
Tissue P Systems With Channel States Working in
the Flat Maximally Parallel Way

Bosheng Song, Mario J. Pérez-Jiménez, Gheorghe Păun, and Linqiang Pan∗, Member, IEEE

Abstract— Tissue P systems with channel states are a class of
bio-inspired parallel computational models, where rules are used
in a sequential manner (on each channel, at most one rule can
be used at each step). In this work, tissue P systems with channel
states working in a flat maximally parallel way are considered,
where at each step, on each channel, a maximal set of applicable
rules that pass from a given state to a unique next state, is chosen
and each rule in the set is applied once. The computational power
of such P systems is investigated. Specifically, it is proved that
tissue P systems with channel states and antiport rules of length
two are able to compute Parikh sets of finite languages, and such
P systems with one cell and noncooperative symport rules can
compute at least all Parikh sets of matrix languages. Some Turing
universality results are also provided. Moreover, the NP-complete
problem SAT is solved by tissue P systems with channel states,
cell division and noncooperative symport rules working in the flat
maximally parallel way; nevertheless, if channel states are not
used, then such P systems working in the flat maximally parallel
way can solve only tractable problems. These results show that
channel states provide a frontier of tractability between efficiency
and non-efficiency in the framework of tissue P systems with cell
division (assuming P �= NP).

Index Terms— Bio-inspired computing, channel state, flat
maximal parallelism, membrane computing, tissue P system,
tractability border.

I. INTRODUCTION

B IO-INSPIRED COMPUTING is an active research field
that investigates a way of developing computational mod-

els or algorithmic methodologies from biological systems,
whose effectiveness and broad range applicability can be vali-
dated in many aspects, e.g., artificial neural networks, molecu-
lar computing and particle swarm optimization, etc. Membrane

The work of B. Song and L. Pan was supported by National Natural
Science Foundation of China (61320106005, 61033003, 61602192 and
91130034), Ph.D. Programs Foundation of Ministry of Educa-tion of China
(20120142130008), the Innovation Scientists and Technicians Troop
Construction Projects of Henan Province (154200510012). The work of M.
J. Pérez-Jiménez was supported by “Ministerio de Economía y Com-
petitividad” of Spanish government (TIN2012-37434), cofunded by FEDER
funds. Asterisk indicates corresponding author.

B. Song is with the Key Laboratory of Image Information Processing and
Intelligent Control, School of Automation, Huazhong University of Science
and Technology, Wuhan, Hubei 430074, China.

M. J. Pérez-Jiménez is with the Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence, University of
Sevilla, 41012 Sevilla, Spain.

G. Păun is with the Institute of Mathematics of the Romanian Academy,
014700 Bucureşti, Romania.∗

L. Pan is with the Key Laboratory of Image Information Process-

ing and Intelligent Control, School of Automation, Huazhong Univer-
sity of Science and Technology, Wuhan, Hubei 430074, China (e-mail:
lqpan@mail.hust.edu.cn).

computing seeks to discover new computational paradigms
from biological cells, which is inspired by the structure and
the functioning of living cells, abstracting computational ideas
(e.g., computational models, data structures, data operations)
from the way in which chemicals interact and cross cellular
membranes. The computation models investigated in mem-
brane computing are called P systems (also called membrane
systems), which are distributed and parallel computing devices.
Since the seminal definition of P systems [1], a large number
of theoretical models and results have been obtained [2]–[9],
and they have been used to solve various computational
problems [10]–[17] from a wide number of areas such as
mathematics, biology, economics and theoretical computer
science. According to the membrane structure, there are two
main families of P systems: cell-like P systems, which have a
hierarchical arrangement of membranes as in a cell [1]; and
tissue-like P systems [6] or neural-like P systems [4] which
have a net of membranes (placed in the nodes of a graph)
as in a tissue or a neural net. A comprehensive introduction
of membrane systems can be found in [18], and for the
most up-to-date news and results the reader can refer to the
P systems web page http://ppage.psystems.eu. The
present work focuses on a class of tissue-like P systems.

A tissue-like P system can be described by a directed
graph implicitly given by means of communication (sym-
port/antiport) rules [7]. The nodes of that graph are called cells
and there is a distinguished node called environment. Each
arc can be considered as a communication channel between
two regions (two cells or a cell and the environment), that
is, two regions of the system can communicate by means
of communication (symport/antiport) rules [7]. Symport rules
move objects across a membrane together in one direction,
whereas antiport rules move objects across a membrane in
opposite directions. The length of a communication rule is the
total number of objects involved in that rule. A communication
rule of length 1 is said to be noncooperative, otherwise
it is called cooperative. A tissue P system is said to be
noncooperative if the system has only symport rule of length
1, otherwise, the tissue P system is cooperative.

Tissue P systems with symport/antiport rules were first
investigated in [19]. This initial model was then modified by
incorporating various additional features motivated by some
biological facts. We refer to [20]–[27] for a survey of these
investigations. An interesting variant of tissue P systems with
symport/antiport rules, called tissue P systems with channel
states, was proposed in [28], where between two cells or
between a cell and the environment at most one channel is
established, and a state is associated with each channel to

control the communication at each step. The rules of tissue
P systems with channel states designed in [28] are used in a
sequential manner, that is, on each channel between two cells
or between a cell and the environment, at most one rule can
be used at one step.

In this work, an attractive strategy of using rules, called
flat maximal parallelism, is introduced into tissue P systems
with channel states, where rules are applied in a flat maximally
parallel manner at the level of each channel in the sense that at
each step, on each channel, a maximal set of applicable rules
which pass from a given state to a unique next state is chosen
and each rule in the set is applied once [29], [30], and in a
maximally parallel manner at the level of the system in the
sense that all channels which can use rules in a flat maximally
parallel manner must do it.

The computational power of tissue P systems with channel
states working in the flat maximally parallel way is inves-
tigated. Specifically, it is proved that such P systems with
antiport rules of length two are able to compute Parikh sets
of finite languages, and such P systems with one cell and
noncooperative symport rules can compute at least all Parikh
sets of matrix languages. We further prove that this kind of
P systems with one cell, one state and only using symport
rules of length three, or two cells, any number of states and
only using noncooperative symport rules, or arbitrarily many
cells, four states and only using noncooperative symport rules
are universal.

The computational efficiency of tissue P systems with chan-
nel states and cell division working in the flat maximally
parallel way is studied. It is proved that the NP-complete prob-
lem SAT can be solved by noncooperative tissue P systems
with channel states and cell division working in the flat
maximally parallel way; if we consider such P systems without
channel states, then only tractable problems can be solved.
These results show that channel states provide a frontier
of tractability between efficiency and non-efficiency in the
framework of tissue P systems with cell division (assuming
P �= NP).

II. PRELIMINARIES

It is useful for the reader to have some familiarity with
(basic elements of) language theory, e.g., from [31]. Here we
only recall some notions used in this work.

An alphabet � is a finite and non-empty set and whose
elements are called symbols. For an alphabet � we denote by
�∗ the set of all strings of symbols from �. A multiset m over
an alphabet � is a pair (�, f), where f is a mapping from �
onto the set of natural numbers N. If m = (�, f) is a multiset,
then its support is defined as supp(m) = {x ∈ � | f (x) > 0}.
A multiset is finite (resp., empty) if its support is a finite (resp.,
empty) set. We denote by M f (�) the set of all finite non-empty
multisets over �. If m = (�, f) is a finite multiset over �,
and supp(m) = {a1, . . . , ak}, then it will be denoted as m =
{a f (a1)

1 , . . ., a f (ak)
k } and its cardinality is defined as follows:

|m| = f (a1) + . . . + f (ak). All permutations of a multiset
precisely identify the same multiset. Let m1 = (�, f1), m2 =
(�, f2) be multisets over �, then the union of m1 and m2,
denoted by m1 + m2, is the multiset (�, g), where g(x) =

f1(x) + f2(x) for each x ∈ �. We say that m1 is contained
in m2, and we denote it by m1 ⊆ m2, if f1(x) ≤ f2(x) for
each x ∈ �. The relative complement of m2 in m1, denoted by
m1 \ m2, is the multiset (�, g), where g(x) = f1(x) − f2(x)
if f1(x) ≥ f2(x), and g(x) = 0 otherwise.

The Parikh vector associated with a string x ∈ �∗ with
respect to the alphabet � = {a1, . . ., an} is ��(x) =
(|x |a1, |x |a2 , . . ., |x |an). For a language L ⊆ �∗ we define
��(L) = {��(x) | x ∈ L}, this is called the Parikh image
of L.

A set of languages is usually called a family of languages.
For a family of languages F L, the family of Parikh images of
languages in F L is denoted by Ps F L. By Ps F I N we denote
the family of Parikh images of finite languages. By Ps RE we
denote the family of recursively enumerable sets of vectors of
natural numbers; this is equal to the family of Parikh sets of
recursively enumerable languages.

A matrix grammar without appearance checking is a con-
struct G = (N, T, S, M), where N, T are disjoint sets called
nonterminal alphabet and terminal alphabet, respectively, S ∈
N is the axiom, M is a finite set of sequences of the form
(A1 → x1, . . ., An → xn), n ≥ 1, of context-free rules over
N ∪ T (with Ai ∈ N, xi ∈ (N ∪ T)∗, in all cases), where the
elements of M are called matrices.

