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Abstract. Tissue P systems are a class of distributed parallel computing devices inspired by bio-
chemical interactions between cells in a tissue-like arrangement, where objects can be exchanged 
by means of communication channels. In this work, inspired by the biological facts that the 
movement of most objects through communication channels is controlled by proteins and proteins 
can move through lipid bilayers between cells (if these cells are fused), we present a new class of 
variant tissue P systems, called tissue P systems with protein on cells, where multisets of objects 
(maybe empty), together with proteins between cells are exchanged. The computational power of 
such P systems is studied. Specifically, an efficient (uniform) solution to the SAT problem by using 
such P systems with cell division is presented. We also prove that any Turing computable set of 
numbers can be generated by a tissue P system with protein on cells. Both of these two results are 
obtained by such P systems with communication rules of length at most 4 (the length of a 
communication rule is the total number of objects and proteins involved in that rule).
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1. Introduction

Membrane computingis a nature inspired computational paradigm initiated by Gh. Păun at the end of
1998 [1]. The aim is to abstract computing ideas from the role of membranes in compartmentaliza-
tion of living cells and the behavior of some cellular processes. The obtained models are distributed
and parallel computing devices, usually calledP systems. An essential ingredient of a P system is its
membrane structure, which can be a hierarchical arrangement of membranes, as in a cell [1], or a net
of membranes (placed in the nodes of a graph), as in a tissue [2] or a spiking neural network [3] and
its variants [4, 5, 6, 7, 8, 9]. For main information of P systems on both the general level and technical
level, please refer to [10]; for up-to-date information of this area, one may view the P systems website
http://ppage.psystems.eu for details. The present work deals with a class of tissue-like P systems.

Tissue-like P systems have the membrane structures that are described by directed graphs, where
membranes (also calledcells) are placed in nodes of a graph. An arc between two nodes corresponds to
a communication channel between cells placed in these nodes. Objects can communicate between two
cells or between a cell and the environment if the communication channels exist. The communication
of tissue P systems is based on symport/antiport rules [11]. Symport rules move objects across a cell
together in one direction, whereas in the case of antiport rules, objects residing at both sides of the cell
cross it simultaneously but in opposite directions.

Many variants of tissue-like P systems have been developed (see, e.g., [12, 13, 14]). An interesting
variant of tissue P systems, calledtissue P systems with cell division, was proposed in [15], where the
biological inspiration of such computing model is obvious: alive tissues are not static network of cells,
since cells are duplicated via mitosis in a natural way. Cell division is an efficient approach for obtaining
exponential workspace in polynomial time by trading space for time, therefore, it is natural to investigate
the computational efficiency of tissue P systems with cell division. The first attempt in this topic was done
in [15], a polynomial time uniform solution to theSAT problem was presented. In a series of subsequent
works, tissue P systems with cell division were also considered to solve otherNP-complete problems,
such as vertex cover problem [16], subset sum problem [17], 3-coloring problem [18], independent set
problem [19].

From biological point of view, most of the reactions (permeate certain types of molecules through
communication channel, cell division, etc.) taking place in cells are controlled by proteins, which have
two main types with respect to the way they are associated to the lipid bilayer:peripheral proteins,
placed on one side of a membrane, internal or external, andintegral proteins (also calledtransmembrane
proteins), which have parts of the molecule on both sides of the membrane. Another biological fact is
that some of proteins on cells are not static, they can move through lipid bilayers between cells if these
cells are fused. Furthermore, in cell biology, membrane proteins perform a variety of functions vital to
the survival of organisms [20] and the proteins constitute about half of the mass of the membranes in the
animal cells [21]. Thus, it is rather natural to consider the role of proteins in tissue P systems.

In this work, with the above mentioned biological facts, proteins are introduced into tissue P systems,
and we present a class of tissue P systems with protein on cells, where there is one and only one copy of
protein placed on each cell at the beginning of computation (in fact, during the process of computation,
each cell also contains one and only one protein). If a communication rule between two cells is applied,
then the multisets of objects together with the proteins are exchanged (in this case, multisets of objects
can be empty, that is, it allows that only the proteins are exchanged between two cells); if a communica-
tion rule between a cell and the environment is applied, then only multisets of objects between the cell



and the environment are exchanged (in this case, at least one of multisets of objects is non-empty). The
computational power of this kind of P systems is studied. Specifically, we present an efficient (uniform)
solution to theSAT problem by using such P systems with cell division. We also prove that any Turing
computable set of numbers can be generated by a tissue P system with protein on cells. Both of these
two results are obtained by such P systems with communication rules of length at most 4 (the length of
a communication rule is the total number of objects and proteins involved in that rule).

2. Preliminaries

In this section, we only introduce a few basic notions and notations from formal languages theory. Read-
ers can refer to [22] for details.

An alphabetΣ is a non–empty set and its elements are calledsymbols. An ordered finite sequence
of symbols forms astring or word. The number of symbols in a stringu is thelengthof the string, and it
is denoted by|u|. As usual, the empty string (with length 0) will be denoted byλ. The set of all strings
over an alphabetΣ is denoted byΣ∗ and byΣ+ = Σ∗ \ {λ} we denote the set of non-empty strings. A
languageoverΣ is a subset ofΣ∗.

A multisetm over an alphabetΣ is a pair(Σ, f) wheref : Σ → N is a mapping fromΣ to the set
of non-negative numberN. Let m1 = (Σ, f1), m2 = (Σ, f2) are multisets overΣ, then we define the
union ofm1 andm2 asm1 +m2 = (Σ, g), whereg(x) = f1(x) + f2(x). The relative complementof
m2 in m1, denoted bym1 \m2 is the multiset(Σ, g), whereg(x) = f1(x) − f2(x) if f1(x) ≥ f2(x),
and g(x) = 0 otherwise.

In what follows, we introduce the notion ofregister machines, which are used to the characterization
of NRE (the family of sets of numbers which are Turing computable).

Definition 2.1. A register machine is a tupleM = (m,H, l0, lh, I), where:

• m is the number of registers;

• H is a set of labels;

• l0, lh ∈ H are distinguished labels, wherel0 is the initial, andlh is the halting one;

• I is a set of labelled program instructions of the following forms:

– li : (ADD(r), lj , lk) (add 1 to registerr and continue with one of the instructions with labels
lj , lk, non-deterministically chosen);

– li : (SUB(r), lj , lk) (if registerr is non-zero, then subtract 1 from it, and go to the instruction
with label lj; otherwise, go to the instruction with labellk);

– lh : HALT.

A register machineM generates a setN(M) of numbers in the following way: the machine starts
with all registers being empty (i.e., storing the number zero); the machine applies the instruction with
labell0 and continues to apply instructions as indicated by the labels (and made possible by the contents
of registers); if it reaches the halt instruction, then the numbern presented in the specified register 1 at
that time is said to be generated byM . If the computation does not halt, then no number is generated. It



is known that register machines generate all sets of numbers which are Turing computable, hence they
characterizeNRE [23].

We use the following convention. When comparing the power of two number computing devices,
the number zero is ignored. Thus, when we say that a setQ is in NRE, we do not care whether or not
0 ∈ Q (this corresponds to the usual practice of ignoring the empty string when comparing the power of
two grammars or automata).

3. Tissue P Systems with Protein on Cells and Cell Division

The model of tissue P systems with protein on cells is based on the model of P systems with proteins
on membranes [24]. These two kinds of models have some differences. In our model, proteins on
cells cannot change, but they can move together with multisets of objects; however, in the model of P
systems with proteins on membranes, proteins on cells can be changed, but they cannot move between
membranes. Both of these models allow membrane division rules.

Definition 3.1. A tissue P system with protein on cells of degreeq ≥ 1 is a tupleΠ = (Γ, P, E ,M1/p1,
. . . ,Mq/pq,R, iout), where:

• Γ andP are finite non-empty alphabets such thatΓ ∩ P = ∅;

• E is a finite alphabet such thatE ⊆ Γ;

• Mi, 1 ≤ i ≤ q, are finite multisets overΓ;

• pi, 1 ≤ i ≤ q, are elements inP ;

• R is a finite set of communication rules of the following forms:

(a) (i, (pi, u)/(pj , v), j), for i, j ∈ {1, . . . , q}, i 6= j, pi, pj ∈ P , u, v ∈ Γ∗.

(b) (i, (pi, u)/v, 0), for i ∈ {1, . . . , q}, pi ∈ P , u, v ∈ Γ∗, |uv| > 0.

• iout ∈ {0, 1, . . . , q}.

Definition 3.2. A tissue P system with protein on cells and cell division of degreeq ≥ 1 is a tuple
Π = (Γ, P, E ,M1/p1, . . . ,Mq/pq,R, iout), where all components are as in a tissue P system with
protein on cells, andR is a finite set of rules, which contains communication rules of the forms(a), (b)
as mentioned in Definite 3.1, and division rules of the form:

(c) [ pi | a ]
i
→ [ p′i | b ] i[ p

′′
i | c ]

i
, for i ∈ {1, 2, . . . , q}, pi, p′i, p

′′
i ∈ P , a, b, c ∈ Γ, i 6= iout.

A tissue P system with protein on cells (and cell division) of degreeq ≥ 1 can be viewed as a set ofq
cells, labelled by1, . . . , q, such that: (a)M1, . . . ,Mq represent the finite multisets of objects (symbols
of the alphabetΓ) initially placed in theq cells of the system; (b)p1, . . . , pq represent one and only one
copy of protein (symbols of the alphabetP ) initially placed on theq cells of the system; (c)E is the set
of objects initially located in the environment of the system, all of them available in an arbitrary number
of copies; and (d)iout represents a distinguishedzonewhich will encode the output of the system. We
use the termzonei (0 ≤ i ≤ q) to refer to celli in the case of1 ≤ i ≤ q and to refer to the environment



in the case ofi = 0. The length of a communication rule is the total number of objects and proteins
involved in that rule.

A configurationof a tissue P system with protein on cells (and cell division) at any instant is described
by all multisets of objects overΓ associated with all the cells present in the system, all the proteins
presented on all cells, and the multiset of objects overΓ \ E associated with the environment at that
moment. Bearing in mind the objects fromE have infinite copies in the environment, they are not
properly changed along the computation. Theinitial configurationis (M1/p1, . . . ,Mq/pq; ∅).

A communication rule of type(i, (pi, u)/(pj , v), j) is applicable to a configuration at an instant if
cell i contains the proteinpi and the multisetu of objects, cellj contains the proteinpj and the multiset
v of objects (multisetsu, v may be empty). When applying such a rule, under the control of the proteins
pi on cell i and pj on cell j, both the proteinpi and the multisetu of objects are sent from regioni to
regionj, and simultaneously, the proteinpj and the multisetv of objects are sent from regionj to region
i; a particular case is(i, (pi, λ)/(pj , λ), j), where only proteins change their places. A communication
rule of type(i, (pi, u)/v, 0) is applicable to a configuration at an instant if celli contains the proteinpi
and the multisetu of objects, the environment contains the multisetv of objects (at least one of multisets
u, v is non-empty). When applying such a rule, under the control of the proteinpi on cell i, the multiset
u of objects are sent from regioni to the environment, and simultaneously, the multisetv of objects are
sent from the environment to regioni.

