
Symport/Antiport P Systems

with Three Objects Are Universal

Gheorghe Păun1,2, Juan Pazos3,

Mario J. Pérez-Jiménez2, Alfonso Rodŕıguez-Patón3

1Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

E-mail: george.paun@imar.ro

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: gpaun/marper@us.es

3Department of Artificial Intelligence, Faculty of Computer Science
Polytechnical University of Madrid

Campus de Montegancedo
Boadilla del Monte 28660, Madrid, Spain

E-mail: jpazos/arpaton@fi.upm.es

Abstract. The operations of symport and antiport, directly inspired from
biology, are already known to be rather powerful when used in the framework
of P systems. In this paper we confirm this observation with a quite surpris-
ing result: P systems with symport/antiport rules using only three objects
can simulate any counter machine, while systems with only two objects can
simulate any blind counter machine. In the first case, the universality (of gen-
erating sets of numbers) is obtained also for a small number of membranes,
four.

1 Introduction

P systems with symport/antiport [8] use as rules for processing the symbol-objects op-
erations coming from biology, namely simultaneous trans-membrane transportation of
several chemicals, either in the same direction (and this is called symport) or in opposite
directions (which is called antiport) – biochemical details can be found in [1]. Since a
considerable degree of cooperation (context-sensitivity) among objects is available, it is

1

somewhat expected that the systems of this type are universal, equal in power with Turing
machines, for various combinations of ingredients (number of membranes, size of symport
or antiport rules). Not so expected is the fact that such systems are universal even when
using minimal symport/antiport rules, moving at most one object in each direction; the
currently strongest results of this type state the universality for systems with three mem-
branes, [2], [12], without knowing whether two membranes suffice in order to reach the
universality.

We start here a somewhat “orthogonal” direction of research: we let free the number
of membranes and the size of rules, and concentrate on the number of objects used in a
system. Can this number be bounded? If so, which is the price (which other parameters
should grow)? Which is the smallest number of objects which ensures the universality?

That a bound on the number of objects can be imposed is again somewhat expected,
for instance, having in mind that there are small universal Turing machines (with the size
estimated in both the number of tape symbols and of states – which can be simultaneously
bounded at rather low values), see, e.g., [10]. However, there is no direct simulation of
a Turing machine by a P system with symport/antiport rules, hence the results about
small universal Turing machines cannot be used in our framework. (Furthermore, Turing
machines use the positional information provided by the tape, while here we do not have
such a data structure, we work with multisets of symbol-objects.)

The bound we find here on the number of objects is surprisingly small: three objects
suffice. The proof is based on a unary codification of all numbers we deal with in a P
system (which simulates a counter machine), with two additional symbols necessary in
order to control the work of the system. One of these additional objects can be saved
when simulating blind counter machines.

2 Prerequisites

We introduce here both the definition of P systems with symport/antiport rules, the
class of P systems we investigate, and that of counter machines, the tool used in
the proof of our result – but the reader is supposed to have some familiarity with
membrane computing, for instance, from [9]; details can be found at the web address
http://psystems.disco.unimib.it.

A P system with symport/antiport rules is a construct of the form Π =
(O,H, µ, w1, . . . , wm, E,R1, . . . , Rm, io), where O is the alphabet of objects, H is the fi-
nite set of labels for membranes (in general, one uses natural numbers as labels), µ is
the membrane structure (of degree m ≥ 1, with the membranes labelled in a one-to-one
manner with elements of H; as usual, we represent the membrane structures by strings of
matching labelled parentheses), w1, . . . , wm are strings over O representing the multisets
of objects present in the m compartments of µ in the initial configuration of the system,
E ⊆ O is the set of objects supposed to appear in the environment in arbitrarily many
copies, R1, . . . , Rm are the (finite) sets of rules associated with the m membranes of µ,
and io ∈ H is the label of a membrane of µ, which indicates the output region of the

2

system (note that we do not impose that the output region is enclosed by an elementary
membrane – although in the main result of the paper, as well as in many papers from the
literature, this is the case).

The rules from R can be of two types (by O+ we denote the set of all non-empty
strings over O, with λ denoting the empty string):

– Symport rules, of the forms (x, in) or (x, out), where x ∈ O+. When using such
a rule, the objects specified by x enter or exit, respectively, the membrane with
which the rule is associated. In this way, objects are sent to or imported from the
surrounding region – which is the environment in the case of the skin membrane.
(The length of x in a symport rule is called the weight of the rule.)

– Antiport rules, of the form (x, out; y, in), where x, y ∈ O+. When using such a rule
for a membrane i, the objects specified by x exit the membrane and those specified
by y enter from the region surrounding membrane i; this is the environment in the
case of the skin membrane. (The maximal length of x, y is called the weight of the
rule.)

