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1. Introduction

During the last decades, fractional calculus has become a powerful tool with accurate and successful
results in modeling several complex phenomena in many various fields of science and engineering.

One of the branches of fractional calculus is the theory of fractional diffusion equations. Time-
fractional diffusion equations open up great opportunities to model challenging phenomena such as
long-range time memory or spatial interactions, nonlocal and local dynamics. For more details, see
[1, 3, 38, 40] and the references therein. One of the modern trends in fractional calculus is the development
of fractional operators with non-singular kernels. Studying new fractional derivatives with different
singular or nonsingular kernels is important in order to satisfy the need for applied modeling in various
fields, such as fluid mechanics, viscoelasticity, biology, physics and engineering [16, 17]. Some definitions
of fractional derivatives were given based on nonsingular kernels such as the Atangana–Baleanu fractional
derivatives.

Recently, many fractional models with non-singular kernel are receiving an increasing interest of many
researchers with some different research directions. The special fact of Atangana–Baleanu derivative
is that it possesses Mittag– Leffler function as its kernel, which is non-local as well as non-singular.
The importance of fractional derivatives with non-singular kernels are particularly oriented to models
of dissipative phenomena which cannot be adequately described by the classical fractional derivatives
[11, 12, 13]. In [19], the authors considered a new chaotic model in two fractional operators, that is,
the Caputo–Fabrizio derivative and the Atangana–Baleanu derivative. In [22], the authors considered a
comparison study of bank data with different fractional operators such as Caputo, Caputo–Fabrizio and
Atangana–Baleanu. They also proved that the results of the fractional Atangana–Baleanu operator is
more accurate and flexible. In [23], modeling the transmission of dengue infection is introduced by using
Caputo–Fabrizio (CF) and Atangana–Baleanu (AB) fractional derivatives. Until now, to the best of our
knowledge, the works on analysis existence and regularity for ODEs and PDEs with Atangana–Baleanu
derivative is very limited. In [18], the authors show the existence of the Keller-Segel model with Caputo
and Atangana-Baleanu fractional derivative using fixed point theory. In [24], the fractional logistic model
concerned with Atangana–Baleanu fractional derivative is considered.
This paper studies time fractional Volterra integro-differential equation with nonlinear source as follows

Dαt u(x, t) +Aβ/2u(x, t) =

∫ t

0

R(t, τ)F (u(x, τ))dτ, (x, t) ∈ (0, T )× Ω, (1)

adressed with the Dirichlet boundary condition

u(·, t)
∣∣
∂Ω

= 0, t ∈ (0, T ), (2)

and the initial value condition

u(x, 0) = φ(x), x ∈ Ω, (3)
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where Dαt is the Atangana-Baleanu fractional derivative of order α in Caputo sense (see Definition (2.1)).
Existence and regularity for fractional diffusion equations with Caputo derivative has also been studied
by several authors.

Regularity theory enables us to improve the smoothness and stability of solutions in various solution
spaces and this leads to efficient ways for numerical simulations. For fractional diffusion equations with
time fractional derivative in the sense of Caputo, Riemann-Liouville, etc, some authors developed and
obtained interesting results. Carvalho et al. [29] established a local theory of mild solutions where A is
a sectorial (nonpositive) operator. Guswanto [30] studied the existence and uniqueness of a local mild
solution to a class of initial value problems for nonlinear fractional evolution equations. Besides, The
existence, uniqueness and regularity of solutions are established in some previous works see, for instance,
[26, 27, 28].

As for semilinear Volterra integrodifferential equations with integer order derivative, we can list some
interesting works. In 1988, Heard and Rakin [31], considered the following Volterra integro-differential
equation {

∂tu+A(t)u(t) =
∫ t

0
R(t, τ)F (u(τ))dτ, t ∈ (0, T ),

u(0) = u0.
(4)

The authors studied in [32] the fractional Volterra integro-differential equation with ψ-Hilfer fractional
derivative. In [33] it is proved the existence of solutions of certain kinds of nonlinear fractional integro-
differential equations in Banach spaces. Rashid and Qaderi [34], established the local and global existence
of mild solutions to a class of fractional integro-differential equations in an arbitrary Banach space.
Rashid and Al-Omari [35] studied the local and global existence of mild solutions to a class of fractional
semilinear impulsive Volterra type integro-differential evolution equations. In 2017, Gou and Li [36]
studied local and global existence of mild solution for an impulsive fractional functional integro differential
equation with non-compact semi-group in Banach spaces. Chen et al. [39] considered the following
fractional non-autonomous integro-differential evolution equation of Volterra type in Banach space{

∂αt u+A(t)u(t) =
∫ t

0
R(t, τ)F (u(τ))dτ +G(t, u(t)), t ∈ (0, T ),

u(0) = u0.
(5)

where ∂αt is the standard Caputo fractional time derivative of order 0 < α ≤ 1. They first proved
the local existence of mild solutions for corresponding fractional non-autonomous integro-differential
evolution equation. Based on the local existence result and a piecewise extended method, they obtained
a blow-up alternative result. Our new results in this paper are described as follows

• Our first goal is to establish the global existence for integro-differential evolution equation with
fractional derivative. To overcome some difficulties, we introduce some weighted Lebesgue spaces.
The key tool for our analysis here is the techniques on Kummer/hypergeometric function in
Garrido-Atienza et al. [2, Lemma 8]. Hence, we can overcome some challenge estimates and
obtain the global well-posed result.

• Next. the study on the regularity property for PDEs result in Lp Sobolev spaces is interesting
and still an open direction. Until now, there are very few papers on Lp regularity for fractional
evolution equation. As we know, regularity estimates for Lp spaces are key ingredients to prove
the existence and uniqueness of very weak solutions of some classes of elliptic equations. The
second new result in the present paper is to investigate the weighted Lp estimate for the mild
solution when the initial datum φ belongs to Lq Sobolev space. To our knowledge, there are no
previous results of this type for fractional diffusion with Atangana-Baleanu fractional derivative.
The proof of our results is based on the Sobolev embedding theorems and some fixed point
theorems.

