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Abstract
In 2005, Gh. Păun raised an interesting question concerning the role of electrical charges in P systems with active 
membranes from a complexity point of view. Specifically, he formulated a question about the computational efficiency of 
polarization-less P systems with dissolution rules and division rules only for elementary membranes. Several 
approaches have been carried out, and some partial answers have been given. This is probably the most important open 
problem in computational complexity theory in the framework of Membrane Computing. The study of the efficiency of 
membrane systems has been a very fruitful area, providing not only the above-stated partial answers, but also several 
frontiers of efficiency to tackle the P vs NP problem. In this work, a survey on classical and current results on complexity 
aspects is given, emphasizing on the frontiers of efficiency and the ingredients taken into account for each of them.
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1  Introduction

Given an abstract problem, a solution that can be structured 
through a sequence of computational tasks whose execu-
tion provides the correct answer is called a mechanical 
solution or algorithmic solution of the problem. Comput-
ability theory aims to define the concept of mechanical 
solvability in a mathematical context (providing computing 
models) allowing to classify abstract problems according to 
whether they are mechanically solvable (decidable) or not 
(undecidable). Nevertheless, it is interesting to distinguish 
between solvability in principle, with which computability 
theory deals, and solvability in practice, which is a matter 
of obtaining a mechanical procedure that can be executed 
in a computational device using space and time resources 
likely to be available. Computational complexity theory 

deals with the solvability in practice of abstract problems; 
that is, by analyzing the amount of resources needed to exe-
cute a mechanical solution to a problem. This theory aims 
to classify abstract problems according to whether they are 
algorithmically solvable in a reasonable way (tractable) or 
not (intractable). The term reasonable algorithm or feasi-
ble algorithm refers to a mechanical procedure requiring 
computational resources (time or space) bounded above by 
a polynomial function on the size of its inputs in a universal 
computing model (usually, Deterministic Turing Machines).

A computing paradigm is a mathematical theory that 
allows to describe formal mechanical procedures, accord-
ing to certain syntactic and semantic requirements of the 
theory. A computing model consists of a mathematical defi-
nition of the concept of mechanical procedure in such a way 
that it captures the intuitive and informal idea of it; that is, 
a mechanical procedure is a specific case of a computing 
model. From there, it is naturally defined what solving an 
abstract problem in the computer model through mechanical 
procedures, means. Therefore, computing paradigms con-
sist of a formal framework providing computing models. 
Following [11], a computing model is said to be efficient 
(respectively, presumably efficient) if it has the ability to 
provide polynomial-time solutions for intractable prob-
lems (resp., NP-complete problems). The term presumably 
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efficient refers to the fact that, as generally believed, if P ≠ 
NP then each NP-complete problem is an intractable one; 
consequently, under this hypothesis, any presumably effi-
cient computing model would be efficient.

Usually, computational complexity theory in Membrane 
Computing deals with decision problems; that is, problems 
that require a “yes” or “no” answer. Formally, a deci-
sion problem, X, is an ordered pair (IX , �X ) such that IX is a 
language over a finite alphabet whose elements are called 
instances of the problem, and �X is a total Boolean function 
over IX . The solvability of decision problems in a computing 
model is defined through the recognition of the languages 
associated with them (the set of instances whose answer is 
“yes”) by means of mechanical procedures.