A division rule [ pi | a ]
i
→ [ p′i | b ] i[ p

′′
i | c ]

i
is applicable to a configuration at an instant if celli

contains the proteinpi and the objecta. When applying such a rule, under the influence of proteinpi on
cell i and the objecta in cell i, the cell is divided into two cells with the same label; in the first copy of
the cell the proteinpi is replaced byp′i and the objecta is replaced byb, in the second copy of the cell
the proteinpi is replaced byp′′i and the objecta is replaced byc; all the remaining objects in the original
cell are replicated and distributed in each of the new cells.

Rules of a system like the above one are used in a maximally parallel way: at each step, all cells
which can evolve must evolve in a maximally parallel way (at each step we apply a multiset of rules
which is maximal, no further rule can be added being applicable). This way of applying rules has only
one restriction: when a cell is divided, the division rule is the only one which is applied to that cell at that
step. In other words, division rule for that cell interrupts all its communication channels with the other
cells and with the environment. The new cells resulting from division could participate in the interaction
with other cells or the environment by means of communication rules at the next step – providing that
they are not divided once again. The label of a cell precisely identifies the rules which can be applied to
it.

Let us fix a tissue P system with protein on cells (and cell division)Π, we byC1 ⇒Π C2 denote
that configurationC1 yields configurationC2 in one transition step by a maximally parallel application of
rules as described above. A configuration is ahalting configurationif no rule of the system is applicable
to it. A computationis a (finite or infinite) sequence of configurations such that: (1) the first term of the
sequence is the initial configuration of the system; (2) each non-first term of the sequence is obtained
from the previous configuration by applying rules of the system in a maximally parallel manner with the
restrictions previously mentioned; and (3) if the sequence is finite (calledhalting computation) then the
last term of the sequence is a halting configuration.

All the computations start from an initial configuration and proceed as stated above; only a halting
computation gives a result, which is encoded by the objects present in the output zoneiout associated
with the halting configuration.



By collecting the results of all possible computations inΠ we obtain the set of natural number
generated byΠ, denoted byN(Π). The families of all sets of numbers computed by tissue P systems
with protein on cells with at mostm membranes and communication rules of length at mostk are denoted
by NOPm(commuk).

3.1. Recognizer Tissue P Systems with Protein on Cells and Cell Division

In order to study the computing efficiency, the notions from classicalcomputational complexity theoryare
adapted for membrane computing. A class of cell-like P systems, recognizer P systems, is introduced in
[25]. With the same idea as for recognizer cell-like P systems, recognizer tissue P systems are introduced
in [15].

Definition 3.3. A recognizer tissue P system with protein on cells and cell division of degreeq ≥ 1 is a
tupleΠ = (Γ, P,Σ, E ,M1/p1, . . . ,Mq/pq,R, iin, iout), where:

• the tuple(Γ, P, E ,M1/p1, . . . ,Mq/pq,R, iout) is a tissue P system with protein on cells and cell
division of degreeq ≥ 1;

• the working alphabetΓ has two distinguished objectsyes andno, with at least one copy of them
presents in some initial multisetsM1, . . . ,Mq, but none of them present inE ;

• Σ is an (input) alphabet strictly contained inΓ, and such thatE ⊆ Γ \ Σ;

• M1, . . . ,Mq are finite multisets overΓ \ Σ;

• iin ∈ {1, . . . , q} is the input cell;

• the output zoneiout is the environment;

• all computations halt;

• if C is a computation ofΠ, then either objectyes or objectno (but not both) must have been
released into the environment, and only at the last step of the computation.

For each multisetw overΣ, thecomputation of the systemΠ with inputw starts from the configura-
tion of the form(M1/p1, . . . , (Miin + w)/piin , . . . , Mq/pq, ∅), that is, the input multisetw has been
added to the contents of the input celliin. Therefore, we have an initial configuration associated with
each input multisetw (over the input alphabetΣ) in this kind of systems.

We denote byTPDC(k) the class of recognizer tissue P systems with protein on cells and cell division
with communication rules of length at mostk.

3.2. Polynomial Complexity Classes of Recognizer Tissue P Systems with Protein on
Cells and Cell Division

NP-completeness has been usually studied in the framework of decision problems. Let us recall that a
decision problem is a pair(IX , θX) whereIX is a language over a finite alphabet (whose elements are
called instances) andθX is a total boolean function (that is, a predicate) overIX .



Definition 3.4. A decision problemX = (IX , θX) is solvable in polynomial time by a familyΠ =
{Π(n) | n ∈ N} of recognizer tissue P systems with protein on cells and cell division in a uniform way
if the following conditions hold:

• the family Π is polynomially uniform by Turing machines, that is, there exists a deterministic
Turing machine working in polynomial time which constructs the systemΠ(n) from n ∈ N;

• there exists a pair(cod, s) of polynomial-time computable functions overIX such that:

– for each instanceu ∈ IX , s(u) is a natural number andcod(u) is an input multiset of the
systemΠ(s(u));

– for eachn ∈ N, s−1(n) is a finite set;

– the familyΠ is polynomially bounded with regard to(X, cod, s), that is, there exists a poly-
nomial functionp, such that for eachu ∈ IX every computation ofΠ(s(u)) with input
cod(u) is halting and it performs at mostp(|u|) steps;

– the familyΠ is sound with regard to(X, cod, s), that is, for eachu ∈ IX , if there exists an
accepting computation ofΠ(s(u)) with input cod(u), thenθX(u) = 1;

– the familyΠ is complete with regard to(X, cod, s), that is, for eachu ∈ IX , if θX(u) = 1,
then every computation ofΠ(s(u)) with input cod(u) is an accepting one.

Each recognizer tissue P system with protein on cells and cell division in Definition 3.4 isconfluent
in the sense that all possible computations associated with the same input multiset must give the same
answer for a given instance.

We denote byPMCTPDC(k) the set of all decision problems which can be solved by means ofrecog-
nizer tissue P systemsTPDC(k) according to the previous definition.

4. Solving theSAT Problem by Using TPDC(4)

In this section, we show how to efficiently solve theSAT problem by tissue P systems with protein on
cells and cell division with communication rules of length at most 4.

TheSAT problem is defined as follows: given a Boolean formula in conjunctive normal form (CNF),
determine whether or not there exists an assignment to its variables such that the formula is evaluated to
be true. This is a well knownNP-complete problem [26].

The solution proposed follows a brute force algorithm in the framework of recognizer tissue P sys-
tems with protein on cells and cell division. The solution consists of the following phases:

• Generation phase: all truth assignments for then variables are produced by using cell division in
an adequate way.

• Checking phase: it is checked whether or not there is a truth assignment that makes the Boolean
formula evaluate to be true.

• Output phase: the system sends to the environment the right answer according to the results of the
previous phase.



Let us consider the polynomial-time computable function〈m,n〉 = ((m + n)(m+ n+ 1)/2) +m
(the pair function), which is a primitive recursive and bijective function fromN

2 to N.
We construct a familyΠ = {Π(t) | t ∈ N} such that each systemΠ(t) will process all instances of

theSAT problem withn variables andm clauses, wheret = 〈m,n〉, provided that the appropriate input
multisetcod(ϕ) is supplied to the system.

For eachm,n ∈ N, we consider the recognizer tissue P system with protein on cells and cell division
from TPDC(4),

Π(〈m,n〉) = (Γ, P,Σ, E ,M1/p1,M2/q1,M3/r,M4/s,R, iin, iout),

with the following components:

Γ = Σ ∪ {ai | 1 ≤ i ≤ n} ∪ {bi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m+ 1}

∪ {ci, di,0, di,1 | 1 ≤ i ≤ m} ∪ {gi | 1 ≤ i ≤ mn+ 3n+ 4m}

∪ {an+1, dm+1,0, h, yes, no},

Σ = {xi,j, x̄i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

P = {pi, qi | 1 ≤ i ≤ n+ 1} ∪ {p̄i | 2 ≤ i ≤ n+ 1} ∪ {r, s},

E = {ci, di,0, di,1 | 1 ≤ i ≤ m} ∪ {bi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m+ 1}

∪ {gi | 1 ≤ i ≤ mn+ 3n+ 4m},

M1 = {a1, b2,1, b3,1, . . . , bn,1, d1,0},M2 = {b1,1},M3 = {yes, no},M4 = {g1},

iin = 1 is the input cell,

iout = 0 is the output zone,

and the setR of rules consists of the following rules:

r1,i ≡ [ pi | ai ]1 → [ pi+1 | h ]1[ p̄i+1 | h ]1, 1 ≤ i ≤ n;

r2,i ≡ [ p̄i | ai ]1 → [ pi+1 | h ]1[ p̄i+1 | h ]1, 2 ≤ i ≤ n;

r3,i,j ≡ (1, (pi+1, xi,j)/cj , 0), 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r4,i,j ≡ (1, (p̄i+1, x̄i,j)/cj , 0), 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r5,i,j ≡ (2, (qi, bi,j)/bi,j+1, 0), 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r6,i ≡ [ qi | bi,m+1 ]2 → [ qi+1 | ai+1 ]2[ qi+1 | ai+1 ]2, 1 ≤ i ≤ n;

r7,i ≡ (1, (pi, bi,1)/(qi, ai), 2), 2 ≤ i ≤ n;

r8,i ≡ (1, (p̄i, bi,1)/(qi, ai), 2), 2 ≤ i ≤ n;

r9,i ≡ (1, (qi, λ)/(pi, λ), 2), 2 ≤ i ≤ n;

r10,i ≡ (1, (qi, λ)/(p̄i, λ), 2), 2 ≤ i ≤ n;

r11,j ≡ (1, (pn+1, cjdj,0)/(qn+1, λ), 2), 1 ≤ j ≤ m;



r12,j ≡ (1, (p̄n+1, cjdj,0)/(qn+1, λ), 2), 1 ≤ j ≤ m;

r13,j ≡ (2, (pn+1, dj,0)/dj,1, 0), 1 ≤ j ≤ m;

r14,j ≡ (2, (p̄n+1, dj,0)/dj,1, 0), 1 ≤ j ≤ m;

r15,j ≡ (1, (qn+1, λ)/(pn+1, dj,1), 2), 1 ≤ j ≤ m;

r16,j ≡ (1, (qn+1, λ)/(p̄n+1, dj,1), 2), 1 ≤ j ≤ m;

r17,j ≡ (1, (pn+1, dj,1)/dj+1,0, 0), 1 ≤ j ≤ m;

r18,j ≡ (1, (p̄n+1, dj,1)/dj+1,0, 0), 1 ≤ j ≤ m;

r19 ≡ (1, (pn+1, dm+1,0)/(r, yes), 3);

r20 ≡ (1, (p̄n+1, dm+1,0)/(r, yes), 3);

r21 ≡ (1, (r, yes)/λ, 0);

r22,i ≡ (4, (s, gi)/gi+1, 0), 1 ≤ i ≤ mn+ 3n + 4m− 1;

r23 ≡ (4, (s, gmn+3n+4m)/(r, λ), 3);

r24 ≡ (3, (s, gmn+3n+4mno)/λ, 0).