The rules are used in the non-deterministic maximally parallel manner, standard in
membrane computing. In this way, we obtain transitions from a configuration of the
system to the next configuration. A sequence of transitions constitutes a computation,
and a computation halts when a configuration is reached where no rule can be applied.
The number of objects present in region io in the halting configuration is said to be
computed by the system along that computation; the set of all numbers computed in
this way by Π is denoted by N(Π). The family of all sets N(Π) of numbers computed
as above by P systems with at most m membranes, using symport rules of weight at
most r and antiport rules of weight at most q, for m ≥ 1 and r, q ≥ 0, is denoted by
NOPm(symr, antiq).

By NRE we denote the family of Turing computable sets of natural numbers.
Many results of the form NRE = NOPm(symr, antiq) are known, for various combi-

nations of the parameters m, r, q – see [2, 3, 9, 12], etc.
Here we consider one further parameter: the cardinality of the set O of objects. By

NOPm(objn, symr, antiq) we denote the family of sets of numbers N(Π) computed by P
systems with at most m membranes, at most n objects, and symport and antiport rules of
weight at most r, q, respectively. When one of these parameters is not bounded, we replace
it with ∗. Thus, NOPm(symr, antiq) corresponds to the family NOPm(obj∗, symr, antiq).

In order to also compute sets of vectors, as done in several cases in membrane comput-
ing, we cannot proceed in the usual way, distinguishing the objects from the output mem-
brane and considering their multiplicities, but we can consider several output membranes:
instead of io, we take io,1, io,2, . . . , io,k, for some k ≥ 1. Thus, if we halt with multisets
z1, z2, . . . , zk in these membranes, then we have computed the vector (|z1|, |z2|, . . . , |zk|)
(where |z| is the lenght of the string z, hence the total multiplicity of the multiset repre-
sented by z). In this case, we denote by Ps(Π) the set of all vectors computed by a system

3

Π and by PsOPm(objj, symr, antiq) the family corresponding to NOPm(objj, symr, antiq).
In turn, we denote by PsRE the family of Turing computable sets of vectors of natural
numbers.

In the proof from the next sections we will use counter machines as devices charac-
terizing PsRE (hence also NRE), hence the Turing computability. In various places,
one uses various names for the same device, sometimes with different formalisms and
slight differences in architecture and functioning: register machines, program machines,
multi-counter machines, etc.; we adhere here to the following terminology and definition.

Informally speaking, a counter machine consists of a specified number of counters
which can hold any natural number, and which are handled according to a program
consisting of labelled instructions; the counters can be increased or decreased by 1 – the
decreasing being possible only if a counter holds a number greater than or equal to 1 (we
say that it is non-empty) –, and checked whether they are non-empty.

Formally, a (non-deterministic) counter machine is a device M = (m,B, l0, lh, R),
where m ≥ 1 is the number of counters, B is the (finite) set of instruction labels, l0 is the
initial label, lh is the halting label, and R is the finite set of instructions labelled (hence
uniquely identified) by elements from B (R is also called the program of the machine).
The labelled instructions are of the following forms:

– l1 : (ADD(r), l2, l3), 1 ≤ r ≤ m (add 1 to counter r and go non-deterministically to
one of the instructions with labels l2, l3),

– l1 : (SUB(r), l2, l3), 1 ≤ r ≤ m (if counter r is not empty, then subtract 1 from it
and go to the instruction with label l2, otherwise go to the instruction with label
l3),

– lh : HALT (the halt instruction, which can only have the label lh).

A counter machine generates a k-dimensional vector of natural numbers in the follow-
ing manner: we distinguish k counters as output counters (without loss of generality, they
can be the first k counters), and we start computing with all m counters being empty,
with the instruction labelled by l0; if the computation reaches the instruction lh : HALT
(we say that it halts), then the values of counters 1, 2, . . . , k is the vector generated by the
computation. The set of all vectors from Nk generated in this way by M is denoted by
Ps(M). If we want to generate only numbers (1-dimensional vectors), then we have the
result of a computation in counter 1, and the set of numbers computed by M in this way
is denoted by N(M). It is known (see [7], [3]) that non-deterministic counter machines
with k + 2 counters can compute any set of Turing computable k-dimensional vectors of
natural numbers (hence machines with three counters generate exactly the family NRE,
of Turing computable sets of numbers).

In the case when a counter machine cannot check whether a counter is empty one
say that it is blind: the counters are increased and decreased by one as usual, but if the
machine tries to subtract from an empty counter, then the computation aborts without
producing any result. It is known (see, e.g., [5]) that blind counter machines are strictly
less powerful than general counter machines (hence than Turing machines).

4

3 Universality with Three Objects

We pass now to giving the universality result mentioned in the Introduction.

Theorem 3.1 PsOP∗(obj3, sym∗, anti∗) = PsRE.

Proof. We only prove the relation PsRE ⊆ NOP∗(obj3, sym∗, anti∗), the converse inclu-
sion being straightforward (we can also invoke the Turing-Church thesis for it).

