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Abstract. Spiking neural P systems (in short, SNP systems) are par-
allel, distributed, and nondeterministic computing devices inspired by
biological spiking neurons. Recently, a class of SNP systems known as
SNP systems with structural plasticity (in short, SNPSP systems) were
introduced. SNPSP systems represent a class of SNP systems that have
dynamism applied to the synapses, i.e. neurons can use plasticity rules
to create or remove synapses. In this work, we impose the restriction
of sequentiality on SNPSP systems, using four modes: max, min, max-
pseudo, and min-pseudo sequentiality. We also impose a normal form
for SNPSP systems as number acceptors and generators. Conditions for
(non)universality are then provided. Specifically, acceptors are univer-
sal in all modes, while generators need a nondeterminism source in two
modes, which in this work is provided by the plasticity rules.
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1 Introduction

Membrane computing, a branch of natural computing, aims to abstract ideas
from living cells for computing use [25]. More recently, the actively investigated
area of spiking neurons1 was introduced in membrane computing as spiking
neural P (in short, SNP) systems [8]. SNP systems consist of neurons (often
drawn as ovals), and synapses between neurons (arcs between ovals). Neurons
are placed in vertices of a directed graph: they process only one type of indistinct
signal called a spike (denoted by the symbol a) by firing or applying spiking rules.
SNP systems use time to encode information using spikes, e.g. the value n = t′−t
1 See e.g. [13] and [14] and references therein.
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is computed by neuron σ1 if σ1 produced consecutive spikes at steps t and t′,
where t 6= t′, t′ > t. Time therefore plays a crucial role in information processing,
and is not merely a background for computation.

Many theoretical results on computability or computational complexity have
been investigated in SNP systems2 e.g., SNP systems are known to be Turing
universal as: number generating or accepting devices in [8] and [28]; language
generating devices in [5] and [21]; function computing devices in [21] and [24].
SNP systems have also been used to efficiently solve computationally hard prob-
lems in [12] and [22], trading space for time.

SNP systems often use parallel, nondeterministic, or synchronous features in
their computations. These features are powerful “ingredients” for achieving Tur-
ing universality, and many works (with biological inspiration) have investigated
restrictions by removing at least one of these features, e.g. deterministic SNP
systems have been considered since [8], asynchronous SNP systems as in [4], [6],
and [30], and sequential SNP systems as in [6], [7], [10], and [31]. In SNP sys-
tems, neurons apply their rules in parallel but at most one rule is applied once
in each neuron. Other ways of applying rules have also been considered, such
as in [9][21] where rules were applied in a maximally parallel (i.e. exhaustive)
way. A generalized rule application was introduced in [35], where neurons can
nondeterministically choose the number of times a rule is applied. More neu-
roscience ideas and motivations have also been included, hence many variants
of SNP systems have been introduced, e.g. the use of weighted synapses [20],
neuron division and budding [22], the use of astrocytes [23], and anti-spikes [18].

Other biologically inspired restrictions imposed on SNP systems and its vari-
ants are the notions of simplicity and homogeneity : a neuron is simple if it
precisely has one rule; an SNP system is simple if all neurons are simple; an
SNP system is homogeneous if all of its neurons precisely have the same set of
rules; Simple SNP systems usually require more neurons to achieve universality
due to the simplicity of their neurons [31][32]. Homogeneous SNP systems can
become more “compact”, i.e. they can require less neurons, due to the fact that
they can have more than one rule in a neuron as in [11] and [33]. Both notions
can have interesting biological and computational interpretations, for theoretical
and practical use: the connectivity of the neurons in the system is important for
achieving a certain level of computing power; also, neurons do not need to be
very complex (in the case of simple systems) or do not need to be very varied
(in the case of homogeneous systems).

Another restriction imposed on SNP systems and its variants is the type(s)
of rule(s) present in a neuron: standard (spiking) rules (at each step, at most one
spike is sent from a σ1 to a σ2); extended (spiking) rules (at each step, more than
one spike can be sent from a σ1 to a σ2); spiking rules with delay (if σ1 sends a
spike at step t, σ2 receives the spike at t+ d, d ≥ 1); forgetting rules (rules that
remove spikes from the system). Extended rules allow for more compact systems
in terms of neuron count, due to the ability to produce more than one spike each
step as in [5] and [24]. Both forgetting rules and rules with delays were used

2 An overview in [29] and the SNP systems chapter in [28].
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in [8], while in [19] for example, it was shown that universality is still achieved
given the normal form of having no forgetting rules and rules with delays.

The SNP system variants we consider in this work are SNP systems with
structural plasticity, in short, SNPSP systems.3 Structural plasticity refers to
any changes in the connectivity between neurons, i.e. synapses can be created
or removed. Synapses can also be rewired, i.e. if synapse (a, b) exists between
neurons σa and σb, σa can remove (a, b) and create novel synapse (a, c) to neuron
σc instead. SNPSP systems also provide a response to an open problem in [29]
where “dynamism” is only applied to synapses, in contrast to both neuron and
(implicit) synapse dynamism for example in [22]. SNPSP systems represent the
class of SNP systems that explicitly focus on synapse graph dynamism only, since
the collection of neurons in the system remains static. Other than standard rules,
the only other type of rule in SNPSP systems are plasticity rules: rules that allow
neurons to create, remove, or rewire synapses.

