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P systems are a class of distributed and parallel computation models inspired by
the structure and the functioning of living cells. P systems have been used to solve
computation hard problems, where the execution of each rule is completed in unit time
(a global clock is assumed for timing and synchronizing the execution of rules). The
assumption that the execution of each rule takes exactly one time unit plays an vital
role to make a system working synchronously, and it has also been used to characterize
the computational efficiency and time complexity of a system. In this work, we investigate
the computation power of P systems without such time assumption. Specifically, we give
a time-free solution to SAT problem using P systems with active membranes in the sense
that the correctness of the solution does not depend on the precise timing of the involved
rules.

1. Introduction

Membrane computing is a branch of natural computing, first introduced in [17]. The research aim of membrane computing
is focused on abstracting computing concepts (i.e. models, data structures, data manipulation operations, operation control
modes, etc.) from the structure and the functioning of living cells, considered both individually and as part of complexes,
such as tissues and organs. An introduction to the area of membrane computing can be found in [19], while an overview
of the “state-of-the-art” in 2010 can be found in [20], with up-to-date information available at the membrane computing
website [27].

The computation models obtained in the framework of membrane computing are usually called P systems, which are
distributed and parallel computation models. There are three main classes of P systems investigated: cell-like P systems
[17], tissue-like P systems [11], neural-like P systems [9]. The present paper deals with a class of cell-like P systems, called
P systems with active membranes, introduced in [18].

Briefly, P systems with active membranes consist of membranes that are organized in a hierarchical structure, where
membranes can have an electrical charge (positive +, negative − or neutral 0). Each membrane contains a multiset of
objects. The charge of membranes, the whole membrane structure and the objects contained in membranes evolve by the
specified evolution rules. When the evolution of the system stops, we obtain a computation result, where the computation
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result can be defined in several ways such as the number objects inside a specified membrane or the number objects in
each membrane (i.e., a vector).

P systems with active membranes are proved to be universal [15], and have been used to solve computation hard
problems [1–3,10,12–14,21,22,24]. All the above-mentioned P systems with active membranes work in a synchronized and
parallel way (a global clock is assumed to mark the time for the system), in each tick of the global clock, all the applicable
rules are applied simultaneously, and the execution of rules takes exactly one time unit. The assumption that the execution
of rules takes exactly one time unit plays an important role to make the computation in each membrane happening syn-
chronously, and it has been used to character the computational efficiency and time complexity of a system. It is of interest
to investigate the computation power of P systems without such timing assumption [7].

In this work, we present a “time-free” solution to SAT problem using P systems with active membranes in the sense
that the correctness of the solution does not depend on the precise timing of the involved rules.

2. P systems with active membranes

2.1. P systems with active membranes

In this subsection, we first introduce some necessary notion and notation from formal language theory (please refer to
[23] for more detail), then recall the definition of P systems with active membranes [19].

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V , while the empty string is denoted by λ,
and the set of all non-empty strings over V is denoted by V + .

By N we denote the set of non-positive integers. Let U be an arbitrary set. A multiset (over U ) is a mapping
M : U → N. The multiplicity of a in the multiset M is denoted by M(a) with a ∈ U . This can be expressed by
the pair (a, M(a)). If the set U = {a1,a2, . . . ,an} is finite, a multiset M over U , represented by the set of mappings
{(a1, M(a1)), (a2, M(a2)), . . . , (an, M(an))} can also be represented by a string w = aM(a1)

1 aM(a2)
2 . . .aM(an)

n or by any of its
permutations. In what follows, we will not distinguish between the representation of multiset in mapping form or string
form.