4.1. An Overview of the Computation

A family of recognizer tissue P systems with protein on cells and cell division is constructed as above.
We describe an arbitrary instanceϕ of theSAT problem asϕ = C1∧· · ·∧Cm, withCj = lj,1∨· · ·∨ lj,rj ,
1 ≤ j ≤ m, whereV ar(ϕ) = {x1, . . . , xn}, lj,k ∈ {xi,¬xi | 1 ≤ i ≤ n}, 1 ≤ j ≤ m, 1 ≤ k ≤ rj .

The sizemapping on the set of instances is defined ass(ϕ) = 〈m,n〉, and the encoding of the
instance is the multisetcod(ϕ) = {xi,j : xi ∈ Cj} ∪ {x̄i,j : ¬xi ∈ Cj}, that is,xi,j (resp.,x̄i,j) denotes
variablexi (resp.,¬xi) belongs to clauseCj. Hence, the formulaϕ will be processed by the system
Π(s(ϕ)) with input multisetcod(ϕ).

In what follows, we informally describe how systemΠ(s(ϕ)) with input multisetcod(ϕ) works.
At the initial configuration, we have objectsa1, b2,1, b3,1, . . . , bn,1, d1,0, cod(ϕ) in cell 1 and the

proteinp1 on cell 1, objectb1,1 in cell 2 and the proteinq1 on cell 2, objectsyes, no in cell 3 and the
proteinr on cell 3, objectg1 in cell 4 and the proteins on cell 4.

Let us start with the generation phase. The system takesm+3 steps to assign truth assignment of each
variablexi, and look for the clauses satisfied by the truth assignment of each variablexi (1 ≤ i ≤ n−1),
and it takesm + 1 steps to assign truth assignment of variablexn, and look for the clauses satisfied by
the truth assignment of each variablexn. Hence, the generation phase takes(m+ 3)(n− 1) +m+ 1 =
mn+ 3n− 2 steps.

At the firstm + 1 steps of thei-th loop (1 ≤ i ≤ n), we have three parallel processes, which are
described in several items.



– The objectai in cell 1 corresponds to variablexi, 1 ≤ i ≤ n. Under the influences of proteinpi
(resp.,p̄i) on cells 1 and the objectai in cells 1, all cells with label 1 are divided. By using the rules
r1,i (1 ≤ i ≤ n) andr2,i (2 ≤ i ≤ n) at the same step (at step 1, only ruler1,1 is used), a cell with
label 1 is divided into two copies of cell with label 1, one copy of cell 1 contains the proteinpi+1

(corresponding to the valuetrue) and the objecth, the other copy of cell 1 contains the proteinp̄i+1

(corresponding to the valuefalse) and the objecth. All the objects different fromai in cell 1 are
replicated and distributed in each of the new cells. In the nextm steps, under the control of protein
pi+1 (resp.,p̄i+1) on cells 1, rulesr3,i,j (resp.,r4,i,j) are used, the objectsxi,j (resp.,x̄i,j) from
cells 1 are exchanged with the objectscj from the environment, which correspond to the process
of looking for the clauses satisfied by the truth assignmenttrue (resp.,false) of variablexi. Note
that in a cell with label 1, only one copy of objectxi,j (resp.,x̄i,j) is exchanged with the object
cj from the environment in one step, since there is only one copy of proteinpi+1 (resp.,p̄i+1) on
each cell 1.

– In cells with label 2, under the influence of proteinqi, the counter objectbi,j grows its subscriptj
from 1 tom+1 by using the rulesr5,i,j. With the proteinqi on all cells 2 and the objectbi,m+1 in
all cells 2, ruler6,i is applied, one copy of cell 2 is divided into two copies of cell2, the proteinqi
is replaced byqi+1 on each cell 2, and the objectbi,m+1 is replaced byai+1 in each of cell 2.

– In parallel with the above process, the counter objectgi in the cell with label 4 grows its subscript
by using the rulesr22,i.

At them + 2 step of thei-th loop (1 ≤ i ≤ n − 1), the proteinpi (resp.,p̄i) and the objectbi,1 in
all cells 1 are exchanged with the proteinqi and the objectai in all cells 2 (there are2i−2 copies of cell
with label 1 that contain the proteinpi and the objectbi,1, 2i−2 copies of cell with label 1 that contain
the proteinp̄i and the objectbi,1 and2i−1 copies of cell with label 2 that contain the proteinqi and the
objectai; each proteinpi or p̄i and objectbi,1 in cells 1 are exchanged with the proteinqi and objectai
in cells 2 by using the rulesr7,i andr8,i in a maximally parallel manner). In cell with label 4, by using
the ruler22,i, the counter objectgi grows its subscript by one.

At them+ 3 step of thei-th loop (1 ≤ i ≤ n− 1), each proteinqi on cells 1 is exchanged with the
proteinpi or p̄i on cells 2 by using the rulesr9,i andr10,i in a maximally parallel manner. Simultaneously,
by using the ruler22,i, the counter objectgi in cell 4 increases its subscript by one.

In this way, aftermn+3n− 2 steps, the generation phase finishes and checking phase starts. At this
moment, we have

– 2n−1 copies of cell 1 which contain the proteinpn+1 and2n−1 copies of cell 1 which contain the
protein p̄n+1, each of them contains an objectd1,0 and some objects from the set{c1, c2, . . . , cm}
whose elements denote the corresponding clauses satisfied by the truth assignments of the vari-
ables. Each cell 1 also containsn copies of objecth, which is the “garbage” object and remains
idle for the follow-up computation;

– 2n copies of cell 2, each of them contains the proteinqn+1 and the objectan+1;

– a cell 3 which contains the proteinr and the objectsyes,no;

– a cell 4 which contains the proteins and the objectgmn+3n−1.



The checking phase takes4m steps and consists ofm loops (each loop takes 4 steps). In parallel
with checking whether there is a truth assignment that makes the boolean formula evaluate to true, the
counter objectgi in cell 4 also grows its subscript by one for each step.

At the first step of thej-th loop (1 ≤ j ≤ m) of checking phase, the proteinpn+1 (resp.,p̄n+1) and
the objectscj, dj,0 in cells with label 1 are exchanged with the proteinqn+1 in cells with label 2 by using
the ruler11,j (resp.,r12,j). If a cell with label 1 has no objectcj , then ruler11,j or r12,j cannot be used
in that cell. Note that ruler11,j (resp.,r12,j) can be used to a cell 1 only when such cell contains all the
objectsc1, c2, . . . , cj−1.

At the second step of thej-th loop (1 ≤ j ≤ m) of checking phase, under the influence of protein
pn+1 (resp., p̄n+1) on cell 2, the objectdj,0 from cell 2 is exchanged with the objectdj,1 from the
environment by using the ruler13,j (resp.,r14,j).

At the third step of thej-th loop (1 ≤ j ≤ m) of checking phase, by applying the ruler15,j (resp.,
r16,j), the proteinqn+1 in cell 1 is exchanged with the proteinpn+1 (resp.,p̄n+1) and the objectdj,1
in cell 2. Note that the cells with label 1 involved in the ruler15,j (resp.,r16,j) contain the objectcj,
otherwise, the protein placed on that cell with label 1 ispn+1 or p̄n+1.

At the fourth step of thej-th loop (1 ≤ j ≤ m) of checking phase, under the control of protein
pn+1 (resp.,p̄n+1) on cell 1, the objectdj,1 from cell 1 is exchanged with the objectdj+1,0 from the
environment by using the ruler17,j (resp.,r18,j).

By using the rulesr11,j − r18,j in cells with label 1, we check whether or not all clauses are satisfied
by the corresponding truth assignment. For each clause which is satisfied, the subscriptj of dj,0 is
increased by one; hence the objectdm+1,0 appears in a cell with label 1 if and only if that cell contains
all the objectsc1, c2, . . . , cm (all clauses are satisfied by that truth assignment).

The output phase starts at the(mn+ 3n + 4m− 1)-th step, and takes 3 steps.

– Affirmative answer: if one of the truth assignments from a cell with label 1 has satisfied all clauses,
then in that cell there is an objectdm+1,0 as described above. By using the ruler19 or r20, the
proteinpn+1 or p̄n+1 and the objectdm+1,0 in cell 1 are exchanged with the proteinr and the object
yes in cell 3. Simultaneously, by using the ruler22,mn+3n+4m−1, the counter objectgmn+3n+4m

will appear in cell with label 4. In the next step, the objectyes leaves the system by using the rule
r21, signaling the fact that the formula is satisfiable. The computation halts at stepmn+3n+4m.

– Negative answer: if none of the truth assignments encoded by a cell with label 1 makes the formula
ϕ true, then objectdm+1,0 does not appear in any cell labelled by 1. Thus, at stepmn+3n+4m−1,
rulesr19, r20 cannot be applied, only ruler22,mn+3n+4m−1 is applicable and the objectgmn+3n+4m

will appear in cell with label 4. In the next step, the proteins and the objectgmn+3n+4m in cell 4
are exchanged with the proteinr in cell 3. Finally, at stepmn+3n+4m+1, under the control of
proteins on cell 3, the objectsgmn+3n+4m andno are sent to the environment, signaling that the
formula is not satisfiable, and the computation halts.

4.2. Formal Verification

In this subsection, we prove that the family of recognizer tissue P systems with protein on cells and cell
division constructed above solves theSAT problem in polynomial time according to Definition 3.4.



4.2.1. Polynomial Uniformity of the Family

We will show that the familyΠ = {Π(〈m,n〉) | m,n ∈ N} defined above is polynomially uniform by
Turing machines. To this aim, it will be proved thatΠ(〈m,n〉) is built in polynomial time with respect
to the size parametersm andn of instances of theSAT problem.

