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Abstract
In this paper we focus on the p-th moment exponential stability of neutral stochastic

pantograph differential equations with Markovian switching (NSPDEwMS). By means of the
Lyapunov method, we develop some sufficient conditions on the p-th moment exponential
stability for NSPDEwMS. We analyze two examples to show the interest of the main results.
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1 Introduction
Stochastic differential equations (SDE) are used to model various phenomena such as physical
systems, unstable stock prices, economics, biology . . . SDE describe many dynamical systems,
in which random effects are important and can be taken into account as random perturbations
(see [2] and [11]). Many researchers have studied the stability theory for a class of stochastic
differential equations and in particular stochastic delay differential equations with and without
impulse effects (see [4], [7], [11], [18], [19] and [21]). Markov switched systems can be used
to describe many systems subject to unpredictable fluctuation (see [15]). Neutral stochastic
delay differential equations with Markovian switching can be used to model various processes
and phenomena in the field of engineering , chemical and biology. Stability theory of neutral
stochastic delay differential equations with Markovian switching has attracted the attention of
many authors, for instance see [9], [13] and [16].

The stochastic pantograph differential equation is a kind of extension of stochastic delay
differential equations (see [1], [3], [5], [6] and [12]). In recent years, as one of the most important
class of stochastic delay systems, the stochastic pantograph differential equations with Markovian
switching (SPDEwMS) are very well studied (see [8] and [10]). Neutral stochastic pantograph
differential equations with Markovian switching (NSPDEwMS) is an important extension of
SPDEwMS. They play an interesting role in industrial and mathematical problems (see [8], [10],
[17] and [20]).

The stability analysis of NSPDEwMS has attracted much more attention (see [10] and [14]).
We refer the reader to [1], [5],[6], [8], [12] and [14]-[20] where polynomial and amost sure exponen-
tial stability of stochastic pantograph differential equations and neutral stochastic pantograph
differential equations with Markovian switching are considered. To the best of our knowledge,
there is no existing result on p-th moment exponential stability of NSPDEwMS. By applying
the generalized Ito formula, the classical stochastic calculus and the Lyapunov method, we in-
vestigate and give a new sufficient condition ensuring the p-th moment exponential stability for
a class of NSPDEwMS.

In [10] the authors studied the same problem and prove existence, uniqueness and pathwise
stability of the solutions, with general decay rate, by using an appropriate Lyapunov function
satisfying some properties for the p-power of the variable which essentially implies p ≥ 2. In our
paper we prove existence and solutions and p-moment stability of solutions in the case p > 0.
In this sense, our results complement the analysis in [10] providing sufficient conditions for the
exponential stability in p-moment for any positive p.

The paper is organized as follows: In Section 2, we give some important notations and
definitions. In Section 3, we establish the p-th moment exponential stability for a class of
NSPDEwMS. Finally, in Section 4, we provide two illustrative examples and some numerical
simulations to show our main results.
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2 Preliminaries
Let {Ω,F , (Ft)t≥0,P} be a complete probability space with a filtration satisfying the usual con-
ditions, i.e., the filtration is continuous on the right and F0 contains all P-zero sets. W (t) is an
m-dimensional Brownian motion defined on the probability space. Let t0 > 0 and C([qt0, t0];Rn)
denote the family of all continuous functions ϕ from [qt0, t0] to Rn with the norm ‖ϕ‖ =
supqt0≤s≤t0 |ϕ(s)| and |x| =

√
xTx for any x ∈ Rn. If A is a matrix, its trace norm is de-

noted by |A| =
√
trace(ATA), while its operator norm is denoted by ‖A‖ = sup{|Ax| : |x| = 1}.

Let p > 0, LpFt([qt, t];R
n) denote the family of all Ft-measurable, C([qt, t];Rn)-valued random

variables ϕ = {ϕ(θ) : qt ≤ θ ≤ t} such that E‖ϕ‖p <∞.
Let {r(t), t ∈ R+ = [0,+∞)} be a right-continuous Markov chain on the probability space

{Ω,F , (Ft)t≥0,P} taking values in a finite state space S = {1, 2, . . . , N} with a generator Γ =
(γij)N×N given by

P (r(t+ ∆) = j|r(t) = i) =


γij∆ + o(∆), if i 6= j

1 + γii∆ + o(∆), if i = j

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j, if i 6= j, while

γii = −
∑
i 6=j

γij.

We assume that the Markov chain r(·) is independent of the Brownian motion W (·).

Consider the following neutral pantograph stochastic differential equation with Markovian
switching:

d
(
x(t)−G

(
t, x(qt)

))
= f

(
t, x(t), x(qt), r(t)

)
dt+ g

(
t, x(t), x(qt), r(t)

)
dw(t), (2.1)

with the initial condition {x(t) = qt0 ≤ t ≤ t0} = ξ ∈ LpFt([qt0, t0];R
n). Let u(t) = x(t) −

G(t, x(qt)). Here, we furthermore assume that

f : [t0,+∞)× Rn × Rn × S −→ Rn, g : [t0,+∞)× Rn × Rn × S −→ Rn×m,

G : [t0,+∞)× Rn −→ Rn.

We denote by x(t; t0, ξ) the solution of equation (2.1).
Let C1,2 ([qt0,+∞)× Rn × S;R+) be the family of all non-negative functions V (t, x, i) on

[qt0,+∞) × Rn × S, which are twice continuously differentiable with respect to x and once
continuously differentiable with respect to t.
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For any (t, x, y, i) ∈ [qt0,+∞) × Rn × Rn × S, u = x − G(t, y), by the generalized Itô formula
(see [8] and [9] ) we have,

V (t, u(t), r(t)) = V (t0, u(t0), r(t0)) +

∫ t

t0

LV (s, x(s), x(qs), r(s))ds+Mt,

where the operator LV (t, x, y, i) : [qt0,+∞)×Rn ×Rn × S → R and the process Mt are defined
respectively by

LV (t, x, y, i) = Vt(t, u, i) + Vx(t, u, i)f(t, x, y, i)

+
1

2
trace

(
gT (t, x, y, i)Vxx(t, u, i)g(t, x, y, i)

)
+

N∑
j=1

γijV (t, u, j),

Mt =

∫ t

t0

Vx(s, u(s), r(s))g(s, x(s), x(qs), r(s))dW (s),

Vt =
∂V (t, x, i)

∂t
, Vx =

(
∂V (t, x, i)

∂x1
, . . . ,

∂V (t, x, i)

∂xn

)
, and Vxx =

(
∂2V (t, x, i)

∂xi∂xj

)
n×n

.