A P system with active membranes of degree m is a construct

Π = (O , H,μ, w1, . . . , wm, R),

where:

(i) m � 1 is the initial degree of the system;
(ii) O is the alphabet of objects;
(iii) H is a finite set of labels for membranes;
(iv) μ is the initial membrane structure, consisting of m membranes; membranes are labelled (not necessarily in an injective

way) with elements of H × C , where C is the set of electrical charges {+,−,0} (the elements in C denote positive,
negative, neutral, respectively);

(v) w1, . . . , wm are strings over O , describing the initial multisets of objects placed in the m regions of μ;
(vi) R is a finite set of development rules, of the following types:

(a) [ a → v ]α
h , h ∈ H,α ∈ C,a ∈ O , v ∈ O ∗ (object evolution rules, associated with membranes and depending on the

label and the charge of the membranes);
(b) a[ ]α1

h → [ b ]α2
h , h ∈ H,α1,α2 ∈ C,a,b ∈ O (communication rules; an object is sent into the membrane, possibly

modified during this process; also the polarization of the membrane can be modified, but not its label);
(c) [ a ]α1

h → [ ]α2
h b, h ∈ H , α1,α2 ∈ C , a,b ∈ O (communication rules; an object is sent out of the membrane, possibly

modified during this process; also the polarization of the membrane can be modified, but not its label);
(d) [ a ]α

h → b, h ∈ H , α ∈ C , a,b ∈ O (dissolving rules; in reaction with an object, a membrane can be dissolved, while
the object specified in the rule can be modified);

(e) [ a ]α1
h → [ b ]α2

h [ c ]α3
h , h ∈ H , α1,α2,α3 ∈ C , a,b, c ∈ O (division rules for elementary membranes; in reaction with

an object, the membrane is divided into two membranes with the same label, possibly of different polarizations;
the object specified in the rule is replaced in the two new membranes by possibly new objects;

(f) [[ ]α1
h1

. . . [ ]α1
hk

[ ]α2
hk+1

. . . [ ]α2
hn

]α0
h0

→ [[ ]α3
h1

. . . [ ]α3
hk

]α5
h0

[[ ]α4
hk+1

. . . [ ]α4
hn

]α6
h0

, k � 1,n > k,hi ∈ H,0 � i � n, and
α0, . . . ,α6 ∈ C with {α1,α2} = {+,−} (if the membrane with label h0 contains other membranes than those with
the labels h1, . . . ,hn specified above, then they must have neutral charges; these membranes are duplicated and
then are part of the contents of both new copies of the membrane h0).

The previous rules can be considered as “standard” rules of P systems with active membranes; the following rule can be
considered as the extension of rule (e).

(e′) [ a ]α1
h1

→ [ b ]α2
h2

[ c ]α3
h3

, h1,h2,h3 ∈ H , α1,α2,α3 ∈ C , a,b, c ∈ O (h1 is an elementary membrane; in reaction with an
object, the membrane is divided into two membranes not necessarily with the same label; also the polarizations of the



Fig. 1. Division of elementary membranes.

Fig. 2. Division of non-elementary membranes.

new membranes can be different from the polarization of the initial one; the object specified in the rule is replaced in
the two new membranes by possibly new objects).

The difference of the rules of type (e) and type (e′) is that the resulting membranes obtained by applying the rules of
type (e) have the same label with their parent membrane, and the resulting membranes obtained by applying the rules of
type (e′) can have different labels with their parent membrane.

These rules are applied according to the following principles [18,19]:

(1) The rules of type (a) are applied to all objects to which they can be applied, and all other rules are applied to all
membranes to which they can be applied; an object can be used by only one rule, non-deterministically chosen, but
any object which can evolve by a rule of any form, should evolve.

(2) If a membrane is dissolved, then all the objects from its region are left free in the surrounding region. The skin mem-
brane is never dissolved.

(3) All objects and membranes not specified in a rule and which do not evolve are passed unchanged to the next step.
For instance, if a membrane with the label h is divided by a rule of type (e) which involves an object a, then all
other objects from membrane h which do not evolve are introduced in each of the two resulting membranes h (this
is the case of object d in Fig. 1). Similarly, when dividing a membrane h0 by means of a rule of type (f), the neutral
membranes are reproduced in each of the two new membranes with the label h0, unchanged if no rule is applied to
them (in particular, the contents of these neutral membranes are reproduced unchanged in these copies, providing that
no rule is applied to their objects) – this is the case of membrane h4 in Fig. 2.