It is easy to check that the rules of a systemΠ(〈m,n〉) of the family are defined recursively from
the valuesm andn. The necessary resources for building an element of the family are of a polynomial
order, as shown below:

• size of the setΓ: 4mn+ 7m+ 5n+ 5 ∈ O(mn);

• size of the setP : 3n+ 4 ∈ O(n);

• initial number of cells:4 ∈ O(1);

• initial number of objects:n+ 5 ∈ O(n);

• initial number of proteins:4 ∈ O(1);

• number of rules:4mn+ 10n + 12m− 1 ∈ O(mn);

• maximum length of a rule:4 ∈ O(1).

Therefore, there exists a deterministic Turing machine that builds the systemΠ(〈m,n〉) in a polynomial
time with respect tom andn.

4.2.2. Soundness and Completeness of the Family

In order to prove the soundness and completeness of the familyΠ with respect to(SAT, cod, s), we shall
prove that for a given instanceϕ of theSAT problem, the systemΠ(s(ϕ)) with input cod(ϕ) sends out
an objectyes if and only if the answer to the problem for the instance is affirmative and the objectno

is sent out otherwise. In both cases the answer will be sent to the environment in the last step of the
computation.

Let {x1, . . . , xi} be a set of propositional variables. A truth assignment of{x1, . . . , xi} will be
indistinctly denoted byσ = (α2, . . . , αi+1), whereαj ∈ {pj, p̄j}, 2 ≤ j ≤ i+1. The2i truth assignment
of the set{x1, . . . , xi} will be indistinctly denoted by{σi,1, . . . , σi,2i}. For eachi (1 ≤ i ≤ n), we
denoteτi = Σ1≤j≤m|cod(ϕ)|xi,j

, τ̄i = Σ1≤j≤m|cod(ϕ)|x̄i,j
, ρi = cod(ϕ) ∩ {xi,j | 1 ≤ j ≤ m},

ρ̄i = cod(ϕ) ∩ {x̄i,j | 1 ≤ j ≤ m}. cod(ϕ)ki the set of elementsρi, where the number of elements isk;
cod(ϕ)k̄i the set of elements̄ρi, where the number of elements isk. We also denote

δi,j =
⋃

1≤k≤i

{{ρk | tk ∈ σi,j} ∪ {ρ̄k | fk ∈ σi,j}}, 1 ≤ i ≤ n, 1 ≤ j ≤ 2i;

δ′i,j = cod(ϕ) \ δi,j; ξi,j = δ′i,j ∪ ρi; ξ̄i,j = δ′i,j ∪ ρ̄i, ηk =
⋃

1≤j≤k

{cj} ∪ {d1,0}.

2i cells with label 1 generated by the system will be denoted by1(i,1), 1(i,2), . . . , 1(i,2i).
Given a computationC we denote the configuration at thei-th step asCi. Moreover,Ci(l) will

denote the multiset associated with celll in such a configuration. The protein associated with celll at
configurationi is denoted byPi(l).



Lemma 4.1. Let C be an arbitrary computation of the system, then for everyi (1 ≤ i ≤ n− 1), we have
the following:

(1) At configurationC(m+3)(i−1)+1, we have

(a) 2i copies of cell with label 1 from which:

– 2i−1 copies of cell with label 1 contain the proteinpi+1, the cell with label1(i,j) (1 ≤
j ≤ 2i) contains the objectsbi+1,1, . . . , bn,1, d1,0, ξi,j, h, and some objects from the set
{c1, . . . , cm}, which correspond to the clauses satisfied by the truth assignmentσi,j \
{pi+1};

– 2i−1 copies of cell with label 1 contain the protein̄pi+1, the cell with label1(i,j) (1 ≤
j ≤ 2i) contains the objectsbi+1,1, . . . , bn,1, d1,0, ξ̄i,j, h, and some objects from the set
{c1, . . . , cm}, which correspond to the clauses satisfied by the truth assignmentσi,j \
{p̄i+1};

(b) 2i−1 copies of cell with label 2, each of them contains the proteinqi and an objectbi,2;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)(i−1)+2.

(2) At configurationC(m+3)(i−1)+1+k (1 ≤ k < m), we have

(a) 2i copies of cell with label 1 from which:

– 2i−1 copies of cell with label 1 contain the proteinpi+1. If k < τi, then the cell
with label 1(i,j) (1 ≤ j ≤ 2i) containsC(m+3)(i−1)+1 (1(i,j)) \ cod(ϕ)ki and some
objectscj , where an objectcj corresponds to the objectxi,j that has been sent out in
previousk steps. Ifτi ≤ k < m, then the cell with label1(i,j) contains the objects
bi+1,1, . . . , bn,1, d1,0, δ

′
i,j , h, and some objects from the set{c1, . . . , cm}, which corre-

spond to the clauses satisfied by the truth assignmentσi,j;

– 2i−1 copies of cell with label 1 contain the protein̄pi+1. If k < τ̄i, then the cell
with label 1(i,j) (1 ≤ j ≤ 2i) containsC(m+3)(i−1)+1 (1(i,j)) \ cod(ϕ)k̄i and some
objectscj , where an objectcj corresponds to the object̄xi,j that has been sent out in
previousk steps. Ifτ̄i ≤ k < m, then the cell with label1(i,j) contains the objects
bi+1,1, . . . , bn,1, d1,0, δ

′
i,j , h, and some objects from the set{c1, . . . , cm}, which corre-

spond to the clauses satisfied by the truth assignmentσi,j;

(b) 2i−1 copies of cell with label 2, each of them contains the proteinqi and an objectbi,k+2;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)(i−1)+2+k .

(3) At configurationC(m+3)(i−1)+m+1, we have

(a) 2i−1 copies of cell with label 1 contain the proteinpi+1, 2i−1 copies of cell with label
1 contain the protein̄pi+1. The cell with label1(i,j) (1 ≤ j ≤ 2i) contains the objects
bi+1,1, . . . , bn,1, d1,0, δ

′
i,j , h, and some objects from the set{c1, . . . , cm}, which correspond

to the clauses satisfied by the truth assignmentσi,j;



(b) 2i copies of cell with label 2, each of them contains the proteinqi+1 and an objectai+1;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)(i−1)+m+2.

(4) At configurationC(m+3)(i−1)+m+2 , we have

(a) 2i copies of cell with label 1, each of them contains the proteinqi+1, the objectsai+1, bi+2,1,
. . . , bn,1, d1,0, δ

′
i,j , h, and some objects from the set{c1, . . . , cm}, which correspond to the

clauses satisfied by the truth assignmentσi,j;

(b) 2i−1 copies of cell with label 2 contain the proteinpi+1, 2i−1 copies of cell with label 2
contain the protein̄pi+1, each of them contains an objectbi+1,1;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)(i−1)+m+3.

(5) At configurationC(m+3)(i−1)+m+3 , we have

(a) 2i−1 copies of cell with label 1 contain the proteinpi+1, 2i−1 copies of cell with label 1
contain the protein̄pi+1. The cell with label1(i,j) (1 ≤ j ≤ 2i) contains the objects
ai+1, bi+2,1, . . . , bn,1, d1,0, δ

′
i,j , h, and some objects from the set{c1, . . . , cm}, which cor-

respond to the clauses satisfied by the truth assignmentσi,j;

(b) 2i copies of cell with label 2, each of them contains the proteinqi+1 and an objectbi+1,1;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)(i−1)+m+4.

Proof:
By induction oni. Let us start analyzing the basic casei = 1.

At the initial configuration, we have:
C0(1) = {a1, b2,1, b3,1, . . . , bn,1, d1,0, cod(ϕ)}, P0(1) = {p1};
C0(2) = {b1,1}, P0(2) = {q1};
C0(3) = {yes, no}, P0(3) = {r};
C0(4) = {g1}, P0(4) = {s}.
At step 1, ruler1,1 is used, the cell with label 1 is divided into two copies of cell1, one cell with

label 1 contains the proteinp2 (representing the true valuetrue) and the objecth, the other cell with label
1 contains the protein̄p2 (representing the true valuefalse) and the objecth. Simultaneously, ruler5,1,1
is applied, objectb1,2 appears in cell 2. The counter objectg2 presents in cell 4 by using the ruler22,1.
Therefore,

C1(1(1,1)) = {h, b2,1, b3,1, . . . , bn,1, d1,0, cod(ϕ)}, P1(1(1,1)) = {p2};
C1(1(1,2)) = {h, b2,1, b3,1, . . . , bn,1, d1,0, cod(ϕ)}, P1(1(1,2)) = {p̄2};
C1(2) = {b1,2}, P1(2) = {q1};
C1(3) = {yes, no}, P1(3) = {r};
C1(4) = {g2}, P1(4) = {s}.
At step 2, if input multisetcod(ϕ) contains the objectx1,j (resp.,x̄1,j), with the proteinp2 (resp.,p̄2)

on cell 1, ruler3,1,j (resp.,r4,1,j) is used, an objectxi,j (resp.,x̄i,j) from cell 1 is exchanged withcj from



the environment. Note that ifτ1 > 1 (resp.,τ̄1 > 1), thenx1,j andx1,k (resp.,x̄1,j andx̄1,k) are chosen
to use non-deterministically, and only one of them can be used in one step. Simultaneously, objectb1,3
presents in cell 2 by applying the ruler5,1,2 and the objectg3 appears in cell 4 by using the ruler22,2.

C2(1(1,1)) = {h, b2,1, b3,1, . . . , bn,1, d1,0, cod(ϕ) \ cod(ϕ)
1
1, cj}, P2(1(1,1)) = {p2};

C2(1(1,2)) = {h, b2,1, b3,1, . . . , bn,1, d1,0, cod(ϕ) \ cod(ϕ)
1̄
1, cj}, P2(1(1,2)) = {p̄2};

C2(2) = {b1,3}, P2(2) = {q1};
C2(3) = {yes, no}, P2(3) = {r};
C2(4) = {g3}, P2(4) = {s}.
Clearly, at stepj + 1 (2 ≤ j < m), we have the following.
If j < τ1, thenCj+1(1(1,1)) = {h, b2,1, b3,1, . . . , bn,1, d1,0, cod(ϕ) \ cod(ϕ)

j
1}, it also contains some

objects from set{c1, . . . , cm}, which correspond to the objectsx1,k that have been sent out in previous
j steps,Pj+1(1(1,1)) = {p2}; if τ1 ≤ j < m, Cj+1(1(1,1)) = {h, b2,1, b3,1, . . . , bn,1, d1,0, δ

′
1,1}, it

also contains some objects from set{c1, . . . , cm}, which correspond to the clauses satisfied by the truth
assignmentσ1,1, Pj+1(1(1,1)) = {p2}.