For w, z ∈ (N ∪ T)∗, we write w ⇒ z if there is a matrix
(A1 → x1, . . ., An → xn) in M and the strings wi ∈ (N ∪T)∗,
1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and for all
1 ≤ i ≤ n, it holds wi = wi

′ Ai wi
′′, wi+1 = wi

′ xi wi
′′, for some

wi
′, wi

′′ ∈ (N ∪ T)∗. The language generated by G is defined
by L(G) = {w ∈ T ∗ | S ⇒∗ w}.

The family of languages generated by matrix grammars
without appearance checking is denoted by M AT . It is known
that PsM AT ⊂ Ps RE . The power of matrix grammars (with-
out appearance checking) is not decreased if we only work
with matrix grammars in the f-binary normal form [28], [32].

A matrix grammar G = (N, T, S, M) is in the f-binary
normal form if N = N1 ∪ N2 ∪ {S, f }, where these three sets
are mutually disjoint, and each matrix in M has one of the
following forms:

1. (S → X A), with X ∈ N1, A ∈ N2,
2. (X → Y, A → x), with X, Y ∈ N1, A ∈ N2, x ∈

(N2 ∪ T)∗, |x | ≤ 2,
3. (X → f, A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗,

|x | ≤ 2,
4. (f → λ).

Moreover, there is only one matrix of type 1 and only one
matrix of type 4, which is only used in the last step of a
derivation.

A useful characterization of the family Ps RE of recursively
enumerable sets of vectors of natural numbers is obtained by
means of register machines. A register machine is a tuple M =
(m, H, l0, lh , I), where

• m is the number of registers;
• H is a set of labels;
• l0, lh ∈ H are distinguished labels, where l0 is the label

of the initial instruction, and lh is the label of the halting
instruction;

• I is a set of labeled program instructions of the following
forms (each label from H labels only one instruction from
I , thus identifying it precisely):

• li : (ADD(r), l j , lk)(add 1 to register r and then go
to one of the instructions with labels l j , lk , non-
deterministically chosen);

• li : (SUB(r), l j , lk)(if register r is non-zero, then
subtract 1 from it, and go to the instruction with label
l j ; otherwise, go to the instruction with label lk);

• lh : HALT(the halt instruction).

A register machine M generates a vector (s1, . . ., sk) of
natural numbers in the following way: the machine starts with
all registers being empty (i.e., storing the number zero); the
machine applies the instruction with label l0 and continues
to apply instructions as indicated by the labels (and made
possible by the contents of registers); if it reaches the halt
instruction, then the register machine with the first k registers
containing the numbers s1, . . ., sk is said to be generated by M .
If the computation does not halt, then no number is generated.
It is known that register machines generate all sets of vectors
of natural numbers which are Turing computable, hence they
characterize Ps RE [33].

III. TISSUE P SYSTEMS WITH CHANNEL STATES AND

CELL DIVISION

A. Tissue P Systems With Channel States and Cell Division

Tissue P systems with channel states were defined in [28].
Here we introduce cell division into tissue P systems with
channel states.

Definition 3.1: A tissue P system with channel states
and cell division, of degree q ≥ 1, is a tuple � =
(�, T, K , E,M1, . . .,Mq , ch, (s(i, j))(i, j)∈ch , (R(i, j))(i, j)∈ch ,
iout), where

• � is an alphabet of objects;
• T ⊆ � is an alphabet of terminal objects;
• K is an alphabet of states (not necessarily disjoint from

�);
• E ⊆ � is a set of objects initially located in the

environment of the system, all available in an arbitrary
number of copies;

• Mi , 1 ≤ i ≤ q , are multisets of objects (symbols of
alphabet �) initially placed in the q cells of the system;

• ch ⊆ {(i, j) | i, j ∈ {0, 1, . . ., q}, i �= j} is a set
of channels between cells or between a cell and the
environment such that for i, j ∈ {0, 1, . . ., q} at most
one of (i, j), (j, i) appears in ch (0 is the label of the
environment);

• si, j is an initial state of channel (i, j) ∈ ch;
• R(i, j) is a finite set of rules of the following forms

(associated with the channel (i, j) ∈ ch):

• Communication rules:

• Symport rules: (s, u/λ, s′) or (s, λ/u, s′), where
s, s′ ∈ K , u ∈ M f (�), |u| > 0;

• Antiport rules: (s, u/v, s′), where s, s′ ∈ K ,
u, v ∈ M f (�), |u| > 0, |v| > 0;

• Division rules:

• [a]i → [b]i [c]i , where i ∈ {1, . . ., q}, i �= iout ,
a, b, c ∈ �;

• iout ∈ {0, 1, ..., q} is the output region.

If a system has no cell division rules, then it is simply called
a tissue P system with channel states.

We also note the important restriction that there is at most
one channel between two given cells, and the channel is
given as an ordered pair (i, j), with which a state from K is
associated. This does not restrict the communication between
two cells or between a cell and the environment, because the
movement of objects in the two directions of a channel is
allowed. The length of a rule (s, u/λ, s′) or (s, λ/u, s′) (resp.,
(s, u/v, s′)) is defined as |u| (resp., |u| + |v|).

A configuration of a tissue P system with channel states
and cell division at any instant is described by all multisets
of objects over � associated with all cells in the system, all
states associated with each channel and the multiset of objects
over � \ E associated with the environment at that moment.
The initial configuration is (M1, . . .,Mq , (s(i, j))(i, j)∈ch,∅).

A division rule [a]i → [b]i [c]i is applicable to a configu-
ration at a moment if the following conditions hold: (1) cell
i contains object a; (2) cell i is not the output cell. When
applying such a rule, cell i is divided into two cells with the
same label: in the first copy, object a is replaced by object b,
in the second one object a is replaced by object c, and all the
objects in the original cell, different from the object triggering
the rule, are replicated in the two new cells.

A symport rule (s, u/λ, s′) ∈ Ri j (resp., (s, λ/u, s′) ∈ Ri j)
is applicable to a configuration at a moment if the channel
between region i and region j has the state s and region i
contains multiset u (resp., region j contains multiset u) at
that moment. When such a rule is applied, multiset u is sent
to region j (resp., region i) and the channel state between
region i and region j is changed from s to s′.

An antiport rule (s, u/v, s′) ∈ Ri j is applicable to a
configuration at a moment if the channel between region i
and region j has the state s, and region i contains multiset u
as well as region j contains multiset v at that moment. When
such a rule is applied, multiset u from region i is sent to region
j , at the same time multiset v enters region i from region j ,
and the channel state between region i and region j is changed
from s to s′.

The rules of a tissue P system with channel states and cell
division considered in this work are applied in a flat maximally
parallel manner at the level of each channel (at each step,
on each channel, a maximal set of applicable rules which
pass from a given state to a unique next state, is chosen
and each rule in the set is applied once) and in a parallel
manner at the level of the system (all channels which can
use rules in a flat maximally parallel manner must do it) with
the following important restriction: when a cell is divided, the
division rule is the only one which is applied for that cell at
that step, the objects inside that cell do not evolve by means
of communication rules, in other words, before division, a
cell interrupts all its communication channels with the other
cells and with the environment. The new cells resulting from
division will recover the communication channels (note that

the states of the corresponding channels are not changed) and
interact with other cells or with the environment only at the
next step, providing that they do not divide once again.

Starting from the initial configuration and applying rules
as described above, one obtains a sequence of consecutive
configurations. Each passage from a configuration to a suc-
cessor configuration is called a transition. A configuration is
a halting one if no rule of the system is applicable to it.
A sequence of transitions starting from the initial configuration
is a computation. Only a computation reaching a halting
configuration gives a result, encoded by the vector which
describes the multiplicity of objects from T present in the
output region iout .

The set of all vectors computed in the way mentioned
above by a system � is denoted by Ps(�). The family of
all sets of vectors computed by systems with at most m cells
initially present in the system, k states, and using symport
rules of length at most t1, antiport rules of length at most t2
is denoted by PsOt Pm (statek, symt1, antit2, f lat), where
f lat stands for a flat maximally parallel use of rules on
channels. If one of the parameters m, k, t1, t2 is not bounded,
then it is replaced with ∗.

B. Recognizer Tissue P Systems With Channel States and
Cell Division

Recognizer tissue P systems were introduced in [24], and
they provide a natural framework to solve decision problems
by means of computational devices in membrane computing.

Definition 3.2: A recognizer tissue P system with chan-
nel states and cell division of degree q ≥ 1 is a tuple
� = (�, T, K , �, E, M1, . . ., Mq , ch, (s(i, j))(i, j)∈ch ,
(R(i, j))(i, j)∈ch, iin , iout), where

• (�, T , K , E , M1, . . .,Mq , ch, (s(i, j))(i, j)∈ch ,
(R(i, j))(i, j)∈ch, iout) is a tissue P system with channel
states and cell division of degree q ≥ 1;

• � has two distinguished objects yes and no;
• � is an (input) alphabet strictly contained in �;
• M1, . . .,Mq are finite multisets over � \ �;
• iin ∈ {1, . . ., q} is the input cell, and iout = 0;
• all computations halt;
• if C is a computation of �, then either object yes or

object no (but not both) must have been released into the
environment, and only at the last step of the computation.