(4) If at the same time a membrane h is divided by a rule of type (e) and there are objects in this membrane which evolve
by means of rules of type (a), then in the new copies of the membrane we introduce the result of the evolution; that is,
we suppose that first the evolution rules of type (a) are used, changing the objects, and then the division is produced,
so that in the two new membranes with label h we introduce copies of the changed objects. Of course, this process
takes only one step. The same assertions apply to the division by means of a rule of type (f): we always assume that
the rules are applied in the bottom-up manner in one step, but first the rules of the innermost region and then level
by level until the region of the skin membrane.

(5) The rules associated with a membrane h are used for all copies of this membrane, irrespective of whether or not the
membrane is an initial one or it is obtained by division. At one step, a membrane h can be the subject of only one rule
of types (b)–(f).

(6) The skin membrane can never divide.

The membrane structure of the system at a given time, together with all multisets of objects associated with the regions
of this membrane structure, is the configuration of the system at that time. The (m + 1)-tuple (μ, w1, . . . , wm) is the initial
configuration. We can pass from one configuration to another one by using the rules from R according to the principles
given above. A sequence of transitions which starts from the initial configuration is called a computation with respect to Π .



A computation is halting if it cannot be continued: there is no rule which can be applied to objects and membranes in the
last configuration. During a computation, objects can leave the skin membrane (by means of rules of type (c)). The result of
a halting computation is the number of objects which are sent out of the system during the computation.

2.2. Timed P systems with active membranes

We recall the notion of timed P system from [4] (in our case, P systems with active membranes).
A timed P system with active membranes Π(e) = (O , H,μ, w1, . . . , wm, R, e) is obtained by adding a time-mapping e : R →

N to a P system with active membranes Π = (O , H,μ, w1, . . . , wm, R), where N is the set of natural numbers and the
time-mapping e specifies the execution times for the rules.

A timed P system with active membranes Π(e) works in the following way. An external clock is assumed, which marks
time-units of equal length, starting from instant 0. According to this clock, the step t of computation is defined by the
period of time that goes from instant t − 1 to instant t . If a membrane i contains some rule r from types (a)–(f) and (e′)
selected to be executed, then the execution of such rule takes e(r) time units to complete. Therefore, if the execution is
started at instant j, the rule is completed at instant j +e(r) and the resulting objects and membranes become available only
at the beginning of step j + e(r) + 1. When a rule r is started, then the occurrences of symbol-objects and the membrane
subject to this rule cannot be subject to other rules until the implementation of the rule completes.

In a timed P system with active membranes, the application of rules also follows the bottom-up manner. For instance,
at time instant j a membrane with label h is divided by a rule r1: [ a ]α1

h → [ b ]α2
h [ c ]α3

h , an object d in this membrane
evolves by a rule r2: [ d ]α1

h → [ v ]α1
h , and suppose that e(r2) > e(r1), then at time instant j + e(r1) the implementation

of rule r2 is still in process; by the bottom-up manner, at time instant j + e(r1), the implementation of rule r1 does not
complete; until time instant j + e(r2) (that is, the implementation of rule r2 completes), the evolution result v is introduced
in the new two copies of membrane with label h, and the implementation of rule r1 completes (that is, the implementation
of rule r1 actually takes e(r2) steps).

A recognizer timed P system with active membranes is a timed P system with active membranes such that: (i) the working
alphabet contains two distinguished elements yes and no; (ii) all computations halt; and (iii) if C is a computation of
the system, then either object yes or object no (but not both) must appear in the environment when the system halts.
In recognizer timed P systems with active membranes, we say that a computation is an accepting computation (resp., re-
jecting computation) if the object yes (resp., no) appears in the environment associated with the corresponding halting
configuration.

2.3. Time-free solutions to decision problems by P systems with active membranes

In this subsection, we give the definition of time-free solutions to decision problems by P systems with active mem-
branes, which is actually obtained by combining and adapting the notion of semi-uniform solution [8] and the notion of
time-freeness [4].

In timed P systems with active membranes, a computation step is called a rule starting step (RS-step, for short) if at
this step at least one rule starts its execution. In the following definition of time-free solutions to decision problems by
P systems with active membranes, we will only count RS-steps (i.e., steps in which some object “starts” to evolve or some
membrane “starts” to change). In timed P systems with active membranes, the execution time of rules is determined by
the time mapping e, and a possible existence of rules with inherently exponential execution time. Therefore, the number
of RS-steps in a computation characterize how “fast” the constructed P system with active membranes solves a decision
problem in the context of time-freeness.