In this work, the restriction we impose on SNPSP systems is sequentiality.
Specifically, and as in [7], we induce sequential operation based on the number of
spikes stored in a neuron. For example, in the max sequentiality or maxs mode,
if neurons σa, σb, and σc contain 1, 3, and 2 spikes at the same step respectively,
only σb is allowed to apply its rule. If however σc also stored 3 spikes, only one
among σb or σc will apply its rule (nondeterministically chosen). Our results also
exhibit (biologically and computationally) two interesting features, also known
as a normal form, as in [19] and [31]: a neuron has two rules (the maximum per
neuron) if and only if it is purely plastic, i.e. only contains plasticity rules; if a
neuron has a standard rule, then it is simple. These two features are interesting
because while certain biological neurons seem to have more specific or complex
functions (e.g. they create or remove synapses), other neurons seem more simple
or generic (e.g. they simply function as spike repositories or relays). More related
normal forms in this work include: almost simple SNP or ASSNP systems in [31],
where the system has only one neuron that is not simple; simple and homoge-
neous SNP systems with astrocytes or SHSNPA systems in [23], where SHSNPA
systems maintained universality despite being simple and homogeneous, due to
the use of additional neuroscience structures (the astrocytes).

Another distinction of SNPSP systems, again biologically and computation-
ally motivated, is an alternative source for nondeterminism. A more common
source of nondeterminism in SNP systems is rule-level (in short, ndrule): if more
than one rule can be applied in a step, only one is chosen nondeterministically. In
SNPSP systems, there is instead synapse-level nondeterminism (in short, ndsyn):
selecting which synapses a neuron will create or remove. Our results show the
conditions, with or without ndsyn (among other levels, except ndrule) by which
our systems become (non)universal. Our systems, under the normal form men-
tioned above, are investigated under four modes: max, min, max-pseudo, and
min-pseudo sequentiality.

We organize this work as follows: in Section 2 we provide some prerequisites
for our results; Section 3 introduces the syntax and semantics of SNPSP systems;

3 Introduced in [1] and improved and extended in [2].
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our (non)universality results for the four modes are presented in Section 4; We
provide final remarks and further directions in Section 5.

2 Preliminaries

It is assumed that the readers are familiar with the basics of membrane com-
puting4 and formal language theory (available in many monographs). We only
briefly mention notions and notations which will be useful throughout the pa-
per. Let V be an alphabet, V ∗ is the set of all finite strings over V with respect
to concatenation and the identity element λ (the empty string). The set of all
non-empty strings over V is denoted as V +, so V + = V ∗ − {λ}. If V = {a}, we
simply write a∗ and a+ instead of {a}∗ and {a}+. If a ∈ V , we write a0 = λ,
and we write the language associated with a regular expression E as L(E).

In proving computational universality, we use the notion of register machines.
A register machine is a construct M = (m, I, l0, lh, R), where m is the number
of registers, I is a finite set of instruction labels, l0 is the start label, lh is the
halt label, and R is a finite set of instructions. Every label li ∈ I uniquely labels
only one instruction in R. Instructions in R have the following forms, given the
value n stored in register r:

– li : (ADD(r), lj , lk), increase n by 1, then nondeterministically go to either lj
or lk;

– li : (SUB(r), lj , lk), if n ≥ 1, then subtract 1 from n and go to lj , otherwise
perform no operation on r and go to lk;

– lh : HALT, the halt instruction.

We say M computes or generates a number n as follows: M starts with all its
registers empty. The register machine then applies its instructions starting with
the instruction labeled l0. Without loss of generality, we assume that l0 labels
an ADD instruction, and that the content of the output register (e.g. register 1)
is never decremented, only added to during computation, i.e. no SUB instruc-
tion is applied to it. If M reaches the halt instruction lh, then the number n
stored during this time in register 1 is said to be computed by M . We denote
the set of all numbers computed by M as N(M). It was proven that register
machines compute all sets of numbers computed by a Turing machine, therefore
characterizing the set NRE [17].

Register machines can also work in an accepting mode: a number n is stored
in register 1 of M (all other registers are empty). If M halts, given this initial
configuration, then n is said to be accepted or computed by M . It is also known
that if M is deterministic, where an ADD instruction is simply written as li :
(ADD(r), lj), M still characterizes NRE. As a convention, when comparing the
power of two number generating devices D1 and D2, the number zero is ignored,
i.e. N(D1) = N(D2) if and only if N(D1)−{0} = N(D2)−{0}. This convention

4 A good introduction is [26] and the P systems webpage at http://ppage.psystems.
eu/, with a handbook in [28].

http://ppage.psystems.eu/
http://ppage.psystems.eu/
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corresponds to the common practice in language and automata theory to ignore
the empty string.

3 Spiking neural P systems with structural plasticity

In this section we define SNP systems with structural plasticity. Initial motiva-
tions and results are included in the seminal paper in [8]. A spiking neural P
system with structural plasticity (SNPSP systems) of degree m ≥ 1 is a construct
of the form Π = (O, σ1, . . . , σm, syn, out), where:

– O = {a} is the singleton alphabet (a is called spike);
– σ1, . . . , σm are neurons of the form (ni, Ri), 1 ≤ i ≤ m; ni ≥ 0 indicates the

initial number of spikes in σi; Ri is a finite rule set of σi with two forms:
1. Spiking rule: E/ac → a, where E is a regular expression over O, c ≥ 1;
2. Plasticity rule: E/ac → αk(i,N), where E is a regular expression over
O, c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1, and N ⊆ {1, . . . ,m} − {i};

– syn ⊆ {1, . . . ,m} × {1, . . . ,m}, with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

– out ∈ {1, . . . ,m} indicates the output neuron.