For each finite multiset w ∈ �, the computation of a
tissue P system with channel states and cell division with input
w starts from a configuration of the form (M1, . . .,Miin +
w, . . .,Mq ,∅), that is, the input multiset w has been added to
the contents of the input cell iin , and we denote it by � + w.
Therefore, we have an initial configuration associated with
each input multiset w (over the input alphabet �) in this kind
of P systems.

For a recognizer tissue P system with channel states and
cell division, a computation C is said to be an accepting com-
putation (resp., rejecting computation) if object yes (resp.,
object no) appears in the environment associated with the
corresponding halting configuration of C, and neither object
yes nor no appears in the environment associated with any
non-halting configuration of C.

In what follows, we define what means solving a decision
problem in the framework of tissue P systems efficiently and
in a uniform way. Bearing in mind that they provide devices
with a finite description, a countable family of tissue P systems
will be necessary in order to solve a decision problem.

Definition 3.3: A decision problem X = (IX , θX) is solvable
in polynomial time by a family � = {�(n) | n ∈ N}
of recognizer tissue P systems with channel states and cell
division in a uniform way, if the following conditions hold:

• the family � is polynomially uniform by Turing
machines, that is, there exists a deterministic Turing
machine working in polynomial time which constructs
the system �(n) from n ∈ N;

• there exists a pair (cod, s) of polynomial-time com-
putable functions over IX such that:

• for each instance u ∈ IX , s(u) is a natural num-
ber and cod(u) is an input multiset of the system
�(s(u));

• for each n ∈ N, s−1(n) is a finite set;
• the family � is polynomially bounded with regard to

(X, cod, s), that is, there exists a polynomial function
p, such that for each u ∈ IX every computation of
�(s(u)) + cod(u) is halting and it performs at most
p(|u|) steps;

• the family � is sound with regard to (X, cod, s),
that is, for each u ∈ IX , if there exists an accepting
computation of �(s(u)) + cod(u), then θX (u) = 1;

• the family � is complete with regard to (X, cod, s),
that is, for each u ∈ IX , if θX (u) = 1, then
every computation of �(s(u)) + cod(u) is an
accepting one.

We denote by PMCT f
s DC(k)

(resp., PMCT f DC(k)) the set of
all decision problems which can be solved in a uniform way
and polynomial time by means of recognizer tissue P systems
with channel states, communication rules of length at most k
and cell division (resp., recognizer tissue P systems with cell
division and communication rules of length at most k) working
in a flat maximally parallel manner.

IV. COMPUTATIONAL POWER OF TISSUE P SYSTEMS

WITH CHANNEL STATES WORKING IN THE FLAT

MAXIMALLY PARALLEL MANNER

In this section, we investigate the computational power
of tissue P systems with channel states working in the flat
maximally parallel manner.

Theorem 4.1: PsOt P∗(state∗, anti2, f lat) ⊆ Ps F I N .
Proof: The proof follows from the fact that the number of

objects in a cell cannot be changed by using only antiport
rules of length 2, therefore the number of objects in the tissue
P system with channel states and antiport rules of length 2
working in a flat maximally parallel manner will not change
during any sequence of transitions starting from the initial
configuration and ending with a halting configuration (the
number of channel states is finite during this process). Hence,
only finite sets of vectors of natural numbers can be generated.

Theorem 4.2: PsM AT ⊆ PsOt P1(state∗, sym1, f lat).

Proof: Let us consider a matrix grammar G = (N1 ∪ N2 ∪
{S, f }, T, S, M) in the f -binary normal form with n + 1
matrices labelled as m0, . . ., mn , where m0 = (S → X0 A0) is
the initial matrix of M .

Let us assume that we have k1 matrices of the form mi :
(X → Y, A → x), X ∈ N1, Y ∈ N1 ∪ { f }, A ∈ N2, x ∈
N2 ∪ T ∪ {λ}, 1 ≤ i ≤ k1; k2 matrices are of the form mi :
(X → Y, A → x1x2), X ∈ N1, Y ∈ N1 ∪ { f }, A ∈ N2,
x1, x2 ∈ N2 ∪ T , k1 + 1 ≤ i ≤ k1 + k2; mn = (f → λ), such
that k1 + k2 = n − 1. We also assume that t = |N2| with all
the objects in N2 labelled as 1, 2, . . ., t .

We construct the tissue P system with channel states � to
simulate the matrix grammar G.

� = (�, T, K , �, {A0}, {(0, 1)}, X0,R(0,1), 1),

where

� = N2 ∪ T ;
K = N1 ∪ { f } ∪ {Yi | 1 ≤ i ≤ k1 + k2}

∪ { fi | 1 ≤ i ≤ t};
R(0,1) = {(X, λ/A, Yi), (Yi , x/λ, Y) | mi :

(X → Y, A → x), X ∈ N1, Y ∈ N1 ∪ { f },
A ∈ N2, x ∈ N2 ∪ T ∪ {λ}, 1 ≤ i ≤ k1}
∪ {(X, λ/A, Yi), (Yi , x1/λ, Y), (Yi , x2/λ, Y) |
mi : (X → Y, A → x1x2), X ∈ N1, Y ∈ N1∪
{ f }, A ∈ N2, x1, x2 ∈ N2 ∪ T, k1 + 1≤ i ≤k1+k2}
∪ {(f, λ/A, fi), (fi , A/λ, f) | A ∈ N2, 1 ≤ i ≤ t}.

A matrix mi (1 ≤ i ≤ k1) can be simulated in two steps.
At step 1, under the influence of state X on channel (0, 1),
object A is sent to the environment from cell 1, and the channel
state is changed to Yi . At the next step, object x is sent into
cell 1, and the channel state is changed from Yi to Y .

A matrix mi (k1 + 1 ≤ i ≤ k1 + k2) is simulated in the
following way. At step 1, by using rule (X, λ/A, Yi), object A
is sent to the environment, the channel state is changed from
X to Yi . At step 2, under the control of channel state Yi , rules
(Yi , x1/λ, Y) and (Yi , x2/λ, Y) are applied simultaneously,
one copy of object x1 and one copy of object x2 are sent into
cell 1 because of the flat maximally parallel use of rules on
the channel, and the state of channel (0, 1) is changed from
Yi to Y .

When the state f is introduced, the system checks whether
the derivation in G is terminal and only in the affirmative
case it halts. If the state is f and there exists at least one
non-terminal symbol, then by using rules (f, λ/A, fi) and
(fi , A/λ, f) (in this case, object A in N2 is labelled by i), the
computation never halts. Consequently, �T (L(G)) = Ps(�).

It is known that P systems with only symport rules of length
3 in one membrane are computationally complete (see Theo-
rem 2.2 in Chapter 5 from [18]). This result also holds for the
case of tissue P systems with one cell, one channel state and
symport rules of length at most 3 working in the flat maximally
parallel way. Hence we obtain the following theorem.

Theorem 4.3: PsOt P1(state1, sym3, f lat) = Ps RE .
In what follows, we prove that tissue P systems with two

cells, any number of states and only using noncooperative
symport rules, or arbitrarily many cells, four states and only
using noncooperative symport rules are Turing universality.

Theorem 4.4: PsOt P2(state∗, sym1, f lat) = Ps RE .
Proof: We only prove the inclusion

PsOt P2 (state∗, sym1, f lat) ⊇ Ps RE . The reverse
inclusion PsOt P2(state∗, sym1, f lat) ⊆ Ps RE follows
from the Church-Turing thesis.

Let us consider a register machine M = (m, H, l0, lh, I)
generating the set of vectors N(M) ⊆ Nk , for some
k ≥ 1. We construct the tissue P system with channel
states � to simulate the register machine M . � =
(�, T, K , E,M1,M2, {(0, 1), (1, 2)}, l0, s,R(0,1), R(1,2), 1),
where

• � = {ai | 1 ≤ i ≤ m} ∪ {b, b′, b′′ | b ∈ H } ∪ {c},
• T = {ai | 1 ≤ i ≤ k},
• K = {s, s′, s′′, s′′′} ∪ {l, l ′, l ′′, l ′′′, liv , lv , lv i , lv ii | l ∈ H },
• E = � − ({b, b′ | b ∈ H } ∪ {c}),
• M1 = {b, b′ | b ∈ H }, M2 = {c},

and the sets R(0,1), R(1,2) of rules are as follows:
• For each ADD instruction li : (ADD(r), l j , lk) of M , we

introduce the following rules in R(0,1):

r1 ≡(li , λ/bi , l ′i),
r2 ≡(l ′i , bi/λ, l j),

r3 ≡(l ′i , ar/λ, l j),

r4 ≡(l ′i , bi/λ, lk),

r5 ≡(l ′i , ar/λ, lk).

