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A volume-of-fluid numerical method is used to predict the dynamics of microbubble formation in an
axisymmetric flow-focusing microfluidic device for a gas-liquid system. Numerical results show
that, in all the cases analyzed, the introduction of swirl into the focusing liquid stabilizes the
tapering gas-liquid meniscus from which a steady gas ligament issues. Consequently, a drastic
reduction in the size of bubbles generated by the device is achieved under similar gas and liquid
flow rates. © 2009 American Institute of Physics. �DOI: 10.1063/1.3123533�

I. INTRODUCTION

Research on the production and dynamics of mi-
crobubbles has recently undergone a sudden boost owing to
its biomedical applications. According to Wells,1 one of the
major milestones in medicine was the invention of ultra-
sound imaging. The use of microbubbles has revolutionized
this field owing to their dramatic imaging contrast
enhancement.2 A further application under steady develop-
ment is drug or gene delivery by microbubbles activated by
ultrasound.3,4 Additional possibilities such as blood
oxygenation5,6 and direct injection or perfusion of different
therapeutic gases are being pursued. Depending on the par-
ticular application, the long term stability of these mi-
crobubbles may become a key requirement. It is currently
addressed by the use of lipidic shells7 and the combined use
of perfluorocarbons.5,6 Nonetheless, from the fundamental
physical side, one finds two basic requirements everywhere
in the biomedical literature for these applications:8 �i� suffi-
ciently small size, to avoid embolisms, cloth generation, and
to retard macrophage activation and �ii� size homogeneity
�monodispersity�.

Microbubbles can be produced in large quantities by ul-
trasound irradiation onto a liquid bulk with a free surface,
but this process generates major size disparity and thus de-
mands further operations to sort out the target sizes �see Ref.
9 and references therein�. Recently, electrohydrodynamic jet-
ting has also been proposed for the generation of
microbubbles,10,11 resulting in less polydisperse populations
of smaller bubbles, but it requires the use of high viscosity
liquids. Microfluidics has also been demonstrated to be an
attractive means to mass-produce perfectly monodisperse
microbubbles with selectable size in a wide variety of
liquids.7,12–14 The different microfluidic setups can be classi-
fied into planar13,15 or axisymmetric T junctions16,17 or flow-
focusing schemes.12,18 Flow focusing was initially
proposed19 as a simple means to disperse a given fluid phase
into another immiscible phase �carrier phase� in the form of
corpuscles �droplets� with a small size compared to any other
scale of the generating device. The process resorts to the
formation of a steady liquid microjet20 focused by a coflow-

ing stream of the carrier phase forced through a small aper-
ture �large compared to the droplet size� and yields remark-
able droplet size control: it can be selectable and
homogeneous, at least over a reasonably wide range of con-
ditions. Furthermore, with the same idea of seeking for stable
tapering menisci focused by coflowing streams, flow focus-
ing was proposed for the generation of perfectly monodis-
perse microbubbles as well,12 but in this case no steady cap-
illary jet was observed, at least in the parameter range
explored: the bubbles seemed to be produced just at the apex
of the steady tapering meniscus formed by the focusing liq-
uid stream.

The size of the microbubbles was subsequently shown21

to follow a simple scaling law as

Rb/R = 1.1�Qg/Ql�2/5, �1�

where Rb, R, Qg, and Ql are the bubble and the orifice radii
and the gas and liquid flow rates, respectively. This incom-
plete similarity law22 of the first kind was obtained from the
assumption that local and convective liquid accelerations at
the region where the bubble is formed were, as an average,
of the same order throughout the cycle. Garstecki et al.23

successfully proposed other mechanisms of monodisperse
bubble formation when viscous forces dominate and ex-
plored other regimes where the system exhibited complex
dynamics.24 Clearly though, the sizes of the bubbles formed
were in general significantly smaller when the focused taper-
ing meniscus was steady than in the regimes where it oscil-
lated. Under oscillation, the bubble size is comparable to the
scales of the device �e.g., the aperture or the distance from
the feeding channel to the aperture� as observed in other
flow-focusing cases;25 in the steady regime, the bubble size
is determined by the gas and liquid flow rates.