Given neuron σi (we also say neuron i or simply σi) we denote the set of
neuron labels with σi as their presynaptic (postsynaptic, resp.) neuron as pres(i),
i.e. pres(i) = {j|(i, j) ∈ syn} (as pos(i) = {j|(j, i) ∈ syn}, resp.). Spiking rule
semantics in SNPSP systems are similar with SNP systems in [8]. We do not
use forgetting rules or rules with delays. Spiking rules are applied as follows: If
neuron σi contains b spikes and ab ∈ L(E), with b ≥ c, then a rule E/ac → a ∈ Ri
can be applied. Applying such a rule means consuming c spikes from σi, thus
only b − c spikes remain in σi. Neuron i sends one spike to every neuron with
a label in pres(i) at the same step as rule application. If a rule E/ac → a has
L(E) = {ac}, we simply write this as ac → a.

Plasticity rules are applied as follows. If at step t we have that σi has b ≥ c
spikes and ab ∈ L(E), a rule E/ac → αk(i,N) ∈ Ri can be applied. The set N is
a collection of neurons to which σi can create a synapse to, or remove a synapse
from, using the applied plasticity rule. The rule consumes c spikes and performs
one of the following, depending on α:

– If α := + and N − pres(i) = ∅, or if α := − and pres(i) = ∅, then there is
nothing more to do, i.e. c spikes are consumed but no synapses are created
or removed. Notice that with these semantics, a plasticity rule can replace
a forgetting rule, i.e. the former can be used to consume spikes without
producing any spike.

– for α := +, if |N − pres(i)| ≤ k, deterministically create a synapse to every
σl, l ∈ Nj−pres(i). If however |N−pres(i)| > k, nondeterministically select
k neurons in N − pres(i), and create one synapse to each selected neuron.

– for α := −, if |pres(i)| ≤ k, deterministically delete all synapses in pres(i). If
however |pres(i)| > k, nondeterministically select k neurons in pres(i), and
delete each synapse to the selected neurons.
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If α := ± (α := ∓, respectively), create (delete, resp.) synapses at step t and
then delete (create, resp.) synapses at step t + 1. Only the application priority
of synapse creation or deletion is changed, but the semantics of synapse creation
and deletion remain the same as when α ∈ {+,−}. Neuron i can receive spikes
from t until t+ 1, but σi can only apply another rule at time t+ 2.

An important note is that for σi applying a rule with α ∈ {+,±,∓}, creating
a synapse always involves a sending of one spike when σi connects to a neuron.
This single spike is sent at the time the synapse creation is applied, i.e. whenever
synapse (i, j) is created between σi and σj during synapse creation, we have σi
immediately transferring one spike to σj .

Let t be some step during a computation: we say σi is activated at step t if
there is at least one r ∈ Ri that can be applied (i.e. the stored spikes in σi satisfy
the regular expression of r); we say σi is active at t if for some step t′ < t, σi was
activated by applying r ∈ Ri, and is currently fulfilling the requirements for the
application of r. Also, we say σi is simple if |Ri| = 1. Given an SNPSP system
Π, we can have the following levels of nondeterminism: system-level, if given at
least two activated neurons, Π chooses exactly one neuron to fire; rule-level, if
at least one neuron has at least two rules with regular expressions E1 and E2

such that E1 6= E2 and L(E1) ∩ L(E2) 6= ∅; synapse-level, if at least one neuron
can nondeterministically create or delete a synapse;

By default SNP and SNPSP systems are locally sequential (at most one rule
is applied per neuron) but globally parallel (all activated neurons must apply a
rule). Note that the application of rules in neurons are synchronized, i.e. a global
clock is assumed and if a neuron can apply a rule then it must do so. A config-
uration of an SNPSP system is based on (a) distribution of spikes in neurons,
and (b) neuron connections based on syn. For some step t, we can represent:
(a) as 〈s1, . . . , sm〉 where si, 1 ≤ i ≤ m, is the number of spikes contained in
σi; for (b) we can derive pres(i) and pos(i) from syn, for a given σi. The initial
configuration therefore is represented as 〈n1, . . . , nm〉, with the possibility of
a disconnected graph. A computation is defined as a sequence of configuration
transitions, from an initial configuration, and following rule application seman-
tics. A computation halts if the system reaches a halting configuration, i.e. a
configuration where no rules can be applied.

A result of a computation can be defined in several ways in SNP systems
literature. For sequential SNPSP systems, we use the following as in [11]: we
only consider the first two consecutive steps t1 and t2 that σout spikes. Their
difference minus one, i.e. the number n = (t2− t1)−1, is said to be computed by
Π. We refer to Π as generator, if Π computes in this manner. Π can also work
as an acceptor, as follows: n spikes are stored in a defined neuron in an initial
configuration. Π then accepts n if the computation halts.

