur by
_ t T
Qw = Ba(t7 T)f + /0 Pa(t - ’I“)G(’I“, w(r))d’l" - /O B"‘(t7 T)Pu(T - ’/‘)G(T, ’LU(T))d?“, (115)

for w € Ug. Tt is necessary to prove that 2 possesses a unique fixed point in Ug.

Firstly, we will show that 2 is well-defined on Ur, namely, Qu € Ur for all w € Ur. Let us consider

the first term in the right hand side of ((115)). By applying the estimate (92)) in Part a of Lemma we
can see that

IBa(T) fllx, o[, = esssup t* @, (1) Ba(t, T) fl|m ()
0<t<T

< ess Suptaﬂq)m(t) (N2t7a19||f||Hv+(l—19)(Q)) < 2N2m||f||Hu+(1—19)(Q)7
0<t<T

where the essential supremum esssupg<;,<r ., (t) is bounded by ®,,(T'), and ®,,(T) < 2m for m > myg
as (114) (see the proof of Part a of Lemma . In addition, the two last terms in the right hand side
of (115) can be bounded by making use of Lemma with respect to w! = w and w* = 0. Indeed,

RS
S ‘/1/5% ||wHXV’19[q>7n] ’

t T
‘ / Po(t — 1)G(r w(r))dr — / Bo (1, T)Po(T — r)G(r, w(r))dr
0 0

where A5 := A5 + A}
Let us set £ = (4N2)71(2.45)7"/* and assume that ||f|lz+a-0 gy < £ Then, the radius R is

Xy, 9([®Pm]

bounded by m(2.45)~/¢. This consequently implies .4#4R*/m*® < 1/2. Henceforth, by combining the
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above estimates, we derive

=R.

MR R
7+

[2wlx, (@) < 2Nom || fllge+a-o () + e lwlx, @, <

We conclude that the mapping 2 is well-defined on Ur.

Secondly, 9 is obviously a contraction mapping on Ug. Indeed, for all w!, w* € Ur, making use of
Lemma 6.2 gives that
S

~ ~ NeR
| 2w’ — Qwi||xy,,9[q>m] <2

= ms

|
lo’ = wllx, @, < 3 0" =k, @,

Due to the contraction mapping principle, this reads that 9 possesses a unique fixed point u € Ug.

Besides, we also have ||u|x, ,®,.] < 4Nom|| fllgv+a-9(q), which deduces

tfaﬁ
@)l () < () [flgs-0) () » a-e- T € (0,T).
In order to obtain property 1) we will prove the following inequality e:;,l < 11 — for all @ > 0. For

this purpose, we set h(a) = ((e* —1)/e*)v/1+a — a, for a > 0. By making some direct computations,
one can check the following differentiation

Oh  2a+1+e*(1-2V1+a) and @__4@24—4@—!—6’1—1
da 2ea/T+a ' a2 dev(1+a)y/1+a’

It is obvious that 9%h/da? < 0 for all a > 0. Subsequently, Oh/da is decreasing on R, and so Oh/da < 0
for all @ > 0. This deduces that h(a) < 0. Summarily, eae_al < A, for all @ > 0, which shows that

aer S ViTe
1/®,,(t) <1/(m+/1+t/m), and so

() llge @) <

tfaﬁ

W/ [/ lgs2-0) () » a-e- T € (0,T).

Note that, the latter inequality also yields that [[u(t)(/g. o) < t= which ensures u € LP(0,T;H"(Q2))
for p € [1,1/a1}). We complete the proof. O
eT/rno
eT7mo—1
T/mg < 1.594... Of course, we can take mg = T. Therefore, it can be allowed to take m =T in Lemma

6.2, Besides, the constant k := (4N2)~1(2.45)~ Y% does not depend on m.

On the other hand, by using the same techniques as in Theorem[3.]}, one can also construct a suitable
time continuity and spatial reqularity for the solution.

