
P Systems-Based Computing Polynomials
With Integer Coefficients: Design and

Formal Verification
Ming Zhu, Gexiang Zhang , Member, IEEE , Qiang Yang, Haina Rong, Weitao Yuan,

and Mario J. Pérez-Jiménez

Abstract — Automatic design of mechanical procedures
solving abstract problems is a relevant scientific challenge.
In particular, automatic design of membranes systems per-
forming some prefixed tasks is an important and useful
research topic in the area of Natural Computing. In this
context, deterministic membrane systems were designed in
order to capture the values of polynomials with natural num-
bers coefficients. Following that work, this paper extends
the previous result to polynomials with integer numbers
coefficients.Specifically,a deterministic transitionP system
using priorities in the weak interpretation, associated with
an arbitrary such kind polynomial, is presented. The con-
figuration of the unique computation of the system will be
encoded by means of two distinguished objects, the values
of the polynomial for natural numbers. The descriptive com-
putational resources required by the designed membrane
system are also analyzed.

Index Terms— Membrane computing, P systems, auto-
matic design of membrane systems, polynomials with
integer coefficients.

I. INTRODUCTION

MEMBRANE computing is a rapidly growingbranch

of natural computing initiated in [1], which abstracts

computing models from the architecture and the functioning
of living cells, as well as from the organization of cells in
tissues, organs (the brain included), or other higher-degree
structures. In the past twenty years, several classes of com-
puting models (called P systems) were introduced, inspired

This work was supported in part by the Scientific Research Fund of
Sichuan Provincial Science and Technology Department under Grants
2015JY0257 and 2017FZ0010, in part by the National Nat-ural Science
Foundation of China under Grants 61672437, 61702428, and
61373047, in part by the Sichuan Science and Technology Pro-gram
under Grants 2018GZ0185, 2018GZ0085, and 2017GZ0159, and in
part by the Fundamental Research Funds for the Central Universities
under Grant A0920502051619-36. (Corresponding author: Gexiang
Zhang.)

M. Zhu and Q. Yang are with the College of Control Engineering,
Chengdu University of Information Technology, Chengdu 610225, China
(e-mail: zhuming@cuit.edu.cn; yuxia2008@126.com).

G. Zhang, H. Rong, and W. Yuan are with the School of Electrical Engi-
neering, Southwest Jiaotong University, Chengdu 610031, China (e-mail:
zhgxdylan@126.com; ronghaina@126.com; 657279959@qq.com).

M. J. Pérez-Jiménez is with the Department of Computer Science and
Artificial Intelligence, University of Sevilla, 41012 Sevilla, Spain (e-mail:
marper@us.es).

Fig. 1. Schematic graph showing the toolbox of artificial neural networks.

Fig. 2. Schematic graph showing the aim of automatic design of
P systems.

from biological facts or motivated from mathematical or com-
puter science points of view [2], [3]. Many P system classes
are able to simulate register machines and therefore they
are computationally complete, that is, they are equivalent in
power to Turing machines [4]–[9]. It is well known that
some P systems are efficient, in the sense that they have
the ability to solve computationally hard problems by making
use of an exponential workspace created in a natural way,
in polynomial time [10]–[12]. Membrane computing models
have been used in various applications like in the areas of
approximate optimizations, systems and synthetic biology and
real-life complex problems [13]–[19].

Like the toolbox of artificial neural networks (ANN) for
producing successful ANNs satisfying users’ requirements,
which is shown in Fig. 1, the automatic design of P systems is
to develop a methodology for generating successful P systems
meeting designers’ requirements, as shown in Fig. 2.

https://orcid.org/0000-0001-8034-0977

This is a very complicated and challenging task. So far,
the methods reported in the literature can be classified into two
groups: heuristic and reasoning techniques [20]. The first type
of methods focused on the use of heuristic algorithms, such
as genetic algorthms (GAs) and quantum-inspired evolutionary
algorithm (QIEAs), to make a population of P systems evolve
toward a successful one [15]. This kind of methods began
from the selection of an appropriate subset from a redundant
set of evolution rules to design a cell-like P system, where a
membrane structure and initial objects were pre-defined and
fixed in the process of design [15], [21]–[24]. In [21], a genetic
algorithm was employed to design a P system to calculate 42.
In [22], a binary encoding technique was presented to denote
an evolution rule set of a P system and a QIEA was used
to make a population of P systems evolve toward successful
ones. This method successfully solved the design of P sys-
tems to compute 42 and n2 (for natural numbers n ≥ 2).
In [23], an evaluation approach considering non-determinism
and halting penalty factors and a genetic algorithm with
the binary encoding technique in [22] were introduced to
design P systems for 42, n2 and the generation of the lan-
guage {a2n

b3n |n > 1}. In these studies mentioned above,
a specific redundant evolution rule set was designed for a
specific computational task. This was developed in [15], [24]
by applying one pre-defined redundant evolution rule set to
design multiple different P systems, each of which executes
a computation task. In [24], an automatic design method of a
cell-like P system framework for performing five basic arith-
metic operations (addition, subtraction, multiplication, division
and power) was presented. In [15], a common redundant set
of evolution rules was applied to design successful P systems
for fulfilling eight computational tasks, i.e., eight computing
sets of natural numbers: 2(n − 1), 2n − 1, n2, 1