The following two features are used in our systems as the normal form:
(i) only purely plastic neurons (i.e. neurons with plasticity rules only) have
at most 2 rules (the maximum in any neuron of the system), and (ii) neu-
rons with standard rules are simple. We denote the family of sets computed
by nondeterministic SNPSP systems (in the mentioned normal form) as gen-
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erators as N2,genSNPSP
γ : subscript 2 indicates the first 2 spikes of σout as

the result; we replace 2 and gen with acc for acceptors; we have the mode
γ ∈ {maxs,maxps,mins,minps} (details given shortly); Given an SNPSP sys-
tem Π, we denote the computed set by Π as Nm(Π), m ∈ {gen, acc}. To fur-
ther parametrize our results in this work we have the following: +synk (−synj ,
resp.) where at most k (j, resp.) synapses are created (deleted, resp.) each step;
ndβ , β ∈ {syn, rule, sys} indicate additional levels of nondeterminism source;
rulem indicates at most m rules (either standard or plasticity) per neuron; Since
our results for k and j for +synk and −synj are equal, we write them instead
in the compressed form ±synk, where ± in this sense is not the same as when
α := ±.

Induced sequentiality is as follows: In one step of an SNPSP system Π,
only the neuron with the maximum (minimum, resp.) number of stored spikes
becomes activated in maxs (mins, resp) mode. If there is more than one such
neuron, then exactly one is chosen among them (i.e. ndsys is used). In max
pseudosequential or maxps (min pseudosequential or minps, resp.) mode, Π
allows all neurons with the maximum (minimum, resp.) stored spikes to become
activated (i.e. no ndsys). In all four modes, the system is sequential, induced
by the global maximum (minimum, resp.) spike number. The ndsys was used
in [7] (denoted as nondeterminism at the level of the system) and [10]. In [7],
they denoted ndrule as nondeterminism at the level of neurons. Note that if γ
for example takes the value maxs, ndsys is implied so that ndsys is omitted from
writing.
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a→ ±1(i, {j, k})

Fig. 1. An SNPSP system Πej .

To illustrate the notions and semantics in SNPSP systems, we take as an
example the SNPSP system Πej in Figure 1, and describe its computations. The
initial configuration is as follows: spike distribution is 〈1, 0, 0, 1〉 for the neuron
order σi, σj , σk, σl, respectively; syn = {(j, k), (k, l)}; output neuron is σl,
indicated by the outgoing synapse to the environment.

Let t be the step when σi and σl become activated, i.e. they can apply
their rules because the regular expressions are satisfied. At t then we have the
following: σl applies its spiking rule and sends the first (out of two) spike to the
environment; since k = 1 < |{j, k}|, σi nondeterministically selects whether to
create synapse (i, j) or (i, k); if (i, j) ((i, k), resp.) is created, a spike is sent from
σi to σj (σk, resp.) at t due to the immediate sending of a spike during synapse
creation, and σl fires for the second and final time at t + 3 (t + 2, resp.); also,
if (i, j) is created then syn′ := syn ∪ {(i, j)}, otherwise syn′′ := syn ∪ {(i, k)}.
At t + 1, σi deletes the synapse created at t (since α := ±), and we have syn
again. By definition, σi and σl become activated at t, while only σi is active at
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t+ 1 (while it deletes a synapse). The output of Πej is either (t+ 3− t)− 1, or
(t + 2 − t) − 1, so that N2(Πej) = {1, 2}. Computations of Πej generating {1}
and {2} are given in Table 1 and Table 2, respectively, where (!) indicates the
spiking of the output neuron.

time σi σj σk σl syn
t0 1 0 0 1 syn
t 0 0 1 0(!) syn′′ = syn ∪ {(i, k)}

t+ 1 0 0 0 1 syn
t+ 2 0 0 0 0(!) syn

Table 1. Computation of Πej generating {1}, with syn = {(j, k), (k, l)}.

time σi σj σk σl syn
t0 1 0 0 1 syn
t 0 1 0 0(!) syn′ = syn ∪ {(i, j)}

t+ 1 0 0 1 0 syn
t+ 2 0 0 0 1 syn
t+ 3 0 0 0 0(!) syn

Table 2. Computation of Πej generating {2}, with syn = {(j, k), (k, l)}.

4 Main results

In this section we consider SNPSP systems as acceptors or generators of sets of
numbers in four modes: maxs, maxps, mins, and minps. It is known from [2]
that SNPSP systems as generators or acceptors are universal, operating in the
“usual way” in membrane computing, i.e. neurons operate in parallel. Using the
four modes, we show in this section that we can still achieve universality despite
the restriction of induced sequentiality and the normal form in Section 3.

4.1 Sequential SNPSP systems based on max spike number

We first consider acceptors and generators in maxs and maxps modes: in maxs
mode, at most one neuron with the most stored spikes is nondeterministically
chosen to fire; in maxps mode, all neurons with the most number of spikes
are allowed to fire. Our (non)universality results under a normal form are as
follows (with details of the parameters provided shortly): for maxs, acceptors
and generators are universal; for maxps, acceptors are universal while generators
can become universal with nondeterminism provided in this work by ndsyn.
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Max sequentiality (maxs) mode

Theorem 1 NRE = N2,genSNPSP
maxs(rule2,±synk, ndsyn), k ≥ 1.