Membrane computing is a computing paradigm inspired 
from the structure and the functioning of living cells, as well 
as from the organization of cells in tissues, organs, and other 
higher-order structures. The computing models in this para-
digm are generically called membrane systems or P systems. 
The main syntactical ingredients of a membrane system are: 
(a) a finite alphabet, the working alphabet, whose elements, 
called objects, are abstractions of chemical substances; (b) a 
finite set of processor units delimiting compartments, called 
membranes, cells or neurons, interconnected by a hierarchi-
cal or a graph structure, in such a manner that initially each 
compartment contains a multiset of objects; (c) a finite set 
of rewriting rules, abstractions of chemical reactions, that 
provide the dynamics of the system; and (d) an environ-
ment playing different roles depending on the system you are 
working with. According with the type of structure underly-
ing the systems and the semantics, there are basically three 
types of membrane systems: cell-like membrane systems 
where the compartments are arranged in a labelled rooted 
tree, explicitely given, like in a living cell [28]; tissue-like 
membrane systems with a directed graph structure associ-
ated, implicitly given from the set of rules of the system, 
inspired from the living tissues where cells bump into each 
other and communicate through pores or other membrane 
mechanisms [26, 31, 32]; and neural-like membrane systems 
with a directed graph structure associated, explicitely given, 
aiming to abstract the way the neurons communicate with 
each other processing short electrical impulses, in a complex 
network established by synapses [7].

It is worth noting that the environment plays a singular 
role in some membrane systems where the communication 
rules are of the type symport/antiport, observing the con-
servation law, in the sense that they compute by changing 
the places of objects with respect to the membranes, and 
not by changing the objects themselves. Unlike in other 
membrane systems, in these, the environment plays an 
active role in the sense that the system not only sends 

objects to the environment, but also brings objects from 
the environment. In these membrane systems, there exists 
a special alphabet, associated with the environment, whose 
elements appear at the initial configuration of the system 
in an arbitrary large number of copies.

The paper is organized as follows: in Sect. 2 the defini-
tion of solving decision problems by means of membrane 
systems is recalled. Section 3, some results on cell-like 
membrane systems are recalled, as well as their relation 
with the Păun’s conjecture. In Sect. 4, results concerning 
complexity of tissue P systems are recalled. The paper 
ends with some conclusions of the work and interesting 
open research lines in the field of computational complex-
ity theory in Membrane Computing.

2 � Solving decision problems by means 
of membrane systems

To solve decision problems in the framework of Membrane 
Computing, language recognition devices must be defined. 
In this context, the concept of recognizer membrane sys-
tem has been introduced in [38].

A membrane system is said to be a recognizer system if 
it has the following syntactic and semantic peculiarities: (a) 
the working alphabet has two distinguished objects (yes 
and no); (b) there exist an input alphabet strictly contained 
in the working alphabet and an input compartment; (c) the 
initial content of each compartment is a multiset of objects 
from the working alphabet not belonging to the input alpha-
bet; (d) all the computations of the system halt; and (e) for 
each computation either object yes or object no (but not 
both) must have been released to the environment and only at 
its last step. Recognizer membrane systems have the ability 
to accept or reject multisets over the input alphabet. Spe-
cifically, given a recognizer membrane system Π , for each 
multiset m over the input alphabet, a new initial configura-
tion is obtained by adding the multiset m to the content of 
the input compartment at the initial configuration of Π (the 
system Π with this new initial configuration associated with 
m is denoted by Π + m ). Then, we say that system Π accepts 
(respectively, rejects) the input multiset m if and only if all 
the computations of the system Π + m answer yes (resp. 
no). That is, the system Π + m must be confluent (i.e., all the 
possible computations starting from the initial configuration 
yield to the same result). Let us recall that, while determinis-
tic systems are always confluent, the notion of confluence is 
of particular interest in the case of nondeterministic systems, 
since they are not always confluent.



Following [39], we say that a family � = {Π(n) ∣ n ∈ ℕ} , 
being n the size of the instance, of recognizer membrane 
systems solves a decision problem X in polynomial time 
and uniform way 1 if the family � can be generated by a 
deterministic Turing machine working in polynomial time, 
and there exists a pair (cod, s) of polynomial-time comput-
able functions with regards to n (over the set of instances 
of X) such that the family � is polynomially bounded, 
sound and complete with regard to (X, cod, s) (see [39] for 
details). The function s is such that s−1(n) is a finite set of 
instances of X and cod is the encoding function such that 
for each instance u of the problem X for which s(u) = n , 
it returns a multiset of objects that will be the input of 
the P system Π(n) . Given a computing model R of recog-
nizer membrane systems, ���R denotes the set of deci-
sion problems solvable by families from R in polynomial 
time and uniform way. The class ���R is closed under 
complement and under polynomial-time reduction [39]. 
Thus, if X is a complete problem for a complexity class K 
and X ∈ ���R then we deduce that K∪ co-K ⊆ ���R.