The content of our paper is organized as follows. In Section 2, we recall some notation, definitions,
and preliminary results regarding the solution representation and establish a definition of mild solution.
In Section 3, we prove the well-posedness of a nonlinear time-fractional Volterra equation with the
Atangana-Baleanu fractional derivative. In Section 4, we discuss an application of our main results to
an initial value problem for a time-space Volterra equation.

2. Preliminaries

We will recall in this section some notation, definitions, and preliminary results concerning the solution
representation and establish an appropriate definition of mild solution. We will structure the section in
several subsections for more clarity.
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2.1. ODEs with the Atangana-Baleanu fractional derivative in Caputo’s sense. Let us first
recall the following definition.

Definition 2.1. For ϕ ∈ H1(0, T ), its Atangana-Baleanu fractional derivative in Caputo’s sense of order
α is given by

Dαt ϕ(t) =
ωα
α̂

∫ t

0

∂ϕ(τ)

∂τ
Eα,1(−λα(t− τ)α)dτ, (6)

where α̂ = 1− α, ωα = α̂+ α(Γ(α))−1, and λα = α̂−1α.

Next we recall the following result.

Lemma 2.2. Solutions of the initial value problem

Dαt f(t) + κf(t) = G(f(t)), t ∈ (0, T ), f(0) = f0, (7)

are given by

f(t) = ηEα,1(−ρtα)f0 +
α̂

ωα
ηG(f(t)) + µ

∫ t

0

(t− τ)αEα,α(−ρ(t− τ)α)G(f(τ))dτ,

where the numbers η, ρ, and µ are formulated as

η =
ωα

ωα + α̂κ
ρ =

ακ

ωα + α̂κ
, µ =

ωα − α̂
ωα

η +
α̂

ωα
ηρ.

Proof. This type of fractional differential equation involving the fractional-time derivative with nonsin-
gular Mittag-Leffler kernel has been solved in [9] by the means of Laplace transform. �

For more details of Caputo fractional time-derivative and the fractional time derivative with nonlocal
and nonsingular Mittag-Leffler kernel, we refer to recent interesting papers [42, 43, 44].

2.2. Kummer/hypergeometric function. Using the factor e−mt with large enough number m > 0
plays an important role in establishing the global well-posedness. This makes the appearance of the
so-called Kummer function or hypergeometric function, which is defined by

K(a, b,m) :=
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0

(1− τ)b−a−1τa−1emτdτ, b > a > 0, m ∈ C.

A nice property of this function on its asymptotic behavior is the following:

K(a, b,m) := Γ(b)(Γ(a))−1emm−(b−a)

(
1 +O

(
1

|m|

))
,

as can be seen in Garrido-Atienza et al. [2, Lemma 8]. For each t > 0, the above property can be scaled
from the interval (0, 1) to (0, t) by using a simple substitution. For m > 0, it may be checked that∫ t

0

(t− τ)a−1τ b−1emτdτ = ta+b−1

∫ t

0

(1− τ)a−1τ b−1emtτdτ

= ta+b−1 Γ(a)Γ(b)

Γ(a+ b)
K(b, a+ b,mt)

= ta+b−1 e
mtΓ(a)

(mt)a

(
1 +O

(
1

mt

))
= tb−2m−aemtΓ(a)

(
t+O

(
1

m

))
. (8)

More details of this function can be found in [8].

2.3. Solution representation. In this paper, we consider the symmetric uniformly elliptic operator

A : H2(Ω)∩H1
0 (Ω) ⊂ L2(Ω)→ L2(Ω) defined by Aϕ(x) = −

∑N
i=1

∂
∂xi

(∑N
j=1Aij(x) ∂

∂xj
ϕ(x)

)
+b(x)ϕ(x).

Here, we suppose that Aij = Aji, 1 ≤ i, j ≤ N and there exists a constant Λ > 0 such that for all

(ξ1, ξ2, ..., ξN ) ∈ RN and Λ
∑N
i=1 ξ

2
i ≤

∑
1≤i,j≤N Aij(x)ξiξj , for x ∈ Ω ∪ ∂Ω. Suppose, furthermore, that

Aij ∈ C1(Ω∪ ∂Ω), b ∈ C(Ω∪ ∂Ω;R+). Then, the spectrum and the corresponding eigenvectors of A are
given by 0 < λ1 ≤ λ2 ≤ ... ≤ λn ↗ ∞ and b1, b2, ..., bn, ... ⊂ H2(Ω) ∩H1

0 (Ω). Note that {bn} forms an
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orthonormal basis of L2(Ω). In order to find a formula for solutions, we firstly write equation of (1) in
the n-th dimension as follows

Dαt un(t) + λβ/2n un(t) =

∫ t

0

R(t, τ)Fn(u(·, τ))dτ, t ∈ (0, T ),

which is equipped with the initial value condition un(0) = φn. By applying Lemma 2.2, solutions of the
above system of ODEs are given by

un(t) =
α̂

ωα
ηn

∫ t

0

R(t, τ)Fn(u(·, τ))dτ + ηnEα,1(−ρntα)φn

+ µn

∫ t

0

∫ t′

0

(t− t′)αR(t′, τ)Eα,α(−ρn(t− t′)α)Fn(u(·, τ))dτdt′, (9)

where the numbers ηn, ρn, and µn are formulated by

ηn =
ωα

ωα + α̂λ
β/2
n

ρn =
αλ

β/2
n

ωα + α̂λ
β/2
n

, µn =
ωα − α̂
ωα

ηn +
α̂

ωα
ηnρn. (10)

Tuan, should we define Fn?
Let us recall the following relationship between the Mittag-Leffler functions Eα,1, Eα,α and the natural

exponential function, see e.g. Section 2 in [1],

Eα,1(−ρntα) =

∫ ∞
0

Φα(y) exp
(
−ytαρn

)
dy, Eα,α(−ρntα) = α

∫ ∞
0

yΦα(y) exp
(
−ytαρn

)
dy,

where Φα denotes the Wright type function introduced by Mainardi in [41]

Φα(y) =

∞∑
j=0

yn

n!Γ(1− α(1 + j))
, y ∈ C.

This function is an entire function on C. The following classical result provides some essential relations
used in this paper to obtain the main estimates.