Proof. It is enough to simulate a register machine M by means of an SNPSP
system Π, with restrictions given in the Theorem statement. Before we construct
Π, we provide a general description of the computation as follows: each register
r in M is associated with a σr in Π. If r stores the value n, then σr stores
2n+ 2 spikes. We will construct modules for Π that will simulate addition,
subtraction, and halting operations in M . If a rule with label li is applied in
M , then the associated neuron σli in Π is activated in order to simulate the
operation performed by li. In the initial configuration, all neurons are empty,
except neuron σl0 which contains one spike and is associated with the initial
instruction l0 of M .

Module ADD: The module simulating li : (ADD(r), lj , lk) is shown in Figure
2. Once σli is activated it sends one spike each to σl1i and σl2i . At this step σl1i
stores two spikes, while σl2i stores one spike. Let step t be the step where σl1i
is activated: σl1i applies its only rule so it consumes one spike and deletes the

synapse (l1i , r) if it exists. At step t + 1 we have the following: σl1i becomes an
active neuron to continue the application of its plasticity rule applied at t, while
σl2i is now the only activated neuron. At t + 1, σl2i sends one spike each to σr
and σp, while σl1i creates synapse (l1i , r), thus sending one spike to σr.

The spikes stored in σr at t + 1 increase by two, and σp is activated at the
next step. We omit further details of σr at this point, but we note that no rule of
σr is activated while σr stores an even number of spikes. Since σp is activated, it
will nondeterministically select whether to create synapse (p, lj) or (p, lk). Once
σp selects one synapse to create, either σlj or σlk is activated. The ADD module
correctly simulates the addition operation: the spikes stored in σr are increased
by two, simulating the increase of the value stored in r by one; then, either σlj or
σlk is activated nondeterministically, simulating the nondeterministic application
of either lj or lk in M .
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a→ ±1(p, {lj , lk})
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Fig. 2. Module ADD simulating li : (ADD(r), lj , lk) in the proof of Theorem 1.
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Module SUB: The module simulating li : (SUB(r), lj , lk) is shown in Figure
3. This is the only module in which σr becomes activated. We define Nk (Nj ,
resp.) as Nk = {l3i |li is a SUB instruction on r} (Nj = {l2i |li is a SUB instruction
on r}, resp.). Once activated, σli sends one spike each to σl1i and σr. Let t be
the step when σli and σr collect four and 2n + 3 spikes, respectively. At t we
can have both σl1i and σr activated, but due to maxs mode, only one neuron
becomes activated. Depending on the value of n, either σl1i or σr spikes, and we
have the following two possible cases:
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li a→ a

lj lk

l1i

a3

a4/a→ a

l2i
a

a2/a→ −1(l2i , {lj})

a3/a2 → ±1(l2i , {lj})

l3i
a

a2/a→ −1(l3i , {lk})

a3/a2 → ±1(l3i , {lk})

r

a2

a3(a2)+/a3 → ±|Nj |(r,Nj)

a3/a→ ±|Nk|(r,Nk)

Fig. 3. Module SUB simulating li : (SUB(r), lj , lk) in the proof of Theorem 1.

Case n = 0: This case corresponds to σr storing three spikes at t, so σl1i
becomes activated. In this case σl1i consumes one spike and sends one spike each
to σl2i and σl3i at t. At t + 1, σr is the activated neuron with the most stored
spikes. Recall that in this case M must deterministically execute lk, and this
operation is simulated as follows: the rule of σr with L(E) = {a3} is applied and
|Nk| synapses are created and then deleted (in the next step). For the specific
case where Nk = {l3i } so that |Nk| = 1, σr consumes one spike and synapse (r, l3i )
is created and then deleted. The spikes stored in σr return to two, simulating
the “no operation” when register r stores n = 0. Now at t + 2, σl3i stores three

spikes and applies its rule with L(E) = {a3}, so synapse (l3i , lk) is created and
then deleted. Before σlk is activated, maxs mode dictates that σl2i must apply

its rule with L(E) = {a2} to delete any synapse from it.
Case n ≥ 1: This case corresponds to σr storing at least five spikes at t, so σr

is the neuron that fires. In this case M must deterministically execute lj which
is simulated as follows: the rule of σr with L(E) = {a3(a2)+} is applied and |Nj |
synapses are created and then deleted (in the next step). For the specific case
where Nj = {l2i } so that |Nj | = 1, σr consumes three spikes and synapse (r, l2i )
is created and then deleted. The stored spikes in σr after removing three spikes
return to an even count, simulating the decrease of the value stored in r by one.
At t + 1, σl1i is the activated neuron with the most stored spikes, and it sends
one spike each to σl2i and σl3i . At t + 2, σl2i now stores three spikes and applies
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its rule with L(E) = {a2}, so synapse (l2i , lj) is created and then deleted. Before
σlj is activated, σl3i must apply its rule with L(E) = {a2} to delete any synapse
from it.

In both cases, the number of stored spikes in σl1i , σl2i , and σl3i are restored
to the original number of spikes before σli was activated, i.e. the same SUB
module can be used again. We consider now the general case where more than
one li : (SUB(r), lj , lk) operation is performed on the same register r. We need to
be certain that there is no interference with several SUB modules acting on the
same σr.