The width of the parameter range where very small
bubbles are formed was explored by Gañán-Calvo and
Gordillo,12 and Garstecki and co-workers13,14 showing that,
when the gas flow rate was decreased below about 10−2 times
the liquid flow rate, the tapering meniscus oscillated and the
bubble size suddenly increased dramatically. In fact, the sta-
bilization of the tapering meniscus was early seen to be the
key factor to achieve extremely small sizes in flow focusing.
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In the present work, we propose a simple and remark-
ably effective way to enhance the stability of the tapering
meniscus down to relative gas-to-liquid flow rates as small as
1 part in 10 000: the upstream introduction of a coaxial swirl
in the coflowing liquid stream. Accordingly, bubble sizes be-
low 5% of the exit orifice or channel size can be obtained. In
this preliminary work we shall describe the first numerical
results of our novel proposed microbubbling method, show-
ing the chief stabilizing role of the swirl. Following the pro-
cedures established by Gañán-Calvo and co-workers, linear
stability analysis26 and, most importantly, full numerical
Navier–Stokes simulation by the volume-of-fluid �VoF�
method27 are here used to provide physical insight into the
dynamics, explore the parameter space, and determine the
stability limits of the system. In Ref. 27 the numerical VoF
method showed remarkable accuracy in describing and pre-
dicting the most intricate details of interest in moderate-to-
high Reynolds flows with free surface. Again, this work is
naturally not intended to exhaust the subject just discovered,
but on the contrary to foster further investigation form the
very promising results yielded by our numerical exploration.
In this regard, a systematic experimental study by our group
is now under way.

II. GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

The axisymmetric flow-focusing device and the compu-
tational domain used in this work are sketched in Fig. 1. A
constant gas flow rate Qg, flowing through a capillary tube
�outer radius R2, inner radius R1�, is discharged coaxially in a
coflowing liquid stream forced through a coaxial converging
tube of final �discharge� radius R located at a downstream
distance H from the needle edge. The gas stream is then
drawn by a constant flow rate Ql of the focusing swirling
liquid stream flowing through the gap formed between the
needle and the coaxial tube, whose radius upstream of the

discharge of the capillary tube is R3. The liquid is forced into
the downstream tube of smaller radius with the help of a
converging nozzle:

Rnozzle�z� = R3�1 + � cos� �z

H + L
� − �� ,

�2�

� =
R3 − R

2R3
, 0 � z � L + H .

Due to the relatively small pressure variations used, for
the purposes of this work and for simplicity of formulation
the gas is assumed to be incompressible. Therefore, incom-
pressible, axisymmetric, and unsteady Navier–Stokes equa-
tions in cylindrical �z ,r ,�� coordinates are used to describe
the time evolution of both fluids, where u= �w ,u ,v� and p
are the velocity and pressure fields, respectively.

Figure 1 also shows the boundary conditions: �a� at the
gas inlet, z=0, a Hagen–Poiseuille flow, Wg�r�=W1�1
− �r /R1�2� and Vg=0, is specified; �b� at the liquid inlet, z
=0, R2�r�R3, we assume a parabolic profile, Wl�r�
=W2�R3−r��r−R2� / �R3−R2�2, for the axial velocity, while a
solid-body profile, Vl�r�=�r, for the azimuthal velocity is
considered; �c� u=0 on all solid walls; �d� at the axis r=0 a
symmetry condition is applied; and �e� at the pipe exit, z
=zout=L+H+L1, outflow conditions �u /�z=0 are consid-
ered. Note that the corresponding gas and liquid flow rates
can be derived from the inlet velocity field,

Qg = 	
0

R1

2�rWg�r�dr, Ql = 	
R2

R3

2�rWl�r�dr . �3�

Parametric studies of the dimensionless variables in-
volved are carried out next. The velocity field u, lengths,
time t, and pressure p are scaled with the mean axial liquid
velocity at the pipe W=Ql / ��R2�, the discharge tube radius
R, R /W, and �lW

2, respectively, where �l is the density of the
focusing liquid. In this preliminary work, a single geometry
is considered, characterized by the following aspect ratios:
R1 /R=0.533, R2 /R=2, R3 /R=4, H /R=2, L /R=3, and
L1 /R=8. We have chosen a gas-liquid combination where

�l

�g
= 833.33,

�l

�g
= 55.55, �4�

in which �l ��g� and �l ��g� are the density and viscosity of
the liquid �gas�. This choice corresponds to an air stream
drawn by a coflowing water stream. The problem is governed
by a set of four nondimensional numbers as follows.