3 Main results
For our purpose, we will state some assumptions which can ensure the existence and uniqueness
of solution, denoted by x(t) = x(t; t0, ξ) on t ≥ t0, for equation

Assumption 3.1. For each integer d ≥ 1, there exists a positive constant kd such that

|f(t, x, y, i)− f(t, x, y, i)|2 ∨ |g(t, x, y, i)− g(t, x, y, i)|2 ≤ kd(|x− x|2 + |y − y|2), (3.1)

for those x, x, y, y ∈ Rn with |x| ∨ |x| ∨ |y| ∨ |y| ≤ d and (t, i) ∈ [t0,∞)× S.

Assumption 3.2. There exist a Lyapunov function V ∈ C1,2 ([qt0,+∞)× Rn × S;R+) and
positive constants c1, c2, c3 and c4 such that

c1|x|p ≤ V (t, x, i) ≤ c2|x|p, (3.2)

LV (t, x, y, i) ≤ −
(

2 +
1

q

)
c3|x|p + c4qe

− c3
c2

(1−q)t|y|p (3.3)

and
c4 ≤ c3. (3.4)
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Assumption 3.3. There exists a positive constant L ∈ (0, 1) such that for all x, y ∈ Rn and
t ≥ qt0,

|G(t, x)−G(t, y)| ≤ L |x− y| . (3.5)

For our stability purpose we need to impose the next stronger version of this assumption:

Assumption 3.4. There exists a positive constant L ∈ (0, 1) such that for all x, y ∈ Rn and
t ≥ qt0,

|G(t, x)−G(t, y)| ≤ Le−
δ
p
(1−q2)t |x− y| , (3.6)

where δ is a positive constant which verifies

qδ ≤ c3
c2
≤ δ if 0 < p ≤ 1 (3.7)

and
qδ ≤ c3

c22p−1
≤ δ if p > 1. (3.8)

Assumption 3.5. For all t ≥ qt0

G(t, 0) = 0 (3.9)
f(t, 0, 0, r(t)) = 0 (3.10)
g(t, 0, 0, r(t)) = 0. (3.11)

Remark 3.6. From (3.6) and (3.9), it yields for all x ∈ Rn and t ≥ qt0

|G(t, x)| ≤ Le−
δ
p
(1−q2)t |x| , (3.12)

Lemma 3.7. Let p > 1, ε > 0 and (a, b) ∈ R2. Then,

|a+ b|p ≤
(

1 + ε
1
p−1

)p−1(
|a|p +

|b|p

ε

)
.

Proof. See ([11]).

Remark 3.8. Let p > 1 and (a, b) ∈ R2. By taking ε = 1, in Lemma 3.7, we obtain

|a+ b|p ≤ 2p−1
(
|a|p + |b|p

)
.

Lemma 3.9. Let 0 < p ≤ 1 and (a, b) ∈ R2. Then,

|a+ b|p ≤ (|a|p + |b|p) .

Proof. See ([11]).
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Theorem 3.10. Let Assumptions 3.1, 3.2 and 3.3 hold. Then for any given initial condition
data ξ ∈ LpFt([qt0, t0];R

n), there exists a unique global solution x(·) = x(·, t0, ξ) to the system
(2.1) on t ∈ [qt0,∞).

Proof. First step: existence and uniqueness of the maximal solution
By Assumption 3.1, for any given initial condition ξ ∈ LpFt([qt0, t0];R

n), system (2.1) admits
a unique maximal solution x(t) defined on [t0, σ∞), where σ∞ is the explosion time (see [13]).
Let k0 > 0 be sufficiently large for ‖ξ‖ < k0. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [t0, σ∞), |x(t)| ≥ k}.

Since
{t ∈ [t0, σ∞), |x(t)| ≥ k + 1} ⊂ {t ∈ [t0, σ∞), |x(t)| ≥ k},

we have
τk ≤ τk+1.

Then, (τk) is increasing. Which allows us to define

τ∞ = lim
k→∞

τk.

Given that
τk ≤ σ∞,∀k ≥ k0,

we have
τ∞ ≤ σ∞.

Let i ≥ 1 and t0 ≤ t ≤ t0
qi
. By Ito’s formula, we obtain

E
(
V
(
t ∧ τk, u(t ∧ τk), r(t ∧ τk)

))
= E

(
V
(
t0, u(t0), r(t0)

))
+ E

∫ t∧τk

t0

LV
(
s, x(s), x(qs), r(s)

)
ds

≤ E
(
V
(
t0, u(t0), r(t0)

))
+ E

∫ t∧τk

t0

(
− c3|x(s)|p + c4q|x(qs)|p

)
ds

≤ E
(
V
(
t0, u(t0), r(t0)

))
− c3E

∫ t∧τk

t0

|x(s)|pds+ c4E

∫ t∧τk

t0

q|x(qs)|pds (3.13)
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We have ∫ t∧τk

t0

q|x(qs)|pds =

∫ q(t∧τk)

qt0

|x(s)|pds

≤
∫ t∧τk

qt0

|x(s)|pds

=

∫ t0

qt0

|x(s)|pds+

∫ t∧τk

t0

|x(s)|pds

≤ (1− q)t0‖ξ‖p +

∫ t∧τk

t0

|x(s)|pds. (3.14)

Substituting (3.14) in (3.13), we obtain

E
(
V
(
t ∧ τk, u(t ∧ τk), r(t ∧ τk)

))
≤ E

(
V
(
t0, u(t0), r(t0)

))
+ (c4 − c3)E

∫ t∧τk

t0

|x(s)|pds+ c4(1− q)t0E
(
‖ξ‖p

)
≤ E

(
V
(
t0, u(t0), r(t0)

))
+ c4(1− q)t0E

(
‖ξ‖p

)
(3.15)

By (3.2), we deduce

c1E
(
|u(t ∧ τk)|p

)
≤ c2E

(
|u(t0)|p

)
+ c4(1− q)t0E

(
‖ξ‖p

)
(3.16)

Which implies

E
(
|u(t ∧ τk)|p

)
≤ c2

c1
E
(
|u(t0)|p

)
+
c4
c1

(1− q)t0E
(
‖ξ‖p

)
(3.17)

Second step: the case p > 1
Let ε > 0. By Lemma 3.7, it yields

|x(t ∧ τk)|p = |u(t ∧ τk) +G(t ∧ τk, x(q(t ∧ τk)))|p

≤
[
1 + ε

1
p−1
]p−1

(|u(t ∧ τk)|p +
|G(t ∧ τk, x(q(t ∧ τk)))|p

ε
)