By definition of Nj and Nk, only the correct SUB module simulating lx on
r is allowed to continue because either l2x or l3x receives three spikes. The other
neuron, including neurons l2y and l3y for ly also operating on r, only receive two
spikes: maxs mode will nondeterministically allow all such neurons to remove
one spike from their two spikes using their plasticity rule with L(E) = {a2}.
Hence, the SUB module correctly simulates the subtraction operation: spikes
stored in σr are reduced by two, simulating the decrease by one of the nonzero
value stored in r, then σlj is activated to simulate lj in M ; if r stored the value
zero, then the two spikes in σr are restored and σlk is activated to simulate lk
in M .

Module FIN: Once M arrives at lh, M halts its computation and is simu-
lated by the FIN module illustrated in Figure 4. Neuron lh is activated, sending
one spike to σout. Let t be the step when σout first spikes to the environment.
At t, σout has six spikes and consumes two, reducing its spikes to four. At t+ 1,
if register 1 stores the value n = 1, then σ1 contains 2n + 3 = 5 spikes. Due to
maxs mode, both σout and σ1 can be activated but only σ1 is allowed to spike.
At t + 1 we have σ1 reducing its spikes to three, and deleting the nonexisting
synapse (1, out). At t + 2, σout spikes (because it is the only activated neuron)
for the second and final time to the environment. The interval between the first
and second spikes minus one is ((t+ 2)− t)− 1 = 1, exactly the value stored in
register r. Note that the four spikes in σ1 at t + 2 do not allow σ1 to become
activated.

�
�

�
�

�
�

�
�

�
�
�
�- -

6out
a5

(a2)+a2/a2 → a

lh

a→ a

1 a2

a3(a2)+/a2 → −1(1, {out})

Fig. 4. Module FIN in the proof of Theorem 1.

If register r stores n ≥ 2, then σ1 contains at least seven spikes. Again, σ1 has
more spikes than σout, and σ1 reduces its spikes by two each step. The second
spike of σout is produced at step t+ n+ 1, so that the interval between the first
and second spikes minus one is ((t+n+ 1)− t)− 1 = n, exactly the value stored
in r. The Theorem parameters are satisfied in every neuron of every module: at
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most two rules, at most k ≥ 1 synapses created (deleted), and ndsys and ndsyn
exist. This completes the proof. ut

Remarks: The idea of an active neuron, used in our proofs, is from [7] and
their activated neuron and implicit active neuron: In one step of their ADD
module in maxs mode, a neuron is activated while another neuron with delay is
active. In our ADD module, we apply a plasticity rule instead of a rule with delay.
If we further restrict the system and remove ndsyn, we still achieve universality
with a minor trade-off: k ≥ 2 instead of k ≥ 1.

Theorem 2 NRE = N2,genSNPSP
maxs(rule2,±synk), k ≥ 2.

Proof. In the proof for Theorem 1, only the ADD module in Figure 2 has ndsyn.
We use in this case the new ADD module in Figure 5, which is a modified version
of the ADD module in Figure 2. Since only ndsys remains, and σp1 and σp2 can
be activated at the same step, only one of them will fire: if σp1 (σp2 , resp.) fires,
using its plasticity rule with L(E) = {a} it sends one spike to σlj (σlk , resp.) and
σp2 (σp1 , resp.). Before σlj (σlk , resp.) is activated, σp2 (σp1 , resp.) uses its rule
with L(E) = {a2} to remove its two spikes and delete synapse (p2, r) ((p1, r),
resp.). Notice however that the synapse (m, r),m ∈ {p1, p2} never exists, and
r in this case can be replaced by any neuron that neuron m will never have a
synapse to. All Theorem parameters are satisfied: only ndsys exist, and in this
case k ≥ 2 from the new ADD module. ut
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li

a→ a
l1i
a

a2/a→ ∓1(l1i , {r})
l2ia→ a

r p1 a→ ±2(p1, {p2, lj})
a2 → −1(p1, {r})

p2 a→ ±2(p2, {p1, lk})
a2 → −1(p2, {r})

lj lk

Fig. 5. Module ADD simulating li : (ADD(r), lj , lk) in the proof of Theorem 2.

Theorem 3 NRE = NaccSNPSP
maxs(rule2,±synk), k ≥ 1.

Proof. Since a register machine M working as an acceptor characterizes NRE
using only addition instructions of the form li : (ADD(r), lj), we modify the ADD
module in Figure 5 as follows: we remove σp1 , σp2 , σlk , and add synapse (l2i , lj);
We store 2n + 2 spikes in σ1, associated with n (the value to be accepted or
rejected) stored in register 1 of M . We use the SUB module in Figure 3, and
k ≥ 1 instead of k ≥ 2. The FIN module is not required: we accept n if σlh is
activated (meaning M has reached lh) and reject n otherwise. ut
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Max pseudo-sequentiality (maxps) mode

Theorem 4 NRE = N2,genSNPSP
maxps(rule2,±synk, ndsyn), k ≥ 1.

Proof. All modules in the proof of Theorem 1 can be used in maxps mode. In
the SUB module in Figure 3 in particular, if σl2i (σl3i , resp.) has three spikes, then

σl3i (σl2i , resp.) and every neuron with a label in Nj−{l2i } (Nk−{l3i }, resp.) only
have two spikes: these neurons with two spikes remove their spikes in parallel by
applying their rule with L(E) = {a2}. ut

Remarks: In the case of deterministic generators, without a source of nonde-
terminism, they only generate singleton sets given an initial configuration (hence
they are not universal) i.e. NRE 6= DgenSNPSP

maxps(rule∗,±syn∗). Similar
to deterministic register machines as acceptors, we can have universality if the
previous result is considered using SNPSP systems as acceptors instead.