Let us consider a counter machine M = (m,B, l0, lh, R) with m counters. We assume
that M is non-trivial, that is, l0 6= lh and R contains at least one instruction, and that
the output counters are the first k, that is, 1, 2, . . . , k. We construct a P system Π with
m + 1 membranes which will compute the same set of vectors as M .

Essential in the construction is the following codification of certain relevant information
items related to M . Consider the following set:

J = B ∪ {(l1, addr) | l1 : (ADD(r), l2, l3) ∈ R}

∪ {(l1, subr>0), (l1, subr=0) | l1 : (SUB(r), l2, l3) ∈ R}.

Assume that J contains n elements, J = {α1, . . . , αn} (their ordering is not relevant).
Clearly, n ≥ 3: we have at least two labels and at least one instruction. Then, with each
element αi we associate the natural number

v(αi) = 8n + 8i, 1 ≤ i ≤ n.

We denote v(J) = {v(αi) | 1 ≤ i ≤ n}.
Three facts about these numbers are important for what follows:

1. v(αi) ≥ 32 for all 1 ≤ i ≤ n (because n ≥ 3),

2. each number v(αi) is strictly bigger than the half of any other number v(αj), 1 ≤
i, j ≤ n (hence no number v(αi) can be written as the sum of any two or more than
two numbers from v(J)),

3. if we subtract any number t, 1 ≤ t ≤ 7, from any v(αi), we do not get the value of
any v(αj), 1 ≤ i, j ≤ n.

Now, the system we look for is

Π = (O,H, µ, w0, w1, w2, . . . , wm, E,R0, R1, R2, . . . , Rm, io,1, io,2, . . . , io,k),

where:

O = {a, b, c},

H = {0, 1, 2, . . . ,m},

µ = [
0
[
1

]
1
[
2

]
2
. . . [

m
]
m

]
0

(0 is the label of the skin membrane),

w0 = av(l0)c,

wi = λ, for all 1 ≤ i ≤ m,

E = O,

io,j = i, 1 ≤ j ≤ k,

5

and the sets of rules are constructed as follows.
Let us firstly explain shortly the idea behind the construction. All labels of instructions

from R and the actions of these instructions – the operations of increasing or decreasing
a counter – are codified in base 1, through the mapping v, in the number of occurrences
of object a. The copies of object a representing a given element of the set J will always
evolve together, otherwise the computation will never stop. In order to represent the
values of counters, we use the object b: the number of copies of b from a membrane
r = 1, 2, . . . ,m represents the value stored in counter r. When simulating a subtraction
instruction, we first guess whether the counter to modify is empty or not. When a wrong
guess is made, as well as in any case when a step in Π does not correctly simulate a step
in M , the computation will never end. To this aim we will use a third object, c, subject of
a rule of the form (cc, out; cccc, in), which can indefinitely “flood” the system with copies
of c. When the label lh is reached, the computation will stop.

These general ideas are implemented as follows.

1. For each instruction l1 : (ADD(r), l2, l3) ∈ R, the set R0 contains the rules

1. (av(l1), out; av(l1,addr)b, in),

2. (av(l1,addr), out; av(l2), in), if l2 6= lh,

2′. (av(l1,addr), out), if l2 = lh,

3. (av(l1,addr), out; av(l3), in), if l3 6= lh,

3′. (av(l1,addr), out), if l3 = lh,

and the set Rr (corresponding to this instruction) contains the rules:

4. (av(l1,addr)b, in),

5. (av(l1,addr), out).

2. For each instruction l1 : (SUB(r), l2, l3) ∈ R, we introduce the following rules in R0

6. (av(l1), out; av(l1,subr>0), in),

7. (av(l1,subr>0)b, out; av(l2), in), if l2 6= lh,

7′. (av(l1,subr>0)b, out), if l2 = lh,

8. (av(l1), out; av(l1,subr=0)c, in),

9. (av(l1,subr=0)c13, out; av(l3), in), if l3 6= lh,

9′. (av(l1,subr=0)c13, out), if l3 = lh,

and the set Rr (corresponding to this instruction) contains the rules:

10. (av(l1,subr>0), in),

11. (av(l1,subr>0)b, out),

12. (av(l1,subr=0), in),

6

13. (av(l1,subr=0)b, out),

14. (av(l1,subr=0), out; c, in).

3. We also introduce the following rules in R0 (let us call them “flooding rules”)

15. (a, out; c27, in),

16. (cc, out; c4, in),

17. (b, out; c27, in),

and the following rules in each set Rr, 1 ≤ r ≤ m:

18. (a, out; c, in),

19. (c, out).

The simulation of the instruction l1 : (ADD(r), l2, l3) ∈ R proceeds as follows. When
av(l1) is present in the skin region, rule 1 can be used, bringing inside av(l1,addr)b. Note
that if not all copies of a were used by this rule (that is, a rule with a smaller number of a

was applied), then the remaining copies of a should exit by means of the “flooding” rule
15, which brings inside 27 copies of c. The rule 16 will be used forever, bringing inside
more and more copies of c.