2 [n(n − 1)],
n(n−1), (n−1)2 +2n +2, a2n

b3n
and 1

2 (3n −1), (n > 1 or 2).
A significant development in this topic is the work in [25]
in which a cell-like halting P system for 42 was designed
by tuning membrane structures, initial objects and evolution
rules. In that work, a genetic algorithm with a binary encod-
ing technique was discussed to codify the three ingredients
of a P system, the membrane structure, initial objects and
evolution rules. Following this work, an automatic design
method, Permutation Penalty Genetic Algorithm (PPGA), for
a deterministic and non-halting membrane system by tuning
membrane structures, initial objects and evolution rules was
proposed in [26]. The main ideas of PPGA are the introduction
of the permutation encoding technique for a membrane system,
a penalty function evaluation approach for a candidate mem-
brane system and a genetic algorithm for making a population
of P systems evolve toward a successful one fulfilling a
given computational task. A cell-like membrane system for
computing the square of n2 (for natural numbers n ≥ 1) was
successfully designed. In addition, the automatic design of the
minimal membrane systems with respect to their membrane
structures, alphabet, initial objects and evolution rules to fulfill
the given task were also discussed in [26]. The second type
of methods use reasoning techniques to fulfill the design
of a P system. In [27], a reasoning method to design a

k-degree (k ≥ 2) polynomial P system was reported by ana-
lyzing the syntax and semantics of cell-like P systems.

In the study of [27], deterministic transition P systems for
computing polynomials with natural number coefficients were
designed. The numerical values of such polynomials, p(n),
for n ∈ N, are always positive and the P systems comput-
ing p(n) handle only positive numbers through the multiplic-
ity of objects in an usual manner. In this paper, the work
in [27] is extended to consider the design of deterministic
transition P systems for computing polynomials with integer
coefficients, where the numerical values of p(n), for n ∈ N,
may be positive or negative and, consequently, the P systems
computing p(n) must process integer numbers by using natural
numbers in the multiplicity of objects. This task is much more
challenging.

The aim of this paper is to find a “minimal” such P system
computing an arbitrary polynomial with integer coefficients.
Here the concept “minimal” refers to some syntactical ingre-
dients associated with P systems: the membrane structure has
only one membrane and the number of objects used is very
restrictive.

The rest parts of this paper are organized as follows.
Section II recalls some preliminaries needed in the following
sections, including the specific variant of membrane systems
considered in this work. The main concept of polynomial
with integer coefficients computed by a deterministic tran-
sition P system is defined in Section III. The design and
formal verification of a deterministic P system associated with
an arbitrary polynomial whose coefficients are integer num-
bers, is presented in Section III-A. The descriptive computa-
tional resources required by the designed k-degree polynomial
P system is analyzed in Section IV. The comparison with
metaheuristic approaches is discussed in Section V. Finally,
conclusions and future work are given in Section VI.

II. PRELIMINARIES

In this section, some general concepts are briefly described
in order to make the work self-contained.

A. Alphabet and Multisets

An alphabet � is a non-empty set and their elements are
called symbols. A string u over � is an ordered finite sequence
of symbols, that is, a mapping from a natural number n ∈ N

onto �. The number n is called the length of the string u
and it is denoted by |u|. The empty string (with length 0) is
denoted by λ. A multiset over an alphabet � is a mapping f
from � onto the set of natural numbers N. For each symbol
a ∈ �, the natural number f (a) is called the multiplicity of
symbol a in multiset f . We denote by M(�) the set of all
multisets over �.

B. Rooted Tree

An undirected graph G is an ordered pair (V , E), where V
is a set whose elements are called nodes and E = {{x, y} |
x, y ∈ V , x �= y} whose elements are called edges. A path of
length k ≥ 1 from x ∈ V to y ∈ V is a sequence (x0, . . . , xk)

such that x0 = x and xk = y. If x0 = xk then we say that the
path is a cycle. An undirected graph is connected if every pair
of nodes is connected by a path. An undirected graph with
no cycle is said to be acyclic. A rooted tree is a connected,
acyclic, undirected graph in which one of the vertices (called
the root of the tree) is distinguished from the others.