≤
[
1 + ε

1
p−1
]p−1

(|u(t ∧ τk)|p +
Lp

ε
|x(q(t ∧ τk))|p)

≤
[
1 + ε

1
p−1
]p−1

(|u(t ∧ τk)|p +
Lp

ε
kp) (3.18)

Then,

1[
1 + ε

1
p−1
]p−1 |x(t ∧ τk)|p ≤ |u(t ∧ τk)|p +

Lp

ε
kp (3.19)
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It yields

|u(t ∧ τk)|p ≥
1[

1 + ε
1
p−1
]p−1 |x(t ∧ τk)|p −

Lp

ε
kp (3.20)

We obtain

|u(t ∧ τk)|p ≥ |u(t ∧ τk)|pχ{τk≤t} ≥
1[

1 + ε
1
p−1
]p−1 |x(t ∧ τk)|pχ{τk≤t} −

Lp

ε
kpχ{τk≤t}

=
1[

1 + ε
1
p−1
]p−1 |x(τk)|pχ{τk≤t} −

Lp

ε
kpχ{τk≤t}

=
1[

1 + ε
1
p−1
]p−1kpχ{τk≤t} − Lp

ε
kpχ{τk≤t}

= (
1[

1 + ε
1
p−1
]p−1 − Lp

ε
)kpχ{τk≤t} (3.21)

Then,

E(|u(t ∧ τk)|p) ≥ (
1[

1 + ε
1
p−1
]p−1 − Lp

ε
)kpE(χ{τk≤t})

≥ (
1[

1 + ε
1
p−1
]p−1 − Lp

ε
)kpP ({τk ≤ t}) (3.22)

We have
1[

1 + ε
1
p−1
]p−1 − Lp

ε
=

1

ε
(

ε[
1 + ε

1
p−1
]p−1 − Lp).

and
lim
ε→∞

ε[
1 + ε

1
p−1
]p−1 − Lp = 1− Lp > 0.

Then, there exists ε0 > 1 large enough, such that

ε0[
1 + ε

1
p−1

0

]p−1 − Lp > 0.

Hence,
1[

1 + ε
1
p−1

0

]p−1 − Lp

ε0
> 0.
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We deduce that, for all k ≥ k0, i ≥ 1 and t ∈ [t0,
t0
qi

]

P ({τk ≤ t}) ≤ 1

( 1[
1+ε

1
p−1
0

]p−1 − Lp

ε0
)kp

E(|u(t ∧ τk)|p) (3.23)

Which implies by (3.17) that

P ({τk ≤ t}) ≤ 1

c1(
1[

1+ε
1
p−1
0

]p−1 − Lp

ε0
)kp

(
c2E

(
|u(t0)|p

)
+ c4(1− q)t0E

(
‖ξ‖p

))
(3.24)

Then, for all k ≥ k0 and i ≥ 1

P ({τk ≤
t0
qi
}) ≤ 1

c1(
1[

1+ε
1
p−1
0

]p−1 − Lp

ε0
)kp

(
c2E

(
|u(t0)|p

)
+ c4(1− q)t0E

(
‖ξ‖p

))
(3.25)

By letting k →∞, it yields for all i ≥ 1

P ({τ∞ ≤
t0
qi
}) = 0. (3.26)

Third step: the case 0 < p ≤ 1
Using Lemma 3.9 to obtain

|x(t ∧ τk)|p = |u(t ∧ τk) +G(t ∧ τk, x(q(t ∧ τk)))|p

≤ |u(t ∧ τk)|p + |G(t ∧ τk, x(q(t ∧ τk)))|p

≤ |u(t ∧ τk)|p + Lp|x(q(t ∧ τk))|p

≤ |u(t ∧ τk)|p + Lpkp (3.27)

Then,

|u(t ∧ τk)|p ≥ |x(t ∧ τk)|p − Lpkp (3.28)

We obtain

|u(t ∧ τk)|p ≥ |u(t ∧ τk)|pχ{τk≤t} ≥ |x(t ∧ τk)|pχ{τk≤t} − L
pkpχ{τk≤t}

= |x(τk)|pχ{τk≤t} − L
pkpχ{τk≤t}

= kpχ{τk≤t} − L
pkpχ{τk≤t}

= (1− Lp)kpχ{τk≤t} (3.29)
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Then,

E(|u(t ∧ τk)|p) ≥ (1− Lp)kpE(χ{τk≤t})

≥ (1− Lp)kpP ({τk ≤ t}) (3.30)

We deduce that, for all k ≥ k0, i ≥ 1 and t ∈ [t0,
t0
qi

]

P ({τk ≤ t}) ≤ 1

(1− Lp)kp
E(|u(t ∧ τk)|p) (3.31)

Which implies by (3.17) that

P ({τk ≤ t}) ≤ 1

c1(1− Lp)kp
(
c2E

(
|u(t0)|p

)
+ c4(1− q)t0E

(
‖ξ‖p

))
(3.32)

Then, for all k ≥ k0 and i ≥ 1

P ({τk ≤
t0
qi
}) ≤ 1

c1(1− Lp)kp
(
c2E

(
|u(t0)|p

)
+ c4(1− q)t0E

(
‖ξ‖p

))
(3.33)

By letting k →∞, it yields for all i ≥ 1

P ({τ∞ ≤
t0
qi
}) = 0. (3.34)

Fourth step: determination of σ∞
In both cases, p > 1 and 0 < p ≤ 1, we have proved that for all i ≥ 1

P ({τ∞ >
t0
qi
}) = 1. (3.35)

Thus, for all i ≥ 1

τ∞ >
t0
qi

a.s. (3.36)

Letting i→∞, it yields

τ∞ = ∞ a.s. (3.37)

Then,

σ∞ = ∞ a.s. (3.38)

which proves Theorem 3.10.
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Remark 3.11. Notice that to prove Theorem 3.10, we can impose a weaker assumption on the
Lyapunov function. Indeed, it is only necessary to assume that

c1|x|p ≤ V (t, x, i) ≤ c2|x|p and LV (t, x, y, i) ≤ −c3|x|p + c4q|y|p.

Also, it is remarkable that our theorem completes and generalizes the corresponding one in [10]
since we can cover more cases as our p only needs to be positive and not bigger than or equal 2.

Definition 3.1. The null solution of system (2.1) is said to be p−th moment exponentially
stable if there exist α, C > 0 such that

E (|x(t, t0, ξ)|p) ≤ Ce−α(t−t0)E (‖ξ‖p)

for all t0 ∈ R+, t ≥ t0 and ξ ∈ LpFt([qt0, t0];R
n).