• The Reynolds and Weber numbers defined as

Re =
�lWR

�l
, �5�

We =
�lW

2R

	
, �6�

	 being the surface tension between the two phases.
• The flow rate ratio Q=Qg /Ql.
• The swirl parameter, S, defined as
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FIG. 1. Simulated boundary geometry and fluid flow domains.
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S =
�R3

2

WR
, �7�

where �R3
2 /R is the characteristic azimuthal velocity

of the liquid at the nozzle.

For a given value of Re and We wish to analyze the
formation of monodisperse bubbles and the dependence of
the flow on the quotient Q and the swirl parameter S. Under
different liquid flow conditions, we will demonstrate that the
smaller monodisperse bubbles are always obtained when the
focusing liquid is swirled �S
0�. We will also show that the
Q range where monodisperse bubbles are possible expands
as the swirl intensity of the focusing liquid increases. Natu-
rally, the swirl effect depends on its persistency and its am-
plification when the liquid stream is forced through the con-
striction and focused into the near-axis region. In turn,
focusing can only be observed when quasistagnant situations
�low Reynolds number, leading to bubble plug flow� are ex-
cluded. Therefore, only moderate-to-high Reynolds numbers
are considered in this work. In particular, we consider here in
detail five different conditions for the focusing liquid:

• Case 1: Re=300, We=16.66.
• Case 2: Re=1200, We=266.66.
• Case 3: Re=1800, We=600.
• Case 4: Re=300, We=33.33.
• Case 5: Re=1200, We=533.33.

For fixed values of R, �l, �l, and 	, cases 1–3 explore an
increase in the liquid flow rate Ql. Cases 4 and 5 represent
the same situation as cases 1 and 2 assuming half the original
value of the surface tension 	. Each case will be explored for
a variety of Q and S values.

III. NUMERICAL PROCEDURE

In order to predict the interface geometry during the time
solution, several techniques have been used, falling into one
of three categories. These are �i� interface tracking methods,
including a moving mesh,28 �ii� front tracking and particle
tracking schemes,29 and �iii� interface capturing methods, in-
cluding VoF �Refs. 30 and 31� and level set techniques.32 We
chose a VoF method consisting of two parts: an interface
reconstruction algorithm to approximate the interface from
the set of volume fractions and a VoF transport algorithm to
determine the volume fraction at the new time level from the
velocity field and the reconstructed front. The basic method
is robust and flexible and is based on widely used VoF
schemes.33–36

We used the commercial solver FLUENT v 6.2 �laminar
unsteady� to resolve the discretized mass continuity, momen-
tum conservation, and liquid volume fraction equations in
the mesh depicted in Fig. 2, generated by the commercial
code GAMBIT in FLUENT v 6.2. The cells are quadrangles,
mostly square. The basic mesh should be sufficiently refined
to capture, in the absence of the gas, the strong velocity
gradients experienced by the liquid flow at the nozzle region.
In the grid shown in Fig. 2 the radial and axial lengths of the
quadrilateral cells are ��z�square= ��r�square=0.0216. Several

numerical tests with smaller size mesh cells have shown that
this accuracy level is comfortably sufficient to describe the
liquid flow pattern for the three cases considered �Re=300,
1200, and 1800� and for the range of values of the swirl
parameter used �0�S�1.2�. All results presented here were
initially computed on that mesh. To avoid numerical diffu-
sion of the interface when a gas stream is supplied, a refined
mesh with quadrilateral cells ��z�square= ��r�square=0.0054
was used in the interfacial region.