Proposition 2.1. For α ∈ (0, 1) and θ > −1. Then the following properties hold:

Φα(y) ≥ 0, ∀y ≥ 0, and

∫ ∞
0

yθΦα(y)dy =
Γ(θ + 1)

Γ(θα+ 1)
, ∀θ > −1. (11)

This follows from (9) that

un(t) =
α̂

ωα
ηn

∫ t

0

R(t, τ)Fn(u(·, τ))dτ +

∫ ∞
0

Φα(y)e−yt
αρnηnφndy

+αµn

∫ t

0

∫ t′

0

∫ ∞
0

yΦα(y)(t− t′)αR(t′, τ)e−y(t−t′)αρnFn(u(·, τ))dydτdt′, (12)

where Φα is the Mainardi function or a particular Wright function, see e.g. [3, 4]. Now, let us define the
following operators

Bρϕ :=

∞∑
j=1

ρnϕnbn, Bηϕ :=

∞∑
j=1

ηnϕnbn, Bµϕ :=

∞∑
j=1

µnϕnbn.

Then, it follows from (12) that

u(x, t) =
α̂

ωα

∫ t

0

R(t, τ)BηF (u(x, τ))dτ +

∫ ∞
0

Φα(y)e−yt
αBρBηφ(x)dy

+ α

∫ t

0

∫ t′

0

∫ ∞
0

yΦα(y)(t− t′)αR(t′, τ)e−y(t−t′)αBρBµF (u(x, τ))dydτdt′. (13)

Definition 2.3. If a function u in Lp(0, T ;Lq(Ω)) with some suitable numbers p ≥ 1, q ≥ 1 satisfies
Equation (13), then it is called a mild solution of Problem (1)-(3).
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3. Global existence on weighted Lebesgue space

3.1. Fractional power operators and the solution spaces. Firstly, we recall some literature on
fractional power operators. Then, we present some useful functional spaces where the solution space will
be mentioned. For each number s ≥ 0, we define

Xs(Ω) :=

{
ϕ =

∞∑
n=1

ϕnbn ∈ L2(Ω) :

∞∑
n=1

ϕ2
nλ

s
n <∞

}
, ϕn =

∫
Ω

ϕ(x)bn(x)dx.

Let us denote by Hs(Ω) the Sobolev-Slobodecki space W s,p(Ω) when p = 2, and by Hs
0(Ω) the closure

of C∞c (Ω) in Hs(Ω). Through out of this paper, D is assumed to be smooth enough such that C∞c (Ω)
is dense in Hs(Ω) for 0 < s < 1

2 . This guarantees Hs
0(Ω) = Hs(Ω). Moreover, it is well-known that

Xs(Ω) =


Hs

0(Ω), for 0 ≤ s < 1
2 ,

H
1/2
00 (Ω) $ H

1/2
0 (Ω), for s = 1

2 ,

Hs
0(Ω), for 1

2 < s ≤ 1,

H1
0 (Ω) ∩Hs(Ω), for 1 < s ≤ 2,

where we denote by H
1/2
00 (Ω) the Lions–Magenes space. Let X−s(Ω) be the duality of Xs which corre-

sponds to the dual inner product (·, ·)−s,s. Then, the operator As : Xs(Ω)→ X−sv of fractional powers

s can be defined by Asϕ :=
∑∞
n=1 β

s
n (ϕn, bn)−s,s ϕn, ∀υ ∈ Xs. The above settings can be found in

[5] (Section 3), [6] (Section 2), [7] (Section 2) and therein. In the next lemmas, we present some useful
embeddings between the spaces mentioned above.

Lemma 3.1. Let 0 ≤ s ≤ s′ ≤ 2 and let H−s(Ω) be the dual space of Hs
0(Ω). Then the following

embeddings hold

Xs(Ω) ↪→ L2(Ω) ↪→ X−s(Ω), (14)

and

Xs
′
(Ω) ↪→ Xs(Ω) ↪→ Hs(Ω) ↪→ L2(Ω) ↪→ H−s(Ω) ↪→ X−s(Ω) ↪→ X−s

′
(Ω). (15)

Lemma 3.2. Given 1 ≤ p, q <∞, 0 ≤ s ≤ s′ <∞ and s′ − N
p′ ≥ s−

N
p . Then, there holds that

W s′,p′(Ω) ↪→W s,p(Ω). (16)

Let us denote the following sets by

O+
1 :=

{
(s; p) : s =

N

2
, 1 ≤ p <∞

}
, O+

2 :=

{
(s; p) : 0 ≤ s < N

2
, 1 ≤ p ≤ 2N

N − 2s

}
,

O+
3 :=

{
(s; θ) : s >

N

2
, θ = s− N

2

}
, O− :=

{
(s; p) : −N

2
< s ≤ 0, p ≥ 2N

N − 2s

}
.

As a consequence of the above lemma, we deduce that: Hs(Ω) ↪→ Lp(Ω) for (s, p) ∈ O+
1 ∪ O

+
2 , and

Hs(Ω) ↪→ C 0,θ(Ω ∪ ∂Ω) for (s, p) ∈ O+
3 . In contrast, Lp(Ω) ↪→ Hs(Ω) for (s; p) ∈ O−. These combine

with the chain (16) to allow the following lemma.