Theorem 5 NRE = DaccSNPSP
maxps(rule2,±synk), k ≥ 1.

Proof. This result holds since all modules in Theorem 3 are deterministic. ut

4.2 Sequential SNPSP systems based on min spike number

Next we consider acceptors and generators in mins and minps modes: mins
mode dictates that at most one neuron (with the least number of spikes stored)
is nondeterministically chosen to become activated step; for minps mode, all the
neurons with the least number of spikes stored become activated. Our (non)universality
results under a normal form are as follows (with details of the parameters pro-
vided shortly): acceptor and generator systems in mins mode are universal; gen-
erator systems in minps mode are not universal; generator systems with ndsyn,
or acceptor systems in minps mode, are universal.

Min sequentiality (mins) mode

Theorem 6 NRE = N2,genSNPSP
mins(rule2,±synk), k ≥ 2.

Proof. We construct modules of an SNPSP system Π which simulates a register
machine M . Modules of Π will again perform addition, subtraction, and halting
operations corresponding to the same operations in M . If register r stores the
value n, then σr stores 2n + 2 spikes. Simulating instruction li means σli in a
module is activated, so that the module performs the operation of li.

Module ADD: The ADD module is illustrated in Figure 6. After σli be-
comes activated, it sends one spike each to σr and σl1i . Due to mins mode, only
σl1i is allowed by the system to apply a rule because it has only one spike (σr
has at least three spikes). After σl1i spikes, one spike is sent to σr, σp1 , and σp2 .
In this way, two spikes are added to σr simulating the increment in register r.
The mins mode will either allow σp1 or σp2 to become activated first: if σp1
(σp2 , resp.) becomes activated first, it creates two synapses so that σlj and σp2
(σlk and σp1 , resp.) receive one spike each; Before σlj (σlk , resp.) is allowed to
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apply a rule, mins mode dictates that σp2 (σp1 , resp.) apply its rule first be-
cause σp2 (σp1 , resp.) only has two spikes. Once σp2 (σp1 , resp.) removes its two
spikes, σlj (σlk , resp.) can proceed to simulating instruction lj (lk, resp.). The
ADD instruction is correctly simulated in Π.

Module SUB: The SUB module is illustrated in Figure 7. After σli spikes,
σl1i and σr each contain two and 2n+ 3 spikes, respectively. Again, mins mode
allows σl1i to spike before σr. Let t be the step that σl1i spikes, i.e. the step when
σl1i becomes activated: at t, σl1i deletes all synapses from itself; at t + 1, σl1i
remains active, then creates synapses and sends one spike each to σl2i and σl3i ;
Also at t + 1, σr becomes activated. As in Theorem 1, we define the sets Nj
and Nk as follows: Nk = {l3i |li is a SUB instruction on r} (Nj = {l2i |li is a SUB

instruction on r}, resp.).

If r ≥ 1 (r = 0, resp.), then σr creates a synapse and sends one spike each
to every neuron with a label in Nj (Nk, resp.) at t + 1. Also, if r = 0 then
σr will contain 3 − 1 = 2 spikes again, otherwise if r ≥ 1 then σr will contain
2n+ 3− 3 = 2n spikes again. At t+ 2, σl2i (σl3i , resp.) contains two spikes, while

σl3i and every neuron with a label in Nj − {l2i } (σl2i and every neuron with a

label in Nk − {l3i }, resp.) only contain one spike. At t + 2, mins mode dictates
that these neurons containing one spike must remove their spikes, using their
rule with α := −. At t+ 3, σlj (σlk , resp.) is activated by σl2i (σl3i , resp.) because
it now contains three spikes. The SUB instruction is correctly simulated in Π,
and no interference occurs among several SUB instructions operating on the same
register r.

Module FIN: The FIN module is illustrated in Figure 8. Once σlh is ac-
tivated, σout then contains four spikes. At the next step, σout is activated and
sends the first spike to the environment (we denote this step as t). At t + 1,
σ1 contains at least five spikes, since n ≥ 1. It takes n − 1 steps for σ1, using
its rule with α := −, to reduce its spikes to five if n ≥ 2. Once σ1 stores five
spikes, it creates a synapse and sends one spike to σout at t + n. At t + n + 1,
σout sends a spike to the environment for the second and final time. The value
((t + n + 1) − t) − 1) = n is computed, which is precisely the value stored in
register 1 of M . Note that the second spike sent by σout to σ1 never activates
any rule in σ1.

Clearly, only ndsys exists, at most two rules exist in each neuron, and at least
k = 2 synapses are created each step. This completes the proof. ut

Theorem 7 NRE = NaccSNPSP
mins(rule2,±synk), k ≥ 2.