A decision problem, X , is a pair (I X ,ΘX ) such that I X is a language over a finite alphabet (who elements are called
instances) and ΘX is a total Boolean function (that is, predicate) over I X .

Let X = (I X ,ΘX ) be a decision problem. We say that X is solvable in a polynomial time by a family of time-free recognizer
P systems with active membranes Π = Πu, u ∈ I X (we also say that the family Π is a time-free solution to the decision
problem X) if the following items are true:

• the family Π is polynomially uniform by a Turing machines; that is, there exists a deterministic Turing machine working
in polynomial time which constructs the system Πu from the instance u ∈ I X ;

• the family Π is time-free sound (with respect to X); that is, for any time-mapping e, the following property holds: if for
each instance of the problem u ∈ I X such that there exists an accepting computation of Πu(e), we have ΘX (u) = 1;

• the family Π is time-free complete (with respect to X); that is, for any time-mapping e, the following property holds: if
for each instance of the problem u ∈ I X such that ΘX (u) = 1, every computation of Πu(e) is an accepting computation;

• the family Π is time-free polynomially bounded; that is, there exists a polynomial function p(n) such that for any time-
mapping e and for each u ∈ I X , all computations in Πu(e) halt in, at most, p(|u|) RS-steps.



3. A time-free solution to SAT problem by P systems with active membranes

The SAT problem (satisfiability of propositional formulae in the conjunctive normal form) is probably the best known
NP-complete problem [6], which asks whether or not for a given formula in the conjunctive normal form there is a truth-
assignment of variables such that the formula assumes the value true.

The following theorem shows that SAT problem can be solved in a linear time by a family of time-free P systems with
active membranes.

Theorem 3.1. SAT problem can be solved by a family of time-free P systems with active membranes with rules of types (a), (b), (c),
(e′), (f) in a linear time with respect to the number of variables and the number of clauses.

Proof. Let us consider a propositional formula C = C1 ∧ C2 ∧ · · · ∧ Cm , with Ci = yi,1 ∨ · · · ∨ yi,pi , for some m � 1, pi � 1,
and yi, j ∈ {xk,¬xk | 1 � k � n}, for each 1 � i � m,1 � j � pi , where ¬xk is the negation of a propositional variable xk , the
two connections ∨,∧ are or, and, respectively.

For the given propositional formula C , we construct the P system with active membranes

ΠC = (O , H,μ, w0, w1, wn+m+2, R),

where

• O = {ai, ti, f i | 1 � i � n} ∪ {ri | 1 � i � m} ∪ {bi | 1 � i � n} ∪ {yes,no,b} is the alphabet;
• H = {−1,0,1,2, . . . ,n + m + 1,n + m + 2} is the set of labels of the membranes;
• μ = [ [ [ ]0

1 ]0
0 ]0

n+m+2 is initial membrane structure;
• w0 = λ (that is, membrane 0 contains no object in the initial configuration);
• w1 = a1a2 . . .anyes is the initial multiset contained in membrane 1;
• wn+m+2 = no is the initial multiset contained in membrane n + m + 2;
• R is the set of rules of the following forms:

– G1i : [ ai ]0
i → [ ti ]+

i+1[ f i ]+
i+1, 1 � i � n,

– G2i : [ ti → rhi,1 . . . rhi, ji
]+

i+1, 1 � i � n, and the clauses Chi,1 , . . . , Chi, ji
contain the literal xi ,

– G3i : [ f i → rhi,1 . . . rhi, ji
bi ]+

i+1, 1 � i � n, and the clauses Chi,1 , . . . , Chi, ji
contain the literal ¬xi ,

– G4i : [ bi ]+
i+1 → [ ]−

i+1b, 1 � i � n,

– G5i : [ [ ]+
i+1[ ]−

i+1]0
0 → [ [ ]0

i+1]0
0[ [ ]0

i+1]0
0, 1 � i � n,

– C1 j : [ r j ]0
n+ j → [ ]0

n+ j+1[ ]0
−1, 1 � j � m,

– O 1 : [ no ]0
n+m+2 → [ ]+

n+m+2no,
– O 2 : no[ ]−

n+m+2 → [ no ]−
n+m+2,

– O 3 : [ yes ]0
n+m+1 → [ ]0

n+m+1yes,

– O 4 : [ yes ]0
0 → [ ]0

0yes,
– O 5 : [ yes ]+

n+m+2 → [ ]−
n+m+2yes.