Remark 6.1. Upon the above proof, we just need to choose mg such that mlo < 2, which requires

APPENDIX

(AP.1.) A singular integral. It is useful to recall some basic properties of a singular integral. For
given z1 >0, 20 > 0,and 0 < a < b < T, we denote by

b
K(z1,22,a,b) := / (b— T)Zl*l(T - a)ZTldT =(b- a)zlJrZ?*lB(zl,zQ), (116)

where B is the Beta function, B(z1, 22) := j;)l t*171(1 — t)*>~1dt. Moreover, a special case of the Beta
function is B(z,1 — z) = 7/ sin(nz), see e.g. [11 12, 13].
(AP.2.) A useful limit. Fora > 0,b> 0, t > 0, h > 0, the following convergence holds

t Lot
/ (t+h—r)oteb=1gr LN (t — )2 b= 1ar,
0 0

t
Indeed, it can be proved by noting that / (t — ) b=t dr = 2= 1B(a, b) and
0

¢ t/(t+h) ot
/ (t+h—r) b= tdr = (t 4+ h)*+bt / (1—s)*tsb=tds =2 1970 1B(q, b).
0 0
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(AP.3.) Proof of Lemma The first inequality is estimated as follows

1 0 1 1-6
o a—1 —0 _a(l-60)—1
= Maz (1+Ajza> <1+/\jza> < Moy ’

-1 —1
Za Ea’a(_)\jza) S Maza m

and the second inequality is showed as follows

o r (M) = Baa(=2t%) | _ Mo (14 N7\ (14 4,7\’
T T B (NTY) | T ma \ 1+ Ajte 14 Ate
< %Toz(l—e)(l +)\jTa)9t—a(1—9)
Me

< Mamng“(l_") (Tae n )\;9) )\gt—au—a)_
The proof is completed.

(AP.4.) List of constants. Here, we list some important constants appeared in this paper, where
some of them contain the constant Cy (v, 8), C2(v, o) in the embeddings and (17). These constants
cannot be omitted in some proofs of this paper.

My = Mi(a,0,T) = Mgmc;l:ra(l—%(:ra@“;e),
M2 Toz(lfe)
= 0, T = e (T4 )\
MQ Mg(Oé, ) ) M Oé29(1—9)( + 1 )7

TM AP T*(=0) LM,y
sin (’R’Ck(l - 9))
Tat+1/q

.//1 = //ll(a,O,T) =

M, = Mg a,voT) = Calvs o) Mo 17

o - Ta(l—@)(Ta9+1/q +/\,9)
= 0, T = .
Moy Ma(q, @, 0, ) (1—-al —G)q)l/qa(l —0)7

M M MD&TQ Ma —
My = Ma(T) = <1+(T‘”‘+)\11)),
(0% My
%2 = //lg(q,a,m a, T) = ||L2HL°C(O,T) Z ﬂj7
1<5<3
—1
Nl = Nl(aaaa V,T) = MlMOTlCl(I/, 0)(1 - ||L1||L°°(O,T)%l> R
N2 = NQ(O{, 19, T) = Mamngoﬂg (Ta(lfﬁ) + )\119_1>7
] 21 = U — My
M= Mo, p,9,0) = max{B(azj;lfoé(1+5)19foé<)7]:1’2}7 Sk
No = M(a,u,9,(,8,T) = M., N max {Ta(zj—sﬂ—(),j _ 1,2}7
72 = 72(047/1'7197C757T) = </1/2(]_ _|__/\[2T‘_0“9)7
N, Ni(a,v,9,T, ) s T
= a, v, v, 1,S = ,
' ! No|| fllge+a-0 () ) (2 + 2s)1+s
R A 1 — AaKoTse?\ /*
R = R(Oé7ﬂ,?9,C,S7T) = (20) ,
(1+s)M2K,

/ min {a(0 + " — 1);a — 1} Loca(o4/-1)<1
Nglo = MNglo(a,0,v) = . ’ )
min{a(0+ v —1) = Lia =1} Licq@4+/—1)<2

Neri = nglo(aa m, 79)

min {04(77 - 19)7 o — 1} 10<(x(77—19)§1
min {0‘(’7 - 19) - 1; o — 1} 11<a(n—19)<2

38



Acknowledgements. The first author is supported by Vietnam National Foundation for Science and
Technology Development under grant number 101.02-2019.09. The research of T.C. has been partially
supported by the Spanish Ministerio de Ciencia, Innovacién y Universidades (MCIU), Agencia Estatal de
Investigacién (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under the project PGC2018-
096540-B-100, and Consejeria de Economia y Conocimiento (Junta de Andalucia) under the FEDER
project US-1254251.

(1
2]

REFERENCES

R.A. Adams, Sobolev spaces, Academic Press, 1975.

M. Allen, L. Caffarelli , A. Vasseur, A parabolic problem with a fractional time derivative, Archive for Rational
Mechanics and Analysis, 221 (2016), 603-630.