Theorem 3.12. Assume that Assumptions 3.1, 3.2, 3.4 and 3.5 hold. Then, for each initial
function ξ ∈ LpFt([qt0, t0];R

n), the corresponding solution x(·) = x(·, t0, ξ) to system (2.1) satisfies

E (|x(t)|p) ≤ Ce−α(t−t0)E (‖ξ‖p)

where α and C are positive constants.

Proof. Let x(·) denote the solution to system (2.1) with initial value ξ. Then we define the
stopping time τk = inf {t ≥ t0, |x(t)| ≥ k}.

First case: 0 < p ≤ 1.
For t ≥ t0, by Itô’s formula, we obtain

E
(
e
c3
c2

(t∧τk−t0)V (t ∧ τk, u(t ∧ τk), r(t ∧ τk))
)

= E (V (t0, u(t0), r(t0)))

+E
(∫ t∧τk

t0

e
c3
c2

(s−t0)
(
c3
c2
V (s, u(s), r(s)) + LV (s, x(s), x(qs), r(s))

)
ds

)
≤ E (V (t0, u(t0), r(t0)))

+E
(∫ t∧τk

t0

e
c3
c2

(s−t0)
(
c3|u(s)|p − c3

(
2 +

1

q

)
|x(s)|p + c4qe

− c3
c2

(1−q)s|x(qs)|p
)
ds

)
.(3.39)

Thanks to (3.12) and the fact that L < 1, we have

|u(s)|p = |x(s)−G(s, x(qs))|p

≤ |x(s)|p + |G(s, x(qs))|p

≤ |x(s)|p + Lpe−δ(1−q
2)s|x(qs)|p

≤ |x(s)|p + e−δ(1−q
2)s|x(qs)|p. (3.40)
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Then,

E
(
e
c3
c2

(t∧τk−t0)V (t ∧ τk, u(t ∧ τk), r(t ∧ τk))
)

(3.41)

≤ E (V (t0, u(t0), r(t0)))

+E
(∫ t∧τk

t0

e
c3
c2

(s−t0)
(
c3(|x(s)|p + e−δ(1−q

2)s|x(qs)|p)− c3
(

2 +
1

q

)
|x(s)|p + c4qe

− c3
c2

(1−q)s|x(qs)|p
)
ds

)
.

Using (3.7),

e
c3
c2

(s−t0)e−δ(1−q
2)s = e

− c3
c2
t0e

(
c3
c2
−δ)s

eq
2δs

≤ e
− c3
c2
t0e

c3
c2
qs

= e
c3
c2

(qs−t0). (3.42)

We have also
e
c3
c2

(s−t0)e
− c3
c2

(1−q)s
= e

c3
c2

(qs−t0). (3.43)

Then,

E
(
e
c3
c2

(t∧τk−t0)V (t ∧ τk, u(t ∧ τk), r(t ∧ τk))
)

≤ E (V (t0, u(t0), r(t0))) + E
(∫ t∧τk

t0

(
−c3

(
1 +

1

q

)
e
c3
c2

(s−t0)|x(s)|p + (c3 + qc4)e
c3
c2

(qs−t0)|x(qs)|p
)
ds

)
≤ E (V (t0, u(t0), r(t0))) + E

(∫ t∧τk

t0

(
−c3

(
1 +

1

q

)
+
c3
q

+ c4

)
e
c3
c2

(s−t0)|x(s)|pds
)

+E
(∫ t0

qt0

(
c3
q

+ c4

)
e
c3
c2

(s−t0)|x(s)|pds
)

≤ E (V (t0, u(t0), r(t0))) + c3

(
1 +

1

q

)
E (‖ξ‖p)

∫ t0

qt0

e
c3
c2

(s−t0)ds

≤ E (V (t0, u(t0), r(t0))) + c2

(
1 +

1

q

)
E(‖ξ‖p)

(
1− e−

c3
c2

(1−q)t0
)

≤ E (V (t0, u(t0), r(t0))) + c2

(
1 +

1

q

)
E(‖ξ‖p). (3.44)

Thus,

E
(
e
c3
c2

(t∧τk−t0)V (t ∧ τk, u(t ∧ τk), r(t ∧ τk))
)
≤ E (V (t0, u(t0), r(t0)))

+c2

(
1 +

1

q

)
E (‖ξ‖p) . (3.45)
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By (3.2) it follows

E
(
e
c3
c2

(t∧τk−t0)|u(t ∧ τk)|p
)

≤ 1

c1
E
(
e
c3
c2

(t∧τk−t0)V (t ∧ τk, u(t ∧ τk), r(t ∧ τk))
)

≤ 1

c1
E (V (t0, u(t0), r(t0)))

≤ c2
c1
E (|u(t0)|p) +

c2
c1

(
1 +

1

q

)
E(‖ξ‖p). (3.46)

Letting k →∞, it yields

E
(
e
c3
c2

(t−t0)|u(t)|p
)
≤ c2

c1
E (|u(t0)|p) +

c2
c1

(
1 +

1

q

)
E (‖ξ‖p)

≤ c2
c1
E |x(t0)|p) +

c2
c1
E (|x(qt0)|p) +

c2
c1

(
1 +

1

q

)
E (‖ξ‖p)

≤ c2
c1

(
3 +

1

q

)
E (‖ξ‖p) . (3.47)

Let T > 0, for all t0 ≤ t ≤ T , we have

E
(
e
c3
c2

(t−t0)|x(t)|p
)
≤ E

(
e
c3
c2

(t−t0)|u(t)|p
)

+ E
(
e
c3
c2

(t−t0)|G(t, x(qt))|p
)

≤ c2
c1

(
3 +

1

q

)
E (‖ξ‖p) + E

(
Lpe

c3
c2

(t−t0)e−δ(1−q
2)t|x(qt)|p

)
≤ c2

c1

(
3 +

1

q

)
E (‖ξ‖p) + Lpe

− c3
c2
t0E
(
e
c3
c2
t
e−δ(1−q

2)t|x(qt)|p
)

≤ c2
c1

(
3 +

1

q

)
E (‖ξ‖p) + Lpe

− c3
c2
t0 sup
t0≤t≤T

E
(
e
c3
c2
t
e−δ(1−q

2)t|x(qt)|p
)

≤ c2
c1

(
3 +

1

q

)
E (‖ξ‖p) + Lpe

− c3
c2
t0 sup
qt0≤t≤qT

E
(
e
c3
qc2

t
e−

δ
q
(1−q2)t|x(t)|p

)
≤ c2

c1

(
3 +

1

q

)
E (‖ξ‖p) + Lpe

− c3
c2
t0 sup
qt0≤t≤T

E
(
e
c3
qc2

t
e−

δ
q
(1−q2)t|x(t)|p

)
≤ c2

c1

(
3 +

1

q

)
E (‖ξ‖p) + Lpe

− c3
c2
t0 sup
qt0≤t≤T

E
(
e
(
c3
c2
−δ) t

q eqδt|x(t)|p
)