An ADD instruction li is simulated in two steps. At step 1,
under the control of state li on channel (0, 1), object bi is
sent to the environment by using rule r1, and the channel
state is changed from li to l ′i . At the next step, one of sets
of rules {r2, r3} and {r4, r5} is non-deterministically chosen
and used. By applying rules r2 and r3 (resp., r4 and r5) in
a flat maximally parallel way, one copy of object bi and one
copy of object ar are sent into cell 1 (simulating that the
number stored in register r is increased by one), and the state
of channel (0, 1) is changed to l j (resp., lk). Hence, the system
starts to simulate the instruction with label l j or lk . Clearly,
instruction li of M is correctly simulated by �.

• For each SUB instruction li : (SUB(r), l j , lk) of M ,
• we introduce the following rules in R(0,1):

r6 ≡(li , λ/b′
i , l ′i),

r7 ≡(l ′i , b′
i/λ, l ′′i),

r8 ≡(l ′i , b′′
i /λ, l ′′i),

r9 ≡(l ′′i , λ/ar , l ′′′i),

r10 ≡(l ′′i , λ/c, liv
i),

r11 ≡(l ′′′i , λ/c, lvi),

r12 ≡(liv
i , c/λ, lv i

i),

r13 ≡(lvi , c/λ, lv ii
i),

r14 ≡(lv i
i , λ/b′′

i , lk),

r15 ≡(lv ii
i , λ/b′′

i , l j);
• and we introduce the following rules in R(1,2):

r16 ≡(s, b′′
i /λ, s′),

r17 ≡(s′, λ/c, s′′),
r18 ≡(s′′, λ/b′′

i , s′′′),
r19 ≡(s′′′, c/λ, s).

TABLE I

THE APPLICATION OF RULES IN R(0,1) AND R(1,2) , THE EVOLUTION OF CHANNEL STATES s(0,1) AND s(1,2) , AND THE REWRITING OF MULTISETS M1
AND M2 IN CELLS 1 AND 2, RESPECTIVELY, DURING THE SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH REGISTER r NOT

EMPTY, WHERE z, z′ ARE MULTISETS OF OBJECTS FROM THE SET {a1, . . ., am}, AND R(1,2)0 ARE MULTISETS WHICH CONTAIN EACH

R(1,2)1 EXACTLY ONCE, RESPECTIVELY

TABLE II

THE APPLICATION OF RULES IN R(0,1) AND R(1,2) , THE EVOLUTION OF CHANNEL STATES s(0,1) AND s(1,2) , AND THE REWRITING OF MULTISETS

M1 AND M2 IN CELLS 1 AND 2, RESPECTIVELY, DURING THE SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH REGISTER r
EMPTY, WHERE z IS A MULTISET OF OBJECTS FROM THE SET {a1, . . ., am}, AND R(1,2)0 ARE MULTISETS WHICH CONTAIN EACH R(1,2)1

EXACTLY ONCE, RESPECTIVELY

A SUB instruction li is simulated in the following way.
At step 1, under the influence of state li on channel (0, 1),
object b′

i is sent to the environment by using rule r6, and the
channel state is changed to l ′i . At the next step, due to the flat
maximally parallel use of rules on channel (0, 1), only one
copy of object b′

i and one copy of object b′′
i are sent into cell

1 by applying rules r7, r8, which change state l ′i to the same
state l ′′i . In what follows, we have two cases.

• There is at least one copy of object ar in cell 1 (corre-
sponding to the fact that the number stored in register
r is greater than 0). In this case, at step 3, rules r9, r16
are enabled, by using rule r9, one copy of object ar is
sent to the environment, and the state of channel (0, 1)
is changed from l ′′i to l ′′′i ; by applying rule r16, object b′′

i
is sent into cell 2 from cell 1, the state of channel (1, 2)
is changed to s′. At step 4, rule r17 can be used, object
c is sent to cell 1, which will be sent to the environment
at the next step by using rule r11 (the state of channel
(0, 1) is changed to lvi); when the state of channel (1, 2)
is changed to s′′, object b′′

i is sent to cell 1 from cell 2
by using rule r18, changing the state of its channel from
s′′ to s′′′. At step 6, object c is sent into cell 1 from the
environment by using rule r13, the state of channel (0, 1)
is changed to lv ii

i , which will be changed to state l j at
the next step by applying rule r15; object c is sent back to
cell 2 by using rule r19 at step 7, and the state of channel
(1, 2) is changed to s. In this case, one copy of object ar

is consumed in cell 1 (simulating that the number stored
in register r is decreased by one), and the system starts
to simulate the instruction l j (see Table I).

• There is no object ar in cell 1 (corresponding to the fact
that the number stored in register r is 0). In this case,

at step 3, only rule r16 can be used, object b′′
i is sent

into cell 2 and object c will be sent to cell 1 at the next
step by using rule r17. At the next two steps, by applying
rules r10 and r12 one by one, the state of channel (0, 1)
will be changed from liv

i to lv i
i ; rule r18 is enabled and

applied at step 5, object b′′
i is sent to cell 1 from cell 2,

changing the state of its channel to s′′′. At step 7, the
state of channel (0, 1) is changed to lk by using rule r14;
simultaneously, by applying rule r19, object c is sent back
to cell 2, and the state of channel (1, 2) is changed to s
again. Hence, the system starts to simulate the instruction
lk (see Table II).

Hence, the SUB instruction of M is correctly simulated by
system �.

When the state of channel (0, 1) is lh , no rule can be used in
the system, and the computation halts. The numbers of copies
of objects ai (1 ≤ i ≤ k) in cell 1 correspond to the result of
the computation, hence N(M) = Ps(�).

Theorem 4.5: PsOt P∗(state4, sym1, f lat) = Ps RE .
Proof: We only prove the inclusion

PsOt P∗(state4, sym1, f lat) ⊇ Ps RE . The reverse
inclusion follows from the Church-Turing thesis.

Let us consider a register machine M = (m, H, l0, lh, I),
where the number of ADD instructions is p (labelled
by add1, . . ., addp), the number of SUB instructions is
q (labelled by sub1, . . ., subq), and such that the register
machine generates the set of vectors N(M) ⊆ Nk , for
some k ≥ 1. We construct the tissue P system with channel
states of degree p + q + 1, �, to simulate the register
machine M ,

� = (�, T, K , E,M1, . . ., syn, s, . . ., s,R(0,1), . . ., 1),

TABLE III

THE APPLICATION OF RULES IN R(1,addi) AND R(0,addi) , THE EVOLUTION OF CHANNEL STATES s(1,addi) AND s(0,addi) , AND THE REWRITING OF
MULTISETS M1 AND Maddi IN CELLS 1 AND addi , RESPECTIVELY, DURING THE SIMULATION OF AN ADD INSTRUCTION li : (ADD(r), l j , lk),

WHERE z IS A MULTISET OF OBJECTS FROM THE SET {a1, . . ., am , e}

where

• � = {ai | 1 ≤ i ≤ m} ∪ {l | l ∈ H } ∪ {e},
• T = {ai | 1 ≤ i ≤ k},
• K = {s, s′, s′′, s′′′},
• E = �,
• M1 = {l0}, Maddi = ∅, 1 ≤ i ≤ p,
• Msubi = ∅, 1 ≤ i ≤ q ,
• syn = {(0, 1)} ∪ {(1, addi), (0, addi) | 1 ≤ i ≤ p} ∪

{(1, subi), (0, subi) | 1 ≤ i ≤ q},
and the sets of rules associated with channels are as follows
(the value of register r is represented as the number of copies
of object ar in cell 1):

• For each ADD instruction li : (ADD(r), l j , lk) of M ,

• we introduce the following rules in R(1,addi):

r1 ≡(s, li/λ, s′),
r2 ≡(s′, λ/ar , s′′),
r3 ≡(s′, λ/ l j , s′′),
r4 ≡(s′, λ/ar , s′′′),
r5 ≡(s′, λ/ lk , s′′′),
r6 ≡(s′′, λ/e, s),

r7 ≡(s′′′, λ/e, s);
• and we introduce the following rules in R(0,addi):

r8 ≡(s, λ/ li , s′),
r9 ≡(s′, ar/λ, s′′),

r10 ≡(s′, l j /λ, s′′),
r11 ≡(s′, lk/λ, s′′),
r12 ≡(s′′, e/λ, s′′′),
r13 ≡(s′′′, λ/ l j , s),

r14 ≡(s′′′, λ/ lk , s).

An ADD instruction li is simulated in five steps. At step 1,
rule r1 is used, object li is sent to cell addi (the state of
channel (1, addi) is changed to s′), which will be sent to the
environment at the next step by applying rule r8 (the state of
channel (0, addi) is changed to s′) (we assume that l j �= li

and lk �= li). At step 3, by using rules r9, r10, r11 in a flat
maximally parallel way, one copy of object ar , one copy of
object l j and one copy of object lk will be sent into cell addi ,
changing the state of its channel to s′′. At step 4, with the

presence of state s′′ on channel (0, addi), rule r12 is used, one
copy of object e is sent to cell addi due to the flat maximally
parallel use of rules (the channel state is changed to s′′′), and
this object will be sent to cell 1 at the next step by using rule
r6 or r7 (the state of channel (1, addi) is changed to s); one
of sets of rules {r2, r3} and {r4, r5} is non-deterministically
chosen and used at step 4, by applying rules r2, r3 (resp.,
r4, r5), objects ar , l j (resp., ar , lk) are sent to cell 1, the state
of channel (1, addi) is changed from s′ to s′′ (resp., from s′ to
s′′′). With the appearance of state s′′′ on channel (0, addi), rule
r13 or r14 is enabled at step 5; by using one of these rules, the
remaining object l j or lk is sent to the environment, the state
of channel (0, addi) is changed to s again. Hence, one copy
of object ar is introduced in cell 1 (simulating that the number
stored in register r is increased by one), and one copy of object
e has been added to cell 1, which in general, at each time step,
contains any number of copies of this object (these objects are
always idle), the system starts to simulate an instruction with
label l j or lk . So instruction li of M is correctly simulated by
� (see Table III).