Tracking the interface between the phases is accom-
plished by solving a continuity equation for the volume frac-
tion of one of the phases using an explicit time-marching
scheme. The rest of the equations are solved implicitly. The
time steps selected were fixed and sufficiently small to en-
sure that the global Courant number based on the mesh cell
size, the mean velocity in the cell, and the time step was
always smaller than 1. Regarding the spatial discretization of
the equations, the third-order modified monotone upstream-
centered schemes for conservation laws �MUSCL� scheme37

is used to obtain the face fluxes whenever a cell is com-
pletely immersed in a single phase. When the cell is near the
interface, the georeconstruction algorithm is used. The pres-
sure corrections are computed with the body forces weighted
scheme, and the pressure-velocity coupling in a segregated
solver is treated with the pressure-implicit with splitting of
operators �PISO� method.38

IV. NUMERICAL RESULTS

A. Nonswirling case S=0

When there is no swirl, our numerical simulations show
that the bubble generation in the flow-focusing devices is
quite similar for the five cases considered: in all cases and
for any value of the flow rate quotient Q, the bubbles are
generated from a nonsteady gas-liquid meniscus in a bub-
bling regime. To characterize the dripping frequency and size
of the emitted bubbles, the bubble chord radius, defined as
the radius of the instantaneous section of the bubble at the
outlet plane, Rbubble�t�, is computed at each time step by in-
tegrating radially the gas volume fraction � at the outlet of
the device, z=zout,

Rbubble�t� =
2	
0

1

��t,zout,r�rdr . �8�

Figure 3 show this quantity as a function of time for case
1 and four different values of Q. Note that when a bubble is
crossing the outlet, the instantaneous chord radius Rbubble is

FIG. 2. Basic grid of the domain under study.
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positive, while Rbubble=0 otherwise. Each local maximum,
Rbubble

max , provided an estimate of the bubble radius at the out-
let. In fact, if the bubble is completely spherical, the local
maximum of Rbubble gives the exact radius of the bubble. The
figure shows that for the four cases depicted, mostly mono-
disperse bubbles are generated with a constant frequency de-
pending on the flow quotient Q: the larger Q, the smaller the
frequency. Note also that the size of the bubbles increases
slightly with Q. Figures 4�a�–4�f� show an example of the
bubble generation for case 1 and Q=0.010 66, going through
the stages of meniscus growth and bubble emission. The
shape of the gas-liquid interface is computed in the figure as
the isolevel of the gas volume fraction �=0.999, obtained
with the VoF method. Note that, during the pinching process,
a small satellite bubble is generated. For this particular case,
the satellite bubble is absorbed by the main bubble down-
stream in the tube.

The above results for case 1 show that there is a rela-
tively large Q range where monodisperse bubbles can be

generated. The situation is different for cases 2 and 3 where
monodisperse bubbles are obtained only for a very narrow Q
range. In such cases, when Q is increased, the size and num-
ber of satellite bubbles rise sharply. To illustrate this, we
have plotted in Fig. 5 Rbubble as a function of time for case 2
and two different values of Q. Observe that for Q
=0.003 556 satellite bubbles are observed interspersed be-
tween the main bubbles. A comparison between the maxi-
mum values of Rbubble in Figs. 3 and 5 also shows that in case
2 the main bubbles are smaller than in case 1. The size re-
duction in the main bubble is even greater in case 3. This can
be observed in Fig. 6, showing Rbubble as a function of time
for case 3 and two different values of Q. This figure also
shows that, for Q=0.002 370, the bubbling process becomes
quite irregular. The results for cases 1–3 show that, for a
fixed geometry and fixed gas-liquid properties, an increase in
the liquid flow rate Ql yields a reduction in the bubble size
produced but also contracts the Q range where monodisperse
bubbles can be generated.

Let us now focus attention on cases 4 and 5, similar to 1
and 2, respectively, but with halved surface tension. Figure 7
shows Rbubble as a function of time for case 4 and two differ-
ent values of Q. If we compare the results of this figure with
Fig. 3 �case 1� it is readily observed that, for a given value of
Q, the reduction in the surface force leads to a reduction in
the bubble size. The same situation is observed for other
liquid configurations. For example, the results depicted in
Fig. 8 for case 5 clearly show that the bubble radii are
smaller �for the same value of Q� than in case 2 �Fig. 5�.
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B. Swirling case S>0