C. Transition P Systems

The basic model of membrane systems was introduced
by Gh. Păun in its seminal paper [1]. A transition P system
of degree q ≥ 1 is a tuple

� = (�,μ,M1, . . . ,Mq , (R1, ρ1), . . . , (Rq , ρq), iout),
where:

– � is a finite alphabet.
– μ is a rooted tree.
– M1, . . . ,Mq are multisets over �.
– Ri , 1 ≤ i ≤ q , is a finite set of evolution rules of

the following forms: (a) [u]i → v1 [v2 [v3] j]i ; and
(b) [u]i → v1 [v2 [v3] j]i δ, where i, j ∈ {1, . . . , q},
i �= j , u, v1, v2, v3 ∈ M(�) and δ is a distinguished
symbol such that δ /∈ �.

– ρi , 1 ≤ i ≤ q , is an strict partial order over Ri .
– iout ∈ {0, 1, . . . , q}.

A transition P system � = (�,μ,M1, . . . ,Mq ,
(R1, ρ1), . . . , (Rq , ρq), iout), of degree q ≥ 1 can be viewed
as a set of q membranes injectively labeled by 1, . . . , q ,
arranged in a hierarchical structure μ given by a rooted tree
whose root is called the skin membrane of the system, and
with an environment labeled by 0 such that: (a) M1, . . . ,Mq

are multisets over the working alphabet � representing the
objects initially placed in the q membranes of the system;
(b) Ri , 1 ≤ i ≤ n, is the set of rules associated with
membrane i , and ρi provides priorities between rules in Ri ,
in such a manner that if (r1, r2) ∈ ρi we say that rule r1 has
a higher priority than r2 and we denote it by r1 > r2; and
(c) iout ∈ {1, . . . , q} represents a distinguished membrane
(the output membrane).

A configuration at an instant t of a transition P system
is described by the membrane structure at instant t and all
multisets of objects over � associated with all the membranes
present in the system. The initial configuration of the system
is (μ,M1, · · · ,Mq). Given a transition P system �, we say
that configuration Ct yields configuration Ct+1 in one transition
step, if we can pass from Ct to Ct+1 by applying the rules from
R1, . . . ,Rq synchronously, in a non-deterministic maximally
parallel manner. This means the following: the objects to
evolve in a transition step and the rules by which they evolve
are chosen in a non-deterministic manner, but in such a
way that in each membrane we have a maximally parallel
application of rules (at each transition step a multiset of rules
which is maximal is applied, no further applicable rule can be
added). A computation of � is a (finite or infinite) sequence
of configurations such that: (a) the first term of the sequence is
the initial configuration of the system; (b) each non-first term
of the sequence is obtained from the previous configuration by
applying rules of the system in a non-deterministic maximally
parallel manner; and (c) if the sequence is finite then the last

term of the sequence is a configuration, where no rule of the
system is applicable to it.

It is worth pointing out that in this paper the priority
between rules is used in the weak interpretation, that is, in a
transition step a rule is used always when objects exist, which
were not used by a rule of a higher priority. In this paper
we deal with deterministic transition P systems, where there
is only one computation starting from an initial configuration.
Besides, only rules of the type [u]i → [v]i will be used and
they are briefly denoted by u → v when the membrane being
worked with is understood.

Let us consider two auxiliary functions f+ and f− from the
set of integer numbers Z into the set of natural numbers N,
defined as follows:

f+(x) =
{

x if x ≥ 0

0 if x < 0
f−(x) =

{
0 if x ≥ 0

−x if x < 0

It is worth pointing out that for each integer number x ∈ Z
we have f+(x) ≥ 0, f−(x) ≥ 0, f+(x) + f−(x) = |x | and
f+(x) − f−(x) = x .

III. DETERMINISTIC TRANSITION P SYSTEMS
COMPUTING POLYNOMIALS WITH

INTEGER COEFFICIENTS

In this section we define the meaning of computing a
polynomial p(n) whose coefficients are integer numbers, by a
deterministic transition P system �p(n) associated with it. The
idea is the following: for each natural number t ∈ N the
value p(t) will be computed/encoded by the configuration
Ct+1 of the unique computation of �p(n). For that, four
distinguished objects (o1, o2, p1, p2) will be considered in the
working alphabet of �p(n), in such a manner that o1, o2 will
be used to encode/represent integer numbers by means of their
multiplicities, and p1, p2 will be used as their corresponding
transition computing objects.

Definition 1: Let p(n) be a polynomial with integer numbers
coefficients. We say that p(n) is computed by a deterministic
transition P system

�p(n) = (�,μ,M1, . . . ,Mq , (R1, ρ1), . . . , (Rq , ρq), iout)

if the following holds:

• The working alphabet � has four distinguished objects:
o1, o2 (the output objects) and p1, p2 (transition comput-
ing objects).