If j < τ̄1, thenCj+1(1(1,2)) = {h, b2,1, b3,1, . . . , bn,1, d1,0, cod(ϕ) \ cod(ϕ)
j̄
1}, it also contains some

objects from set{c1, . . . , cm}, which correspond to the objects̄x1,k that have been sent out in previous
j steps,Pj+1(1(1,2)) = {p2}; if τ̄1 ≤ j < m, Cj+1(1(1,2)) = {h, b2,1, b3,1, . . . , bn,1, d1,0, δ

′
1,2}, it

also contains some objects from set{c1, . . . , cm}, which correspond to the clauses satisfied by the truth
assignmentσ1,2, Pj+1(1(1,2)) = {p2}.

Cj+1(2) = b1,j+2, P2(2) = {q1};
C2(3) = {yes, no}, P2(3) = {r};
C2(4) = {gj+2}, P2(4) = {s}.
At configurationCm, rulesr6,1, r22,m+1 andr3,1,j (if all the objectsx1,1, . . . , x1,m appear in the cell

1(1,1)) or r4,1,j (if all the objectsx̄1,1, . . . , x̄1,m appear in the cell1(1,2)) are applied, the objectcj will
enter the corresponding cell and the cell with label 2 is divided into two copies of cell with label 2, each
of them contains the proteinq2 and the objecta2. In cell 4, the objectgm+1 is exchanged with the object
gm+2 from the environment. That is,

Cm+1(1(1,1)) = {h, b2,1, b3,1, . . . , bn,1, d1,0, δ
′
1,1}, it also contains some objects from set{c1, . . . , cm},

which correspond to the clauses satisfied by the truth assignmentσ1,1, Pm+1(1(1,1)) = {p2};
Cm+1(1(1,2)) = {h, b2,1, b3,1, . . . , bn,1, d1,0, δ

′
1,2}, it also contains some objects from set{c1, . . . , cm},

which correspond to the clauses satisfied by the truth assignmentσ1,2, Pm+1(1(1,2)) = {p̄2};
Cm+1(2) = {a2}, Pm+1(2) = {q2} (there are two copies of cell 2 with the same protein and object

in each cell);
Cm+1(3) = {yes, no}, Pm+1(3) = {r};
Cm+1(4) = {gm+2}, Pm+1(4) = {s}.
At configurationCm+1, the proteinp2 (resp., p̄2) and objectb2,1 in cell 1(1,1) (resp.,1(1,2)) are

exchanged with the proteinq2 and the objecta2 in cell 2 by using ruler7,2 (resp.,r8,2). The counter
objectgi increases its subscript by one in cell 4. That is,

Cm+2(1(1,1)) = {h, a2, b3,1, . . . , bn,1, d1,0, δ
′
1,1}, it also contains some objects from set{c1, . . . , cm},

which correspond to the clauses satisfied by the truth assignmentσ1,1, Pm+2(1(1,1)) = {q2};
Cm+2(1(1,2)) = {h, a2, b3,1, . . . , bn,1, d1,0, δ

′
1,2}, it also contains some objects from set{c1, . . . , cm},

which correspond to the clauses satisfied by the truth assignmentσ1,2, Pm+2(1(1,2)) = {q2};



Cm+2(2) = {b2,1} (there are two copies of cell 2, one contains the proteinp2, and the other contains
the proteinp̄2);

Cm+2(3) = {yes, no}, Pm+2(3) = {r};
Cm+2(4) = {gm+3}, Pm+2(4) = {s}.
At configurationCm+2, the proteinq2 on cell 1 is exchanged with the proteinp2 (resp.,p̄2) by using

the ruler9,2 (resp.,r10,2). The objectgm+3 from cell 4 is exchanged with the objectgm+4 from the
environment. That is,

Cm+3(1(1,1)) = {h, a2, b3,1, . . . , bn,1, d1,0, δ
′
1,1}, it also contains some objects from set{c1, . . . , cm},

which correspond to the clauses satisfied by the truth assignmentσ1,1;
Cm+3(1(1,2)) = {h, a2, b3,1, . . . , bn,1, d1,0, δ

′
1,2}, it also contains some objects from set{c1, . . . , cm},

which correspond to the clauses satisfied by the truth assignmentσ1,2;
Pm+3(1(1,1)) = {p2}, Pm+3(1(1,2)) = {p̄2}; or
Pm+3(1(1,1)) = {p̄2}, Pm+3(1(1,2)) = {p2};
Cm+3(2) = {b2,1}, Pm+3(2) = {q2} (there are two copies of cell 2 with the same protein and object

in each cell);
Cm+3(3) = {yes, no}, Pm+3(3) = {r};
Cm+3(4) = {gm+4}, Pm+3(4) = {s}.
Thus, the results of the Lemma hold fori = 1.
By induction hypothesis, suppose (1), (2), (3), (4) and (5) hold fori (1 ≤ i < n− 1). Let us see that

(1), (2), (3), (4) and (5) also hold fori+ 1.
We assume that after(m+ 3)i steps, we have

(a) 2i−1 copies of cell with label 1 contain the proteinpi+1, 2i−1 copies of cell with label 1 contain
the proteinp̄i+1. The cell with label1(i,j) contains the objectsai+1, bi+2,1, . . . , bn,1, d1,0, δ

′
i,j , h,

and some objects from the set{c1, . . . , cm}, which correspond to the clauses satisfied by the truth
assignmentσi,j;

(b) 2i copies of cell with label 2, each of them contains the proteinqi+1 and an objectbi+1,1;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)i+1.

At configurationC(m+3)i:

(a) by applying the ruler1,i+1 (resp.,r2,i+1), a cell with label 1 contained the proteinpi+1 (resp.,
p̄i+1) and the objectai+1 is divided into two copies of cell with label 1. Thus, we have2i+1 copies
of cell with label 1 from which:

– 2i copies of cell with label 1 contain the proteinpi+2, the cell with label1(i+1,j) contains
the objectsbi+2,1, . . . , bn,1, d1,0, δ

′
i,j , h (obviously,ξi+1,j = δ′i,j), and some objects from the

set {c1, . . . , cm}, which correspond to the clauses satisfied by the truth assignmentσi+1,j \
{pi+2};

– 2i copies of cell with label 1 contain the protein̄pi+2, the cell with label1(i+1,j) contains
the objectsbi+2,1, . . . , bn,1, d1,0, δ

′
i,j , h (obviously,ξ̄i+1,j = δ′i,j), and some objects from the

set {c1, . . . , cm}, which correspond to the clauses satisfied by the truth assignmentσi+1,j \
{p̄i+2};



(b) objectbi+1,1 from each cell 2 is exchanged withbi+1,2 from the environment by using the rule
r5,i+1,1. Thus, there are2i copies of cell with label 2, each of them contains the proteinqi+1 and
an objectbi+1,2;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)i+2 (the objectg(m+3)i+1 from cell 4 is
exchanged with the objectg(m+3)i+2 from the environment by using the ruler22,(m+3)i+2).

Hence, the result holds for configurationC(m+3)i+1.
At configurationC(m+3)i+k (1 ≤ k < m), we have:

(a) 2i+1 copies of cell with label 1 from which:

– 2i copies of cell with label 1 contain the proteinpi+2. In each step, an objectxi+1,j (if
possible) from cell 1 is exchanged with the objectcj from the environment by applying the
rule r3,i+1,j. If k < τi+1, then the cell with label1(i+1,j) containsC(m+3)i+1(1(i+1,j)) \

cod(ϕ)ki+1 and some objectscj , where an objectcj corresponds to the objectxi+1,j that has
been sent out in previousk steps. Ifτi+1 ≤ k < m, then the cell with label1(i+1,j) contains
the objectsbi+2,1, . . . , bn,1, d1,0, δ

′
i+1,j , h, and some objects from the set{c1, . . . , cm}, which

correspond to the clauses satisfied by the truth assignmentσi+1,j;

– 2i copies of cell with label 1 contain the protein̄pi+2. In each step, an object̄xi+1,j (if
possible) from cell 1 is exchanged with the objectcj from the environment by applying the
rule r4,i+1,j. If k < τ̄i+1, then the cell with label1(i+1,j) containsC(m+3)i+1(1(i+1,j)) \

cod(ϕ)k̄i+1 and some objectscj , where an objectcj corresponds to the objectx̄i+1,j that has
been sent out in previousk steps. Ifτ̄i+1 ≤ k < m, then the cell with label1(i+1,j) contains
the objectsbi+2,1, . . . , bn,1, d1,0, δ

′
i+1,j , h, and some objects from the set{c1, . . . , cm}, which

correspond to the clauses satisfied by the truth assignmentσi+1,j;

(b) 2i copies of cell with label 2, each of them contains the proteinqi+1 and an objectbi+1,k+2;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)i+2+k (by applying the ruler22,(m+3)i+k).

Hence, the result holds for configurationC(m+3)i+k+1 (1 ≤ k < m).
At configurationC(m+3)i+m:

(a) 2i copies of cell with label 1 contain the proteinpi+2, 2i copies of cell with label 1 contain the
protein p̄i+2. If the cell with label 1 contains all the objectsxi+1,1, . . . , xi+1,m (resp.,x̄i+1,1, . . . ,
x̄i+1,m), then one ruler3,i+1,j (resp.,r4,i+1,j) is applied, the objectxi+1,j (resp.,x̄i+1,j) from the
cell 1 is exchanged with the objectcj from the environment. Thus, the cell with label1(i+1,j)

contains the objectsbi+2,1, . . . , bn,1, d1,0, δ
′
i+1,j , h, and some objects from the set{c1, . . . , cm},

which correspond to the clauses satisfied by the truth assignmentσi+1,j ;

(b) ruler6,i+1 is used, one copy of cell with label 2 is divided into two copiesof cell with label 2, each
cell contains the same protein and object. Thus, we obtain2i+1 copies of cell with label 2, each of
them contains the proteinqi+2 and an objectai+2;



(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) rule r22,(m+3)i+m+1 is used, and the objectg(m+3)i+m+2 enters the cell 4. Thus, a cell 4 that
contains the proteins and the objectg(m+3)i+m+2.

Hence, the result holds for configurationC(m+3)i+m+1.
At configurationC(m+3)i+m+1:

(a) the proteinpi+2 (resp.,p̄i+2) and the objectbi+2,1 in all cells with label 1 are exchanged with the
proteinqi+2 and the objectai+2 (there are2i+1 copies of cell with label 1 and2i+1 copies of cell
with label 2, a proteinqi+2 and an objectai+2 enter a cell 1 by using the rulesr7,i+2 andr8,i+2

in a maximally parallel manner). Thus, there are2i+1 copies of cell with label 1, each of them
contains the proteinqi+2, the objectsai+2, bi+3,1, . . . , bn,1, d1,0, δ

′
i+1,j , h, and some objects from

the set{c1, . . . , cm}, which correspond to the clauses satisfied by the truth assignmentσi+1,j ;

(b) 2i copies of cell with label 2 contain the proteinpi+2, 2i copies of cell with label 2 contain the
protein p̄i+2, each of them contains an objectbi+2,1;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) by using the ruler22,(m+3)i+m+2, a cell 4 that contains the proteins and the objectg(m+3)i+m+3.