It is important to note here that the only possibility to send out copies of c is by rules
9 and 9′; each time we remove 13 copies of c. However, rules 15 and 17 bring inside 27
copies of c at once; even if 13 of them will be sent out, 14 will remain, hence more than
a rule of types 9 and 9′ can remove. Moreover, rules of types 9 and 9′ cannot be used
in consecutive steps, we need at least one step in between. Thus, the 14 copies of c have
to evolve at least one step in the system, and they can evolve in various manners: get
doubled by rule 16, or enter membrane r, provided that copies of a are present there; from
membrane r they exit in the next step and have to repeat these operations. Moreover,
any a brought outside membrane r will again bring 27 copies of c inside (if some copies of
a remain in membrane r, they cannot be equal to any v(α) from v(J), hence they cannot
exit the system. In all cases, the computation will never stop, the number of copies of c

will increase continuosly. (The number 27 from rules of types 15 and 17 is not the smallest
one which can ensure the non-halting behavior of the system in case of “wrong” steps,
but this number makes clearer the non-halting and the explanations about the behavior
of Π.)

Now, by means of rule 4, av(l1,addr)b can enter membrane r. Again, any other move
leads to an endless computation, because any other rule will leave copies of a unused,
hence rule 15 should be applied. Now, if av(l1,addr)b is inside membrane r, we can use a
rule of type 5 and send out of this membrane the multiset av(l1,addr), which amounts at
increasing by one the value of counter r, represented by the number of copies of b present
in membrane r. Again, all copies of a should be used: any other rule than the one of type
5 which uses all copies of a will leave unused at eight three copies of a; one of them will
exit by means of rule 18, the other seven will remain in the membrane. In this way, in

7

the skin region we cannot use any rule for all copies of a present here, hence at least one
will exit by means of rule 15, and the computation will never stop.

In the case of the correct use of rules, av(l1,addr) should now exit the system by a rule of
type 2 or 3, non-deterministically chosen, but in such a way that all copies of a are used.
Thus, we bring inside av(l2) or av(l3), which is the correct continuation of the computation
in M .

If one of l2 and l3 is equal to lh, then av(l1,addr) should exit the system by a rule 2′ or
3′, and the computation halts.

Let us consider now a subtract instruction l1 : (SUB(r), l2, l3) ∈ R. We start with av(l1)

present in the skin region. We choose non-deterministically either a rule of type 6 or one
of type 8. The first case corresponds to the guess that counter r is non-empty, the latter
case corresponds to the guess that counter r is empty.

Assume that we have chosen the first path, hence we have brought inside av(l1,subr>0).
The continuation is similar to that from the case of addition, with the difference that now
we remove a copy of b from membrane r, instead of bringing here one additional copy of
b. First, by means of rule 10, av(l1,subr>0) is introduced in membrane r; if there is no copy
of b here (hence the guess that the counter is non-empty was wrong), then we cannot use
the corresponding rule 11, hence at least eight copies of a remains inside; this means that
rule 18 can be used, and the computation never ends. If the guess was correct, hence
counter r (membrane r) is non-empty, then rule 11 is used, av(l1,subr>0)b arrives in the skin
membrane, and from here it exits the system by rule 7, which brings inside the code of l2,
the correct continuation of the simulation. In all cases where a rule different from those
mentioned above is used, at least one copy of a will remain in the skin region for rule 15,
and the computation will continue forever. As above, this is ensured by the fact that all
values v(α), α ∈ J, are different from each other by at least eight units. If the label l2 is
equal to lh, then instead of rule 7 we use rule 7′ and the computation stops.

More complicated is the case when the counter r is empty. We start by bringing
av(l1,subr=0)c inside the system, by rule 8. The multiset av(l1,subr=0) cannot be sent out
(without leaving copies of a inside, and triggering “flooding” rules) by any other rule
than one of type 9, which needs 13 copies of c; however, this multiset cannot stay in
the skin region until such copies are brought into the system by rule 16, because rule 15
should be used, flooding the system with copies of c. Therefore, we have to use rule 12,
and introduce av(l1,subr=0) in membrane r. Simultaneously, rule 16 uses the remaining copy
of c and the copy already existing, and brings inside the system four copies of c.

In the next step, if membrane r contains at least one copy of b, hence the guess was
wrong, then we have to use rule 13, and bring av(l1,subr=0)b in the skin region. No rule can
now use the object b than the one of type 17, and the computation will never stop.

If the membrane r contains no object b (hence the counter r was empty), then
av(l1,subr=0) must remain inside, and this is possible without compromising the compu-
tation, because the copies of c from the skin region can be “kept busy” by rule 16. This
rule will bring 8 copies of c in the system.