• For each SUB instruction li : (SUB(r), l j , lk) of M ,

• we introduce the following rules in R(1,subi):

r15 ≡(s, li /λ, s′),
r16 ≡(s′, ar/λ, s′′),
r17 ≡(s′′, λ/ l j , s′′′),
r18 ≡(s′, λ/ lk , s′′′),
r19 ≡(s′′′, λ/e, s);

• and we introduce the following rules in R(0,subi):

r20 ≡(s, λ/ li , s′),
r21 ≡(s′, l j /λ, s′′),
r22 ≡(s′, lk/λ, s′′),
r23 ≡(s′′, e/λ, s′′′),
r24 ≡(s′′′, λ/ l j , s),

r25 ≡(s′′′, λ/ lk , s).

A SUB instruction li is simulated in the following way.
At step 1, object li is sent to cell subi by using rule r15, the
state of channel (1, subi) is changed to s′. In what follows,
we have two cases.

TABLE IV

THE APPLICATION OF RULES IN R(1,subi) AND R(0,subi) , THE EVOLUTION OF CHANNEL STATES s(1,subi) AND s(0,subi) , AND THE REWRITING OF
MULTISETS M1 AND Msubi IN CELLS 1 AND subi , RESPECTIVELY, DURING THE SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk)

WITH REGISTER r NOT EMPTY, WHERE z, z′ ARE MULTISETS OF OBJECTS FROM THE SET R(0,subi)0, R(0,subi)1

TABLE V

THE APPLICATION OF RULES IN R(1,subi) AND R(0,subi) , THE EVOLUTION OF CHANNEL STATES s(1,subi) AND s(0,subi) , AND THE REWRITING OF

MULTISETS M1 AND Msubi IN CELLS 1 AND subi , RESPECTIVELY, DURING THE SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk)
WITH REGISTER r EMPTY, WHERE z IS A MULTISET OF OBJECTS FROM THE SET R(0,subi)0

• There is at least one copy of object ar in cell 1 (corre-
sponding to the fact that the number stored in register r
is greater than 0). In this case, at step 2, rules r16 and r20
are enabled (we assume that lk �= li). By using rule r16
in a flat maximally parallel way, one copy of object ar is
sent to cell subi from cell 1, changing its channel state
from s′ to s′′; by applying rule r20, object li is sent to
the environment, the state of channel (0, subi) is changed
from s to s′. At the next step, by using rules r21, r22 in
a flat maximally parallel way, one copy of object l j and
one copy of object lk are sent into cell subi , which lead
from a state s′ to the same state s′′. At step 4, rule r23 is
enabled and used, one copy of object e is sent to cell subi

(the state of channel (0, subi) is changed to s′′′), which
will be sent to cell 1 at the next step by using rule r19
(the state of channel (1, subi) is changed to s). Rule r17
is enabled at step 4; by using this rule, object l j is sent
to cell 1, so object lk will be sent to the environment at
the next step by applying rule r25, changing the state of
channel (0, subi) to s. In this case, one copy of object ar

is consumed in cell 1 (simulating that the number stored
in register r is decreased by one), and the system starts
to simulate the instruction l j (see Table IV).

• There is no object ar in cell 1 (corresponding to the fact
that the number stored in register r is 0). In this case,
at step 2, only rule r20 is applied, the state of channel
(0, subi) is changed to s′ (we assume that lk �= li). With
the presence of state s′ on this channel, rules r21, r22 are
enabled and used, one copy of object l j and one copy
of object lk are sent into cell subi , changing the state
of channel (0, subi) from s′ to s′′. At step 4, rule r23
is used, one copy of object e is sent to cell subi (the
state of channel (0, subi) is changed to s′′′), which will
be sent to cell 1 at the next step by using rule r19 (the
state of channel (1, subi) is changed to s). Rule r18 is
applied at step 4, object lk is sent to cell 1, so object

l j will be sent to the environment at the next step by
applying rule r24, changing the state of channel (0, subi)
to s. Hence, the system starts to simulate the instruction lk
(see Table V).

When object lh appears in cell 1, by using rule
(s, λ/ lh , s) in R(0,1), object lh is sent to the environ-
ment and the computation stops. Note that at the last
step, one of rules r6, r7, r19 is also used except for rule
(s, λ/ lh , s), and one copy of object e is sent into cell 1.
The numbers of copies of objects ai (1 ≤ i ≤ k)
in cell 1 correspond to the result of the computation, hence
N(M) = Ps(�).

V. COMPUTATIONAL EFFICIENCY

In this section, a family of recognizer tissue P systems with
channel states and cell division, working in the flat maximally
parallel way, is designed for giving a polynomial time and
uniform solution to the SAT problem. Moreover, if we consider
such P systems without channel states, then only tractable
problems can be solved.

Theorem 5.1: SAT ∈ PMCT f
s DC(1)

.
Proof: The SAT problem is a well known NP-complete

problem [34], which is defined as follows: given a Boolean
formula in conjunctive normal form (CNF), determine whether
or not there exists an assignment to its variables such that the
formula is evaluated to be true.

In what follows, we give a polynomial time solution to the
SAT problem by a family of recognizer tissue P systems with
channel states, noncooperative symport rules and cell division,
� = {�(t) | t ∈ N}, working in the flat maximally parallel
way. Each system �(t) will process any Boolean formula ϕ
in conjunctive normal form with n variables and m clauses,
where t = 〈n, m〉 = ((n + m)(n + m + 1)/2) + n, provided
that the appropriate input multiset cod(ϕ) is supplied to the
system.

We encode the input multiset cod(ϕ) as follows: cod(ϕ) =
{α1,1, . . ., α1,n, α2,1, . . ., α2,n, . . ., αm,1, . . ., αm,n}, where for
1 ≤ i ≤ m, 1 ≤ j ≤ n, we have:

αi, j =

⎧
⎪⎨

⎪⎩

gi, j if x j appears in Ci ;
g′

i, j if ¬x j appears in Ci ;
g′′

i, j if x j and ¬x j do not appear in Ci .

For each n, m ∈ N, we consider the recognizer tis-
sue P system with channel states and cell division (of
degree 3) defined as follows: �(〈n, m〉) = (�, K , E,�,
M1,M2,M3, {(0, 1), (0, 2), (2, 3)}, d1, s, s0,R(0,1), R(0,2),
R(2,3), iin , iout), where

• � = � ∪ {ai , ti , fi | 1 ≤ i ≤ n} ∪ {c j | 1 ≤ j ≤
m} ∪ {an+1, b, c, e, t,yes,no},

• � = {gi, j , g′
i, j , g′′

i, j | 1 ≤ i ≤ n, 1 ≤ j ≤ m},
• K = {di , d ′

i , d ′′
i | 1 ≤ i ≤ n} ∪ {s j | 0 ≤ j ≤ 2nm + 4n +

m +2}∪{si, j , s′
i, j , s′′

i, j , s̄i, j , s̄′
i, j , s̄′′

i, j | 1 ≤ i ≤ n, 1 ≤ j ≤
m} ∪ {dn+1, s, s′, s′′, st , s f },

• E = {ai | 1 ≤ i ≤ n + 1} ∪ {c j | 1 ≤ j ≤ m} ∪ {e},
• M1 = {a1, t}, M2 = {yes,no}, M3 = {b, c},
• iin = 1 is the input cell,
• iout = 0 is the output region,
• Division rules: r1,i ≡ [ai]1 → [ti]1[fi]1, 1 ≤ i ≤ n,
• The set R(0,1) consists of the following rules:

r2,i ≡(di , λ/ti , d ′
i), 1 ≤ i ≤ n,

r3,i ≡(di , λ/ fi , d ′′
i), 1 ≤ i ≤ n,

r4,i ≡(d ′
i , ti/λ, di+1), 1 ≤ i ≤ n,

r5,i ≡(d ′
i , ai+1/λ, di+1), 1 ≤ i ≤ n,

r6,i ≡(d ′′
i , fi/λ, di+1), 1 ≤ i ≤ n,

r7,i ≡(d ′′
i , ai+1/λ, di+1), 1 ≤ i ≤ n,

r8 ≡(dn+1, λ/an+1, s1),

r9,i ≡(si , λ/ti , si,1), 1 ≤ i ≤ n,

r10,i ≡(si , λ/ fi , s̄i,1), 1 ≤ i ≤ n,

r11,i, j ≡(si, j , λ/gi, j , s′
i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