Hence, the result holds for configurationC(m+3)i+m+2.
At configurationC(m+3)i+m+2:

(a) the proteinsqi+2 in all cells with label 1 are exchanged with the proteinspi+2 and p̄i+2 (there
are 2i+1 copies of cell with label 1 and2i+1 copies of cell with label 2, a proteinqi+2 in cell
1 is exchanged with a proteinpi+2 or p̄i+2 in cell 2 by using the rulesr9,i+2 and r10,i+2 in a
maximally parallel manner). Thus, we obtain2i copies of cell with label 1 contain the protein
pi+2, 2i copies of cell with label 1 contain the protein̄pi+2. The cell with label1(i+1,j) contains
the objectsai+2, bi+3,1, . . . , bn,1, d1,0, δ

′
i+1,j , h, and some objects from the set{c1, . . . , cm}, which

correspond to the clauses satisfied by the truth assignmentσi+1,j;

(b) 2i+1 copies of cell with label 2, each of them contains the proteinqi+2 and an objectbi+2,1;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)i+m+4.

Hence, the result holds for configurationC(m+3)i+m+3. ⊓⊔

Lemma 4.2. Let C be an arbitrary computation of the system, at configurationC(m+3)(n−1)+1, we have
the following:

(a) 2n copies of cell with label 1 from which:

– 2n−1 copies of cell with label 1 contain the proteinpn+1, the cell with label1(n,j) (1 ≤
j ≤ 2n) contains the objectsd1,0, ξn,j, h, and some objects from the set{c1, . . . , cm}, which
correspond to the clauses satisfied by the truth assignmentσn,j \ {pn+1};



– 2n−1 copies of cell with label 1 contain the protein̄pn+1, the cell with label1(n,j) (1 ≤
j ≤ 2n) contains the objectsd1,0, ξ̄n,j, h, and some objects from the set{c1, . . . , cm}, which
correspond to the clauses satisfied by the truth assignmentσn,j \ {p̄n+1};

(b) 2n−1 copies of cell with label 2, each of them contains the proteinqn and an objectbn,2;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)(n−1)+2.

Proof:
From Lemma 4.1 fori = n− 1, we know that at configurationC(m+3)(n−1), we have:

(a) 2n−2 copies of cell with label 1 contain the proteinpn, 2n−2 copies of cell with label 1 contain the
protein p̄n. The cell with label1(n−1,j) (1 ≤ j ≤ 2n−1) contains the objectsan, d1,0, δ′n−1,j , h,
and some objects from the set{c1, . . . , cm}, which correspond to the clauses satisfied by the truth
assignmentσn−1,j;

(b) 2n−1 copies of cell with label 2, each of them contains the proteinqn and an objectbn,1;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)(n−1)+1.

By applying the rulesr1,n andr2,n, each cell with label 1 contained the proteinpn (resp.,p̄n) and
the objectan is divided into two copies of cell with label 1, one of them contains the proteinpn+1 and
the objecttn, the other contains the protein̄pn+1 and the objectfn. Thus, we have2n copies of cell with
label 1 from which:

– 2n−1 copies of cell with label 1 contain the proteinpn+1, the cell with label1(n,j) (1 ≤ j ≤ 2n)
contains the objectsd1,0, ξn,j, h, and some objects from the set{c1, . . . , cm}, which correspond to
the clauses satisfied by the truth assignmentσn,j \ {pn+1};

– 2n−1 copies of cell with label 1 contain the protein̄pn+1, the cell with label1(n,j) (1 ≤ j ≤ 2n)
contains the objectsd1,0, ξ̄n,j, h, and some objects from the set{c1, . . . , cm}, which correspond to
the clauses satisfied by the truth assignmentσn,j \ {p̄n+1};

There are2n−1 copies of cell with label 2. In each cell with label 2, the object bn,1 from cell 2 is
exchanged with the objectbn,2 from the environment by using the ruler5,n,1.

In cell 3, there is no rule used, and it contains the proteinr and the objectsyes, no.
By applying the ruler22,(m+3)(n−1)+1, objectg(m+3)(n−1)+1 from cell 4 is exchanged with the object

object g(m+3)(n−1)+2 from the environment. Thus, the cell with label 4 contains theproteins and the
objectg(m+3)(n−1)+2. ⊓⊔

Lemma 4.3. Let C be an arbitrary computation of the system, at configurationC(m+3)(n−1)+1+k (1 ≤
k < m), we have the following:

(a) 2n copies of cell with label 1 from which:



– 2n−1 copies of cell with label 1 contain the proteinpn+1. If k < τn, then the cell with
label1(n,j) (1 ≤ j ≤ 2n) containsC(m+3)(n−1)+1 (1(n,j)) \ cod(ϕ)kn and some objectscj ,
where an objectcj corresponds to the objectxn,j that has been sent out in previousk steps. If
τn ≤ k < m, then the cell with label1(n,j) contains the objectsd1,0, δ′n,j, h, and some objects
from the set{c1, . . . , cm}, which correspond to the clauses satisfied by the truth assignment
σn,j;

– 2n−1 copies of cell with label 1 contain the protein̄pn+1. If k < τ̄n, then the cell with
label1(n,j) (1 ≤ j ≤ 2n) containsC(m+3)(n−1)+1 (1(n,j)) \ cod(ϕ)k̄n and some objectscj ,
where an objectcj corresponds to the objectx̄i,j that has been sent out in previousk steps. If
τ̄i ≤ k < m, then the cell with label1(n,j) contains the objectsd1,0, δ′n,j , h, and some objects
from the set{c1, . . . , cm}, which correspond to the clauses satisfied by the truth assignment
σn,j;

(b) 2n−1 copies of cell with label 2, each of them contains the proteinqn and an objectbn,k+2;

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)(n−1)+2+k .

Proof:
From Lemma 4.2, at configurationC(m+3)(n−1)+1, there are2n copies of cell with label 1 from which:
2n−1 copies of cell with label 1 contain the proteinpn+1, 2n−1 copies of cell with label 1 contain the
protein p̄n+1. If the input multiset contains some of the objects from the set {xn,1, . . . , xn,m}, then one
objectxn,j (resp.,x̄n,j) from a cell 1 is exchanged with the objectcj from the environment in one step
by applying the rulesr3,n,j (resp.,r4,n,j), that is, ifk < τn (resp.,k < τ̄n), then the cell with label1(n,j)
(1 ≤ j ≤ 2n) containsC(m+3)(n−1)+1 (1(n,j)) \ cod(ϕ)

k
n (resp.,C(m+3)(n−1)+1 (1(n,j)) \ cod(ϕ)

k̄
n) and

some objectscj , where an objectcj corresponds to the objectxn,j that has been sent out in previous
k steps. If τn ≤ k < m (resp., τ̄n ≤ k < m), then the cell with label1(n,j) contains the objects
d1,0, δ

′
n,j, h, and some objects from the set{c1, . . . , cm}, which correspond to the clauses satisfied by the

truth assignmentσn,j.
In all cells with label 2, the subscriptj of objectbn,j increases one in one step by using the ruler5,n,j,

thus, at configurationC(m+3)(n−1)+1+k there are2n−1 copies of cell with label 2, each of them contains
the proteinqn and an objectbn,k+2.

The cell with label 3 is not evolved, and it contains the proteinr and the objectsyes, no.
In cell with label 4, the subscriptj of objectgj increases one in one step by using the ruler22,j , thus,

at configurationC(m+3)(n−1)+1+k , the cell 4 contains the proteins and the objectg(m+3)(n−1)+2+k . ⊓⊔

Lemma 4.4. Let C be an arbitrary computation of the system, at configurationC(m+3)(n−1)+1+m, we
have the following:

(a) 2n−1 copies of cell with label 1 contain the proteinpn+1, 2n−1 copies of cell with label 1 contain
the proteinp̄n+1. The cell with label1(n,j) (1 ≤ j ≤ 2n) contains the objectsd1,0, δ′n,j , h, and
some objects from the set{c1, . . . , cm}, which correspond to the clauses satisfied by the truth
assignmentσn,j;

(b) 2n copies of cell with label 2, each of them contains the proteinqn+1 and an objectan+1;



(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectg(m+3)(n−1)+m+2.

Proof:
At configurationC(m+3)(n−1)+m, we have2n−1 copies of cell with label 1 contain the proteinpn+1

(resp.,p̄n+1), if the input multiset contains all the objectxn,1, . . . , xn,m (resp.,x̄n,1, . . . , x̄n,m), then
rule r3,n,j (resp.,r4,n,j) is used; otherwise, there is no rule used in this step. Thus, the cell with label
1(n,j) (1 ≤ j ≤ 2n) contains the objectsd1,0, δ′n,j, h, and some objects from the set{c1, . . . , cm}, which
correspond to the clauses satisfied by the truth assignmentσn,j.

In step(m+3)(n− 1) + 1+m, each cell with label 2 is divided into two copies of cell with label 2
by using the ruler6,n, thus, we have2n copies of cell with label 2, and each of them contains the protein
qn+1 and an objectan+1.

There is no rule used in this step in cell 3, thus, it contains the proteinr and the objectsyes, no.
By using the ruler22,(m+3)(n−1)+m+1, the objectg(m+3)(n−1)+m+2 will appear in cell 4. ⊓⊔

Lemma 4.5. Let C be an arbitrary computation of the system, for everyk (1 ≤ k ≤ m), we have the
following:

(1) At configurationCmn+3n−2+4(k−1)+1, we have:

(a) 2n copies of cell with label 1. If a cell1n,j (1 ≤ j ≤ 2n) has the objectsck anddk,0, then such
cell contains the proteinqn+1 and the objectsCmn+3n−2+4(k−1)+1(1n,j) = Cmn+3n−2(1n,j)\
ηk;

(b) 2n copies of cell with label 2. If a cell with label 2 contains the proteinpn+1 or p̄n+1, then
such cell contains the objectsan+1, ck, dk,0 and possible objects from the set{c1, . . . , ck−1};

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectgmn+3n−2+4(k−1)+2.

(2) At configurationCmn+3n−2+4(k−1)+2, we have:

(a) 2n copies of cell with label 1.
Cmn+3n−2+4(k−1)+2(1n,j) = Cmn+3n−2+4(k−1)+1(1n,j),
Pmn+3n−2+4(k−1)+2(1n,j) = Pmn+3n−2+4(k−1)+1(1n,j);

(b) 2n copies of cell with label 2. If a cell with label 2 contains the proteinpn+1 or p̄n+1, then
such cell contains the objectsan+1, ck, dk,1 and possible objects from the set{c1, . . . , ck−1};

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectgmn+3n−2+4(k−1)+3.