In what follows, we show how the above constructed system ΠC give a solution to the propositional formula C . Generally,
the computation process can be separated into three phases: generating phase, checking phase and output phase.

Generating phase. In the initial configuration of the system, membrane 1 contains objects w1 = a1a2 . . .anyes, and mem-
brane 0 contains no object. The objects ai in membrane 1 correspond to variable xi , 1 � i � n. At step 1, the rule G11 is
applied, producing the truth values true (represented by t1) and false (represented by f1) assigned to variable x1, placed in
two separate copies of membrane 2. Note that when the membrane with label 1 is divided by the rule G11, the obtained two
membranes with label 2 instead of label 1, and their charges change from neutral to positive. For any given time-mapping
e, the execution of rule G11 completes in e(G11) steps. As we will see below, at step 1, exception for the application of rule
G11, the rule O 1 also starts; and from step 2 to step e(G11), there is no rule starting. So, during the execution of rule G11
(i.e., from step 1 to step e(G11)), there is one RS-step. Note that the number of RS-steps during the execution of rule G11 is
independent on the time-mapping e.

After the execution of rule G11 completes, the applications of rules G21 and G31 start (note that the application starts at
the same step, but it may complete at different steps), which is actually a process looking for the clauses satisfied by the
truth-assignment of variable x1. After the execution of rule G31 completes, the application of rules G41 starts, where object
b1 evolves to a “dummy” object b (it will not evolve anymore), and object b exits the membrane changing its polarization
from positive to negative.

After the execution of rule G41 completes, the membrane with label 0 contains membranes with polarization positive
and negative. We have the following two cases:



• when the execution of rule G41 completes, the execution of rule G2i already completes. In this case, the rule G51 is
enabled, and its application starts;

• when the execution of rule G41 completes, the execution of rule G21 does not complete. In this case, the system will
continue the execution of rule G21. Only when the execution of rule G21 completes, the rule G51 will be enabled and
applied.

So, the rule G51 has a synchronization functioning because e(G31) + e(G41) may not equal to e(G21) for a time-mapping e.
Anyway, when the execution of rule G51 completes, the computation takes four RS-steps, which is independent on any
time-mapping e.

By the application of rule G51, the polarization of the membranes with label 2 changes to neutral. In this way, the rule
G12 is enabled and applied, which means that the system starts to assign truth values true and false to variable x2. Similar
to the case of variable x1, the process of true value assignment of variable x2 takes four RS-steps, and four membranes
with label 0 are generated, each membrane with label 0 contains a membrane with label 3. In general, after 4n RS-steps,
2n separate copies of membrane with label 0 are generated, all of which are placed in the membrane with label n + m + 2;
each membrane with label 0 contains a membrane with label n + 1.

In the computation of generating phase, by the fact that all membranes with the same labels applied the same division
rules, and the bottom-up manner of the application of rules, we have that the 2n separate copies of membrane with label 0
are generated at the same time instant, which ensures that the following checking phase can start at the same time.

Checking phase. Each membrane with label n + 1 contains some of objects r1, r2, . . . , rm that correspond to the clauses
satisfied by the truth assignment from that membrane. If there is at least one membrane with label n + 1 that contains
all objects r1, r2, . . . , rm , this means that the truth assignment from that membrane satisfies all clauses, hence it satisfies
formula C . Otherwise, (if no membrane with label n + 1 contains all objects r1, r2, . . . , rm), the formula C is not satisfiable.