• For each t ∈ N, at configuration Ct+1 the content of the
output membrane labeled by iout encodes the value p(t)
through the multiplicity of objects o1 and o2 as follows:
(a) If p(t) ≥ 0 then the multiplicity of o1 is p(t) and
the multiplicity of o2 is 0; and (b) if p(t) < 0 then the
multiplicity of o2 is −p(t) and the multiplicity of o1 is 0.

A. Design

In this section, a deterministic transition P system �p(n)

of degree 1 that computes, in the sense of Definition 1,
the polynomial p(n) = a0 +a1 ·n · · ·+ak ·nk of degree k ≥ 1,
with integer coefficients ai ∈ Z, 0 ≤ i ≤ k, is designed.

It is easy to check that for each natural number t ∈ N the
following holds:

p(t + 1) − p(t)

= [a1

(
1

0

)
+ a2

(
2

0

)
+ · · · + ak−1

(
k − 1

0

)
+ ak

(
k

0

)
] · t0

+ [a2

(
2

1

)
+ · · · + ak−1

(
k − 1

1

)
+ ak

(
k

1

)
] · t1

. .

+ [ak−1

(
k − 1

k − 2

)
+ ak

(
k

k − 2

)
] · tk−2

+ [ak

(
k

k − 1

)
] · tk−1

Let us denote:

a0
k = a1

(
1

0

)
+ a2

(
2

0

)
+ · · · + ak−1

(
k − 1

0

)
+ ak

(
k

0

)

a1
k = a2

(
2

1

)
+ · · · + ak−1

(
k − 1

1

)
+ ak

(
k

1

)
. .

ak−2
k = ak−1

(
k − 1

k − 2

)
+ ak

(
k

k − 2

)

ak−1
k = ak

(
k

k − 1

)

Then, p(t +1)− p(t) = a0
k +a1

k · t +a2
k · t2 +· · ·+ak−2

k · tk−2 +
ak−1

k · tk−1 =
k−1∑
i=0

ai
k · t i , that is, p(t + 1) = p(t) +

k−1∑
i=0

ai
k · t i .

Definition 2: Let p(n) = a0 + a1 · n + · · · + ak · nk

be a polynomial of degree k ≥ 1, with integer coefficients
ai ∈ Z, 0 ≤ i ≤ k. We associate p(n) with the deterministic
transition P system �p(n) = (�,μ,M1, (R1, ρ1), iout) of
degree 1, defined as follows:

• � = {o1, o2, p1, p2, b1, b2, b3, · · · bk}
• μ = []1

• M1 =
{

o f+(a0)
1 o f−(a0)

2 b1

}
• R1 is the set of the following evolution rules:

r1 ≡ b1 → p
f+(a0

k)

1 p
f−(a0

k)

2 b
(0

0)
1 b

(1
0)

2 b
(2

0)
3 · · · b

(k−2
0)

k−1 b
(k−1

0)
k

r2 ≡ b2 → p
f+(a1

k)

1 p
f−(a1

k)

2 b
(1

1)
2 b

(2
1)

3 · · · b
(k−2

1)
k−1 b

(k−1
1)

k

r3 ≡ b3 → p
f+(a2

k)

1 p
f−(a2

k)

2 b
(2

2)
3 · · · b

(k−2
2)

k−1 b
(k−1

2)
k

...

− rk−1 ≡ bk−1 → p
f+(ak−2

k)

1 p
f−(ak−2

k)

2 b
(k−2

k−2)
k−1 b

(k−1
k−2)

k

rk ≡ bk → p
f+(ak−1

k)

1 p
f−(ak−1

k)

2 b
(k−1

k−1)
k

rk+1 ≡ p1 p2 → λ

rk+2 ≡ p1o2 → λ

rk+3 ≡ p2o1 → λ

rk+4 ≡ p1 → o1

rk+5 ≡ p2 → o2

• ρ1 is the set of priorities relation among rules in R1:
{(rk+1, rk+2), (rk+1, rk+3), (rk+2, rk+4), (rk+2, rk+5),

(rk+3, rk+4), (rk+3, rk+5)} which can be informally
described as: rk+1 > {rk+2, rk+3} > {rk+4, rk+5}.

• iout = 1.

B. Formal Verification

We show in this subsection that the membrane system �p(n)

associated with the polynomial p(n), designed in the previous
section, computes the values p(t) according to Definition 1,
for each t ∈ N.