The computing model T  of recognizer basic transition 
P systems consists of a set of cell-like membrane systems 
whose membrane structure does not grow, that is, there are 
no rules producing new membranes in the system. It is well 
known that by using families of these membrane systems 
only problems from class P of computationally tractable 
problems, can be solved in a uniform way and polynomial 
time (see [6] for details). Therefore, the computing model 
T  of recognizer basic transition P systems is non-efficient, 
that is, ���T = � . Consequently, assuming that P ≠ NP, 
the ability of a membrane system to construct an exponential 
workspace (in terms of the number of objects) in polynomial 
time is not enough to provide polynomial-time and uniform 
solutions to NP–complete problems. This ability of creating 
2n objects can be reached by means of evolution rules of the 
type [ ai → a2

i+1
]h , where i will go from 0 to n − 1 , and it will 

create two objects ai+1 from a single object ai at each step.
In membrane computing, there are, basically, two mecha-

nisms to produce an exponential workspace (in terms of the 
number of objects and compartments) in polynomial time. 
These mechanisms are inspired by two relevant processes: 
mitosis and membrane fission. The first one is a process of 
nuclear division in eukaryotic cells during which one cell 
gives place to two genetically identical children cells. Mem-
brane fission occurs when a membrane gives place to two 
separated membranes, that is, whenever a vesicle is produced 
or a larger subcellular compartment is divided into smaller 
discrete units. Specifically, inspired by the mitosis process, 
membrane division rules were defined in the framework of 

cell-like P systems providing computing devices called cell-
like P systems with active membranes [29]. These rules are 
defined as follows: [ a ]h → [ b ]h[ c ]h . For this rule to apply, 
an object a must be present in a membrane labelled by h, 
and through the application of the rule, the membrane is 
divided into two new ones with the same contents than the 
original, but in the first one, changing the object a by an 
object b and in the second one, changing the object a by 
an object c. With respect to the membrane fission process, 
cell-like P systems with membrane separation were intro-
duced in [20]. The definition is similar to division rules: 
[ a ]h → [ Γ0 ]h[ Γ1 ]h . The applicability requisite is the same 
as in division rules, and it creates two new membranes; but 
objects present in the membrane that belong to Γ0 will go 
to the first new membrane while objects that belong to Γ1 
to the second new membrane, being Γ0 and Γ1 predefined, 
where Γ0 ∩ Γ1 = � and Γ0 ∪ Γ1 = Γ . These concepts were 
also considered in the framework of tissue-like P systems: 
tissue P systems with cell division [34] and tissue P systems 
with cell separation [21].

3 � Recognizer cell‑like membrane systems

In this section, the capability of the computing model of 
recognizer membrane systems working in a cell-like manner, 
is recalled from a complexity point of view.

3.1 � P systems with active membranes

The computing model of P systems with active membranes 
was introduced in [29]. These membrane systems have some 
important features: (a) they use three electrical charges; (b) 
the polarization of a membrane but not the label, can be 
modified by the application of a rule; (c) they use division 
rules as a mechanism to produce an exponential workspace, 
expressed in terms of the number of membranes and objects, 
in polynomial time. Consequently, unlike basic transition P 
systems, the membrane structure of these systems can grow 
in an exponential way. This fact becomes relevant in order 
to provide polynomial time and uniform solutions to com-
putationally hard problems by means of families of such 
kind of recognizer P systems, even using only division for 
elementary membranes and without using dissolution rules 
(e.g. Subset Sum [36], Knapsack [35], Partition 
[4], etc.). The computing model of recognizer P systems 
with active membranes using division rules (respectively, 
which do not make use of division rules) is denoted by AM 
(resp., NAM ). Similarly, AM(�, �) , where � ∈ {−d,+d} , 
� ∈ {−ne,+ne} , denotes the computing model of recognizer
P systems with active membranes such that: (a) if � = +d