Proof. To simulate an acceptor register machine M using addition instructions
of the form li : (ADD(r), lj), we modify the ADD module in Figure 6 as follows:
we remove σp1 , σp2 , σlk , and add synapse (l1i , lj). We store 2n+ 2 spikes in σ1,
associated with the value n in register 1 of M . The SUB module is the module
in Figure 7, and a FIN module is not required. We accept n if σlh becomes
activated, and reject n otherwise. ut
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li

a2

a3/a→ a

l1ia→ a

r p1 a→ ±2(p1, {p2, lj})
a2 → −1(p1, {r})

p2 a→ ±2(p2, {p1, lk})
a2 → −1(p2, {r})

lj
a2

lk
a2

Fig. 6. Module ADD simulating li : (ADD(r), lj , lk) in the proof of Theorem 6.
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Fig. 7. Module SUB simulating li : (SUB(r), lj , lk) in the proof of Theorem 6.
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Fig. 8. Module FIN in the proof of Theorem 6.
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Min pseudo-sequentiality (minps) mode

Without a source of nondeterminism, deterministic SNPSP system as genera-
tors inminpsmode are not universal, i.e.NRE 6= DgenSNPSP

minps(rule∗,±syn∗).
This nonuniversality parallels the nonuniversality of deterministic generators in
maxps mode. As in Theorem 4 for generators in maxps mode, generators in
minps mode can become universal using ndsyn, as the next result shows.

Theorem 8 NRE = N2,genSNPSP
minps(rule2,±synk, ndsyn), k ≥ 2.

Proof. We modify the ADD module in Figure 6, to remove ndsys and maintain
only ndsyn, as follows: Replace σp1 and σp2 with a single neuron σp, and add
synapse (l1i , p); the rule set of σp is Rp = {a→ ±1(p, {lj , lk})}.

The SUB and FIN modules in Figure 7 and 8, respectively, can be used in
minps mode. In particular, the SUB module is still correct because if σl2i (σl3i ,

resp.) contains two spikes, then σl3i and every neuron with a label in Nj − {l2i }
(σl2i and every neuron with a label in Nk − {l3i }, resp.) contain one spike each.
The neurons that contain one spike each must remove their spikes in parallel,
before the next instruction is correctly simulated. ut

Theorem 9 NRE = NaccSNPSP
minps(rule2,±synk), k ≥ 2.

Proof. All modules in the proof of Theorem 7 can be used in minps mode. ut

5 Final remarks

We have shown that SNPSP systems as acceptors are more powerful than as
generators, since the former do not need any source of nondeterminism. SNPSP
systems maintain Turing universality despite the following restrictions: induced
sequentiality, and under a normal form. The normal form is that purely plastic
neurons have at most two rules (the maximum in the system), and neurons
with standard rules are simple. Acceptors are universal in all four modes, while
generators are not universal under maxps and minps modes. Replacing the
commonly used ndrule (e.g. in [8] and [7]) with ndsyn as a nondeterminism
source, we are able to: allow generators in maxps or minps mode to become
universal; reduce the rules in each neuron to at most two, while making the
modules more compact, i.e. require fewer neurons.

Our results provide a family of uniform modules, i.e. at the expense of using
ndsyn, our modules can be used in both maxs and maxps modes, or mins and
minps modes. In [10], the problem of constructing a family of uniform ADD,
SUB, and FIN modules that can be used in both mins and minps modes was
open. Our work thus provides a positive hint to this open problem. The systems
in [10] only contain spiking and forgetting rules, hence they use ndsys or ndrule
instead of ndsyn as nondeterminism sources. Meanwhile, the sequential systems
in [34] are investigated in the same four modes as in this work but with a different
rule application semantic: instead of applying at most one rule once each step



Sequential SNPSP Systems Based on Max/Min Spike Number 17

in a neuron (the common way of applying rules in SNP systems), the rules are
applied in an exhaustive or maximally parallel way.

It is also interesting to consider the notion of homogeneous systems. In [11],
two types of neurons are enough for universality: one for maxs, and another for
maxps. It is then proved that homogeneous SNP (HSNP) systems as acceptors
and generators are universal in both modes. Since neurons are homogeneous, the
connectivity of the neurons is important. For SNPSP systems, perhaps a pseudo-
homogeneous construction is reasonable, where only the set N is different among
the rules of neurons.

Another restriction we investigate next, and which is related to sequentiality,
is the removal of synchronization, i.e. asynchronous SNPSP systems [3]. How-
ever, much is left to be investigated for SNPSP systems. We here only list a few
established results in membrane computing and SNP systems which can be ap-
plied to SNPSP systems: investigating the type of regular expression in standard
or plasticity rules, e.g. bounded, unbounded, or general rules as in [4] and [30];
constructing small universal systems as in [24] and [32]; language generation as
in [5]; processing (in)finite sequences as in [27]; exhaustive use of rules as in [21].
Further investigations on the structure or connectivity on SNP and SNPSP sys-
tems are also interesting. In [36] for example, a neural-like P system known as
Axon P systems are proven to be universal despite having only a linear arrange-
ment of the nodes. Such investigations can lead to further interesting results for
building theoretical or practical neural systems with dynamic synapse graphs.
Lastly, it is interesting to include SNPSP systems in the P-Lingua tool as in
[15][16], which includes simulators for many SNP system variants. P-Lingua and
other tools based based on P-Lingua, can then be used to perform experimental
simulations based on SNPSP systems theory.
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ral P Systems (to appear) 14th Unconventional Computation and Natural Com-
putation, 31 Aug-04 Sep, Auckland, New Zealand (2015)

4. Cavaliere, M., Egecioglu, O., Woodworth, S., Ionescu, I., Păun, G.: Asynchronous
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