Theorem 1: Let p (n) = a0 + a1 · n + · · · + ak · nk be a
polynomial of degree k ≥ 1 such that ai ∈ Z, 0 ≤ i ≤ k.
Let �p(n) be the deterministic transition P system considered
in Definition 1. For each t ≥ 0, at configuration Ct+1 the
content of membrane labeled by 1 is the following multiset:

{o f+(p(t))
1 o f−(p(t))

2 p
∑k−1

i=0 f+(ai
k)·t i

1 p
∑k−1

i=0 f−(ai
k)·t i

2

b1 b(t+1)
2 b(t+1)2

3 · · · b(t+1)k−1

k }
Proof: Let us prove the result by induction on t.

Let us start with the base case t = 0. At the initial
configuration C0, the content of membrane labeled by 1 is
the multiset

{
o f+(a0)

1 o f−(a0)
2 b1

}
. Then, configuration C0 yields

configuration C1 by applying rule r1 once. Thus, at configu-
ration C1 the content of membrane labeled by 1 is the mul-

tiset

{
o f+(a0)

1 o f−(a0)
2 p

f+
(
a0

k

)
1 p

f−
(
a0

k

)
2 b1 b2 b3 · · · bk

}
. Because

of p (0) = a0 = f+(a0) − f−(a0), the result holds for t = 0 .
By induction hypothesis, let us assume the result holds

for t ≥ 0, that is, at configuration Ct+1 the content of
membrane labeled by 1 is the multiset

{o f+(p(t))
1 o f−(p(t))

2 p
∑k−1

i=0 f+(ai
k)·t i

1 p
∑k−1

i=0 f−(ai
k)·t i

2

b1 b(t+1)
2 b(t+1)2

3 · · · b(t+1)k−1

k }.
In order to obtain the content of membrane labeled by 1 at

configuration Ct+2, let us analyze all the possible cases that
may happen:

Case 1:
k−1∑

i=0

ai
k · t i ≥ f−(p(t))

In this case, p(t + 1) − p(t) ≥ f−(p(t)) and the following
holds:

(a)
k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i ≥ f−(p(t)). Indeed, it is

sufficient to notice that ai
k = f+(ai

k) − f−(ai
k), for 0 ≤

i ≤ k − 1.

(b)
k−1∑
i=0

f+(ai
k) · t i ≥

k−1∑
i=0

f−(ai
k) · t i . Indeed, (b) follows

from (a) recalling that f−(p(t)) ≥ 0.
(c) p(t + 1) ≥ 0. Indeed, if p(t) ≥ 0 then p(t + 1) ≥ p(t)+

f−(p(t)) ≥ 0, and if p(t) < 0 then f−(p(t)) = −p(t),
so p(t + 1) ≥ p(t) + f−(p(t)) = 0.

Therefore, in this case configuration Ct+1 yields configura-
tion Ct+2 as follows:

(1) From (b) we deduce that at configuration Ct+1 in mem-
brane labeled by 1 there are more copies of object p1

than copies of object p2, so rule rk+1 ≡ p1 p2 → λ will

be applied
k−1∑
i=0

f−(ai
k) · t i times, consuming all copies

of p2 and “remaining”
k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i

copies of p1 without evolving.
(2) From (a) we deduce that at configuration Ct+1 in

membrane labeled by 1 there are more copies of the
“remaining” object p1 than copies of object o2, so rule
rk+2 ≡ p1o2 → λ will be applied f−(p(t)) times,
consuming all copies of o2 and “remaining”

k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i − f−(p(t))

copies of p1 without evolving.
(3) Rule rk+4 ≡ p1 → o1 will be applied

α =
k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i − f−(p(t))

times, consuming all copies of p1 and producing α
copies of o1.

(4) For each j , 1 ≤ j ≤ k, rule r j ≡ b j → p
f+(a j−1

k)

1

p
f−(a j−1

k)

2 b
(j−1

j−1)
j . . . b

(k−1
j−1)

k will be applied (t + 1) j−1

times.

All the previous rules are applied in parallel in one transition
step. Thus, in this case, at configuration Ct+2 the content
of membrane labeled by 1 is the multiset which contains
objects o1, o2, p1, p2 and b j , (1 ≤ j ≤ k) with the following
multiplicities:

– Multiplicity of o1: f+(p(t + 1)).
Indeed, after execution of rules from (2), α new copies
of o1 are produced. Thus, the total number of copies of o1
will be:

f+(p(t)) +
k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i − f−(p(t))

= p(t) +
k−1∑
i=0

ai
k · t i = p(t + 1)

(c)= f+(p(t + 1)).

– Multiplicity of o2 : 0.
Indeed, after execution of rules from (2), all copies of
object o2 are consumed and any new copies of object o2
are produced for any rule applied in this transition step.
Thus, at configuration Ct+2 in membrane labeled by 1 the
multiplicity of o2 is 0.

– Multiplicity of p1:
k−1∑
i=0

f+(ai
k) · (t + 1)i .