Lemma 3.3. a) There hold that Xs(Ω) ↪→ Lp(Ω), (s; p) ∈ O1∪O2, and Xs(Ω) ↪→ C 0,θ(Ω∪∂Ω), (s; p) ∈
O3. Moreover,

Lp(Ω) ↪→ Xs(Ω), (s; p) ∈ O−. (17)

According to Definition 2.3, the solution space should be Lp(0, T ;Lq(Ω)). In fact, since the purpose
of the present paper is to investigate the global existence of mild solutions, it is necessary to narrow
where we search for solutions. This is the rationale for introducing the so-called weight Lebesgue space
Lp,γ,z(0, T ;Lq(Ω)). For given numbers p, q ≥ 1, γ > 0, z > 0, this is the space containing all functions
ϕ ∈ Lp(0, T ;Lq(Ω)) such that

Lp,γ,z(0, T ;Lq(Ω)) =
{
ϕ ∈ Lp(0, T ;Lq(Ω)), ‖tγe−ztϕ‖Lp(0,T ;Lq(Ω)) <∞

}
(18)

with the corresponding norm

‖ϕ‖Lp,γ,z(0,T ;Lq(Ω)) := ‖tγe−ztϕ‖Lp(0,T ;Lq(Ω)) (19)
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3.2. Global existence assertion with globally Lipschitz nonlinearity. Our goal in this part is to
establish the global existence of a mild solution of Problem (1)-(3). The following assumption will be
needed throughout the paper:

• (AS) N ≥ 2, 1 ≤ p < 2, and q ≥ 2 such that N
N−β < q ≤ 2N

N−2β ;

• (AF) Let r be satisfied 0 ≤ r ≤ β−
(
N
2 −

N
q

)
. Suppose that the function F : X0(Ω)→ X−r(Ω)

satisfying ∥∥F (h1)− F (h2)
∥∥
X−r(Ω)

≤ KF

∥∥h1 − h2

∥∥
X0(Ω)

, (20)

for all h1, h2 ∈ X0(Ω). Assume, furthermore, that F (0) = 0;

• (AR) Assume that κ > 1−p
p and ν > 2p−2

p . Additionally, there exists a positive constant R0

such that

|R(t, τ)| ≤ R0(t− τ)κτν , (21)

for all 0 < τ < t < T .

In the following theorem, we present a global existence of mild solutions to Problem (1)-(3). The word
global indicates that there are no any restrictions on the time T and the Lipschitz coefficient KF .

Theorem 3.4. Given 0 < α < 1, 0 < β ≤ 2. Assume that hypothesis (AS) holds. If φ ∈ L
Nq

N+βq (Ω)
and assumptions (AF), (AR) hold, then there exists z0 > 0 such that Problem (1)-(3) has only one mild
solution u ∈ Lp,γ,z(0, T ;Lq(Ω)), with 0 < γ < νp+ p− 1.

Proof. The proof is based on Banach contraction principle argument. Let us define the mapping S :
Lp,γ,z(0, T ;Lq(Ω)) → Lp,γ,z(0, T ;Lq(Ω)) by Sv = S0φ + SF1 v + SF2 v, for all v ∈ Lp,γ,z(0, T ;Lq(Ω)),
where the terms Sφ and SF v are given by

(S0φ)(x, t) :=

∫ ∞
0

Φα(y)e−yt
αBρBηφ(x)dy,

(
SF1 v

)
(x, t) =

α̂

ωα

∫ t

0

R(t, τ)BηF (u(x, τ))dτ,

(
SF2 v

)
(x, t) := α

∫ t

0

∫ t′

0

∫ ∞
0

yΦα(y)(t− t′)αR(t′, τ)e−y(t−t′)αBρBµF (u(x, τ))dydτdt′. (22)

Now we continue to split the proof into several steps.
Step 1. Estimating the term S0φ
Let us first estimate the quantity Bηφ(x). According to the definition (10), one has

ωα + α̂λβ/2n = α̂(1 + λβ/2n ) + α(Γ(α))−1 ≥ α̂(1 + λβ/2n ).

In addition, for each 0 ≤ ξ ≤ 2, it holds that 1 + λ
β/2
n ≥ λβξ/4n . Therefore, we obtain∥∥∥Bηφ∥∥∥2

X
Nq−2N

2q (Ω)
=

∞∑
n=1

η2
nλ

Nq−2N
2q

n φ2
n ≤

∞∑
n=1

(
ωα

ωα + α̂λ
β/2
n

)2

λ
Nq−2N

2q
n φ2

n ≤
ω2
α

α̂2

∞∑
n=1

λ
N
2 −

N
q −

βξ
2

n φ2
n,

which respectively implies

‖Bηφ‖
X
Nq−2N

2q (Ω)
≤ ωα

α̂
‖φ‖

X
N
2
−N
q
− βξ

2 (Ω)
. (23)

Moreover, for each number 0 ≤ σ < 2, there exists a positive constant Cσ satisfying that e−yt
αρn ≤

Cσ(ytαρn)−σ/2 for all n and all t > 0. We also note ρn =
αλβ/2n

ωα+α̂λ
β/2
n

≥ αλ
β/2
1

ωα+α̂λ
β/2
1

= ρ1, as λn ≥ λ1.

Henceforth, we obtain the following estimate∥∥∥e−ytαBρBηφ∥∥∥2

X
N
2
−N
q (Ω)

=

∞∑
n=1

e−2ytαρnλ
Nq−2N

2q
n

〈
Bηφ, bn

〉2

≤ C2
σ

∞∑
n=1

(ytαρn)−σλ
Nq−2N

2q
n

〈
Bηφ, bn

〉2

,

which implies that ∥∥∥e−ytαBρBηφ∥∥∥
X
N
2
−N
q (Ω)

≤Cσρ
−σ2
1 (ytα)−

σ
2

∥∥Bηφ∥∥XN2 −Nq (Ω)
. (24)

From another point of view, it follows for q ≥ 2 in assumption (AS) that the following Sobolev embedding

X
Nq−2N

2q (Ω) ↪→WN/2−N/q,2
x ↪→ Lq(Ω), (25)
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holds. Therefore, there exists M1 > 0 independently of x such that ‖ϕ‖Lq(Ω) ≤M1‖ϕ‖
X
Nq−2N

2q (Ω)
for all

ϕ ∈ X
Nq−2N

2q (Ω). This combines with the estimates (23) and (24) to allow the following chain of estimates

∥∥∥S0φ
∥∥∥
Lp,γ,z(0,T ;Lq(Ω))

=

(∫ T

0

(
t
γ
p e−

z
p t
∥∥S0φ

∥∥
Lq(Ω)