8

We have two possibilities: to use rule 14 or not. Assume that we do not use it. Then,
the 8 copies of c should evolve by rules 16 and 18. Irrespective how many times we use
rule 18, we can bring outside at most eight copies of a, which is not a number from v(J),
hence these copies of a will evolve in the next step by the flooding rule 15. If only rule
16 has been used, then the number of copies of c is doubled, we have now 16 in the skin
region. The reasoning continues. If we do not use rule 14, then either we bring outside
membrane r at most 16 copies of a – again less than any code v(α), hence the flooding
rule 15 must be used – or we double the copies of c, that is, we get 32 copies; this is more
than 27, the computation will never end.

Therefore, rule 14 must be used. Because no number from v(J) can be written as the
sum of other numbers, this rule can be used only once. Assume that we use if for a wrong
instruction, that is, not removing all copies of a from membrane r. This means that at
least 8 copies of a remains in membrane r.

If we are in the step when we had 8 copies of c in the skin membrane, simultaneously,
the 7 copies which are not used by rule 14 either bring copies of a out of membrane r or,
at most six of them, get doubled by rule 16. In any case, out of membrane r we cannot
get the code of a correct instruction, hence we can only use rule 16 for at most three pairs
of c and rule 18 for the remaining copy. We have now 13 available copies of c for using
rule 9 (or 9′), but one copy of a has remained in the skin region and will flood the system
with copies of c.

In the case when we have 16 copies of c in the skin membrane, in the step when rule
14 is used (bringing a multiset av(l,subp=0) out of membrane r – remember that we discuss
the case when rule 14 is used for a wrong instruction) we have 15 remaining copies of c

in the skin membrane. If in membrane r we have exactly 8 objects, we can bring them
out by means of 8 copies of c (rule 18), while 6 of the other 7 copies of c will use rule 16,
leading to a total of 13 copies of c in the skin membrane. This means that in the skin
membrane we have both completed the correct number of copies of a for recomposing the
value of v(l1, subr=0) and 13 copies of c; we can exit by a rule 9 or 9′. However, 9 copies
of c are inside membrane r. In the next step, they exit membrane r, while a rule of types
1, 6 or 8 is used. The continuations from rules of types 1 and 6 have no way to remove c

(without leaving copies of a inside the system). Assume that we have used a rule of type
8, hence again dealing with a subtraction where we guess that a counter is empty. There
is no way to remove 9 copies of c in the next step, hence the number of c will become 17.
In the meantime, the multiset of copies of a has entered a membrane q.

Let us look to the possibilities for the 17 copies of c from the skin membrane in the
next step. The number is odd, hence at least one copy of c cannot be used by rule 16,
hence copies of a will be brought out of membrane p. If we use only rule 18, we cannot
reach the value of any v(α), the copies of a from the skin region will flood the system with
copies of c. Thus, we have to use rule 14. If we bring all copies of a outside membrane p

(this happens irrespective whether there is any b here, which is not correct with respect
to M), then the other 16 copies of c will get doubled; 13 copies of c can exit by a rule 9
or 9′, but the other 19 which remain will get doubled by rule 16, and the computation
will never stop.

9

It remains to use a rule of type 14 and several times rule 18, but in such a way to
complete in the skin region a correct code – this means that we have to use rule 18 either
8 times or 16 times, the possible differences between codes from v(J). If we use rule 18
for all 16 copies of c, then we will reach a configuration with 17 copies of c in membrane
q; even if all copies of a from the skin region can exit, in the next step the 17 copies of c

exit membrane q and, one step later, when using one rule of types 1, 6 or 8, we have to
use rule 16 for all pairs of copies of c and the system will contain 33 copies of c. The only
remaining case is to use only 8 times rule 18, which means that 9 copies of c remain in
the skin region, to be used by rule 16; the result is that we get 17 copies of c in the skin
region. (If any a remains in membrane q, at least one should be brought out by a rule
18 and the computation will never stop.) In the next step, all copies of a should exit the
system (otherwise a floods the system with copies of c), and this is possible only together
with 13 copies of c. This means that 4 copies remain, and are doubled by rule 16. These
8 copies of c together with the 9 ones from membrane q (they exit at the same time with
the doubling of the 4 copies of c from the skin region) make a total of 17 copies, which
will be doubled in the next step, leading again to 33 copies. The computation never ends.

Therefore, the only continuation which is not immediately compromising the compu-
tation is to use rule 14 for all copies of a from membrane r, thus introducing one copy of
c in membrane r and sending av(l1,subr=0) to the skin region; simultaneously, 6 out of the
7 copies of c remained in the skin region will be used by rule 16, hence we bring 6 more
copies of c into the system (in total, we have now 13 copies of c in the skin region, and
one in membrane r). In the next step, the only continuation which does not lead to an
endless computation (a cannot stay unused in the skin region) is to use rule 9 and send
av(l1,subr=0)c13 out of the system, in exchange of av(l3); at the same time, c exits membrane
r, hence the configuration returns to a form as that from which we have started. (Of
course, when l3 = lh, no object is introduced, and the computation stops.)