Indeed, after execution of rules from (1), (2) and (3), all
copies of object p1 are consumed but by applying rules
from (4), the total number of copies of p1 produced is

k∑
j=1

f+(a j−1
k) · (t + 1) j−1 =

k−1∑
i=0

f+(ai
k) · (t + 1)i .

– Multiplicity of p2:
k−1∑
i=0

f−(ai
k) · (t + 1)i .

Indeed, after execution of rules from (1), (2) and (3), all
copies of object p2 are consumed but by applying rules
from (4), the total number of copies of p2 produced is

k∑
j=1

f−(a j−1
k) · (t + 1) j−1 =

k−1∑
i=0

f−(ai
k) · (t + 1)i .

– Multiplicity of object b j , for each j , 1 ≤ j ≤ k:
(t + 2) j−1.
Indeed, from (3) the total number of copies of object b j

produced is
j−1∑
s=0

(
j − 1

s

)
(t + 1)s = [(t + 1) + 1] j−1 = (t + 2) j−1

Hence, in this case the result holds for t + 1.

Case 2: 0 ≤
k−1∑
i=0

ai
k · t i < f −(p(t))

In this case, the following holds:
(a) p(t) < 0 and p(t + 1) < 0. Indeed, on the one hand, as

f−(p(t)) > 0 we have f−(p(t)) = −p(t). On the other
hand,

p(t + 1) = p(t) +
k−1∑
i=0

ai
k · t i = − f−(p(t)) +

k−1∑
i=0

ai
k < 0.

(b) 0 ≤
k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i < f−(p(t)). Indeed,

it suffices to notice that ai
k = f+(ai

k) − f−(ai
k), for 0 ≤

i ≤ k − 1.

(c) p(t +1) =
[

k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i

]
− f−(p(t)).

Indeed, as f−(p(t)) > 0 we have p(t) < 0 and
f−(p(t)) = −p(t). So,

p(t + 1) = p(t) +
k−1∑
i=0

ai
k · t i

= − f−(p(t)) +
k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i .

Therefore, in this case configuration Ct+1 yields configuration
Ct+2 as follows:

(1) From (b) we deduce that at configuration Ct+1 in mem-
brane labeled by 1 there are more copies of object p1
than copies of object p2, so rule rk+1 ≡ p1 p2 → λ will

be applied
k−1∑
i=0

f−(ai
k) · t i times, consuming all copies

of p2 and “remaining”
k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i

copies of p1 without evolving.
(2) Configuration Ct+1 in membrane labeled by 1 there

are more copies of object o2 than copies of
object p1, then rule rk+2 ≡ p1o2 → λ

will be applied
k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i times,

consuming all copies of p1 and “remaining” f−(p(t))−[
k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i

]
copies of o2 without

evolving.

(3) For each j , 1 ≤ j ≤ k, rule r j ≡ b j → p
f+(a j−1

k)

1

p
f−(a j−1

k)

2 b
(j−1

j−1)
j . . . b

(k−1
j−1)

k will be applied (t + 1) j−1

times.

All the previous rules are applied in parallel in one transition
step. Thus, in this case, at configuration Ct+2 the content
of membrane labeled by 1 is the multiset which contains
objects o1, o2, p1, p2 and b j , (1 ≤ j ≤ k) with the following
multiplicities:

– Multiplicity of object o1: f+(p(t + 1)).
Indeed, the applied rules do not affect to object o1 and
from (a) we deduce that f+(p(t + 1)) = 0 = f+(p(t)).

– Multiplicity of object o2 : f−(p(t + 1)).
Indeed, after execution of the cited rules, the multiplicity
of o2 is

f−(p(t)) −
[

k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i

]

(b)= −p(t + 1)
(c)= f−(p(t + 1)).

– Multiplicity of object p1:
k−1∑
i=0

f+(ai
k) · (t + 1)i .

Indeed, after execution of the rules from (1) and (2),
the multiplicity of p1 is 0, but after the application of
rules from (3) its multiplicity becomes

k∑
i=1

f+(ai−1
k) · (t + 1)i−1 =

k−1∑
i=0

f+(ai
k) · (t + 1)i

– Multiplicity of object p2:
k−1∑
i=0

f−(ai
k) · (t + 1)i .

Indeed, because after execution of the rules
from (1) and (2), the multiplicity of p2 is 0, but after
the application of rules from (3) its multiplicity becomes

k∑
i=1

f−(ai−1
k) · (t + 1)i−1 =

k−1∑
i=0

f−(ai
k) · (t + 1)i

– Multiplicity of object b j , for each j , 1 ≤ j ≤ k:
(t + 2) j−1.
Indeed, from (3) the total number of copies of object b j

produced is

j−1∑
s=0

(
j − 1

s

)
(t + 1)s = [(t + 1) + 1] j−1 = (t + 2) j−1

Hence, in this case the result holds for t + 1.