)p
dt

) 1
p

≤

(∫ T

0

(
t
γ
p e−

z
p t

∫ ∞
0

Φα(y)
∥∥e−ytαBρBηφ∥∥Lq(Ω)

dy

)p
dt

) 1
p

≤M1

(∫ T

0

(
t
γ
p e−

z
p t

∫ ∞
0

Φα(y)
∥∥e−ytαBρBηφ∥∥

X
Nq−2N

2q (Ω)
dy

)p
dt

) 1
p

≤M1Cσρ
−σ2
1

(∫ T

0

(
t
γ
p−

ασ
2 e−

z
p t

(∫ ∞
0

y−
σ
2 Φα(y)dy

)∥∥Bηφ∥∥
X
Nq−2N

2q (Ω)

)p
dt

) 1
p

≤M1

(∫ T

0

t(
γ
p−

ασ
2 )pe−ztdt

) 1
p ∥∥φ∥∥

X
N
2
−N
q
− βξ

2 (Ω)
, (26)

where M1 = M1Cσρ
−σ2
1

Γ(1−σ2 )
Γ(1−ασ2 )

ωα
α̂ and we have used the fact that (see (11))

∫∞
0
y−

σ
2 Φα(y)dy =

Γ(1−σ2 )
Γ(1−ασ2 )

.

Let us take ξ = 2. It is easy to see that since N
N−β < q ≤ 2N

N−2β , the pair
(
N
2 −

N
q − β; q

)
belongs to

the set O− given in Lemma 3.3. Then, applying (17) of this lemma gives that the following Sobolev

embedding L
Nq

N+βq (Ω) ↪→ X
N
2 −

N
q −β(Ω), namely, there exists M2 > 0 independently of x such that

‖ϕ‖
X
N
2
−N
q
−β

(Ω)
≤M2‖ϕ‖

L
Nq

N+βq (Ω)
, (27)

for any ϕ ∈ L
Nq

N+βq (Ω). Moreover, by taking 0 ≤ σ < min(2(γ + 1)/(αp); 2), then the integral of the

function t 7→ t(
γ
p−

ασ
2 )pe−zt on (0, T ) finitely exists. Consequently, we now imply from (26) that

∥∥S0φ
∥∥
Lp,γ,z(0,T ;Lq(Ω))

≤M1M2

(∫ T

0

t(
γ
p−

ασ
2 )pe−ztdt

) 1
p ∥∥φ∥∥

L
Nq

N+βq (Ω)
, (28)

which allows us to end the Step 1.
Step 2. Estimating the term SF2 v
In this step, an estimation for the term SF2 v will be established. For the term SF1 v, we shall take it
up in the next step by using essential techniques in this step. Firstly, we note that the embedding
Lq(Ω) ↪→ L2(Ω) = X0 holds as q ≥ 2, i.e.,

‖(v1 − v2)(·, s)‖L2(Ω) ≤M3‖(v1 − v2)(·, s)‖Lq(Ω),

with a constant M3 independent of x, s. On the other hand, by assumption 0 ≤ r ≤ β −
(
N
2 −

N
q

)
in

(AF), we have N
2 −

N
q − β ≤ −r. Therefore, the following Sobolev embedding holds

X−r(Ω) ↪→ X
N
2 −

N
q −β(Ω). (29)

Then, there exists cF > 0 such that ‖ϕ‖
X
N
2
−N
q
−β

(Ω)
≤ cF ‖ϕ‖X−r(Ω) for all ϕ ∈ X−r(Ω). For the sake of

simplicity let us denote F̃ (v1, v2) the difference F (v1)−F (v2). Then, by recalling the Sobolev embedding

X
Nq−2N

2q (Ω) ↪→WN/2−N/q,2
x ↪→ Lq(Ω),

7



and using the analogue techniques as (23)-(24), we have∥∥∥e−ytαBρBηF̃ (v1, v2)(·, τ)
∥∥∥
Lq(Ω)

≤M1

∥∥∥e−ytαBρBηF̃ (v1, v2)(·, τ)
∥∥∥
X
Nq−2N

2q (Ω)

≤M1Cσρ
−σ2
1 (ytα)−

σ
2

∥∥BηF̃ (v1, v2)(·, τ)
∥∥
X
Nq−2N

2q (Ω)

≤ M1Cσρ
−σ2
1 ωα
α̂

(ytα)−
σ
2 ‖F̃ (v1, v2)(·, τ)‖

X
N
2
−N
q
−β

(Ω)

≤ M1CσcF ρ
−σ2
1 ωα

α̂
(ytα)−

σ
2 ‖F̃ (v1, v2)(·, τ)‖X−r(Ω)

≤ M1CσcF ρ
−σ2
1 ωα

α̂
KF (ytα)−

σ
2 ‖(v1 − v2)(·, τ)‖L2(Ω)

≤ M1M3CσcF ρ
−σ2
1 ωα

α̂
KF (ytα)−

σ
2 ‖(v1 − v2)(·, τ)‖Lq(Ω), (30)

where the globally Lipschitz assumption (20) has been employed in the fourth estimate. Therefore, the
difference SF v1 − SF v2 can be estimated as follows∥∥SF2 v1 − SF2 v2

∥∥
Lp,γ,z(0,T ;Lq(Ω))

≤ α

(∫ T

0

(
t
γ
p e−

z
p t

∫ t

0

∫ t′

0

∫ ∞
0

(t− t′)αR(t′, τ)
∥∥e−y(t−t′)αBρBµF̃ (v1, v2)(·, τ)

∥∥
Lq(Ω)

(yΦα(y)) dydτdt′

)p
dt

) 1
p

≤M4

(∫ T

0

(
t
γ
p e−

z
p t

∫ t

0

∫ t′

0

∫ ∞
0

(t− t′)
(2−σ)α

2 R(t′, τ)
∥∥F̃ (v1, v2)(·, τ)

∥∥
X
N
2
−N
q
−β

(
y

2−σ
2 Φα(y)

)
dydτdt′

)p
dt

) 1
p

≤M5

(∫ T

0

(
t
γ
p e−

z
p t

∫ t

0

∫ t′

0

(t− t′)
(2−σ)α

2 R(t′, τ)
∥∥(v1 − v2)(·, τ)

∥∥
Lq(Ω)