D. Baleanu, Z.B. Guvenc, J.A. Tenreiro Machado, New Trends in Nanotechnology and Fractional Calculus Applica-
tions, Springer, New York, 2010.

R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
M. Giona, H.E. Roman, Fractional diffusion equation for transport phenomena in random media, Physica A 185
(1992), 82-97.

F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London, 2010, An intro-
duction to mathematical models.

R.L. Bagley, P.J. Torvik, On the fractional calculus model of viscoelastic behavior, J. Rheology, 30 On the fractional
calculus model of viscoelastic behavior, 133-155.

R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107-125.
F. Mainardi. A. Mura, G. Pagnini, R. Gorenflo, Sub-diffusion equations of fractional order and their fundamental
solutions, Mathematical Methods in Engineering, Springer, 2007.

F. Mainardi, P. Paradisi, Fractional diffusive waves, Journal of Computational Acoustics, 9 (2001), 1417-1436.

S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives, Theory and Applications, Gordon and
Breach Science, Naukai Tekhnika, Minsk, 1987.

1. Podlubny, Fractional differential equations, Academic Press, London, 1999.

K. Diethelm, The analysis of fractional differential equationst, Springer, Berlin, 2010.

W. Fan, F. Liu, X. Jiang, I. Turner, A novel unstructured mesh finite element method for solving the time-space
fractional wave equation on a two-dimensional irreqular convex domain, Fractional Calculus and Applied Analysis,
20 (2017) 352-383.

S. Guo, L. Mei, Y. Li, An efficient Galerkin spectral method for two-dimensional fractional nonlinear reaction-
diffusion-wave equation, Computers & Mathematics with Applications, 74 (2017) 2449-2465.

D. Kumar, J. Singh, D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in
ion acoustic plasma waves, Mathematical Methods in the Applied Sciences, 40 (2017) 5642-5653.

R. E. Showalter, The final value problem for evolution equations, Journal of Mathematical Analysis and Applications,
47 (1974) 563-572.

A. Carasso, Error Bounds in the Final Value Problem for the Heat Equation, SIAM J. Math. Anal., 7 (1976), 195-199.
J. Baumeister, Stable Solution of Inverse Problems, Springer-Verlag, Mar 9, 1986.

R. H. Nochetto, E. Otarola, A. J. Salgado, A PDE Approach to Space-Time Fractional Parabolic Problems, STAM
J. Numer. Anal., 54 (2016) 848-873.

K. Sakamoto, M. Yamamoto, Initial value/boudary value problems for fractional diffusion-wave equations and appli-
cations to some inverse problems, J. Math. Anal. Appl., 382 (2011) 426-447.

Y. Kian, M. Yamamoto, On ezistence and uniqueness of solutions for semilinear fractional wave equations, Fractional
Calculus and Applied Analysis, 20 (2017), 117-138.

] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, New York, 1953.
] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag Berlin Heidelberg, 1995.
] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge,

2000.

N.H. Tuan, A. Debbouche, T.B. Ngoc, FEzistence and regularity of final value problems for time fractional wave
equations, Comput. Math. Appl., 78 (2019), 1396-1414.

T. Wei, Y. Zhang, The backward problem for a time-fractional diffusion-wave equation in a bounded domain, Com-
puters and Mathematics with Applications, 75 (2018), 3632-3648.

D.T. Dang, E. Nane, D.M. Nguyen, N.H. Tuan, Continuity of Solutions of a Class of Fractional Equations, Potential
Anal, 49 (2018), 423-478.

Y. Kian, L. Oksanen, E. Soccorsi, M.Yamamoto, Global uniqueness in an inverse problem for time fractional diffusion
equations , Journal of Differential Equations, 264 (2018), 1146-1170.

W. Chen and S. Holm, Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency
power law, preprint (2003), https://arxiv.org/abs/math-ph/0303040.

X. Huang, Z. Li, M. Yamamoto, Carleman estimates for the time-fractional advection-diffusion equations and appli-
cations, Inverse Problems, 35 (2019), 045003.

Y. Kian, Z. Li, Y. Liu, M. Yamamoto, The uniqueness of inverse problems for a fractional equation with a single
measurement, Mathematische Annalen, 2020 (12).