We can continue by simulating instructions of the counter machine M . When the
halting instruction is reached in M , no multiset av(lh) is introduced, hence the computation
stops.

Consequently, any halting computation in M can be simulated by a halting computa-
tion in Π, and, conversely, if a computation in Π stops, then it corresponds to a halting
computation in M ; in both cases, the number of copies of object b from membranes
1, 2, . . . , k is equal to the value of counters 1, 2, . . . , k of M , hence Ps(Π) = Ps(M). ✷

Corollary 3.1 NOPn(obj3, sym∗, anti∗) = NRE, for all n ≥ 4.

Proof. Counter machines with three counters characterize NRE, hence four membranes
suffice in the previous proof. ✷

4 What Can We Do with One or Two Objects?

The previous question remains as a research topic, as here we only have some partial
answers to it.

10

First, let us observe that in the proof of Theorem 3.1 the object c is involved mainly in
the simulation of the subtraction instruction, for the case of checking whether the counter
is empty. In blind counter machines we do not have the check for zero (however, if we try
to subtract from an empty counter the computation does not stop, but it aborts). The
object c is also used as a “guardian” for using all copies of a in membranes 1, 2, . . . ,m
and for ensuring that no a and no b waits unused in the skin region. We can avoid using
c for these operations in the following way.

Consider the following “subsystem”, called trap(Q), where Q is a set of objects:

trap(Q) = (Q, {t, t′}, [
t
[
t′

]
t′
]
t
, λ, λ,−, Rt, Rt′ ,−),

Rt = {(q, in) | q ∈ Q},

Rt′ = {(q, in), (q, out) | q ∈ Q}.

(The set of objects from the environment and the output membrane are not specified, as
such a system will be used as a subsystem of a usual, complete, system.)

If any object q from Q will be free (not used by any other rules) in the region sur-
rounding trap(Q), then trap(Q) will bring q inside region t and then q will oscillate forever
across membrane t′.

Now, let us take the system Π from the proof of Theorem 3.1, and remove all elements
related to the checking for zero of counters (we remove (l1, subr=0) from J as well as
all rules using such numbers) and all rules involving c (we remove c from O and all rules
containing a c from all sets of rules). The object c is removed also from the initial contents
of membrane 0. Then, let us place trap({a, b}) in the skin region and trap({a}) in all
membranes 1, 2, . . . ,m. The system Π′ obtained in this way (we leave the task to write it
formally to the reader) simulates the counter machine M in the case that M is blind: the
correctly halting computations in M are correctly simulated by halting computations in
Π′; if M aborts, trying to subtract from an empty counter, then Π′ will reach a situation
when a multiset av(l1,subr>0) enters membrane r but cannot exit, because there is no b

present in order to enable the associated rule 11; the copies of a will enter the membrane
t from membrane r, and the computation will never finish.

Consequently, we have the following result (each counter corresponds to three mem-
branes, while the skin contains a further trap-subsystem):

Theorem 4.1 Any blind counter machine with m counters can be simulated by a P system
with symport/antiport rules using only two objects, having 3(m + 1) membranes.

The technique of the trap-subsystem can be used in order to obtain a much simpler
proof of Theorem 3.1, but without making possible Corollary 3.1 (the number of mem-
branes for generating NRE will be now 12), and without having elementary membranes
as output regions. We give the construction and a brief description of its working in the
Appendix.

Passing now to the case of unary P systems, we have a very limited knowledge about
their power.

11

It is clear that such a system cannot have any rule of the form (ai, in) associated with
the skin membrane (the computation will never end), and no rule of the form (ai, out)
associated with the output membrane(s) (the only results will be smaller than i, hence a
finite set).

It is also easy to compute arithmetical progressions. For instance, for A(k0, k) =
{k0 + kn | n ≥ 0}, we can consider the system

Π(k0, k) = ({a}, {1, 2, 3}, [
1
[
2

]
2
[
3

]
3
]
1
, a, ak0 , λ, {a}, R1, R2, R3, 2),

R1 = {(a, out; aa, in)},

R2 = {(ak, in)},

R3 = {(a, in)}.

The rule from R1 brings more and more copies of a in the system, and these copies can
either enter membrane 2, in “packages” of k copies, or membrane 3; this last membrane
is also used for halting the computation, by bringing all copies of a here.

It is also easy (but not entirely trivial) to compute finite sets of numbers. For instance,
for a set F = {n1, . . . , nk} such that k ≥ 1 and 1 ≤ n1 < n2 < . . . < nk, let us denote
di = ni − n1 + 1, 2 ≤ i ≤ k, and consider the system

Π(F) = ({a}, {1, 2, 3}, [
1
[
2

[
3

]
3
]
2
]
1
, adk , a, an1−1, {a}, R1, R2, R3, 3),

R1 = {(a, out)},

R2 = {(a, out; adi , in) | 2 ≤ i ≤ k},

R3 = {(a, in)}.