(∫ ∞
0

y
2−σ
2 Φα(y)dy

)
dτdt′

)p
dt

) 1
p

,

(31)

where the above constants are M4 := αM1M3CσcF ρ
−σ2
1

ωα
α̂ , M5 = M4KF . Now, it follows from Hölder’s

inequality applied to the dual pair (p, p∗) (which means 1/p+ 1/p∗ = 1) that∫ t

0

∫ t′

0

(t− t′)
(2−σ)α

2 R(t′, τ)‖(v1 − v2)(·, τ)‖Lq(Ω)dτdt
′

=

∫ t

0

(t− t′)
(2−σ)α

2

∫ t′

0

R(t′, τ)τ−
γ
p e

z
p τ
(
τ
γ
p e−

z
p τ‖(v1 − v2)(·, τ)‖Lq(Ω)

)
dτdt′

≤

∫ t

0

(t− t′)
(2−σ)α

2

(∫ t′

0

Rp∗(t′, τ)τ−
γp∗
p e

zp∗
p τdτ

) 1
p∗

dt′

 ‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω))

≤ R0

∫ t

0

(t− t′)
(2−σ)α

2

(∫ t′

0

(t′ − τ)κp∗τνp∗−
γp∗
p e

zp∗
p τdτ

) 1
p∗

dt′

 ‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω)). (32)

Here, the integral on (0, t′) above can be calculated and then estimated by using the asymptotic behavior
(8). In this integral, the parameters κp∗ and νp∗ − γp∗

p are strictly greater than −1. Indeed, one has

κp∗ = κ p
p−1 > −1, as assumption κ > 1−p

p in (AR), and νp∗ − γp∗
p = νp−γ

p−1 > νp−(νp+p−1)
p−1 = −1, as

assumption 0 < γ < νp+ p− 1. Hence, it is easily checked that∫ t′

0

(t′ − τ)κp∗τνp∗−
γp∗
p e

zp∗
p τdτ = M6(t′)νp∗−

γp∗
p −1z−κp∗−1e

zp∗
p t′

(
t′ +O

(
p

zp∗

))
≤M7(t′)νp∗−

γp∗
p −1z−κp∗−1e

zp∗
p t′

(
1 +O

(
1

z

))
, (33)

where we put M6 = (p∗/p)
−κp∗−1Γ(κp∗ + 1) and M7 = M6 max (T ; p/p∗). Note that (2−σ)α

2 > −1 as

0 ≤ σ < 2, and ν − γ
p −

1
p∗

= νp−γ−p+1
p > νp−(νp+p−1)−p+1

p > −1, as 0 < γ < νp + p − 1, p < 2. It

8



follows that the following integral on (0, t) finitely exists. Summarily, we now obtain the following chain

∫ t

0

∫ t′

0

(t− t′)
(2−σ)α

2 R(t′, τ)‖(v1 − v2)(·, τ)‖Lq(Ω)dτdt
′

≤ R0M
1
p∗

7

(∫ t

0

(t− t′)
(2−σ)α

2 (t′)ν−
γ
p−

1
p∗ e

z
p t
′
dt′
)(

1 +O

(
1

z

)) 1
p∗

z−κ−
1
p∗ ‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω))

≤ R0M8

(
tν−

γ
p−

1
p∗−1z−

(2−σ)α
2 −1e

z
p t
)(

t+O
(p
z

))(
1 +O

(
1

z

)) 1
p∗

z−κ−
1
p∗ ‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω))

≤ R0M9

(
tν−

γ
p−

1
p∗−1z−

(2−σ)α
2 −1e

z
p t
)(

1 +O

(
1

z

))(
1 +O

(
1

z

)) 1
p∗

z−κ−
1
p∗ ‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω)),

where M8 = M
1
p∗

7 (1/p)−
(2−σ)α

2 −1Γ
(

(2−σ)α
2 + 1

)
and M9 = M8 max(T ; p). On the other hand, as an

immediate consequence of the property (11) we have

∫ ∞
0

y
2−σ
2 Φα(y)dy =

Γ
(

2−σ
2 + 1

)
Γ
(

2−σ
2 α+ 1

) .
Therefore, the above arguments accordingly imply that∥∥SF2 v1 − SF2 v2

∥∥
Lp,γ,z(0,T ;Lq(Ω))

≤Mσ

(
1 +O

(
1

z

)) 1
p∗
(∫ T

0

(
tν−

1
p∗−1z−

(2−σ)α
2 −1

)p
dt

) 1
p

z−κ−
1
p∗ ‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω))

= Mσ

(
1 +O

(
1

z

))(
1 +O

(
1

z

)) 1
p∗
(∫ T

0

tνp−
p
p∗−pdt

) 1
p

z−
(2−σ)α

2 −1−κ− 1
p∗ ‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω)).

where Mσ = R0M5M9
Γ( 2−σ

2 +1)
Γ( 2−σ

2 α+1)

(
1 +O

(
1
z

))
. Here, the number νp − p

p∗
− p are strictly greater than

−1 since ν > (2p− 2)/p. Indeed, it is obvious to see that

νp− p

p∗
− p = νp+ 1− 2p >

2p− 2

p
p+ 1− 2p = −1. (34)

This ensures that the integral of t 7→ tνp−
p
p∗−p on (0, T ) finitely exists. Henceforth, we can conclude that

there exists z1 > 0 large enough satisfying

∥∥SF2 v1 − SF2 v2

∥∥
Lp,γ,z(0,T ;Lq(Ω))

≤ 1

4
‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω)),

for each given number z ≥ z1.
Step 3. Estimating the term SF1 v
Now, we also use notation F̃ (v1, v2) instead of F (v1)− F (v2). Recalling that the term BηF̃ (v1, v2) may
be proved in much the same way as (23) and (30). Thus, we have∥∥SF1 v1 − SF1 v2

∥∥
Lp,γ,z(0,T ;Lq(Ω))

≤ M1α̂

ωα

(∫ T

0

(
t
γ
p e−

z
p t

∫ t

0

R(t, τ)
∥∥BηF̃ (v1, v2)(·, τ)