≤ c2
c1

(
3 +

1

q

)
E (‖ξ‖p) + Lpe

− c3
c2
t0 sup
qt0≤t≤T

E
(
eqδt|x(t)|p

)
≤ c2

c1

(
3 +

1

q

)
E (‖ξ‖p) + Lpe

− c3
c2
t0 sup
qt0≤t≤t0

E
(
eqδt|x(t)|p

)
+Lpe

− c3
c2
t0 sup
t0≤t≤T

E
(
eqδt|x(t)|p

)
(3.48)
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Then,

e
− c3
c2
t0E
(
e
c3
c2
t|x(t)|p

)
≤ c2
c1

(
3 +

1

q

)
E (‖ξ‖p) + Lpe

−( c3
c2
−qδ)t0E(‖ξ‖p)

+Lpe
− c3
c2
t0 sup
t0≤t≤T

E
(
eqδt|x(t)|p

)
≤ c2
c1

(
3 +

1

q

)
E (‖ξ‖p) + LpE (‖ξ‖p) + Lpe

− c3
c2
t0 sup
t0≤t≤T

E
(
e
c3
c2
t|x(t)|p

)
≤
((

3 +
1

q

)
c2
c1

+ Lp
)
E (‖ξ‖p) + Lpe

− c3
c2
t0 sup
t0≤t≤T

E
(
e
c3
c2
t|x(t)|p

)
. (3.49)

Thus,

sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x(t)|p
)

≤
((

3 +
1

q

)
c2
c1

+ Lp
)
E (‖ξ‖p) + Lp sup

t0≤t≤T
E
(
e
c3
c2

(t−t0)|x(t)|p
)
. (3.50)

Then, for all T > t0, we have

sup
t0≤t≤T

E
(
e
c3
c2

(t−t0)|x(t)|p
)
≤

(
3 + 1

q

)
c2
c1

+ Lp

1− Lp
E (‖ξ‖p) , (3.51)

and letting T →∞,

sup
t0≤t≤∞

E
(
e
c3
c2

(t−t0)|x(t)|p
)
≤

(
3 + 1

q

)
c2
c1

+ Lp

1− Lp
E (‖ξ‖p) . (3.52)

Then, for all t ≥ t0

E
(
e
c3
c2

(t−t0)|x(t)|p
)
≤

(
3 + 1

q

)
c2
c1

+ Lp

1− Lp
E (‖ξ‖p) . (3.53)

Finally, we obtain
E (|x(t)|p) ≤ Ce

− c3
c2

(t−t0)E (‖ξ‖p) , (3.54)

where

C =

(
3 + 1

q

)
c2
c1

+ Lp

1− Lp
.

Second case: p > 1
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For t ≥ t0, by Ito’s formula, we obtain

E
(
e

c3
c22

p−1 (t∧τk−t0)V
(
t ∧ τk, u(t ∧ τk), r(t ∧ τk)

))
= E

(
V
(
t0, u(t0), r(t0)

))
+E

∫ t∧τk

t0

e
c3

c22
p−1 (s−t0)

( c3
c22p−1

V
(
s, u(s), r(s)

)
+ LV

(
s, x(s), x(qs), r(s)

))
ds

≤ E
(
V
(
t0, u(t0), r(t0)

))
+E

∫ t∧τk

t0

e
c3

c22
p−1 (s−t0)

( c3
2p−1
|u(s)|p − c3(2 +

1

q
)|x(s)|p + c4qe

− c3
c2

(1−q)s|x(qs)|p
))
ds (3.55)

By (3.12) and L < 1, we have

|u(s)|p = |x(s)−G(s, x(qs)|p

≤ 2p−1
(
|x(s)|p + |G(s, x(qs)|p

)
≤ 2p−1

(
|x(s)|p + Lpe−δ(1−q

2)s|x(qs)|p
)

≤ 2p−1
(
|x(s)|p + e−δ(1−q

2)s|x(qs)|p
)

(3.56)

Using (3.8) to obtain

e
c3

c22
p−1 (s−t0)e−δ(1−q

2)s = e
− c3
c22

p−1 t0e
(

c3
c22

p−1−δ)seq
2δs

≤ e
− c3
c22

p−1 t0e
c3
c22

p qs

= e
c3
c22

p (qs−t0) (3.57)

As p > 1, then

e
c3

c22
p−1 (s−t0)e

− c3
c2

(1−q)s ≤ e
c3

c22
p−1 (s−t0)e

− c3
c22

p−1 (1−q)s

= e
c3

c22
p−1 (qs−t0) (3.58)

Substituting (3.56), (3.57) and (3.58) in (3.55),

E
(
e

c3
c22

p−1 (t∧τk−t0)V
(
t ∧ τk, u(t ∧ τk), r(t ∧ τk)

))
=

E
(
V
(
t0, u(t0), r(t0)

))
+E

∫ t∧τk

t0

(
− c3(1 +

1

q
)e

c3
c22

p−1 (s−t0)|x(s)|p + e
c3

c22
p−1 (qs−t0)(c3 + qc4)|x(qs)|p

)
ds (3.59)
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Moreover,∫ t∧τk

t0

e
c3

c22
p−1 (qs−t0)(c3 + qc4)|x(qs)|pds =

∫ q(t∧τk)

qt0

e
c3

c22
p−1 (s−t0)(

c3
q

+ c4)|x(s)|pds

≤
∫ t0

qt0

e
c3

c22
p−1 (s−t0)(

c3
q

+ c4)|x(s)|pds+∫ t∧τk

t0

e
c3

c22
p−1 (s−t0)(

c3
q

+ c4)|x(s)|pds

≤ (
c3
q

+ c4)‖ξ‖p
∫ t0

qt0

e
c3

c22
p−1 (s−t0)ds+∫ t∧τk

t0

e
c3

c22
p−1 (s−t0)c3(

1

q
+ 1)|x(s)|pds

≤ (
1

q
+ 1)c22

p−1‖ξ‖p(1− e−
c3

c22
p−1 (1−q)t0) +∫ t∧τk

t0

e
c3

c22
p−1 (s−t0)c3(

1

q
+ 1)|x(s)|pds

≤ (
1

q
+ 1)c22

p−1‖ξ‖p +∫ q(t∧τk)

t0

e
c3

c22
p−1 (s−t0)c3(

1

q
+ 1)|x(s)|pds (3.60)