Z. Li, X. Cheng, G. Li, An inverse problem in time-fractional diffusion equations with nonlinear boundary condition,
J. Math. Phys., 60 (2019), 091502, 18 pp.

39



(34]

(35]

(36]
37)
(38]
(39]
[40]
[41]
[42]
[43]
[44]

[45]

[46]
(47)
(48]
[49]
[50]
[51]
(52]
(53]
[54]
[55]
[56]
[57)

(58]

Z. Li, O.Y. Imanuvilov, M. Yamamoto, Uniqueness in inverse boundary value problems for fractional diffusion
equations, Inverse Problems, 32 (2016), 015004, 16 pp.

T. Picon M. DAbbicco, M.R. Ebert, Global existence of small data solutions to the semilinear fractional
wave equation, New trends in analysis and interdisciplinary applications, 465471, Trends Math. Res. Perspect.,
Birkhuser/Springer, Cham, 2017.

E. Alvarez, C.G. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive
equations, Nonlinear Anal., 181 (2019), 24-61.

F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996),
23-28.

L. Li, J.-G. Liu, L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation J. Differ-
ential Equations, 265 (2018), 1044-1096.

B. Kaltenbacher, W. Rundell, On an inverse potential problem for a fractional reactiondiffusion equation, Inverse
Problems, Volume 35 (2019).

B. Kaltenbacher, W. Rundell, Regularization of a backward parabolic equation by fractional operators, Inverse Probl.
Imaging, 13 (2019), 401-430.

J. Jia, J. Peng, J. Gao, Y. Li, Backward problem for a time-space fractional diffusion equation, Inverse Probl.
Imaging, 12 (2018), 773-799.

L. Wang, J. Liu, Total variation regularization for a backward time-fractional diffusion problem, Inverse Problems,
29 (2013), 115013, 22 pp.

A. Deiveegan, J. J. Nieto, P. Prakash, Periasamy, The revised generalized Tikhonov method for the backward time-
fractional diffusion equation, J. Appl. Anal. Comput., 9 (2019), 45-56.

M. Yang, J. Liu, Solving a final value fractional diffusion problem by boundary condition regularization, Appl. Numer.
Math., 66 (2013), 45-58.

B. de Andrade, A.N. Carvalho, P.M. Carvalho-Neto, P. Marin-Rubio, Semilinear fractional differential equations:
global solutions, critical nonlinearities and comparison results , Topological Methods in Nonlinear Analysis, 45 (2015),
439-467.

B.H. Guswanto, T. Suzuki, Ezistence and uniqueness of mild solutions for fractional semilinear differential equations,
Electronic Journal of Diff. Equ., 2015 (2015), 16 pp.

J. Janno, N. Kinash, Reconstruction of an order of derivative and a source term in a fractional diffusion equation
from final measurements, Inverse Problems, 34 (2018), 19 pp.

J. Janno, K. Kasemets, Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation, Inverse
Probl. Imaging, 11 (2017), 125-149.

D. Jiang, Z. Li, Y. Liu, M. Yamamoto, Weak unique continuation property and a related inverse source problem for
time-fractional diffusion-advection equations, Inverse Problems, 33 (2017), 21 pp.

Z. Li, O.Y. Imanuvilov, M. Yamamoto, Uniqueness in inverse boundary wvalue problems for fractional diffusion
equations, Inverse Problems 32, (2016), 16 pp.

G. Li, D. Zhang, X. Jia, M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the
fractional order in the time-fractional diffusion equation, Inverse Problems, 29 (2013), 36 pp.

Y. Luchko, W. Rundell, M. Yamamoto, L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a
time-fractional reaction-diffusion equation, Inverse Problems, 29 (2013), 16 pp.

L. Miller, M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation, Inverse Problems, 29 (2013),
8 pp.

W. Rundell, Z. Zhang, Recovering an unknown source in a fractional diffusion problem, J. Comput. Phys., 368
(2018), 299-314.

W. Rundell, Z. Zhang, Fractional diffusion: recovering the distributed fractional derivative from overposed data,
Inverse Problems 33 (2017), 035008, 27 pp.

N.H. Luc, N.H. Tuan, Y. Zhou, Regularity of the solution for a final value problem for the Rayleigh-Stokes equation,
Math. Methods Appl. Sci., 42 (2019), 3481-3495.