(resp., � = −d ) then dissolution rules are permitted (resp.,
forbidden); and (b) if � = +ne (resp., � = −ne ) then division

1  Terms uniform and semi-uniform are used similarly to how they are 
used in circuit complexity [50].



rules for non–elementary membranes are permitted (resp., 
forbidden).

From the proof of the Milano theorem [51] (each deter-
ministic P system with active membranes but without mem-
brane division can be simulated by a deterministic Turing 
machine with a polynomial slowdown) and from a proof 
given by A.E. Porreca [44] (each tractable problem can be 
solved in polynomial time by families of recognizer P sys-
tems with active membranes and without input), we have 
���NAM = � . Therefore, assuming that P ≠ NP, the com-
puting model NAM is non-efficient, so in the framework 
of recognizer P systems with active membranes and electri-
cal charges, division rules (only for elementary membranes) 
provide a borderline between tractability and intractability, 
that can be observed in Table 1. Nevertheless, P systems 
with active membranes seem to be too powerful from a com-
plexity point of view. In fact, all decision problems from 
the class PP, for which there is a non-deterministic Turing 
machine, M, accepting an instance u if and only if more 
than half computations of M(u) are accepting ones, is solv-
able in polynomial time and uniform way by a family from 
AM(−d,−ne) [42]. If dissolution rules are allowed then the 
time complexity class ���AM(+d,−ne) equals to the com-
plexity class of all decision problems recognizable in poly-
nomial time by deterministic Turing machines with oracles 
for #� (see [23] for details), that is, ���AM(+d,−ne) = �#� 
[8, 45]. As it is known, �� ∪ �� − �� ⊆ �#� , therefore, a 
frontier of efficiency is found in the use of division rules 
in P systems with active membranes. If division for non-
elementary membranes is also allowed then the complex-
ity class ���AM(+d,+ne) characterizes ������ , that is, 
������ = ���AM(+d,+ne) [46]. Therefore, it would be 
interesting to remove some ingredients from P systems with 
active membranes in order to obtain new frontiers of the 
efficiency. Each of such boundaries will provide tools that 
hopefully could lead to the separation of well known com-
plexity classes, thus solving long-standing open problems.

3.2 � Polarizationless P systems with active 
membranes

First, we analyze the possible substitution of electrical 
charges for catalysts, resembling their behavior in chemi-
cal reactions, acting as “enablers”, in the sense that they 
provoke the reaction but do not change, and the reduction 
of the number of possible polarizations from three to two.

In this context, two interesting cases were considered by 
replacing electrical charges, first with the so called bi-stable 
catalysts [41]; and second, with only two polarizations [1]. 
Note that, in contrast to [25], the bi-stable catalysts are not 
always flip-floping from non-barred to barred versions and 
back, but also rules of the form ca → cw and c̄a → c̄w are 
allowed, where a is a single object, and w is a multiset. On 
one hand, the computing model of recognizer polarization-
less P systems with active membranes without dissolution 
rules but allowing division rules only for non-elementary 
membranes and also allowing the use of bi-stable catalysts, 
are presumably efficient (see [41] for details). On the other 
hand, if only two electrical charges are considered then com-
putational hard problems can be solved in polynomial time 
and in a uniform way by families of these systems [1]. Let 
these classes of P systems be denoted by AM