Every computation lasts one or two steps. If we start by using the rule (a, in) from R3,
then at the same time all copies of a from the skin region should exit the system and we
stop with n1 copies of a in membrane 3. If we do not use this rule in the first step, then
we have to use one of the rules of R2, non-deterministically chosen, hence di copies of a

enter membrane 2, for some 2 ≤ i ≤ k, and the copy of a from membrane 2 exits to the
skin membrane; simultaneously, all remaining copies of a from the skin membrane are
sent out of the system by rule (a, out) from R1. Now, all di copies of a from membrane 2
should enter membrane 3, thus producing the number ni, and the copy of a from the skin
membrane exits (note that di ≥ 2 for all 2 ≤ i ≤ k, hence no rule (a, out; adi , in) from R2

can be used in this step).
Can also finite sets containing number 0 be computed? What else can be said about

unary systems?

5 Final Remarks

The number of objects used in a P system is a descriptional complexity measure of a clear
interest, hence this issue is worth investigating in more details. At least the following
directions of further research are natural:

12

1. Is Theorem 3.1 optimal in what concerns the number of objects? What one can
say about the size and properties of families of sets of numbers computed by P
systems with symport/antiport rules using only one or two objects, in addition to
the few results from Section 4? We conjecture that unary systems can compute only
semilinear sets of numbers, and that neither systems using two objects are universal.
(Can a P system using two objects be simulated by a blind counter machine?)

2. Can the previous results be extended to other classes of P systems? Which is
the number of objects sufficient in each case for obtaining the universality? The
first candidates to consider are tissue P systems (where the membranes are placed
in the nodes of a graph, see [6]), maybe with states associated to communication
channels among cells, [4]. Do the additional “programming facilities” provided by
these extensions of the tree-based P systems allow the decreasing of the number of
objects? (In the case of channel states we also have to take into account the number
of states, not to pay a too large price for improving on the number of objects.)
Other candidates of interest are communicative P systems in the sense of [11].

3. Our proof uses symport/antiport rules of an arbitrary size, hence the question re-
mains whether the universality can be reached by using rules of a bounded size (and
a small number of objects), maybe using a larger number of membranes.

4. Are there “small universal counter machines”, of the type of the small universal
Turing machines as discussed in [10]? Can such a counter machine be used for
obtaining “small universal symport/antiport P systems”?

5. We have considered here the case of generating numbers or vectors of numbers, hence
the non-determinism cannot be avoided. What about considering the recognizing
case? Can we preserve the determinism of the starting counter machine so that also
our system is deterministic?

Appendix: A Simpler Proof of Theorem 3.1

We start again from a counter machine M = (m,B, l0, lh, R) with m counters. With the
same notations as in the proof of Theorem 3.1, we construct the system

Π = (O,H, µ, w0, wt0 , wt′
0
, w1, wt1 , wt′

1
, . . . , wm, wtm , wt′m

, E,

R0, Rt0 , Rt′
0
, R1, Rt1 , Rt′

1
, . . . , Rm, Rtm , Rt′m

, io,1, io,2, . . . , io,k),

O = {a, b, c},

H = {0, 1, 2, . . . ,m, t0, t
′

0, t1, t
′

1, . . . , tm, t′m},

µ = [0[t0 [t′0
]
t′
0

]
t0
[1[t1 [t′1

]
t′
1

]
t1
]1 . . . [

m
[
tm

[
t′m

]
t′m

]
tm

]
m

]0,

w0 = av(l0),

wg = λ, for all g ∈ H − {0},

E = O,

13

io,j = j, 1 ≤ j ≤ k,

with the sets of rules constructed as follows.

1. For each instruction l1 : (ADD(r), l2, l3) ∈ R, the set R0 contains the rules

1. (av(l1), out; av(l1,addr)bcc, in),

2. (av(l1,addr), out; av(l2), in), if l2 6= lh,

2′. (av(l1,addr), out), if l2 = lh,

3. (av(l1,addr), out; av(l3), in), if l3 6= lh,

3′. (av(l1,addr), out), if l3 = lh,

and the set Rr (corresponding to this instruction) contains the rules:

4. (av(l1,addr)bcc, in),

5. (av(l1,addr), out).

2. For each instruction l1 : (SUB(r), l2, l3) ∈ R, we introduce the following rules in R0

6. (av(l1), out; av(l1,subr>0)cc, in),

7. (av(l1,subr>0)b, out; av(l2), in), if l2 6= lh,

7′. (av(l1,subr>0)b, out), if l2 = lh,

8. (av(l1), out; av(l1,subr=0)c, in),

9. (av(l1,subr=0), out; av(l3), in), if l3 6= lh,

9′. (av(l1,subr=0), out), if l3 = lh,

and the set Rr (corresponding to this instruction) contains the rules:

10. (av(l1,subr>0)cc, in),

11. (av(l1,subr>0)b, out),

12. (av(l1,subr=0)c, in),

13. (av(l1,subr=0), out).