Then,

E
(
e

c3
c22

p−1 (t∧τk−t0)V
(
t ∧ τk, u(t ∧ τk), r(t ∧ τk)

))
≤ E

(
V
(
t0, u(t0), r(t0)

))
+

(
1

q
+ 1)c22

p−1E
(
‖ξ‖p

)
. (3.61)

By (3.2), it follows

E
(
e

c3
c22

p−1 (t∧τk−t0)|u(t ∧ τk)|p
)

≤ 1
c1
E
(
e

c3
c22

p−1 (t∧τk−t0)V
(
t ∧ τk, u(t ∧ τk), r(t ∧ τk)

))
≤ 1

c1
E
(
V
(
t0, u(t0), r(t0)

))
+ (1

q
+ 1) c2

c1
2p−1E

(
‖ξ‖p

)
≤ c2

c1
E
(
|u(t0)|p

)
+ (1

q
+ 1) c2

c1
2p−1E

(
‖ξ‖p

)
. (3.62)
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Letting k →∞, it yields

E
(
e

c3
c22

p−1 (t−t0)|u(t)|p
)
≤ c2

c1
E
(
|u(t0)|p

)
+ (

1

q
+ 1)

c2
c1

2p−1E
(
‖ξ‖p

)
≤ 2p−1

c2
c1

(
E
(
|x(t0)|p

)
+ E

(
|x(qt0)|p

))
+
c2
c1

2p−1(
1

q
+ 1)E

(
‖ξ‖p

)
≤ c2

c1
2pE

(
‖ξ‖p

)
+
c2
c1

2p−1(
1

q
+ 1)E

(
‖ξ‖p

)
=

c2
c1

2p−1(
1

q
+ 3)E

(
‖ξ‖p

)
. (3.63)
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Let ε > 0 and T > t0. Using Lemma 3.7 to obtain for all t0 ≤ t ≤ T

e
− c3
c22

p−1 t0E
(
e

c3
c22

p−1 t|x(t)|p
)

≤
[
1 + ε

1
p−1
]p−1

E
(
e

c3
c22

p−1 (t−t0)|u(t)|p
)

+

[
1+ε

1
p−1

]p−1

ε
E
(
e

c3
c22

p−1 (t−t0)|G(t, x(qt))|p
)

≤ c2
c1

2p
[
1 + ε

1
p−1
]p−1

(1
q

+ 3)E
(
‖ξ‖p

)
+

[
1+ε

1
p−1

]p−1

ε
E
(
Lpe

c3
c22

p−1 (t−t0)e−δ(1−q
2)t|x(qt)|p

)
≤ c2

c1
2p
[
1 + ε

1
p−1
]p−1

(1
q

+ 3)E
(
‖ξ‖p

)
+

[
1+ε

1
p−1

]p−1

ε
Lpe

− c3
c22

p−1 t0E
(
e

c3
c22

p−1 te−δ(1−q
2)t|x(qt)|p

)
≤ c2

c1
2p
[
1 + ε

1
p−1
]p−1

(1
q

+ 3)E
(
‖ξ‖p

)
+

[
1+ε

1
p−1

]p−1

ε
Lpe

− c3
c22

p−1 t0 sup
t0≤t≤T

E
(
e

c3
c22

p−1 te−δ(1−q
2)t|x(qt)|p

)
≤ c2

c1
2p
[
1 + ε

1
p−1
]p−1

(1
q

+ 3)E
(
‖ξ‖p

)
+

[
1+ε

1
p−1

]p−1

ε
Lpe

− c3
c22

p−1 t0 sup
qt0≤t≤qT

E
(
e

c3
qc22

p−1 te−
δ
q
(1−q2)t|x(t)|p

)
≤ c2

c1
2p
[
1 + ε

1
p−1
]p−1

(1
q

+ 3)E
(
‖ξ‖p

)
+

[
1+ε

1
p−1

]p−1

ε
Lpe

− c3
c22

p−1 t0 sup
qt0≤t≤T

E
(
e

c3
qc22

p−1 te−
δ
q
(1−q2)t|x(t)|p

)
≤ c2

c1
2p
[
1 + ε

1
p−1
]p−1

(1
q

+ 3)E
(
‖ξ‖p

)
+ 2p−1Lpe

− c3
c22

p−1 t0 sup
qt0≤t≤T

E
(
e
(

c3
c22

p−1−δ)
t
q eqδt|x(t)|p

)
≤ c2

c1
2p
[
1 + ε

1
p−1
]p−1

(1
q

+ 3)E
(
‖ξ‖p

)
+

[
1+ε

1
p−1

]p−1

ε
Lpe

− c3
c22

p−1 t0 sup
qt0≤t≤T

E
(
eqδt|x(t)|p

)
≤ c2

c1
2p
[
1 + ε

1
p−1
]p−1

(1
q

+ 3)E
(
‖ξ‖p

)
+

[
1+ε

1
p−1

]p−1

ε
Lpe

− c3
c22

p−1 t0 sup
qt0≤t≤t0

E
(
eqδt|x(t)|p

)
+

[
1+ε

1
p−1

]p−1

ε
Lpe

− c3
c22

p−1 t0 sup
t0≤t≤T

E
(
eqδt|x(t)|p

)
≤ c2

c1
2p
[
1 + ε

1
p−1
]p−1

(1
q

+ 3)E
(
‖ξ‖p

)
+

[
1+ε

1
p−1

]p−1

ε
Lpe

−( c3
c22

p−1−qδ)t0E(‖ξ‖p)

+

[
1+ε

1
p−1

]p−1

ε
Lpe

− c3
c2
t0 sup
t0≤t≤T

E
(
eqδt|x(t)|p

)
(3.64)

18



Using (3.8) to obtain

e
− c3
c22

p−1 t0E
(
e

c3
c22

p−1 t|x(t)|p
)

≤ c2
c1

2p
[
1 + ε

1
p−1
]p−1

(1
q

+ 3)E
(
‖ξ‖p

)
+

[
1+ε

1
p−1

]p−1

ε
LpE(‖ξ‖p)

+

[
1+ε

1
p−1

]p−1

ε
Lpe

− c3
c22

p−1 t0 sup
t0≤t≤T

E
(
e

c3
c22

p−1 t|x(t)|p
)

≤
[
1 + ε

1
p−1
]p−1

( c2
c1

2p(1
q

+ 3) + Lp

ε
)E(‖ξ‖p) +

[
1+ε

1
p−1

]p−1

ε
Lpe

− c3
c22

p−1 t0 sup
t0≤t≤T

E
(
e

c3
c22

p−1 t|x(t)|p
)

Thus,

(1−
[
1+ε

1
p−1

]p−1

ε
Lp)e

− c3
c22

p−1 t0 sup
t0≤t≤T

E
(
e

c3
c22

p−1 t|x(t)|p
)

≤
[
1 + ε

1
p−1
]p−1

( c2
c1

2p(1
q

+ 3) + Lp

ε
)E(‖ξ‖p) (3.65)

We have

lim
ε→∞

1−
[
1 + ε

1
p−1
]p−1

ε
Lp = 1− Lp > 0.