Our numerical simulations show that, upon introduction
of swirl, the size of the bubbles generated by the flow-
focusing device can be reduced drastically with respect to the
nonswirling case for all the five cases analyzed, and also that
the Q range where monodisperse bubbles are obtained is
expanded. This is caused by the centrifugal forces associated
with the swirl: they help, in a certain range of S, stabilize the
gas-liquid meniscus. To illustrate this statement, Fig. 9 shows
the generation of monodisperse bubbles for case 1, Q
=0.010 67 and S=1.2. Contrarily to the nonswirl results in
the same case �Fig. 4�, the bubbles are emitted from a short
steady gas-liquid meniscus, and their sizes are much smaller.
The effect of the swirl parameter S on the bubble generation
is shown quantitatively in Fig. 10 where Rbubble as a function
of time is depicted for case 1, Q=0.1067, and three values of
S. It can be seen that the bubble size reduction owing to swirl
leads to a rise in the bubble generation frequency for a given
value of Q. We next carried out an extensive study to find the
parameter region where monodisperse bubbles are obtained.
In this parameter region we characterized the size of the
bubbles as a function of Q and S. The exact volume of each
bubble crossing the outlet is computed using the function

Qgas�t� = 	
0

1

��t,z = 13,r�w�t,z = 13,r�2�rdr . �9�

This quantity provides the instantaneous gas flow rate at the
outlet, Qgas, which is zero when there are no bubbles cross-

ing that boundary but positive otherwise. Therefore, if a
bubble is crossing the exit between times t1 and t2, the exact
volume of the bubble, Vbubble, can be computed as

Vbubble = 	
t1

t2

Qgas�t�dt . �10�

With the above function, we have plotted in Fig. 11 the
bubble radius assuming a spherical geometry, Rbubble

S

= �3�Vbubble /4�1/3, as a function of Q for different swirl in-
tensities for case 1 in the parameter region where monodis-
perse bubbles are obtained. Note that, as expected, in all
cases the bubble size increases with Q. When there is no
swirl, the smallest bubble radius obtained for case 1 is about
0.45 times the radius of the tube, while for S=1.2 bubbles of
0.14 times R are obtained. In the figure, only two data points
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for S=1.2 are plotted. The reason is the following: increasing
swirl leads to smaller bubbles, but the introduction of too
much swirl �in this case, S
1.2� leads to multidisperse
bubble breakup. Therefore, as S grows, the Q range for
monodisperse bubbles contracts: there is a low-Q range
where the gas meniscus recoils into the capillary tube, and
there is a high-Q range where satellite drops are produced. In
both cases, multidisperse breakup is the result. As S grows,
the range reduction is observed not only at the upper limit of
the range but also at the lower limit. This is shown in Fig. 12,
which depicts a snapshot of the bubble generated for case 1,
S=1.2, and two values of Q: �a� Q=0.003 55 �lower multid-
isperse range; meniscus recoil� and �b� Q=0.028 44 �upper
multidisperse range�. It is worth noting that, for Q
=0.028 44, a perfectly periodic bubbling regime is observed,
which periodically alternates the emission of a relatively
large bubble with the emission of a much smaller bubble.
This behavior is consistent with the dynamical bifurcation
described in a similar microbubbling system by Garstecki et
al.24

The above results show that the introduction of swirl for
case 1 yields a reduction in the size of the monodisperse
bubbles produced. It was also seen that the swirl must be

kept below a certain level, Smax, to maximize its beneficial
impact. For example, for case 1, Smax�0.9 since although
for S=1.2 it is still possible to produce small bubbles, the Q
range for monodisperse bubble production is smaller. Let us
now explore the effect of swirl in the other four cases con-
sidered in this work. Figure 13 shows the parameter range
where monodisperse bubbling is observed in cases 2 and 3.
As mentioned in Sec. IV A, when there is no swirl �S=0�, it
is possible to obtain smaller bubbles by increasing the liquid
flow rate �for a given geometrical configuration�. In effect,
the figures show that one is able to get bubbles with Rbubble