(3) At configurationCmn+3n−2+4(k−1)+3, we have:

(a) 2n copies of cell with label 1. The cells with label 1 which have the objectsck, dk,0 contain
the proteinpn+1 or p̄n+1, the objectsdk,1, and possible objects from the set{c1, . . . , cm};

(b) 2n copies of cell with label 2. Each of them contains the proteinqn+1, the objectan+1 and
the possible objects from the set{c1, . . . , ck};



(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectgmn+3n−2+4(k−1)+4.

(4) At configurationCmn+3n−2+4(k−1)+4, we have:

(a) 2n copies of cell with label 1. The cells with label 1 which have the objectsck, dk,0 contain
the proteinpn+1 or p̄n+1, the objectsdk+1,0, and possible objects from the set{c1, . . . , cm};

(b) 2n copies of cell with label 2. Each of them contains the proteinqn+1, the objectan+1 and
the possible objects from the set{c1, . . . , ck};

(c) a cell 3 that contains the proteinr and the objectsyes, no;

(d) a cell 4 that contains the proteins and the objectgmn+3n−2+4(k−1)+5.

Proof:
By induction onk. Let us start analyzing the basic casek = 1.

At configurationCmn+3n−2, rulesr11,1 andr12,1 are enabled in cells with label 1 which contain the
objectsc1, d1,0. By using the ruler11,1 (resp.,r12,1), the proteinpn+1 (resp.,p̄n+1) and the objects
c1, d1,0 in cell 1 are exchanged with the proteinqn+1 in cell 2. Thus, the cells with label 1 which contain
the objectsc1, d1,0 have the proteinqn+1 and the objectsCmn+3n−2(1n,j) \ η1. The cells with label 2
which contain the proteinpn+1 or p̄n+1 have the objectsan+1, c1, d1,0. In cell 3, no rule is used at this
configuration, thus, it contains the proteinr and the objectsyes, no. Ruler22,mn+3n−1 is used, and the
objectgmn+3n appears in cell 4.

At configurationCmn+3n−1, there is no rule can be used in all cells with label 1 and in cellwith
label 3, thus, the proteins and the objects in all cell 1 and in cell 3 are not changed. With the protein
pn+1 or p̄n+1 on cell 2, the objectd1,0 from cell 2 is exchanged with the objectd1,1 by using the rule
r13,1 or r14,1, thus, if the cells with label 2 contain the proteinpn+1 or p̄n+1, then they have the objects
an+1, c1, d1,1. The count objectgi in cell 4 increases its subscript by one, thus, it contains theproteins
and the objectgmn+3n+1.

At configurationCmn+3n, the proteinqn+1 on cell 1 is exchanged with the proteinpn+1 (resp.,p̄n+1)
on cell 2 by applying the ruler15,1 (resp.,r16,1). Thus, the cells with label 1 which have the objects
c1, d1,0 contain the proteinpn+1 or p̄n+1, the objectsd1,1, and possible objects from the set{c1, . . . , cm};
the cells with label 2 contain the proteinqn+1, the objectan+1 and the possible objectc1. In cell 4, object
gmn+3n+2 will be generated by using the ruler22,mn+3n+1.

At configurationCmn+3n+1, under the control of the proteinpn+1 (resp.,p̄n+1), the objectd1,1 from
cell 1 is exchanged with the objectd2,0 from the environment by applying the ruler17,1 (resp.,r18,1).
Thus, the cells with label 1 which have the objectsc1, d1,0 contain the proteinpn+1 or p̄n+1, the objects
d2,0, and possible objects from the set{c1, . . . , cm}; there is no rule can be used in cell 3 and all cells 2,
so the proteins and the objects in these cells are not changed; ruler22,mn+3n+2 is used in cell 4, thus, the
objectgmn+3n+3 presents in this cell.

Hence, the results of Lemma hold fork = 1.
By induction hypothesis, suppose (1), (2), (3) and (4) hold fork (1 ≤ k < m). Let us see that (1),

(2), (3) and (4) also hold fork + 1.
At configurationCmn+3n+4k−2, if a cell 1n,j has the objectsck+1 and dk+1,0, then ruler11,k+1

(resp.,r12,k+1) is used, the proteinpn+1 (resp.,p̄n+1) and the objectsck+1, dk+1,0 are exchanged with



the proteinqn+1. Thus, the cells with label 1 which contain the objectsck+1, dk+1,0 have the protein
qn+1 and the objectsCmn+3n−2(1n,j) \ ηk+1.

Hence, the result holds for configurationCmn+3n+4k−1.
At configurationCmn+3n+4k−1, if the protein on cells with label 2 ispn+1 (resp.,p̄n+1), then rule

r13,k+1 (resp.,r14,k+1) is applied, the objectdk+1,0 from cell 2 is exchanged with the objectdk+1,1 from
the environment. Thus, the cells with label 2 which have the proteinpn+1 or p̄n+1 contain the objects
an+1, ck+1, dk+1,1, and possible objects from the set{c1, . . . , ck}; the proteins and objects in cells 1
and in cell 3 are not changed at this configuration; in cell 4, ruler22,mn+3n+4k is used, and the object
gmn+3n+4k+1 will appear in this cell.

Hence, the result holds for configurationCmn+3n+4k.
At configurationCmn+3n+4k, the proteinqn+1 in cell 1 is exchanged with the proteinpn+1 (resp.,

p̄n+1) in cell 2 by applying the ruler15,k+1 (resp.,r16,k+1). Thus, the cells with label 1 which have
the objectsck+1, dk+1,0 contain the proteinpn+1 or p̄n+1, the objectsdk+1,1, and possible objects from
the set{c1, . . . , cm}; the cells with label 2 contain the proteinqn+1, the objectan+1 and the possible
objects from the set{c1, . . . , ck+1}; the objectgmn+3n+4k+1 from cell 4 is exchanged with the object
gmn+3n+4k+2 from the environment by using the ruler22,mn+3n+4k+1.

Hence, the result holds for configurationCmn+3n+4k+1.
At configurationCmn+3n+4k+1, if a cell with label 1 has the objectdk+1,1, then ruler17,k+1 (resp.,

r18,k+1) is applied, the objectdk+2,0 will present in such cell. Thus, the cells with label 1 which have
the objectsck+1, dk+1,0 contain the proteinpn+1 or p̄n+1, the objectdk+2,0, and possible objects from
the set{c1, . . . , cm}; the cells with label 2 contain the proteinqn+1, the objectan+1 and the possible
objects from the set{c1, . . . , ck+1}; the objectgmn+3n+4k+3 will appear in cell 4 by using the rule
r22,mn+3n+4k+2.

Hence, the result holds for configurationCmn+3n+4k+2. ⊓⊔

Lemma 4.6. Let C be an arbitrary computation of the system, at configurationCmn+3n+4m−1, we have
the following:

(a) there are2n copies of cell with label 1. Besides,

– if the formulaϕ is satisfiable, then there is one and only one cell with label 1, which contains
the proteinr and the objectyes;

– if the formulaϕ is not satisfiable, then the contents of the cells with label 1 coincide with the
contents in the previous configurationCmn+3n+4m−2;

(b) there are2n copies of cell with label 2, each of them contains the proteinqn+1, the objectan+1

and possible objects from the set{c1, . . . , cm};

(c) there is a cell with label 3. Besides,

– if the formulaϕ is satisfiable, then the cell 3 contains the proteinpn+1 or p̄n+1 and the object
dm+1,0,no;

– if the formulaϕ is not satisfiable, then the contents of the cells with label 3 coincide with the
contents in the previous configurationCmn+3n+4m−2;

(d) there is a cell with label 4 that contains the proteins and the objectgmn+3n+4m.



Proof:
At configurationCmn+3n+4m−1, there are2n copies of cell with label 1. If the formulaϕ is satisfiable,
then there is at least one copy of cell with label 1 which contains the objectdm+1,0. Because there is
only one copy of cell with label 3 which contains the objectyes, so one and only one of the proteinpn+1

(resp.,p̄n+1) and the objectdm+1,0 in cell 1 are exchanged with the proteinr and the objectyes in cell
3 by using the ruler19 (resp.,r20). If the formulaϕ is not satisfiable, there is no rule can be used in cells
1, thus, the contents of the cells with label 1 coincide with the contents in the previous configuration
Cmn+3n+4m−2.

There are2n copies of cell with label 2, and no rule can be used in these cells, the contents of the
cells with label 2 coincide with the contents in the previous configurationCmn+3n+4m−2, that is, each of
them contains the proteinqn+1, the objectan+1 and possible objects from the set{c1, . . . , cm}.

There is a cell with label 3. If the formulaϕ is satisfiable, ruler19 (resp.,r20) can be used, and the
cell 3 contains the proteinpn+1 or p̄n+1 and the objectsdm+1,0,no; if the formulaϕ is not satisfiable, no
rule can be applied in cell 3, thus the contents of the cell with label 3 coincide with the contents in the
previous configurationCmn+3n+4m−2.

By applying the rulermn+3n+4m−1, objectgmn+3n+4m will present in cell 4. ⊓⊔

Lemma 4.7. Let C be an arbitrary computation of the system, at configurationCmn+3n+4m, we have the
following:

(a) if the formulaϕ is satisfiable, then the objectyes appears inCmn+3n+4m(0), and the configuration
Cmn+3n+4m is a halting configuration;

(b) if the formulaϕ is not satisfiable, then the cell with label 3 contains the proteins and the object
gmn+3n+4m, the cell with label 4 contains the proteinr.

Proof:
At configurationCmn+3n+4m−1.

If the formulaϕ is satisfiable, ruler21 is applied, objectyes is sent to the environment, thus, the
object yes appears inCmn+3n+4m(0). It is easy to check that no rule of the system is applicable to
configurationCmn+3n+4m.

If the formulaϕ is not satisfiable, only ruler23 can be used, the proteins and the objectgmn+3n+4m

in cell 4 are exchanged with the proteinr in cell 3. Thus, the cell with label 3 contains the proteins and
the objectgmn+3n+4m, the cell with label 4 contains the proteinr. ⊓⊔

Lemma 4.8. Let C be an arbitrary computation of the system, if the formulaϕ is not satisfiable, then the
objectno appears inCmn+3n+4m+1(0), and the configurationCmn+3n+4m+1 is a halting configuration.

Proof:
At configurationCmn+3n+4m, if the formulaϕ is not satisfiable, only ruler24 can be applied, the objects
gmn+3n+4m, no are sent to the environment. Thus, the objectno appears inCmn+3n+4m+1(0). It is easy
to check that no rule of the system is applicable to configurationCmn+3n+4m+1. ⊓⊔



4.2.3. Polynomial Bound of the Family

From Lemma 4.7 and Lemma 4.8, we deduce that any computationC of tissue P systems with protein
on cells and cell division, if the formulaϕ is satisfiable, the system takesmn + 3n + 4m steps; if the
formulaϕ is not satisfiable, the system takesmn+ 3n+ 4m+ 1 steps.