Then, there exists ε1 > 0 large enough such that

1−
[
1 + ε

1
p−1

1

]p−1
ε1

Lp > 0.

Then, for all T > t0, we have

sup
t0≤t≤T

E
(
e

c3
c22

p−1 (t−t0)|x(t)|p
)
≤

[
1 + ε

1
p−1

1

]p−1
( c2
c1

2p(1
q

+ 3) + Lp

ε1
)

1−
[
1+ε

1
p−1
1

]p−1

ε1
Lp

E(‖ξ‖p) (3.66)

Then, for all t ≥ t0

E
(
e

c3
c22

p−1 (t−t0)|x(t)|p
)
≤

[
1 + ε

1
p−1

1

]p−1
( c2
c1

2p(1
q

+ 3) + Lp

ε1
)

1−
[
1+ε

1
p−1
1

]p−1

ε1
Lp

E(‖ξ‖p) (3.67)

Finally, we obtain

E
(
|x(t)|p

)
≤ C ′e

− c3
c22

p−1 (t−t0)E(‖ξ‖p), (3.68)
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where C ′ =

[
1 + ε

1
p−1

1

]p−1
( c2
c1

2p(1
q

+ 3) + Lp

ε1
)

1−
[
1+ε

1
p−1
1

]p−1

ε1
Lp

Then, in both cases, system (2.1) is p-th moment exponentially stable.

4 Illustrative examples
In this section we will analyze two examples to illustrate the effectiveness of our abstract results.

4.1 Example 1

Let q = 1
4
, S = {1, 2} and the matrix Γ = (γij)1≤i,j≤2 define by

Γ =

(
−1 1
1 −1

)
.

Consider
G(t, x) =

1

7
e−

1
2
(1−q2)t sin(x), (4.1)

Using the mean value theorem to obtain

| sin(x)− sin(y)| ≤ |x− y|.

Then,

|G(t, x)−G(t, y)| ≤ 1

7
e−

1
2
(1−q2)t|x− y|.

Let
d (x(t)−G (t, x(qt))) = f (t, x(t), x(qt), r(t)) dt+ g (t, x(t), x(qt), r(t)) dw(t). (4.2)

f(t, x, y, 1) = −27

4

(
x− 1

7
e−

1
2
(1−q2)t sin(y)

)
, (4.3)

f(t, x, y, 2) = −13
(
x− 1

7
e−

1
2
(1−q2)t sin(y)

)
, (4.4)

g(t, x, y, 1) =
√

2
(
x− 1

7
e−

1
2
(1−q2)t sin(y)

)
, (4.5)

g(t, x, y, 2) = x− 1

7
e−

1
2
(1−q2)t sin(y), (4.6)

V (t, x, 1) = x2 and V (t, x, 2) =
1

2
x2. (4.7)
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We have

Vt(t, x, 1) = 0, Vx(t, x, 1) = 2x, Vxx(t, x, 1) = 2, (4.8)

Vt(t, x, 2) = 0, Vx(t, x, 2) = x and Vxx(t, x, 1) = 1. (4.9)

Then,

LV (t, x(t), x(qt), 1) = −27

2

(
x(t)− 1

7
e−

1
2
(1−q2)t sin(x(qt))

)2
+ 2
(
x(t)− 1

7
e−

1
2
(1−q2)t sin(x(qt))

)2
−1

2

(
x(t)− 1

7
e−

1
2
(1−q2)t sin(x(qt))

)2
= −12

(
x(t)− 1

7
e−

1
2
(1−q2)t sin(x(qt))

)2
. (4.10)

Moreover,

LV (t, x(t), x(qt), 2) = −13
(
x(t)− 1

7
e−

1
2
(1−q2)t sin(x(qt))

)2
+

1

2

(
x(t)− 1

7
e−

1
2
(1−q2)t sin(x(qt))

)2
+

1

2

(
x(t)− 1

7
e−

1
2
(1−q2)t sin(x(qt))

)2
= −12

(
x(t)− 1

7
e−

1
2
(1−q2)t sin(x(qt))

)2
. (4.11)

We have, for i = 1, 2

LV (t, x(t), x(qt), i) = 12
(
− x2(t) +

2

7
e−

1
2
(1−q2)tx(t) sin(x(qt))− 1

49
e−(1−q

2)t sin2(x(qt))
)

≤ 12
(
− x2(t) +

1

2
x2(t) +

2

49
e−(1−q

2)t sin2(x(qt))− 1

49
e−(1−q

2)t sin2(x(qt))
)

= 12
(
− 1

2
x2(t) +

1

49
e−(1−q

2)t sin2(x(qt))
)

= 12
(
− 1

12
6x2(t) +

4

49

1

4
e−(1−q

2)t sin2(x(qt))
)

≤ 12
(
− 1

12
6x2(t) +

1

12

1

4
e−(1−q

2)t sin2(x(qt))
)

≤ −6x2(t) +
1

4
e−(1−q

2)t sin2(x(qt))

≤ −6x2(t) +
1

4
e−(1−q)t sin2(x(qt)). (4.12)

Using
| sin(x)| ≤ |x|, ∀x ∈ R,
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we can obtain

LV (t, x(t), x(qt), i) ≤ −6x2(t) +
1

4
e−(1−q)tx2(qt). (4.13)

We deduce that assumptions 3.1, 3.2 and 3.4 hold with δ = 1, p = 2, q = 1
4
, c1 = c2 =

c3 = c4 = 1. By theorems 3.10 and 3.12, it follows that equation (4.15) admits a unique global
solution and it is mean square exponentially stable.

For system (4.2), we conduct a simulation based on Euler-Maruyama scheme with step size
10−5, for which we set q = 0.25, t0 = 1 and the two initials data ξ1, ξ2 as a linear mapping,
namely ξ1(t) = t2 and ξ2(t) = −1

2
t − 1 for all 0.25 ≤ t ≤ 1. We give a sequence of computer

simulations for system (4.2) as follows. Figure 1 and Figure 3 illustrates the pathwise stability by
simulations of the trajectories of the solution x(t) of system (4.2) with the two different initials
condition ξ1 and ξ2. Choosing p = 2, L = 0.1429, c1 = c2 = c3 = c4 = 1, C = 30.57 and α = 1,
then the simulation result of system (4.2) show the mean square exponential stability of x(t) in
Figure 2 (respectively in Figure 4) with the initial condition ξ1 (respectively ξ2).