c and AM
+ , 

respectively.
Therefore, it seems like it might be interesting to ana-

lyze the computational efficiency of P systems with active 
membranes in the case that only one (or equivalently, with-
out) electrical charge is considered. In this context, at the 
beginning of 2005, Gh. Păun wrote: “My favorite question 
(related to complexity aspects in P systems with active mem-
branes and with electrical charges) is that about the num-
ber of polarizations. Can the polarizations be completely 
avoided? The feeling is that this is not possible—and such a 
result would be rather sound: passing from no polarization 
to two polarizations amounts to passing from non-efficiency 
to efficiency” (problem F from [30]). This is the so-called 
Păun’s conjecture that can be expressed as follows: the com-
puting model of polarizationless P systems with active mem-
branes which make use of division rules only for elementary 
membranes, is non-efficient. In some sense, the Păun’s con-
jecture attempts to provide a boundary between the tracta-
bility and the presumed intractability of problems. This is 
of a great relevance since each of these boundaries will, in 
turn, provide a tool for attacking the P versus NP problem, 
which is undoubtedly one of the most important problems in 
Computer Science. In this paper, we emphasize the duality 
between the formulation of the Păun’s conjecture and the 
search for the boundaries mentioned above.

In what follows, the following notations will be used: 
DAM

0(�, �) (resp., SAM
0(�, �) ) denotes the computing 

model of recognizer polarizationless P systems with active 
membranes and membrane division (resp. membrane separa-
tion) rules. We recall that: (a) if � = +d (resp., � = −d ) then 
dissolution rules are permitted (resp., forbidden); and (b) if 
� = +ne (resp., � = −ne ) then division rules for non-ele-
mentary membranes are permitted (resp., forbidden). In this
context, the Păun’s conjecture can be formalized in terms of
time complexity classes of recognizer membrane systems, as
follows: � = ���DAM

0(+d,−ne) . Thus, an affirmative answer
to the conjecture would indicate that the ability to create

Table 1   Frontiers of efficiency in P systems with active membranes

Non-efficient Presumably efficient Type of frontier

���NAM ���AM(−d,−ne) Division rules



an exponential amount of workspace (expressed in terms 
of the number of membranes and objects) in polynomial 
time, is not enough in order to solve computationally hard 
problems efficiently. Conversely, a negative answer to the 
conjecture would provide a borderline between tractability 
and intractability (assuming that P ≠ NP): division rules for 
non-elementary membranes. In [5], the non-efficiency of P 
systems from AM

0(−d,+ne) was demonstrated, giving a 
partial positive answer to the conjecture. In [2], a partial 
negative answer was given by means of a polynomial-time 
solution with a family of P systems from AM

0(+d,+ne) . A 
particular case of the conjecture, where systems are mono-
directional and deterministic was studied in [9], where they 
were demonstrated to be non-efficient systems; that is, only 
problems from class P can be solved efficiently by means of 
this kind of membrane systems (Table 2).

3.3 � P systems with symport/antiport rules

A kind of cell-like P systems that use communication rules 
capturing the biological phenomenon of trans-membrane 
transports of several chemical substances was introduced in 
[27]. Specifically, two processes were considered. The first one 
(symport process) allows a multiset of chemical substances to 
pass through a membrane in the same direction. In the second 
one (antiport process), two multisets of chemical substances 
(located in two adjacent biological membranes) only pass with 
the help of each other (an exchange of objects between both 
membranes). Division rules and separation rules are defined in 
a similar manner as in P systems with active membranes. The 
environment of a P system with symport/antiport rules can be 
active or passive. If the environment is active (P systems with 
environment), it can receive and send objects, interacting with 
the skin membrane, with a predefined set of objects which will 
be located in the environment with an infinite multiplicity. If 
the environment is passive (P systems without environment) 
can only receive objects from the system, but cannot send 
them back into the system again. Besides, the environment 
alphabet is empty. Let us denote by CC the computing model 
of recognizer basic cell-like P systems with only communica-
tion (symport/antiport) rules. For each natural number k ≥ 1 , 
CDC(k) (resp., CSC(k) ) denotes the computing model of rec-
ognizer cell-like P systems with membrane division (resp., 
membrane separation) and with communication (symport/

antiport) rules of length at most k (the length of a communi-
cation rule is the total number of objects involved in it). The 
corresponding computing models associated with cell-like P 
systems without environment will be denoted by ĈDC(k) and 
ĈSC(k) , respectively.