By applying the rule C11, at the same time for all 2n membranes with label n + 1, the system checks whether object r1
is present in each membrane. If this is the case, then the membranes containing object r1 are divided into two membranes
with label n + 2 and −1, respectively, where the membrane with label −1 is a “dummy” membrane that will not evolve
anymore. The membranes that do not contain object r1 cannot divide and they will no longer evolve, as no further rule can
be applied to them. For a given time-mapping e, the checking of object r1 takes e(C11) steps, where the number of RS-steps
is one.

In membranes with label n + 2 (that is, the membranes where the first clause are already satisfied), by applying the
rule C12, the system checks whether object r2 is present in each membrane. Only the membranes containing object r2 will
divide and membranes with label n + 3 are obtained. As the above iteration, the rules of type C1 j are applied as many times
as possible. Clearly, if a membrane with label n + 1 does not contain an object ri , then that membrane will stop evolving
at the time when ri is supposed to trigger a division. In this way, for a given time-mapping e, after at most

∑
1� j�m e(C1 j)

steps (where there are at most m RS-steps), we can find whether there is a membrane with label n + 1 that contains all
objects r1, r2, . . . , rm . The membranes with label n + 1 having this property, and only they, will have offspring membranes
with label n + m + 1.

Output phase. At step 1, the rule O 1 is applied, object no exits the skin membrane n +m + 2 changing its polarization from
neutral to positive.

When the process of checking whether all clauses are satisfied completes, if no membrane with label n + m + 1 is gen-
erated in any membrane with label 0, then the rules O 3, O 4 and O 5 cannot be applied. In this case, when the computation
halts, object no remains in the environment, telling us that the formula is not satisfiable.

When the process of checking whether all clauses are satisfied completes, if there are membranes with label n + m + 1
generated in membranes with label 0, then the rules O 3 and O 4 will be applied one by one. For a given time-mapping,
after e(O 3) + e(O 4) steps (where there are two RS-steps), object yes reaches membrane n + m + 2. At this moment, if
the execution of rule O 1 is not yet completed, then no rule can be started in the system before the execution of rule O 1
completes (note that the system will take computation steps to complete the execution of rule O 1, but there is no RS-step
from this moment to the end of the execution of rule O 1). Only when the execution of rule O 1 completes, the polarization
of membrane n + m + 2 changes to positive, and the rule O 5 is enabled and applied. By the application of rule O 5, object
yes exits membrane n + m + 2 changing its polarization from positive to negative; in this way, the objects yes remaining
in membrane n + m + 2 are not able to continue exiting into the environment. After the execution of rule O 5 completes,
the rule O 2 is enabled and applied, object no enters membrane n + m + 2; in this way, when the computation halts, one
copy of yes appears in the environment, telling us that the formula is satisfiable.

In what follows, we show that the system Πc is time-free sound, time-free complete, and time-free linear bounded.
Furthermore, the construction of system ΠC can be done in polynomial time by a Turing machine.

By the computation process to solve the formula C , we can find that for any time-mapping e : R → N, the following
property holds: the object yes appears in the environment when the computation halts if and only if the formula C is
satisfiable; and the object no appears in the environment when the computation halts if and only if the formula C is not
satisfiable. So, the system ΠC is time-free sound and time-free complete.



If formula C is satisfiable, then object yes appears in the environment at RS-step 4n + m + 3: in 4n RS-steps the system
generated 2n membranes with n+1 (as well as the 2n different truth-assignments); it takes m RS-steps to check whether all
clauses are satisfied by an assignment; 3 RS-steps are necessary to output the computing result yes. Furthermore, it takes
one more RS-step such that object no enters into the skin membrane n + m + 2, and the system halts. So, the computation
takes 4n + m + 4 RS-steps. If formula C is not satisfiable, then at step 1 the system sends object no into the environment
(exactly, it takes one RS-step), and in 4n +m RS-steps the system halts. Therefore, the family of membrane systems we have
constructed is linear time efficient in the context of time-freeness.

The family Π = {ΠC | C is an instance of SAT problem} is polynomially uniform because the construction of P systems
described in the proof can be done in polynomial time by a Turing machine:

– the total number of objects is 4n + m + 3;
– the number of initial membranes is 3;
– the cardinality of the initial multisets is 3;
– the total number of evolution rules is 5n + m + 5;
– the maximal length of a rule (the number of symbols necessary to write a rule, both its left and right sides, the

membranes, and the polarizations of membranes involved in the rule) is m + 4.