∥∥
X
N
2
−N
q (Ω)

dτ

)p
dt

) 1
p

≤ M1α̂

ωα

(∫ T

0

(
t
γ
p e−

z
p t

∫ t

0

R(t, τ)
ωα
α̂
‖F̃ (v1, v2)(·, τ)‖

X
N
2
−N
q
−β

(Ω)
dτ

)p
dt

) 1
p

.
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Therefore, employing the globally Lipschitz assumption (20) and using the Hölder’s inequality is an
analogue of (32) lead to∥∥SF1 v1 − SF1 v2

∥∥
Lp,γ,z(0,T ;Lq(Ω))

≤ KFM1

(∫ T

0

(
t
γ
p e−

z
p t

∫ t

0

R(t, τ)‖(v1 − v2)(·, τ)‖L2(Ω)dτ

)p
dt

) 1
p

≤M10

(∫ T

0

(
t
γ
p e−

z
p t

∫ t

0

R(t, τ)‖(v1 − v2)(·, τ)‖Lq(Ω)dτ

)p
dt

) 1
p

≤M10

∫ T

0

(
t
γ
p e−

z
p t

(∫ t

0

Rp∗(t, τ)τ−
γp∗
p e

zp∗
p τdτ

) 1
p∗
)p

dt

 1
p

‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω))

≤M11

∫ T

0

(
t
γ
p e−

z
p t

(∫ t

0

(t− τ)κp∗τνp∗−
γp∗
p e

zp∗
p τdτ

) 1
p∗
)p

dt

 1
p

‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω))

≤M12

(∫ T

0

tνp−
p
p∗ dt

) 1
p (

1 +O

(
1

z

)) 1
p∗

z−κ−
1
p∗ ‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω)), (35)

where by (33) we find that(∫ t

0

(t− τ)κp∗τνp∗−
γp∗
p e

zp∗
p τdτ

) 1
p∗

≤ M
1
p∗

7 tν−
γ
p−

1
p∗ z−κ−

1
p∗ e

z
p t

(
1 +O

(
1

z

)) 1
p∗

,

and M10 = KFM1M3, M11 = M10R0, M12 = M11M
1
p∗

7 . In the last right hand side of (35), we note that

νp − p
p∗
> −1 by (34), and so the integral of tνp−

p
p∗ on (0, T ) exists finitely. This implies that we can

choose a positive number z2 > 0, large enough, such that∥∥SF1 v1 − SF1 v2

∥∥
Lp,γ,z(0,T ;Lq(Ω))

≤ 1

4
‖v1 − v2‖Lp,γ,z(0,T ;Lq(Ω)),

for each given number z ≥ z2. The results above show: one can find a ball Bl ⊂ Lp,γ,z(0, T ;Lq(Ω)) with
center at the zero function and large enough radius l such that S is well-defined on Bl. Furthermore,
it is also a contraction mapping for each z ≥ max(z1; z2). Summarily, S has only one fixed point u
in Bl ⊂ Lp,γ,z(0, T ;Lq(Ω)), which solves the equation Su = u. Namely, u is a unique mild solution of
Problem (1)-(3).

�

Remark 3.1. The assumption (AF) accepts the case r = 0, namely, F : L2(Ω) → L2(Ω) such that
F (0) = 0 and ∥∥F (h1)− F (h2)

∥∥
L2(Ω)

≤ KF

∥∥h1 − h2

∥∥
L2(Ω)

,

for all h1, h2 ∈ L2(Ω). Some direct examples of this case can be easily given as

• Linear equation: F (h) = ch
• Sine-Gordon equation: F (h) = c sin(h).

About more applications in the case r > 0 will be discussed in Section 4.

Remark 3.2. Let us discuss the special case R(t, τ) = 1
Γ(1+κ) (t − τ)κτν , 0 < τ < t < T. By putting

G(t, u(x, t)) = tνF (u(x, t)) and δ = 1 +κ, the right hand side of equation (1) can be rewritten as follows∫ t

0

R(t, τ)F (u(x, τ))dτ =
1

Γ(1 + κ)

∫ t

0

(t− τ)κG(τ, u(x, τ))dτ = IδtG(t, u(x, t)).

It deduces from κ > 1−p
p in (AR) that δ > 1

p (and so δ > 1/2). In addition, due to the assumption (AF),

a suitable assumption on G should be stated that:

(AG) Let r be satisfied 0 ≤ r ≤ β −
(
N
2 −

N
q

)
. Suppose that the function G : (0, T ) ×X0 → X−r

satisfying G(t, 0) = 0, ∥∥G(t, h1)−G(t, h2)
∥∥
X−r
≤ KF t

ν
∥∥h1 − h2

∥∥
X0 ,

10



for ν > 2p−2
p and all h1, h2 ∈ X0, all t ∈ [0, T ].

As a consequence of Theorem 3.4, our method can be applied to establish a global existence in the space
Lp,γ,z0t Lqx for the following initial value problem

Dαt u(x, t) +Aβ/2u(x, t) = IδtG(u(x, t)), (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, t) = φ(x), (x, t) ∈ Ω× {0}.

where δ > 1
2 and G is defined by (AG).

4. Time-space Volterra equations

In this section, we discuss an application of our method given in Theorem 3.4 to an initial value
problem for a time-space Volterra equation. We will take into account the initial value problem of
finding u = u(x, t), (x, t) ∈ Ω× (0, T ) such that

Dαt u(x, t) +Aβ/2u(x, t) =

∫ t

0

∫
Ω

R(t, t′)Z(x, x′)H(u(x′, t′))dx′dt′, (36)

which concerned with the boundary and initial value conditions{
u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, t) = φ(x), (x, t) ∈ Ω× {0}.
(37)

where φ is the initial value data, and the nonlinear function H(u(x, t)), the time and spatial kernels
R(t, t′), Z(x, x′) are defined by the following hypotheses:

• (AH) Suppose that the function H : R→ R satisfying H(0) = 0, and for all y, y′ ∈ R

|H(y)−H(y′)| ≤ KH |y − y′|, (38)

• (AZ) Let q be defined by (AS) and q∗ be its dual number
(

1
q + 1

q∗
= 1
)

. Assume that s > 0,

1 ≤ s′ < q∗ satisfying s
q + s′

q∗
≥ 1. Furthermore, there exists a positive constant C such that

(AZ1) :

∫
Ω

∣∣Z(x, x′)
∣∣s′dx′ ≤ C, for almost x ∈ Ω,

(AZ2) :

∫
Ω

∣∣Z(x, x)
∣∣sdx ≤ C, for almost x′ ∈ Ω.