r12,i, j ≡(si, j , λ/g′
i, j , s′′

i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

r13,i, j ≡(si, j , λ/g′′
i, j , s′′

i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

r14,i, j ≡(s̄i, j , λ/g′
i, j , s̄′

i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

r15,i, j ≡(s̄i, j , λ/gi, j , s̄′′
i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

r16,i, j ≡(s̄i, j , λ/g′′
i, j , s̄′′

i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

r17,i, j ≡(s′
i, j , c j/λ, si, j+1), 1 ≤ i ≤ n, 1 ≤ j ≤ m − 1,

r18,i, j ≡(s′′
i, j , e/λ, si, j+1), 1 ≤ i ≤ n, 1 ≤ j ≤ m − 1,

r19,i, j ≡(s̄′
i, j , c j/λ, s̄i, j+1), 1 ≤ i ≤ n, 1 ≤ j ≤ m − 1,

r20,i, j ≡(s̄′′
i, j , e/λ, s̄i, j+1), 1 ≤ i ≤ n, 1 ≤ j ≤ m − 1,

r21,i ≡(s′
i,m , cm/λ, si+1), 1 ≤ i ≤ n,

r22,i ≡(s′′
i,m , e/λ, si+1), 1 ≤ i ≤ n,

r23,i ≡(s̄′
i,m , cm/λ, si+1), 1 ≤ i ≤ n,

r24,i ≡(s̄′′
i,m , e/λ, si+1), 1 ≤ i ≤ n,

r25, j ≡(sn+ j , λ/c j , sn+ j+1), 1 ≤ j ≤ m,

r26 ≡(sn+m+1, λ/t, sn+m+2).

• The set R(0,2) consists of the following rules:

r27 ≡(s, t/λ, s′),
r28 ≡(s′, λ/yes, st),

r29 ≡(s, λ/b, s′′),
r30 ≡(s′′, λ/no, s f).

• The set R(2,3) consists of the following rules:

r31,i ≡(si , λ/c, si+1), 0 ≤ i ≤ 2nm + 4n + m + 1,

r32,i ≡(si , c/λ, si+1), 0 ≤ i ≤ 2nm + 4n + m + 1,

r33 ≡(s2nm+4n+m+2, λ/b, s).

It is easy to check that the rules of a system �(〈n, m〉) of
the family are defined recursively from values n and m, and
the necessary resources for defining each such system are as
follows:

• the size of set �: 3nm + 3n + m + 7 ∈ O(nm),
• the size of set K : 8nm + 7n + m + 9 ∈ O(nm),
• the number of rules: 14nm + 17n + m + 11 ∈ O(nm),

while the initial number of cells, the initial number of objects
and the maximum length of a rule do not depend on n, m,
hence they belong to O(1). Thus, there exists a deterministic
Turing machine that builds the system �(〈n, m〉) in poly-
nomial time with respect to n and m. Therefore, the family
� = {�(〈n, m〉) | n, m ∈ N} defined above is polynomially
uniform by Turing machines.

In what follows, we give the overview of a computation to
show how an instance of the SAT problem is solved by the
system defined above.

Let us consider a propositional formula ϕ = C1 ∧ . . .∧ Cm ,
with n ≥ 1 variables {x1, . . ., xn} and m clauses C1, . . ., Cm

such that Ci = yi,1 ∨ . . . ∨ yi,pi , for some pi ≥ 1, and yi, j ∈
{xk,¬xk | 1 ≤ k ≤ n}, for each 1 ≤ i ≤ m, 1 ≤ j ≤ pi ,
where ¬xk is the negation of a propositional variable xk .

We consider the polynomial encoding (cod, s) of instances
from SAT in � defined as follows: s(ϕ) = 〈n, m〉 and
cod(ϕ) = {gi, j | xi ∈ C j } ∪ {g′

i, j | ¬xi ∈ C j } ∪ {g′′
i, j |

xi �∈ C j and ¬xi �∈ C j } for each instance. Hence, the Boolean
formula ϕ will be processed by the system �(s(ϕ))+cod(ϕ).

Generation phase. In this phase, by dividing cell with label
1 for n times, all truth assignments for the variables associated
with the Boolean formula ϕ(x1, . . ., xn) will be generated.
In this way, after completing this phase, there exist 2n cells
with label 1 such that each of them encodes a different truth
assignment of variables {x1, . . ., xn}.

In the initial configuration of the system, we have objects
a1, t, cod(ϕ) in cell 1, objects yes,no in cell 2 and objects
b, c in cell 3.

The generation phase consists of a loop with n iterations
and one additional final step; each iteration of the loop takes
three steps. Thus this phase takes 3n + 1 steps. Specifically,
this phase has two parallel processes. On the one hand, n
loops are executed; on the other hand, there is an object c
that moves between cell 2 and cell 3, which makes the state
of channel (2, 3) evolve at each step by using rules r31,i

and r32,i .
At the first step of the i -th loop (1 ≤ i ≤ n), division

rule r1,i is applied, one cell 1 is divided into two copies of

cell 1, producing objects ti and fi , which are placed in these
two separate copies of cell 1, respectively. Simultaneously, by
using rule r31,i or r32,i , the subscript of the state object of
channel (2, 3) increases by one.

At the second step of the i -th loop (1 ≤ i ≤ n), with the
appearance of state di on channel (0, 1), object ti (resp., fi)
is sent out of cell 1 by applying rule r2,i (resp., r3,i), and the
channel state is changed to d ′

i (resp., d ′′
i). Simultaneously, the

state object of channel (2, 3) evolves.
At the third step of the i -th loop (1 ≤ i ≤ n), with the

presence of state d ′
i (resp., d ′′

i) on channel (0, 1), rules r4,i and
r5,i (resp., r6,i and r7,i) are used in a flat maximally parallel
manner. Thus, only one copy of object ti and one copy of
object ai+1 (resp., only one copy of object fi and one copy
of object ai+1) are sent into one cell with label 1, and the
channel state evolves to di+1. Note that at this step, if a cell
with label 1 contained object ti (resp., fi) which was produced
by the division rule at the first step of the i -th loop, then the
set of rules {r4,i , r5,i } (resp., {r6,i , r7,i }) is chosen, and object
ti (resp., fi) is sent back to that cell with label 1 again because
of the control of channel state d ′

i (resp., d ′′
i). In addition, the

state object of channel (2, 3) evolves.
After 3n steps, there are 2n copies of cell with label 1,

each of them containing an object an+1, as well as a different
truth assignment of the variables {x1, . . ., xn}, and the state of
each channel (0, 1) is dn+1. At step 3n + 1, rule r8 is enabled
and used, so that object an+1 in each cell 1 is sent to the
environment, and the state of each channel (0, 1) is changed to
s1; simultaneously, the subscript of the state object of channel
(2, 3) increases by one.

Pre-checking phase. When the generation phase completes,
the pre-checking phase starts. In each cell with label 1, the
system looks for the clauses satisfied by the truth-assignment
of variables x1, . . ., xn . Specifically, state s′

i, j on channel (0, 1)
is obtained if both objects ti and gi, j appear in that cell 1;
this means that xi ∈ C j and xi is set to true, so clause C j

is satisfied. On the other hand, the occurrence of state s′′
i, j on

channel (0, 1) means that xi is set to true but xi �∈ C j , hence
we cannot infer that C j is true. Similarly for s ′

i, j (xi is set
to false and ¬xi ∈ C j , hence C j is true) and s ′′

i, j (we cannot
infer that C j is true). When the system infers that clause C j

is true, then object c j is brought in the corresponding cell
1, otherwise object e is brought in the corresponding cell 1,
which is the idle object.

This phase begins at computation step 3n + 2 and consists
of a loop with n iterations, where each iteration takes 2m + 1
steps. Hence the pre-checking phase takes (2m + 1)n steps.

At the first step of the i -th loop (1 ≤ i ≤ n), with the
presence of state si on channel (0, 1), object ti (resp., fi) is
sent to the environment by using rule r9,i (resp., r10,i), the
channel state is changed to si,1 (resp., s̄i,1). Simultaneously,
the state object of channel (2, 3) evolves.

At the 2 j -th (1 ≤ j ≤ m) step of the i -th loop (1 ≤ i ≤
n), when the state si, j appears on channel (0, 1), it will be
changed to state s′

i, j (resp., s′′
i, j) if that cell 1 contains object

gi, j (resp., g′
i, j or g′′

i, j) by using rule r11,i, j (resp., r12,i, j or
r13,i, j); similarly, the state of channel (0, 1) will be changed

to s̄i
′
, j (resp., s̄i

′′
, j) from s̄i, j if that cell 1 contains object gi

′
, j

(resp., gi, j or gi
′′
, j) by using rule r14,i, j (resp., r15,i, j or r16,i, j).

In addition, the state object of channel (2, 3) evolves.
At the 2 j + 1-th (1 ≤ j ≤ m − 1) step of the i -th loop

(1 ≤ i ≤ n), with the presence of state s′
i, j (resp., s′′

i, j)
on channel (0, 1), rule r17,i, j (resp., r18,i, j) is used in a flat
maximally parallel way, one copy of object c j (resp., e) is sent
into that cell with label 1, and the channel state is changed
to si, j+1; similarly, with the appearance of state s̄′

i, j (resp.,
s̄′′

i, j) on channel (0, 1), by using rule r19,i, j (resp., r20,i, j), one
copy of object c j (resp., e) is sent into that cell with label
1, and the channel state is changed to s̄i, j+1. Simultaneously,
the subscript of the state object of channel (2, 3) increases by
one.