S

�0.21 for case 2 and with Rbubble
S �0.12 for case 3 in the

absence of swirl. However, the main problem for these two
cases when swirl is absent is that the production of monodis-
perse bubbles is restricted to very small values of Q. Fortu-
nately, as can be gathered from the figure, the introduction of
swirl not only helps get smaller monodisperse bubbles but
also get very small ones with a dramatically increased range
of Q. This means that, for a fixed value of Q, the introduction
of a suitable swirl level allows the frequency of production
to be greatly increased. Note that for case 2 we present re-
sults just up to S=0.375, since the best results are obtained
with S=0.3 �values larger than S=0.375 yield a further de-
crease in the Q range for the production of monodisperse
bubbles�. For case 3, the best results are reached for S=0.2.
As in case 1, in cases 2 and 3 the improvement in the bubble
generation is related to the stabilization of the gas-liquid me-
niscus due to the swirl. This stabilization allows, if the swirl
level lies within a certain range, the bubble generation to
change from a meniscus-oscillating �global dripping� regime
to a jetting regime. Here, we are not stating that the observed
short jet is convectively unstable: indeed, we verified using
well established linear stability analysis models26 that the
short gas ligament exhibited in the cases explored here is
absolutely unstable, which explains its shortness. The pertur-
bations that could theoretically proceed upstream due to the
absolutely unstable nature of that gas ligament seem, how-
ever, blocked by the rapid increase in its radius in the up-
stream direction from the pinching region. For example, Fig.
14 shows the generation of monodisperse bubbles for case 2,
Q=0.000 89 and S=0.3. One observes that small monodis-
perse bubbles are periodically emitted from a short but
steady gas-liquid meniscus. The strong suction effect around
the axis, which provides the acute stabilizing effect just de-
scribed, may even produce the intriguing meniscus topology
which is illustrated in three dimensions in Fig. 14�e�, where
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FIG. 11. Radius of the monodisperse spherical bubbles obtained for case 1
as a function of Q for several values of S.
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FIG. 12. Instantaneous snapshots showing the nonmonodisperse bubbles
generated for case 1, S=1.2 and two values of Q: �a� Q=0.003 55 and �b�
Q=0.028 44.
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and �b� case 3.
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a static axisymmetric “ripple” delimits the conspicuous
stable nipple from whose tip the microbubbles are ejected. A
deeper study of the details of this flow structure is currently
in progress, but we may report in advance that it is a stable
structure which is recovered after the introduction of large
perturbations.

To conclude, we present in Fig. 15 Rbubble
S as a function

of Q for all cases 1–5 studied in this work. Some remarks
about this plot are required. First, in general it can be seen
that the introduction of swirl provides a considerable im-
provement in the generation of monodisperse microbubbles.
Second, one observes that the introduction of swirl brings the
bubble size, for a given Q, right into agreement with the
scaling law proposed by Gañán-Calvo21 with remarkable ac-
curacy and without resorting to any scaling argument involv-
ing the swirl. This apparent paradox can be explained on the
same physical basis as that used before:21 in the region where
bubbles are formed, the dominant dynamical effects are the
local and the convective accelerations driven by the applied
pressure gradient. As long as S�1, the pressure gradient in
the axial direction is dominant and proportional to �lW

2 /R,
while that in the radial direction is at most of the same order
as the former. Thus, the scaling arguments made by
Gañán-Calvo21 are perfectly valid here. The actual funda-
mental role of the swirl when S�1 is to provide a low-
pressure region at the axis �local suction effect� which stabi-

lizes the tapering meniscus from which the gas bubbles
issue. In other words, the role of swirl is subdominant but
provides the route to a stable tapering topology, the only one
producing the smallest bubbles at the highest possible fre-
quency. One may consistently observe that, in those cases
where S surpasses the unity, the bubble sizes fall slightly
below the prediction with subdominant swirl �see the two
points for S=1.2, case 1, in Fig. 15�. In this case, the radial
pressure gradients provided by the swirl surpass �lW

2 /R �the
azimuthal velocities are about 20% larger than the axial
ones� and the effect of swirl becomes dominant, producing a
deviation from the original scaling law.21

In summary, our results indicate that

�i� the introduction of swirl induces the stabilization of
the tapering meniscus with a steady neck or short gas
ligament from which the bubbles issue;

�ii� once the gas ligament is stabilized, the bubble forma-
tion follows the same physics as discussed by
Gañán-Calvo21 as long as S�1, lending support to its
universality; and

�iii� accurate, full numerical simulation seems a perfectly
valid alternative to experiments in this flow regime of
laminar, moderate-to-high Reynolds with free
surfaces.39–42

As a final remark, potential nonaxisymmetric instabili-
ties of the gas jet become unfavored or inhibited by the swirl
action of the coflowing liquid.43 This lends support to choice
of purely axisymmetric simulation in this study.
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