Figure 1: Simulation of trajectory of
x(t) of system (4.2) on the interval
[0.25, 5] for ξ1(t) = t2.

Figure 2: Mean square exponential
stability of x(t) of system (4.2) on the
interval [0.25, 9] for ξ1(t) = t2.

4.2 Example 2

Let q = 1
6
, S = {1, 2} and the matrix Γ = (γij)1≤i,j≤2 define by

Γ =

(
−γ γ
1 −1

)
,

where γ > 0. Consider

G(t, x) =
1

10
e−(1−q

2)tx, (4.14)
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Figure 3: Simulation of trajectory of
x(t) of system (4.2) on the interval
[0.25, 5] for ξ2(t) = −1

2
t− 1.

Figure 4: Mean square exponential
stability of x(t) of system (4.2) on the
interval [0.25, 9] for ξ2(t) = −1

2
t− 1.

Let
d (x(t)−G (t, x(qt))) = f

(
t, x(t), x(qt), i

)
dt+ g

(
t, x(t), x(qt), i

)
dw(t). (4.15)

f(t, x, y, 1) = −16
(
x− 1

10
e−(1−q

2)ty
)
, (4.16)

f(t, x, y, 2) = −33
(
x− 1

10
e−(1−q

2)ty
)
, (4.17)

g(t, x, y, 1) =

√
γ
√

2

(
x− 1

10
e−(1−q

2)ty
)
, (4.18)

g(t, x, y, 2) = x− 1

10
e−(1−q

2)ty, (4.19)

V (t, x, 1) = γx2 and V (t, x, 2) =
γ

2
x2. (4.20)

We have

Vt(t, x, 1) = 0, Vx(t, x, 1) = 2γx, Vxx(t, x, 1) = 2γ, (4.21)

Vt(t, x, 2) = 0, Vx(t, x, 2) = γx and Vxx(t, x, 1) = γ. (4.22)

Then,

LV (t, x(t), x(qt), 1) = −32γ
(
x(t)− 1

10
e−(1−q

2)tx(qt)
)2

+
γ2

2

(
x(t)− 1

10
e−(1−q

2)tx(qt)
)2

−γ
2

2

(
x(t)− 1

10
e−(1−q

2)tx(qt)
)2

= −32γ
(
x(t)− 1

10
e−(1−q

2)tx(qt)
)2
. (4.23)
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Moreover,

LV (t, x(t), x(qt), 2) = −33γ
(
x(t)− 1

10
e−(1−q

2)tx(qt)
)2

+
γ

2

(
x(t)− 1

10
e−(1−q

2)tx(qt)
)2

+
γ

2

(
x(t)− 1

10
e−(1−q

2)tx(qt)
)2

= −32γ
(
x(t)− 1

10
e−(1−q

2)tx(qt)
)2
. (4.24)

We have, for i = 1, 2

LV (t, x(t), x(qt), i) = 32γ
(
− x2(t) +

2

10
e−(1−q

2)tx(t)x(qt)− 1

100
e−2(1−q

2)tx2(qt)
)

≤ 32γ
(
− x2(t) +

1

2
x2(t) +

2

100
e−2(1−q

2)tx2(qt)− 1

100
e−2(1−q

2)tx2(qt)
)

= 32γ
(
− 1

2
x2(t) +

1

100
e−2(1−q

2)tx2(qt)
)

= 32γ
(
− 1

16
8x2(t) +

6

100

1

6
e−2(1−q

2)tx2(qt)
)

≤ 32γ
(
− 1

16
8x2(t) +

1

16

1

6
e−2(1−q

2)tx2(qt)
)

≤ −2γ × 8x2(t) + 2γ × 1

6
e−2(1−q

2)tx2(qt)

≤ −2γ × 8x2(t) + 2γ × 1

6
e−2(1−q)tx2(qt). (4.25)

Then, for all γ > 0, assumptions 3.1, 3.2 and 3.4 hold with δ = 2, p = 2, q = 1
6
, c1 = γ

2
, c2 = γ

and c3 = c4 = 2γ. By theorems 3.10 and 3.12, we deduce that equation (4.15) admits a unique
global solution and it is mean square exponentially stable.

For system (4.15), set q = 0.1667, t0 = 0.5 and the two initials data ξ1, ξ2 as a linear mapping,
namely ξ1(t) = t + 1 and ξ2(t) = −1

2
t − 2 for all 0.0833 ≤ t ≤ 0.5. Based on Euler-Maruyama

scheme with step size 10−5, we give a sequence of computer simulations for system (4.15) as
follows. Figure 5 and Figure 7 illustrates the pathwise stability by simulations of the trajectories
of the solution x(t) with the two different initial condition ξ1 and ξ2. Choosing p = 2, γ = 3,
L = 0.1, c1 = 1.5, c2 = 3, c3 = c4 = 6, C = 75.04 and α = 0.0741, then the simulation result
of system (4.15) show the mean square exponential stability of x(t) in Figure 6 (respectively in
Figure 8) with the initial condition ξ1 (respectively ξ2).

In Example 4.1 and 4.2, the simulation results clearly show that the trajectories of the
corresponding stochastic systems converge rapidly to the equilibrium state for any given initial
values, and verify the effectiveness of theoretical results.
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Figure 5: Simulation of trajectory of
the solution x(t) of system (4.15) on
the interval [ 1

12
, 7
2
] for γ = 3 and

ξ1(t) = t+ 1.

Figure 6: Mean square exponential
stability of the solution x(t) of system
(4.15) on the interval [ 1

12
, 10] for γ = 3

and ξ1(t) = t+ 1.

Figure 7: Simulation of trajectory of
the solution x(t) of system (4.15) on
the interval [ 1

12
, 7
2
] for γ = 3 and

ξ2(t) = −1
2
t− 2.

Figure 8: Mean square exponential
stability of the solution x(t) of system
(4.15) on the interval [ 1

12
, 10] for γ = 3

and ξ2(t) = −1
2
t− 2.

5 Conclusion
In this paper we deal with the problem of p-th moment exponential stability of neutral stochastic
pantograph differential equations with Markovian switching. In this work, we have improved the
previous work of [8] by using a new condition on Lyapunov function and the neutral term lead
to the convergence of the solution exponentially to the equilibrium point in p-th moment.
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