Therefore, there exists a polynomial bound (with respect tom andn) on the number of steps of the
computation.

4.3. Computational Efficiency ofTPDC(4)

The system constructed for the solution to theSAT problem in section 4 has communication rules with
length at most 4. According to the Definition 3.4 and from the discussion in the previous subsections,
we have the following result:

Theorem 4.9. SAT ∈ PMCTPDC(4).

Corollary 4.10. NP ∪ co−NP ⊆ PMCTPDC(4).

Proof:
It suffices to make the following observations: theSAT problem isNP-complete,SAT ∈ PMCTPDC(4),
and this complexity class is closed under polynomial-time reduction and under complement. ⊓⊔

5. Universality of Tissue P Systems with Protein on Cells

In this section, we prove that tissue P systems with protein oncells are universal by simulating register
machines.

Theorem 5.1. NOP2(commu4) = NRE.

Proof:
We only have to prove the inclusionNRE ⊆ NOP2(commu4); the converse inclusion is straightfor-
ward from the Church-Turing thesis.

Let M = (m,H, l0, lh, I) be a register machine that has the properties specified in Section 2. We
construct the P systemΠ to simulate register machineM .

Π = (Γ, P, E ,M1/p1,M2/p2,R, iout),

where:

• Γ = {ar | 1 ≤ r ≤ m} ∪ {l, l′, l′′, l′′′, liv , lv, l̄ | l ∈ H};

• P = {p1, p2};

• E = {ar | 1 ≤ r ≤ m} ∪ {l, l′, l′′, l′′′, liv, lv, l̄ | l ∈ H};

• M1 = {l0},M2 = ∅;

• iout = 1;



and the setR of rules constructed as follows:

• For each ADD instructionli : (ADD(r), lj , lk), we introduce inR the rules

r1 ≡ (1, (p1, li)/ljar, 0);

r2 ≡ (1, (p1, li)/lkar, 0).

The simulation of the ADD instruction is obvious. By using the ruler1 or r2 non-deterministically,
under the control of proteinp1 on cell 1, one copy of objectar together with the objectlj or lk are intro-
duced into cell 1 from the environment, simultaneously, the objectli in cell 1 is sent to the environment.
Thus, the value of the registerr has been increased by 1 and the system starts to simulate an instruction
with label lj or lk.

• For each SUB instructionli : (SUB(r), lj , lk), we introduce inR the rules

r3 ≡ (1, (p1, li)/l
′
il
′′
i , 0);

r4 ≡ (1, (p1, l
′
i)/(p2, λ), 2);

r5 ≡ (1, (p2, l
′′
i ar)/l

′′′
i , 0);

r6 ≡ (2, (p1, l
′
i)/l

iv
i , 0);

r7 ≡ (1, (p2, l
′′
i )/(p1, l

iv
i ), 2);

r8 ≡ (1, (p2, l
′′′
i )/(p1, l

iv
i ), 2);

r9 ≡ (1, (p1, l
iv
i )/lvi , 0);

r10 ≡ (2, (p2, l
′′′
i )/l̄j , 0);

r11 ≡ (2, (p2, l
′′
i )/l̄k, 0);

r12 ≡ (1, (p1, l
v
i )/(p2, l̄j), 2);

r13 ≡ (1, (p1, l
v
i )/(p2, l̄k), 2);

r14 ≡ (1, (p2, λ)/(p1, l
v
i ), 2);

r15 ≡ (1, (p1, l
v
i l̄j)/lj , 0);

r16 ≡ (1, (p1, l
v
i l̄k)/lk, 0).

A SUB instructionli is simulated in systemΠ in the following way (each SUB instruction is simu-
lated in eight steps). Without loss of generality, we suppose that a SUB instructionli : (SUB(r), lj , lk)
starts to be simulated at stept. Hence at stept, there are proteinp1 on cell 1 and objectliz (z ∈
{a1, . . . , am}∗) in cell 1, proteinp2 on cell 2. At stept+ 1, ruler3 is used, under the control of protein
p1 on cell 1, objectli in cell 1 is exchanged with the objectsl′il

′′
i from the environment. In the next step,

the proteinp1 and the objectl′i in cell 1 are exchanged with the proteinp2 on cell 2 by using the ruler4.
With the appearance of proteinp2 on cell 1, we have the following two cases.

• There is at least one copy of objectar in cell 1. In this case, at stept + 3, the rulesr5 andr6
can be used. By applying the ruler5, under the control of proteinp2 on cell 1, the objectsl′′i ar
in cell 1 are exchanged with the objectl′′′i from the environment; by applying the ruler6, under
the control of proteinp1 on cell 2, the objectl′i in cell 2 is exchanged with the objectlivi from the



environment. In the next step, ruler8 is used, the proteinp2 and objectl′′′i in cell 1 are exchanged
with the proteinp1 and objectlivi in cell 2. At stept+ 5, by using the ruler9, the objectlivi in cell
1 is exchanged with the objectlvi from the environment. In cell 2, under the control of proteinp2,
the objectl′′′i is exchanged with the objectl̄j from the environment by using the ruler10. At step
t+6, by using the ruler12, the proteinp1 and objectlvi in cell 1 are exchanged with the proteinp2
and object̄lj in cell 2. In the next step, the proteinp2 on cell 1 is exchanged with the proteinp1
and objectlvi in cell 2 by using the ruler14. At stept+8, under the control of proteinp1 on cell 1,
the objectslvi l̄j in cell 1 are exchanged with the objectlj from the environment by using the rule
r15. In this case, one copy of objectar is consumed in cell 1, and the system starts to simulate the
instructionlj (see Table 1).

Table 1. The simulation of a SUB instructionli : (SUB(r), lj , lk), where there is at least one copy of objectar in
cell 1. Letz ∈ {a1, . . . , am}∗ andz = arz

′.

Step Rules
Cell 1 Cell 2

Protein Objects Protein Objects

0 − p1 liz p2 −

1 r3 p1 l′il
′′
i z p2 −

2 r4 p2 l′′i z p1 l′i
3 r5, r6 p2 l′′′i z

′ p1 livi
4 r8 p1 livi z′ p2 l′′′i
5 r9, r10 p1 lvi z

′ p2 l̄j

6 r12 p2 l̄jz
′ p1 lvi

7 r14 p1 lvi l̄jz
′ p2 −

8 r15 p1 ljz
′ p2 −

• There is no copy of objectar in cell 1. In this case, at stept + 3, only ruler6 is used, objectlivi
is sent to cell 2. In the next step, by using the ruler7, the proteinp1 and objectliv present in cell
1, and in cell 2, there are the proteinp2 and objectl′′i . At stept + 5, rulesr9 andr11 are used,
object lvi is sent into cell 1 and object̄lk is sent into cell 2. In the following three steps, the rules
r13, r14, r16 are applied one by one, the objectlk will present in cell 1 at stept + 8. Hence, the
system starts to simulate the instructionlk (see Table 2).

Therefore, the SUB instruction is correctly simulated byΠ.
When the objectlh appears in cell 1, the computation stops. The number of copiesof a1 in cell 1

clearly corresponds to the value of register 1 ofM , henceN(M) = N(Π), this concludes the proof.⊓⊔

6. Conclusions and Remarks

In this work, inspired by the facts that the movement of most objects through communication channels is
controlled by proteins and some of proteins on cells are not static, they can move through lipid bilayers



Table 2. The simulation of a SUB instructionli : (SUB(r), lj , lk), where there is no copy of objectar in cell 1.
Let z ∈ {a1, . . . , am}∗ andar /∈ z.

Step Rules
Cell 1 Cell 2

Protein Objects Protein Objects

0 − p1 liz p2 −

1 r3 p1 l′il
′′
i z p2 −

2 r4 p2 l′′i z p1 l′i
3 r6 p2 l′′i z p1 livi

4 r7 p1 livi z p2 l′′i

5 r9, r11 p1 lvi z p2 l̄k

6 r13 p2 l̄kz p1 lvi
7 r14 p1 lvi l̄kz p2 −

8 r16 p1 lkz p2 −

between cells if they are fused, we present a class of tissue P systems with protein on cells. The com-
putational power of such P systems has been studied. Specifically, we have given an efficient (uniform)
solution to theSAT problem by using such P systems with cell division. We also proved that any Turing
computable set of numbers can be generated by a tissue P system with protein on cells.

The solution to theSAT problem given in section 4 has the communication rules of length at most
4. It is deserved to investigate whether tissue P systems with protein on cells and cell division with
communication rules of length 2 or 3 are efficient (note that the minimal length of a communication rule
is 2).

In section 5, the universality result is obtained by a tissue P system with protein on cells with two
cells and communication rules of length at most 4. It remains open whether tissue P systems with protein
on cells are universal by using only one cell or communication rules of length 2 and 3.

The tissue P systems considered in this work have division rules, where cell division is inspired by
both protein and object, and the newly generated cells can have different proteins and objects with their
parent cell. It remains open what happens if we consider division rules that are inspired only by proteins,
and the newly generated cells can have different proteins with their parent cell or division rules that are
inspired by both proteins and objects, but the newly generated cells have the same protein as parent cell.

Tissue P systems with cell division and without environment were introduced in [27], that is, the
alphabet of the environment of such P systems is empty. It would be interesting to consider the compu-
tational efficiency of tissue P systems with protein on cells and cell division without environment.

Recently, various P systems have been used to solveNP-complete problems in a time-free manner in
the sense that the correctness of the solution does not depend on the precise timing of the involved rules
[28, 29, 30, 31, 32]. It remains open whether we can construct tissue P systems with protein on cells and
cell division to solveNP-complete problems in the context of time-freeness.

P systems with minimal parallelism were investigated in [33], where each membrane which can
evolve in a given step should do it by using at least one rule. Recently, a new strategy of using rules, called
flat maximal parallelism was considered in [34], where in each step, in each membrane, a maximal set of



applicable rules is chosen and each rule in the set is applied exactly once. It is of interest to investigate
the computational power of tissue P systems with protein on cells by using rules in a minimally parallel
way or in a flat maximally parallel way.

Tissue P systems with cell separation are a variant of tissue P system [35]. In such P systems, cells
do not have the duplication function, that is, when a cell is separated, the objects in the cell are divided
and placed in the newly generated cells instead of replicating the objects and distributing them in each
of the newly generated cells. It is interesting to investigate the computational power of tissue P systems
with protein on cells and cell separation.
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of M.J. Pérez-Jiménez was supported by “Ministerio de Economı́a y Competitividad” of Spanish gov-
ernment (TIN2012-37434), cofunded by FEDER funds.

References
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