Case 3:

[
k−1∑
i=0

ai
k · t i < 0

]
∧

[
f +(p(t)) +

k−1∑
i=0

ai
k · t i ≤ 0

]
In this case, the following holds:

(a)
k−1∑
i=0

f+(ai
k) −

k−1∑
i=0

f−(ai
k) · t i < 0.

Indeed, it suffices to bear in mind that
k−1∑
i=0

ai
k · t i < 0, and

ai
k = f+(ai

k) − f−(ai
k), for 0 ≤ i ≤ k − 1.

(b) f+(p(t)) ≤ −
[

k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i

]
Indeed, it is enough to notice that

f+(p(t)) ≤ −
k−1∑
i=0

ai
k · t i

= −
[

k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i

]

(c) p(t + 1) ≤ 0.

Indeed, if p(t) ≥ 0 then p(t) = f+(p(t)) ≤ −
k−1∑
i=0

ai
k · t i

and p(t+1) = p(t)+
k−1∑
i=0

ai
k ·t i ; if p(t) < 0 then p(t+1) =

p(t) +
k−1∑
i=0

ai
k · t i < 0.

Therefore, in this case configuration Ct+1 yields
configuration Ct+2 as follows:

(1) From (a) we deduce that at configuration Ct+1 in mem-
brane labeled by 1 there are more copies of object p2
than copies of object p1, so rule rk+1 ≡ p1 p2 → λ will

be applied
k−1∑
i=0

f+(ai
k) · t i times, consuming all copies

of p1 and “remaining”
k−1∑
i=0

f−(ai
k) · t i −

k−1∑
i=0

f+(ai
k) · t i

copies of p2 without evolving.
(2) From (b) we deduce that at configuration Ct+1 in mem-

brane labeled by 1 there are more copies of object p2
than copies of object o1, so rule rk+3 ≡ p2o1 → λ
will be applied f+(p(t)) times, consuming all copies

of o1 and “remaining” −
[

f+(p(t)) +
k−1∑
i=0

ai
k · t i

]
copies

of p2 without evolve but these copies must evolve by
means of rule rk+5.

(3) Rule rk+5 ≡ p2 → o2 will be applied

−
[

f+(p(t)) +
k−1∑
i=0

ai
k · t i

]
times, consuming all copies

of p2 and producing −
[

f+(p(t)) +
k−1∑
i=0

ai
k · t i

]
new

copies of object o2.
(4) For each j , 1 ≤ j ≤ k, rule r j ≡

b j → p
f+(a j−1

k)

1 p
f−(a j−1

k)

2 b
(j−1

j−1)
j . . . b

(k−1
j−1)

k will be applied
(t + 1) j−1 times.

All the previous rules are applied in parallel in one transition
step. Thus, in this case, at configuration Ct+2 the content
of membrane labeled by 1 is the multiset which contains
objects o1, o2, p1, p2 and b j , (1 ≤ j ≤ k) with the following
multiplicities:

– Multiplicity of object o1: f+(p(t + 1)).
Indeed, from (2) all copies of object t o1 are consumed,

but f+(p(t + 1))
(c)= 0.

– Multiplicity of object o2: f−(p(t + 1)).
Indeed, after execution of the rules, its multiplicity will
be

f−(p(t)) −
[

f+(p(t)) +
k−1∑
i=0

ai
k · t i

]

= −p(t) −
k−1∑
i=0

ai
k · t i

= −p(t + 1)
(c)= f−(p(t + 1)).

– Multiplicity of object p1:
k−1∑
i=0

f+(ai
k) · (t + 1)i .

Indeed, after execution of the rules from (1) all copies
of p1 are consumed but from (4) the produced copies are
the following:

k∑
i=1

f+(ai−1
k) · (t + 1)i−1 =

k−1∑
i=0

f+(ai
k) · (t + 1)i

– Multiplicity of object p2:
k−1∑
i=0

f−(ai
k) · (t + 1)i .

Indeed, after execution of the rules from (1), (2) and (3),
all copies of object p2 are consumed but by applying
rules in (4) new copies of p2 are produced, in total the
number of copies will be:

k∑
i=1

f−(ai−1
k) · (t + 1)i−1 =

k−1∑
i=0

f−(ai
k) · (t + 1)i

– Multiplicity of object b j , for each j , 1 ≤ j ≤ k:
(t + 2) j−1.
Indeed, from (4) the total number of copies of object b j

produced is
j−1∑
s=0

(
j − 1

s

)
(t + 1)s = [(t + 1) + 1] j−1 = (t + 2) j−1

Hence, in this case the result holds for t + 1.