On one hand, as a particular case of computing model of 
recognizer membrane systems whose membrane structure 
does not grow, the non-efficiency of the computing model CC , 
associated with recognizer basic cell-like P systems with only 
symport/antiport rules, is obtained. On the other hand, the 
non-efficiency of the computing model CDC(1) and CSC(1) , 
associated with recognizer P systems with membrane division 
or membrane separation, using only symport rules with length 
one, was established in [13]. Moreover, the non-efficiency of 
the computing model CSC(2) was established in [49]. With 
respect to the presumed efficiency of these computing mod-
els, in the context of membrane separation rules, it suffices 
to consider symport/antiport rules with length at most three 
[12], whereas using membrane division rules it is enough to 
consider symport/antiport rules with length at most two [19, 
48]. Therefore, the computing models CDC(2) and CSC(3) are 
presumably efficient.

At this point, it seems interesting to analyze the role that 
the environment plays from a complexity point of view. First, 
with respect to the computing models associated with recog-
nizer cell-like P systems with membrane division, a surprising 
result was obtained [17]: for each natural number k ≥ 1 , we 
have ���CDC(k) = ���

ĈDC(k)
 , that is, to obtain the time com-

plexity class associated with the computing model CDC(k) , 
the role of the environment is irrelevant. Nevertheless, in the 
case of P systems with membrane separation, the situation is 
completely different: for each natural number k ≥ 1 we have 
���

ĈSC(k)
= � [11]. The frontiers of efficiency obtained in 

this framework have been summarized in Table 3.

4 � Recognizer tissue‑like membrane systems

In this section, the capability of the computing model of rec-
ognizer membrane systems working in a tissue-like manner, 
is analyzed from a complexity point of view.

Table 2   Frontiers of efficiency in P systems with active membranes 
with less than three polarizations

Non-efficient Presumably efficient Type of frontier

���DAM
0(−d,−ne) ���AM

c(−d,−ne) Catalysts
���DAM

0(−d,−ne) ���AM
+(−d,−ne) Number of polarizations

���DAM
0(−d,+ne) ���DAM

0(+d,+ne) Dissolution rules

Table 3   Frontiers of efficiency in P systems with symport/antiport 
rules

Non-efficient Presumably efficient Type of frontier

���CC ���CDC Division rules
���CC ���CSC Separation rules
���CDC(1) ���CDC(2) Length of rules
���CSC(2) ���CSC(3) Length of rules
���

ĈSC(k)
, k ≥ 2 ���

ĈDC(k)
, k ≥ 2 Type of rules

���
ĈSC(k)

, k ≥ 3 ���CSC(k), k ≥ 3 Environment



Networks of membranes, which compute by commu-
nication only in the form of symport/antiport rules, were 
considered in [33]. In this computing paradigm, cells are 
connected through channels, where chemical substances go 
from one cell to another one across channels, in the same or 
opposite directions. Such rules are used both for communi-
cation with the environment and for direct communication 
between different membranes. It is worth noting that in such 
a system the environment plays an active role, because not 
only objects can be sent outside the system, but also objects 
can be brought into the system from the environment.

With respect to the tissue-like computation models, 
from the seminal definitions of tissue P systems [14, 15], 
one of the most interesting variants of tissue P systems was 
presented in [34]. In that paper, the definition of tissue P 
systems with symport/antiport rules is combined with the 
one of P systems with active membranes, yielding tissue P 
systems with cell division. Membrane fission was introduced 
into tissue P systems with symport/antiport rules through 
cell separation rules yielding tissue P systems with cell sepa-
ration [21].