Theorem 4.1. Given 0 < α < 1, 0 < β ≤ 2. If the assumptions (AS), (AR), (AH), (AZ) hold

and φ ∈ L
Nq

N+βq (Ω), then there exists z0 > 0 such that Problem (36)-(37) has only one mild solution
u ∈ Lp,γ,z(0, T ;Lq(Ω)), with 0 < γ < νp+ p− 1.

Proof. The main idea of the proof is to apply Theorem 3.4. It is sufficient to verify all conditions
of this theorem. By comparing the models (1)-(3) and (37), it is convenient to set F (v(x, t)) =∫

Ω
Z(x, x′)H(v(x′, t))dx′, for all v ∈ Lp,γ,z(0, T ;Lq(Ω)). In the next argument, we shall show that

this function fulfills the assumption (AF) with 0 ≤ r < min
(
N
2 ;β −

(
N
2 −

N
q

))
. To attain this purpose,

we firstly prove that the function F : Lq(Ω)→ L
qs

q−(q−1)s′ (Ω) which corresponds to the estimate∥∥F (v1(·, t))− F (v2(·, t))
∥∥
L

qs
q−(q−1)s′ (Ω)

≤ C1

∥∥v1(·, t)− v2(·, t)
∥∥
Lq(Ω)

, (39)

where the constant C1 does not depend on x, t. For simplicity of exposition, we also use notation

F̃ (v1, v2)(x, t) = F (v1(x, t)) − F (v2(x, t)) and v1,2(x, t) = v1(x, t) − v2(x, t). It should be noted that

q − (q − 1)s′ > 0 as 1 ≤ s′ < q∗, and s− q + (q − 1)s′ > 0 as s
q + s′

q∗
≥ 1. Additionally, one has

1(
qs

q−(q−1)s′

) +
1(
qs

s−q+(q−1)s′

) +
1(
q
q−1

) = 1.
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Therefore, the inequality (39) can be proved by applying the Hölder’s inequality for the numbers
qs

q−(q−1)s′ ,
qs

s−q+(q−1)s′ ,
q
q−1 . By using the assumption (AZ1), one can check the following computations∣∣F̃ (v1, v2)(x, t)

∣∣ qs
q−(q−1)s′

≤M14

(∫
Ω

∣∣Z(x, x′)
∣∣∣∣v1,2(x′, t)

∣∣dx′) qs
q−(q−1)s′

= M14

(∫
Ω

(∣∣Z(x, x′)
∣∣ q−(q−1)s′

q
∣∣v1,2(x′, t)

∣∣ q−(q−1)s′
s

)(∣∣v1,2(x′, t)
∣∣ s−q+(q−1)s′

s

)(∣∣Z(x, x′)
∣∣ (q−1)s′

q

)
dx′

) qs
q−(q−1)s′

≤M14

(∫
Ω

∣∣Z(x, x′)
∣∣s∣∣v1,2(x′, t)

∣∣qdx′)(∫
Ω

∣∣v1,2(x′, t)
∣∣qdx′) s−q+(q−1)s′

q−(q−1)s′
(∫

Ω

∣∣Z(x, x′)
∣∣s′dx′) (q−1)s

q−(q−1)s′

≤M15

(∫
Ω

∣∣Z(x, x′)
∣∣s∣∣v1,2(x′, t)

∣∣qdx′)(∫
Ω

∣∣v1,2(x′, t)
∣∣qdx′) s−q+(q−1)s′

q−(q−1)s′

.

where we put

M14 = K
qs/(q−(q−1)s′)
H , M15 = M14C

(q−1)s/(q−(q−1)s′).

Note that the latter integral does not depend on spatial variable (just on the time variable). Therefore,
we then obtain∥∥F̃ (v1, v2)(·, t)

∥∥
L

qs
q−(q−1)s′ (Ω)

=

(∫
Ω

∣∣F̃ (v1, v2)(·, t)
∣∣ qs
q−(q−1)s′ dx

) q−(q−1)s′
qs

≤M16

(∫
Ω

∣∣v1,2(x′, t)
∣∣qdx′) s−q+(q−1)s′

qs

(∫
Ω

(∫
Ω

∣∣Z(x, x′)
∣∣s∣∣v1,2(x′, t)

∣∣qdx′) dx) q−(q−1)s′
qs

,

where M16 = M
(q−(q−1)s′)/(qs)
15 . This combines with the assumption (AZ2) to deduce the following

estimate after some direct calculations∥∥F̃ (v1, v2)(·, t)
∥∥
L

qs
q−(q−1)s′ (Ω)

≤M17

∥∥v1,2(·, t)
∥∥
Lq(Ω)

,

namely, inequality (39) has been proved. Now, it is suitable to show that F fulfills assumption (AF).

Indeed, it is useful to recall that s ≥ q − (q − 1)s′ by the assumption s
q + s′

q∗
≥ 1 in (AZ). This follows

that qs
q−(q−1)s′ ≥ q, and hence L

qs
q−(q−1)s′ (Ω) ↪→ Lq(Ω). Moreover, it is clear that 2 > 2N

N+2r which deduces

L2(Ω) ↪→ L
2N
N+r (Ω). On the other hand, the pair (−r; 2N/(N + 2r)) obviously belongs to the set O−,

defined by Lemma 3.2. This ensures the embedding L
2N
N+r (Ω) ↪→ X−r(Ω). Briefly, the above arguments

yield the following Sobolev embedding

L
qs

q−(q−1)s′ (Ω) ↪→ Lq(Ω) ↪→ L2(Ω) ↪→ L
2N
N+2r (Ω) ↪→ X−r(Ω).

Therefore, it follows from F : Lq(Ω) → L
qs

q−(q−1)s′ (Ω) that F : Lq(Ω) → X−r(Ω) and F also fulfills
assumption (AF). By applying Theorem 3.4, Problem (36)-(37) has only one global solution u in the
space Lp,γ,z(0, T ;Lq(Ω)). �
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