J. Ginibre and G. Velo, The global Cauchy problem for nonlinear Klein-Gordon equation, Math. Z, 189 (1985)
487-505.

M. G. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical non-linearity, Ann. of Math.,
132 (1990), 485-509.

J. Shatah, M. Struwe, Regularity results for nonlinear wave equations, Ann. of Math., 138 (1993), 503-518.

J. Shatah, M. Struwe, Well-Posedness in the energy space for semilinear wave equation with critical growth, IMRN,
7 (1994), 303-309.

M.J. Arrieta, A.N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to NavierStokes
and heat equations, Trans. Am. Math. Soc., 352, 285-310 (1999).

S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials, DOI: 10.1007/978-3-319-48933-9_50.
H. Weitzner, G.M. Zaslavsky, Some applications of fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 8
(2003), 273-281.

V.E. Tarasov, Psi-series solution of fractional Ginzburg-Landau equation, J. Phys. A 39 (2006), 8395-8407.

B. Wang, The limit behavior of solutions for the Cauchy problem of the complex Ginzburg-Landau equation, Comm.
Pure Appl. Math., 55 (2002), 481-508.

J. Li, L. Xia, The fractional Ginzburg-Landau equation with distributional initial data, Commun. Pure Appl. Anal.,
12 (2013), 2173-2187.

H. Bateman, Some recent researches on the motion of fluids, Monthly Weather Rev. 43 (1915) 163-170.

J.M. Burger, A Mathematical Model Illustrating the Theory of Turbulence, in: Adv. in App. Mech. I, Academic Press,
New York, 1948, pp. 171-199.

40



[69] V. Camacho, R.D. Guy, J. Jacobsen, Traveling Waves and Shocks in a Viscoelastic Generalization of Burgers’
Equation, STAM J. Appl. Math., 68 (2008), 1316-1332.

[70] N. Sugimoto, Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, J. Fluid
Mech., 225 (1991), 631-653.

[71] H.A. Biagioni, M. Oberguggenberger, Generalized solutions to Burgers’ equation, Journal of Differential Equations,
97 (1992), 263-287.

[72] M. Inc, The approzimate and exact solutions of the space- and time-fractional Burgers equations with initial condi-
tions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476-484.

[73] C. Li, Z. Zhao, Y. Chen, Numerical approzimation of nonlinear fractional differential equations with subdiffusion
and superdiffusion, Comput. Math. Appl., 62 (2011), 855-875.

(N.H. Tuan) APPLIED ANALYSIS RESEARCH GROUP, FACULTY OF MATHEMATICS AND STATISTICS, TON Duc THANG
UNIVERSITY, HO CHI MINH CITY, VIETNAM
E-mail address: nguyenhuytuan@tdtu.edu.vn

DEPARTAMENTO DE ECUACIONES DIFERENCIALES Y ANLISIS NUMRICO C/ TARFIA s/N, FACULTAD DE MATEMTICAS, UNI-
VERSIDAD DE SEVILLA, SEVILLA 41012, SPAIN
E-mail address: caraball@us.es

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, NONG LAM UNIVERSITY, HO CHI MINH CIiTY, VIET NAM
E-mail address: tranbaongoc3@hcmuaf.edu.vn

FAcULTY OF MATHEMATICS AND COMPUTATIONAL SCIENCE, XIANGTAN UNIVERSITY, XIANGTAN, P.R. CHINA
E-mail address: yzhou@xtu.edu.cn

41



	1. Introduction
	1.1. Statement of the problem
	1.2. Motivations
	1.3. Outline

	2. Preliminaries
	2.1. Fractional Sobolev spaces
	2.2. On the Mittag-Leffler functions

	3. Existence and regularity of the terminal value problem (1)-(2)
	3.1. Mild solutions
	3.2. Well-posedness of Problem (1)-(2) in the globally Lipschitz case
	3.3. Well-posedness of Problem (1)-(2) under critical nonlinearities

	4. Applications
	4.1. Time fractional Ginzburg-Landau equation
	4.2. Time fractional Burgers equation

	5. Proof of Theorem 3.2, Theorem 3.3, and Theorem 3.4 
	5.1. Proof of Theorem 3.2
	5.2. Proof of Theorem 3.3
	5.3. Proof of Theorem 3.4

	6. Discussion and remark on global well-posedness
	Appendix
	(AP.1.) A singular integral
	(AP.2.) A useful limit
	(AP.3.) Proof of Lemma 2.4
	(AP.4.) List of constants

	References