4.1 � Tissue P systems with symport/antiport rules

Let TC be the computing model of recognizer basic tissue-
like P systems with only communication (symport/antiport) 
rules. For each natural number k ≥ 1 , TDC(k) (resp., TSC(k) ) 
denotes the computing model of recognizer tissue-like P sys-
tems with membrane division (resp., membrane separation) 
and with symport/antiport rules of length at most k. The 
corresponding classes associated with tissue-like P systems 
without environment will be denoted by T̂DC(k) and T̂SC(k) , 
respectively.

On one hand, as a particular case of computing model of 
recognizer membrane systems whose membrane structure 
does not grow, the non-efficiency of the computing model 
TC , associated with recognizer basic tissue-like P systems 
with only symport/antiport rules, is obtained. On the other 
hand, the non-efficiency of the computing model TDC(1) and 
TSC(1) , associated with recognizer tissue P systems with 
division or separation rules, using communication (symport/
antiport) rules with length one, was established in [3]. More-
over, the non-efficiency of the computing model TSC(2) was 
established in [22]. With respect to the presumed efficiency 
of these computing models, in the context of membrane sep-
aration rules it suffices to consider symport/antiport rules 
with length at most three [40], whereas using membrane 
division rules it is enough to consider symport/antiport rules 
with length at most two [43]. Therefore, the computing mod-
els TDC(2) and TSC(3) are presumably efficient.

At this point, it seems interesting to analyze the role that 
the environment plays from a complexity point of view. 
First, with respect to the computing models associated 

with recognizer tissue P systems with membrane divi-
sion, a similar surprising result was obtained for tissue 
P systems  [37]: for each natural number k ≥ 1 we have 
���TDC(k) = ���

T̂DC(k)
 , that is, to obtain the time com-

plexity class associated with the computing model TDC(k) , 
the role of the environment is irrelevant. Nevertheless, in 
the case of tissue with membrane separation, the situation 
is completely different: for each natural number k ≥ 1 , we 
have ���

T̂SC(k)
= � [10].

It is worth pointing out that with respect to the analysis of 
the efficiency or presumed efficiency of computing models 
of recognizer membrane systems, the rooted tree structure, 
associated with cell-like membrane systems, or the directed 
graph associated with tissue-like membrane systems, do not 
play a relevant role. Therefore, the underlying structure of a 
membrane system does not matter from a complexity point 
of view. This can be observed in Table 4. As it can be seen 
in Table 3, the results are surprisingly the same, therefore the 
underlying structure of the system does not seem to affect 
the computational power of the systems.

4.2 � Evolutional symport/antiport rules

Based on the communication of cells within a living tis-
sue, where objects can evolve when rules are applied, 
a new variant of tissue P systems has been introduced 
in [47]. The concepts of symport and antiport are still 
present in this framework, in the sense that if objects are 
transported in one direction, it is called a symport rule, 
denoted by [ u ]i[ ]j → [ ]i[ u

� ]j , while if objects are 
interchanged in two directions it is called antiport rules, 
denoted by [ u ]i[ v ]j → [ v� ]i[ u

� ]j . Let us denote by TEC 
the computing model of recognizer basic tissue P systems 
with evolutional communication (symport/antiport) rules. 
For each natural number k ≥ 1 , TDEC(k) (respectively, 
TSEC(k) ) denotes the computing model of recognizer tis-
sue P systems with cell division (resp., cell separation) 
and with evolutional communication rules such that the 
total number of objects implied in these rules is at most k. 
For each pair of natural numbers k1, k2 ≥ 1 , TDEC(k1, k2) 
(respectively, TSEC(k1, k2) ) denotes the computing model 

Table 4   Frontiers of efficiency in tissue P systems with symport/anti-
port rules