3. We also introduce the following rules in Rt0

14. (a, in), (b, in), (c, in),

and the following rules in Rt′
0

15. (a, in), (b, in), (c, in), (a, out), (b, out), (c, out).

4. Finally, for all 1 ≤ r ≤ m we introduce the following rules in Rtr

14

16. (a, in), (bc, in), (cc, in), (ccc, in).

and the following rules in Rt′r
:

17. (a, in), (b, in), (a, out), (b, out).

The membranes t0, t
′

0 make sure that no object a, b, c stays any step unused in the skin
region. This ensures the fact that all blocks of copies of a are always completely used.
The same is true inside all membranes r with object a. This easily ensures the correct
simulation of all rules associated with ADD instructions and with the case of > 0 guess
for SUB instructions. Note that the rules associated with these cases bring in the system
two copies of c, which are “stored” in the membranes tr (c can enter such a membrane,
but it cannot exit).

The case of the = 0 guess is now rather simple: we bring av(l1,subr=0)c into the system,
and then into membrane r; av(l1,subr=0) exits immediately both from membrane r and from
the system. If membrane r contains any copy of b, then the rule (bc, in) should be used
and the computation will never stop, because b can oscillate forever across membrane t′r.
If no copy of b is present, then c remains unused. If the next instruction which uses the
same counter r is an ADD one, then it brings two copies of c, which have to enter into
membrane tr together with the waiting copy of c by using the rule (ccc, in) (if we use
the rule (cc, in), then the remaining copy of c will move inside a copy of b – there is at
least one – and the computation never ends). If the next instruction is SUB and we take
the > 0 guess, then again we bring two copies of c. If all three existing copies enters
membrane t′r, we return to a situation as at the beginning, with no c in region tr. If only
two copies of c are introduced into membrane t′r, then the remaining copy must also enter
provided that at least one b is present, hence the computation never ends. If no copy of
b is present, hence the subtraction has emptied the counter, then c remains unused.

What remains to examine is the case when a copy of c is present in an empty counter
(after simulating SUB in the case = 0, or, as above, after simulating SUB in the case
> 0 without introducing c in membrane tr). We consider again the next instruction to
simulate on this counter. If it is ADD, or SUB and the guess is > 0, we have the same
situation as above: either all c are stored in membrane tr, or one remains, but this is
possible only if the counter is empty. The unique case not considered is that when the
next instruction is SUB and the guess is = 0. We arrive in membrane r with one c,
hence immediately we can use the rule (cc, in) and the two copies of c are introduced in
membrane tr. Although we do not check whether any b is present, this is correct, because
we know already that the membrane is empty.

The simulation of instructions is correct, we can stop if and only if we simulate a
halting computation of the counter machine.

References

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology
of the Cell, 4th ed. Garland Science, New York, 2002.

15

[2] A. Alhazov, M. Margenstern, V. Rogozhin, Y. Rogozhin, S. Verlan, Communicative
P systems with minimal cooperation. In G. Mauri, Gh. Păun, M.J. Pérez-Jiménez,
G. Rozenberg, A. Salomaa, eds., Membrane Computing. International Workshop
WMC5, Milan, Italy, 2004. Revised Papers, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2005 (to appear).

[3] R. Freund, A. Păun, Membrane systems with symport/antiport rules: universality
results. In Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds., Membrane Com-
puting. International Workshop, WMC 2002, Curtea de Argeş, Romania. Revised
Papers, Lecture Notes in Computer Science, 2597, Springer-Verlag, Berlin, 2002,
270–287.

[4] R. Freund, Gh. Păun, M.J. Pérez-Jiménez, Tissue-like P systems with channel-states.
Brainstorming Week on Membrane Computing, Sevilla, February 2004, TR 01/04
of Research Group on Natural Computing, Sevilla University, 2004, 206–223, and
Theoretical Computer Science, 2004, in press.

[5] S.A. Greibach, Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7 (1978), 311–324.

[6] C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodŕıguez-Patón, Tissue P systems. Theo-
retical Computer Science, 296, 2 (2003), 295–326.

[7] M. Minsky, Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

[8] A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport.
New Generation Computing, 20, 3 (2002), 295–306.

[9] Gh. Păun, Computing with Membranes – An Introduction. Springer-Verlag, Berlin,
2002.

[10] Y. Rogozhin, Small universal Turing machines. Theoretical Computer Science, 168
(1996), 215–240.

[11] P. Sosik, J. Matysek, Membrane computing: when communication is enough. In C.S.
Calude, M.J. Dinneen, F. Peper, eds., Unconventional Models of Computation 2002,
Lecture Notes in Computer Science, 2509 Springer-Verlag, Berlin, 2002, 264–275.

[12] G. Vaszil, On the size of P systems with minimal symport/antiport. Pre-Proceedings
of Workshop on Membrane Computing, WMC5, Milano, Italy, June 2004, 422–431.

16