We omit the detailed construction due to the fact that it is straightforward but cumbersome as explained in the proof of
Theorem 7.2.3 in [19]. Therefore, SAT problem can be decided in linear RS-steps with respect to the number of variables
and the number of clauses by time-free recognizer P systems with active membranes and this concludes the proof. �
4. Conclusions and remarks

In this work, we give a time-free solution to SAT problem using P systems with active membranes in the sense that the
correctness of the solution does not depend on the precise timing of the involved rules.

In a timed P system with active membranes, the application of rules follows the bottom-up manner. As explained in
Section 2, with this manner of rule application, the implementation time of rules at a bottom level can influence the
implementation time of rules at an up level. Such influence can be removed in the following manner of rule application.
For instance, at time instant j a membrane with label h is divided by a rule r1: [ a ]α1

h → [ b ]α2
h [ c ]α3

h , an object d in
this membrane evolves by a rule r2: [ d ]α1

h → [ v ]α1
h , and suppose that e(r2) > e(r1), then at time instant j + e(r1) the

implementation of rule r1 completes, which produces two new membranes with label h; the implementation of rule r2
is still in process; these two new membranes inherit the implementation of rule r2, which will complete at time instant
j + e(r2); these two new membranes and their objects are subject to further rules except for both copies of the object d
that are still processed by rule r2 until the instant j + e(r2). It remains open with the new manner of rule application, how
we can solve SAT problem by P systems with active membranes in the context of time-freeness.

The definition of “time-free solutions to decision problems by P systems with active membranes” was given in Section 2,
where we call a family of P systems is time-free polynomially bounded if there exists a polynomial function p(n) such that
for any time-mapping e and for each u ∈ I X , all computations in Πu(e) halt in, at most, p(|u|) RS-steps. By this definition, at
each computation step, an observer has to know whether or not there is any rule that starts at this step, in order to count
the number of RS-steps in the computation. Particularly, it is possible that the time of execution of a rule is inherently
exponential with respect to the size of an instance; that is, during the execution of the rule, an observer has to check
exponential steps in order to know the number of RS-steps. For a more reasonable definition, we can consider to require
that for a given system, the numbers of RS-steps in all computations associated with different time-mapping are same. For
any time-mapping, the number of RS-steps in a computation equals to the number of RS-steps when the time-mapping is
as follows: e(r) = 1, r ∈ R , R is the set of rules. So, in this case, in order to know the number of RS-steps in a computation,
it is enough to know the number of computation steps when the associated time-mapping e = 1. Actually, the proof given
in Section 3 also works by the more “reasonable” definition.

The P systems constructed in the proof of Theorem 3.1 have the rules of types (a), (b), (c), (e′) and (f), where the rules
of type (e′) are an extension of the rules of type (e), the new membranes obtained by the application of the rules of type
(e′) can have different labels. It remains open how we construct P systems with rules of types (a), (b), (c), (e) and (f) to
time-freely solve SAT problem.

The solution to SAT problem given in Section 3 is semi-uniform in the sense that P systems are constructed from the
instances of the problem. It remains open how we can give a uniform time-free solution to SAT problem in the sense that
P systems are constructed from the size of instances of the problem (that is, a P system can solve a family of instances with
the same size).

Small universal P systems have been studied in the framework of membrane computing [5,16,25,26]. It is interesting
whether we can construct small universal P systems in the context of time-freeness.

In this work, we already show that an NP-complete problem, the SAT problem, can be solved by P systems in a time-free
manner. It remains open whether PSPACE problems can be solved by P systems in a time-free manner.

We can find many solutions to computationally hard problems by P systems in the area of membrane computing. It is of
interest to investigate whether we can find a way to transform the solutions into equivalent time-free versions.
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[18] Gh. Păun, P systems with active membranes: attacking NP-complete problems, J. Autom. Lang. Comb. 6 (1) (2001) 75–90.
[19] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
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