Non-efficient Presumably efficient Type of frontier

���TC ���TDC Division rules
���TC ���TSC Separation rules
���TDC(1) ���TDC(2) Length of rules
���TSC(2) ���TSC(3) Length of rules
���

T̂SC(k)
, k ≥ 2 ���

T̂DC(k)
, k ≥ 2 Type of rules

���
T̂SC(k)

, k ≥ 3 ���TSC(k), k ≥ 3 Environment



of evolutional communication rules with length at most 
(k1, k2) , being the length a pair of natural numbers defined 
by the number of objects in the left-hand side of the rule 
and in the right-hand side of the rule, respectively, and cell 
division (resp., cell separation).

The non-efficiency of membrane systems from TEC is 
proven in a similar way to their non-evolutional counter-
parts. In [47], the computational power of this kind of P 
systems where cell division is allowed is studied. Moreo-
ver, the non-efficiency of P systems where the lengths of 
the rules is at most 2 is demonstrated; that is, the non-effi-
ciency of TDEC(2) is demonstrated. In the same work, an 
efficient solution to the SAT problem is given by a family 
of membrane systems from TDEC(4) . Moreover, observing 
the solution, these systems can be considered to be from 
TDEC(3, 2) , since there are rules which left-hand side has 
length 3, and there are other rules whose right-hand side 
has length 2. However, there are not any rules whose left-
hand side length is 3 and whose right-hand side length is 
2 at the same time, as indicated with k = 4.

In [24], separation rules were studied in this comput-
ing model, providing a proof of the non-efficiency of the 
classes TSEC(1, n) and TSEC(n, 1) (for each n ≥ 1 ), as well 
the presumed efficiency of the class TSEC(3, 2) by provid-
ing an efficient solution to SAT by a family of these sys-
tems. This solution is, in fact, considered to be in TSEC(4) . 
In [16], a better solution to the problem SAT in terms of 
the length of the rules is given. More precisely, an efficient 
solution is given by a family of tissue P systems from 
TSEC(2, 2) , reducing the length of the left-hand side of 
the rules to 2.

Thinner frontiers were given in [18], where the classes 
TDEC(1, n) for n ≥ 1 are proven to be non-efficient, and the 
classes TDEC(2, 1) and TSEC(2, 2) are proven to be presum-
ably efficient. These results give new and thinner frontiers 
of efficiency in the framework of tissue P systems with 
evolutional communication rules. These frontiers have 
been summarized in Table 5.

5 � Conclusions and future work

The study of computational complexity theory is one of 
the most active research lines in the framework of Mem-
brane Computing. Several results are continuously emerg-
ing, each of them possibly providing another tool to tackle 
the P vs NP problem. One of the most important open 
problems in this area is the so-called Păun conjecture, that 
states � = ���AM

0(+d,−ne) . Different approaches to this 
problem have been carried out, none of them giving a total 
answer. However, each of the partial solutions provide new 
developments in this field.

It seems interesting to think about all the possibili-
ties of membrane systems as problem solvers, given their 
intrinsic massive parallelism. In this sense, providing new 
solutions with less ingredients would be ideal to get them 
implemented in highly parallel platforms. An interesting 
research line is to search for classes of P systems similar to 
AM

0(+d,−ne) , to check which problems can be solved by 
means of families of P systems from these classes. Another 
breaking research line would be to find a novel technique 
to prove properties of P systems from AM

0(+d,−ne).
Finding new frontiers of efficiency is crucial for the 

search of new tools to attack the � ≠ �� conjecture. For 
instance, in the computing paradigm of tissue P systems 
with evolutional communication rules, is TSEC(3) an effi-
cient computing model? Another interesting idea would 
be to understand the role of the environment in this kind 
of systems, and to translate the results of tissue P systems 
with evolutional communication rules to cell-like mem-
brane systems so we could compare their relation with 
their non-evolutional counterparts.
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