At the 2m + 1-th step of the i -th loop (1 ≤ i ≤ n), by
applying rule r21,i (resp., r22,i) in a flat maximally parallel
way, one copy of object cm (resp., e) will be sent into a cell 1
if the state of that channel (0, 1) is s′

i,m (resp., s′′
i,m), changing

that channel state to si+1; similarly, by using rule r23,i (resp.,
r24,i), one copy of object cm (resp., e) will be sent into a cell 1
if the state of that channel (0, 1) is s̄′

i,m (resp., s̄′′
i,m), changing

that channel state to si+1. Simultaneously, the state object of
channel (2, 3) evolves.

Checking phase. In this phase, the system checks whether
or not the formula is satisfied by some truth assignment.

When the pre-checking phase completes, each cell with
label 1 contains some objects from the set {c1, . . ., cm}, which
correspond to the clauses satisfied by that assignment. If there
is at least one cell with label 1 that contains all the objects
c1, . . ., cm , it means that the corresponding truth assignment
in that cell satisfies all clauses, hence formula ϕ is satisfiable;
if there is no cell with label 1 that contains all the objects
c1, . . ., cm , the formula ϕ is not satisfiable. The checking phase
begins at step 2nm + 4n + 2, and it takes m steps.

At step 2nm + 4n + 1 + j (1 ≤ j ≤ m), the object c j is
checked in cell 1. With the presence of state sn+ j on channel
(0, 1), one copy of object c j is sent to the environment by
using rules r25, j if that cell 1 encodes a truth assignment
making clauses C1, . . ., C j true, the state of that channel
(0, 1) is changed to sn+ j+1. Simultaneously, the state object
of channel (2, 3) evolves.

Output phase. If the input formula ϕ is satisfiable, then
there exists at least one cell with label 1 such that the state of
channel (0, 1) is sn+m+1 after 2nm + 4n + m + 1 steps. In this
case, at step 2nm + 4n + m + 2, by using rule r26, object
t is sent to the environment, and the state of channel (0, 1)
is changed from sn+m+1 to sn+m+2; by applying rule r31,i or
r32,i , the state of channel (2, 3) is changed to s2nm+4n+m+2.
At the next step, by using rule r27 in a flat maximally parallel
way, only one copy of object t (if there exists more than one
copy of object t in the environment) is sent into cell 2, the state
of channel (0, 2) is changed from s to s′; under the influence
of state s2nm+4n+m+2 on channel (2, 3), object b in cell 3 is
sent to cell 2 by using rule r33. At step 2nm + 4n + m + 4,
object yes is sent to the environment by using rule r28 and
the state of channel (0, 2) is changed to st . Thus, object yes
is released into the environment at step 2nm + 4n + m + 4

and the computation halts, thus the answer of the system is
affirmative.

If the input formula ϕ is not satisfiable, then there is no cell
with label 1 such that the state of channel (0, 1) is sn+m+1 after
2nm +4n+m +1 steps. In this case, at step 2nm +4n+m +2,
the state of channel (2, 3) is changed to s2nm+4n+m+2, and at
the next step, object b is sent to cell 2 by using rule r33.
At step 2nm + 4n + m + 4, under the influence of state s on
channel (0, 2), object b is sent to the environment by using
rule r29, changing the state of channel (0, 2) to s′′. With the
presence of state s′′ on channel (0, 2), rule r30 is enabled and
applied, object no is released into the environment, and the
computation halts at step 2nm +4n +m +5, hence the answer
of the system is negative.

In general, the P system �(〈n, m〉) with input multiset
cod(ϕ) always halts and sends object yes or no to the envi-
ronment at the last step, that is, at step 2nm+4n+m+4, object
yes is sent to the environment and the system halts, or object
no is sent to the environment at step 2nm + 4n + m + 5 and
the system halts. Hence there exists a polynomial bound for
the number of steps of the computation. Therefore, according
to Definition 3, the SAT problem can be solved in polynomial
time by the family � of recognizer tissue P systems with
channel states, using noncooperative symport rules and cell
division, and working in a flat maximally parallel way. Hence
the theorem holds.

Corollary 5.1: NP ∪ co − NP ⊆ PMC
T f

s DC(1)
.

Proof: It suffices to make the following observations: the
SAT problem is NP-complete, SAT ∈ PMCT f

s DC(1)
and the

class PMCT f
s DC(1)

is closed under polynomial time reductions,
and is also closed under complement.

It is known that tissue P systems with cell division and com-
munication rules of length at most 1 can only solve tractable
problems [35], and the characterization of the standard com-
putational class P of tractable problems by using the family
of such P systems is based on the idea of dependency graph.
Moreover, the concept of dependency graph associated with
a P system can be extended easily to the class of recognizer
tissue P systems with cell division working in a flat maximally
parallel way. Hence we have the following theorem.

Theorem 5.2: P = PMCT f DC(1).
Theorem 5.1 and Theorem 5.2 mean that there exists a

frontier of tractability between efficiency and non-efficiency
in terms of channel states (assuming P �= NP).

VI. CONCLUSIONS AND FURTHER WORKS

In this work, the computational power of tissue P systems
with channel states working in the flat maximally parallel way
has been investigated. We have shown that tissue P systems
with channel states and using antiport rules of length two
working in the flat maximally parallel way are able to compute
Parikh sets of finite languages, and such P systems with one
cell and noncooperative symport rules can compute at least
all Parikh sets of matrix languages, some Turing universality
results have also been provided. We further solved the SAT
problem by tissue P systems with channel states, cell division
and noncooperative symport rules, working in the flat maxi-
mally parallel way; nevertheless, if we consider this kind of

P systems without channel states, then a limit on the efficiency
has been obtained. These results show that channel states are
an essential parameter for the computational power.

P systems using rules in a minimally parallel way were
investigated in [11], [36], where each membrane which can
evolve in a given step should do it by using at least one
rule. It is of interest to investigate the computational power of
tissue P systems with channel states using rules in a minimally
parallel way.

Time-free solutions to NP-complete problems by various
timed P systems have been investigated, e.g., in [37]–[40].
It remains open whether we can construct tissue P systems
with channel states and cell division to solve NP-complete
problems in the context of time-freeness.

Small universal P systems have been studied
widely [41]–[45]. It is interesting to see whether we
can construct small universal tissue P systems with channel
states working in a sequential way (on each channel, at most
one rule can be used at each step) or in a flat maximally
parallel way (at each step, on each channel, a maximal set
of applicable rules which pass from a given state to a unique
next state, is chosen and each rule in the set is applied once).

In [21], [46], it is shown that tissue P systems with only one
object are computationally complete. It remains open whether
the computational completeness result still holds for tissue
P systems with channel states and one object working in the
flat maximally parallel way. If the answer is positive, then
what is the optimal length of communication rules used in
such P systems?

Cell separation, which provides an efficient approach for
obtaining an exponential workspace in polynomial time, has
already been introduced into cell-like P systems with sym-
port/antiport rules and tissue-like P systems [47]–[50]. In these
P systems, cells do not have the duplication function; that
is, when a cell is separated, the objects in the cell are
divided and distributed in the newly generated cells instead of
copying the objects and then placing one copy in each of the
newly generated cells. It remains open whether NP-complete
problems can be solved by tissue P systems with channel
states and cell separation working in the flat maximally parallel
way.

REFERENCES

[1] G. Păun, “Computing with membranes,” J. Comput. Syst. Sci., vol. 61,
no. 1, pp. 108–143, 2000.

[2] A. Alhazov and R. Freund, “Variants of small universal P systems with
catalysts,” Fundam. Informat., vol. 138, nos. 1–2, pp. 227–250, 2015.

[3] F. Bernardini and M. Gheorghe, “Population P systems,” J. Univ. Com-
put. Sci., vol. 10, no. 5, pp. 509–539, 2004.

[4] M. Ionescu, G. Păun, and T. Yokomori, “Spiking neural P systems,”
Fundam. Informat., vol. 71, nos. 2–3, pp. 279–308, 2006.

[5] A. Leporati, L. Manzoni, G. Mauri, A. E. Porreca, and C. Zandron,
“Membrane division, oracles, and the counting hierarchy,” Fundam.
Informat., vol. 138, nos. 1–2, pp. 97–111, 2015.

[6] C. Martín-Vide, J. Pazos, G. Păun, and A. Rodriguez-Paton, “Tissue
P systems,” Theor. Comput. Sci., vol. 296, no. 2, pp. 295–326, 2003.

[7] A. Păun and G. Păun, “The power of communication: P systems with
symport/antiport,” New Generat. Comput., vol. 20, no. 3, pp. 295–305,
2002.

[8] B. Song, M. J. Pérez-Jiménez, and L. Pan, “Efficient solutions to hard
computational problems by P systems with symport/antiport rules and
membrane division,” BioSystems, vol. 130, pp. 51–58, Apr. 2015.

[9] P. Sosík and M. Langer, “Small (purely) catalytic P systems simulating
register machines,” Theor. Comput. Sci., vol. 623, pp. 65–74, Apr. 2016.

[10] D. Besozzi, P. Cazzaniga, D. Pescini, and G. Mauri, “Modelling
metapopulations with stochastic membrane systems,” BioSystems,
vol. 91, no. 3, pp. 499–514, 2008.

[11] G. Ciobanu, L. Pan, G. Păun, and M. J. Pérez-Jiménez, “P systems with
minimal parallelism,” Theor. Comput. Sci., vol. 378, no. 1, pp. 117–130,
2007.

[12] G. Păun and R. Păun, “Membrane computing and economics: Numerical
P systems,” Fundam. Informat., vol. 73, nos. 1–2, pp. 213–227, 2006.

[13] H. Peng, J. Wang, and M. J. Pérez-Jiménez, and A. Riscos-Núñez, “An
unsupervised learning algorithm for membrane computing,” Inf. Sci.,
vol. 304, pp. 80–91, May 2015.

[14] G. Zhang, M. Gheorghe, L. Pan, and M. J. Pérez-Jiménez, “Evolutionary
membrane computing: A comprehensive survey and new results,” Inf.
Sci., vol. 279, pp. 528–551, Sep. 2014.

[15] G. Zhang, H. Rong, F. Neri, and M. J. Pérez-Jiménez, “An optimiza-
tion spiking neural P system for approximately solving combinatorial
optimization problems,” Int. J. Neural Syst., vol. 24, no. 5, pp. 1–16,
2014.

[16] G. Zhang, H. Rong, Z. Ou, M. J. Pérez-Jiménez, and M. Gheorghe,
“Automatic design of deterministic and non-halting membrane systems
by tuning syntactical ingredients,” IEEE Trans. NanoBiosci., vol. 13,
no. 3, pp. 363–371, Sep. 2014.

[17] A. M. Colomer, A. Margalida, L. Valencia-Cabrera, and A. Palau,
“Application of a computational model for complex fluvial ecosystems:
The population dynamics of zebra mussel Dreissena polymorpha as a
case study,” Ecol. Complex., vol. 20, pp. 116–126, Dec. 2014.

[18] G. Păun, G. Rozenberg, and A. Salomaa, Eds., The Oxford Handbook
of Membrane Computing. New York: Oxford Univ. Press, 2010.

[19] A. Păun, G. Păun, and G. Rozenberg, “Computing by communication
in networks of membranes,” Int. J. Found. Comput. Sci., vol. 13, no. 6,
pp. 779–798, 2002.

[20] A. Alhazov, R. Freund, A. Leporati, M. Oswald, and C. Zandron,
“(Tissue) P systems with unit rules and energy assigned to membranes,”
Fundam. Informat., vol. 74, no. 4, pp. 391–408, 2006.

[21] R. Freund and M. Oswald, “Tissue P systems with symport/antiport rules
of one symbol are computational complete,” in Proc. Eur. Sci. Found.
PESC Exploratory Workshop Cellular Comput. (Complex. Aspects),
2005, pp. 178–187.

[22] R. Freund and M. Oswald, “Modelling grammar systems by tissue
P systems working in the sequential mode,” Fundam. Informat., vol. 76,
no. 3, pp. 305–323, 2007.

[23] R. Freund and S. Verlan, “A formal framework for static (tissue)
P systems,” in Membrane Computing, Berlin, Germany: Springer, 2007,
pp. 271–284.

[24] G. Păun, M. J. Pérez-Jiménez, and A. Riscos-Núñez, “Tissue P systems
with cell division,” Int. J. Comput. Commun., vol. 3, no. 3, pp. 295–303,
2008.

[25] D. Díaz-Pernil, M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and
A. Riscos-Núñez, “A uniform family of tissue P system with cell
division solving 3-COL in a linear time,” Theor. Comput. Sci., vol. 404,
no. 1, pp. 76–87, 2008.

[26] B. Song, T. Song, and L. Pan, “A time-free uniform solu-
tion to subset sum problem by tissue P systems with cell
division,” Math. Struct. Comput. Sci.. [Online]. Available:
http://dx.doi.org/10.1017/S0960129515000018

[27] B. Song and L. Pan, “The computational power of tissue-like P systems
with promoters,” Theor. Comput. Sci., vol. 641, pp. 43–52, Aug. 2016.
[Online]. Available: http://dx.doi.org/10.1016/j.tcs.2016.05.022

[28] R. Freund, G. Păun, and M. J. Pérez-Jiménez, “Tissue P systems with
channel states,” Theor. Comput. Sci., vol. 330, no. 1, pp. 101–116, 2005.

[29] R. Freund and S. Verlan, “(Tissue) P systems working in the k-restricted
minimally or maximally parallel transition mode,” Natural Comput.,
vol. 10, no. 2, pp. 821–833, 2011.

[30] L. Pan, G. Păun, and B. Song, “Flat maximal parallelism in P systems
with promoters,” Theor. Comput. Sci., vol. 623, pp. 83–91, Apr. 2016.

[31] G. Rozenberg and A. Salomaa, Eds., Handbook of Formal Languages,
vol. 3. Berlin, Germany: Springer, 1997.

[32] J. Dassow and G. Păun, Regulated Rewriting in Formal Language
Theory. Berlin, Germany: Springer, 1989.

[33] M. L. Minsky, Computation: Finite and Infinite Machines. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1967.

[34] M. R. Garey and D. J. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA, USA: Freeman,
1979.

[35] R. Gutiérrez-Escudero, M. J. Pérez-Jiménez, and M. Rius-Font, “Charac-
terizing tractability by tissue-like P systems,” in Membrane Computing,
Berlin, Germany: Springer, 2009, pp. 289–300.

[36] R. Freund, G. Păun, and M. J. Pérez-Jiménez, “Polarizationless
P systems with active membranes working in the minimally parallel
mode,” in Proc. 6th Brainstorming Week Membrane Comput., 2007,
pp. 131–155.

[37] T. Song, L. F. Macías-Ramos, L. Pan, and M. J. Pérez-Jiménez, “Time-
free solution to SAT problem using P systems with active membranes,”
Theor. Comput. Sci., vol. 529, pp. 61–68, Apr. 2014.

[38] B. Song and L. Pan, “Computational efficiency and universality of
timed P systems with active membranes,” Theor. Comput. Sci., vol. 567,
pp. 74–86, Feb. 2015.

[39] B. Song, M. J. Pérez-Jiménez, and L. Pan, “Computational efficiency and
universality of timed P systems with membrane creation,” Soft Comput.,
vol. 19, no. 11, pp. 3043–3053, 2015.

[40] B. Song, T. Song, and L. Pan, “Time-free solution to SAT problem
by P systems with active membranes and standard cell division rules,”
Natural Comput., vol. 14, no. 4, pp. 673–681, 2015.

[41] E. Csuhaj-Varjú, M. Margenstern, G. Vaszil, and S. Verlan, “On small
universal antiport P systems,” Theor. Comput. Sci., vol. 372, no. 2,
pp. 152–164, 2007.

[42] A. Păun and G. Păun, “Small universal spiking neural P systems,”
BioSystems, vol. 90, no. 1, pp. 48–60, 2007.

[43] T. Song, Y. Jiang, X. Shi, and X. Zeng, “Small universal spiking neural
P systems with anti-spikes,” J. Comput. Theor. Nanosci., vol. 10, no. 4,
pp. 999–1006, 2013.

[44] X. Zhang, X. Zeng, and L. Pan, “Smaller universal spiking
neural P systems,” Fundam. Informat., vol. 87, no. 1, pp. 117–136,
2008.

[45] L. Pan and X. Zeng, “Small universal spiking neural P systems work-
ing in exhaustive mode,” IEEE Trans. NanoBiosci., vol. 10, no. 2,
pp. 99–105, Jun. 2011.

[46] A. Alhazov, R. Freund, and M. Oswald, “Cell/symbol complexity of
tissue P systems with symport/antiport rules,” Int. J. Found. Comput.
Sci., vol. 17, no. 1, pp. 3–25, 2006.

[47] L. F. Macías-Ramos, B. Song, L. Valencia-Cabrera, L. Pan, and
M. J. Pérez-Jiménez, “Membrane fission: A computational complexity
perspective,” Complexity, vol. 21, no. 6, pp. 321–334, Jul./Aug. 2016.
[Online]. Available: http://dx.doi.org/10.1002/cplx.21691

[48] L. Pan and M. J. Pérez-Jiménez, “Computational complexity of tissue-
like P systems,” J. Complex., vol. 26, no. 3, pp. 296–315, 2010.

[49] M. J. Pérez-Jiménez and P. Sosík, “An optimal frontier of the efficiency
of tissue P systems with cell separation,” Fundam. Informat., vol. 138,
nos. 1–2, pp. 45–60, 2015.

[50] X. Zhang, S. Wang, Y. Niu, and L. Pan, “Tissue P systems with cell
separation: Attacking the partition problem,” Sci. China Inf. Sci., vol. 54,
no. 2, pp. 293–304, 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