Case 4:

[
k−1∑
i=0

ai
k · t i < 0

]
∧

[
f +(p(t)) +

k−1∑
i=0

ai
k · t i > 0

]
In this case, the following holds:

(a)
k−1∑
i=0

f+(ai
k) −

k−1∑
i=0

f−(ai
k) · t i < 0.

Indeed, it is enough to notice that
k−1∑
i=0

ai
k · t i < 0, and

ai
k = f+(ai

k) − f−(ai
k), for 0 ≤ i ≤ k − 1.

(b) f+(p(t)) > −
[

k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i

]
.

Indeed, it suffices to bear in mind that f+(p(t)) >

−
k−1∑
i=0

ai
k · t i = −

[
k−1∑
i=0

f+(ai
k) · t i −

k−1∑
i=0

f−(ai
k) · t i

]

and ai
k = f+(ai

k) − f−(ai
k), for 0 ≤ i ≤ k − 1.

(c) p(t) > 0 and p(t + 1) > 0.
Indeed, from the hypothesis in this case we have

f+(p(t)) > −
k−1∑
i=0

ai
k · t i > 0. So, p(t) > 0 and

f+(p(t)) = p(t). Thus,

p(t + 1) = p(t) +
k−1∑
i=0

ai
k · t i = f+(p(t)) +

k−1∑
i=0

ai
k · t i >0

Therefore, in this case configuration Ct+1 yields configuration
Ct+2 as follows:

(1) From (a) we deduce that at configuration Ct+1 in mem-
brane labeled by 1 there are more copies of object p2
than copies of object p1, so rule rk+1 ≡ p1 p2 → λ will

be applied
k−1∑
i=0

f+(ai
k) · t i times, consuming all copies

of p1 and “remaining”
k−1∑
i=0

f−(ai
k) · t i −

k−1∑
i=0

f+(ai
k) · t i

copies of p2 without evolving.
(2) From (b) we deduce that at configuration Ct+1 in mem-

brane labeled by 1 there are more copies of object o1
than copies of object p2, so rule rk+3 ≡ p1o1 → λ

will be applied
k−1∑
i=0

f−(ai
k) · t i −

k−1∑
i=0

f+(ai
k) · t i times,

consuming all copies of p2 and “remaining” f+(p(t))−[
k−1∑
i=0

f−(ai
k) · t i −

k−1∑
i=0

f+(ai
k) · t i

]
copies of o1 without

evolving.
(3) For each j , 1 ≤ j ≤ k, rule r j ≡ b j →

p
f+(a j−1

k)

1 p
f−(a j−1

k)

2 b
(j−1

j−1)
j . . . b

(k−1
j−1)

k will be applied (t +
1) j−1 times.

All the previous rules are applied in parallel in one transition
step. Thus, in this case, at configuration Ct+2 the content
of membrane labeled by 1 is the multiset which contains
objects o1, o2, p1, p2 and b j , (1 ≤ j ≤ k) with the following
multiplicities:

– Multiplicity of object o1: f+(p(t + 1)).
Indeed, from (2) we deduce that the number of copies of
object o1 is:

f+(p(t)) −
[

k−1∑
i=0

f−(ai
k) · t i −

k−1∑
i=0

f+(ai
k) · t i

]

= f+(p(t)) +
k−1∑
i=0

ai
k · t i (c)= p(t) +

k−1∑
i=0

ai
k · t i

= p(t + 1)
(c)= f+(p(t + 1))

all copies of object t o1 are consumed, but

f+(p(t + 1))
(c)= 0.

– Multiplicity of object o2: f−(p(t + 1)).
Indeed, object o2 is not involved by the application of
rules to reach configuration Ct+2 from configuration Ct+1,

so the multiplicity of o2 is f−(p(t))
(c)= 0

(c)= f−(p(t+1)).

– Multiplicity of object p1:
k−1∑
i=0

f+(ai
k) · (t + 1)i .

Indeed, from (1) all copies of object p1 are consumed
but from (3) the total number of produced copies is

k∑
j=1

f+(a j−1
k) · (t + 1) j−1 =

k−1∑
i=0

f+(ai
k) · (t + 1)i .

– Multiplicity of object p2:
k−1∑
i=0

f−(ai
k) · (t + 1)i .

Indeed, from (1) all copies of object p2 are consumed
but from (3) the total number of produced copies is

k∑
j=1

f−(a j−1
k) · (t + 1) j−1 =

k−1∑
i=0

f−(ai
k) · (t + 1)i .

– Multiplicity of object b j , for each j , 1 ≤ j ≤ k:
(t + 2) j−1.
Indeed, from (3) the total number of copies of object b j

produced is

j−1∑
s=0

(
j − 1

s

)
(t + 1)s = [(t + 1) + 1] j−1 = (t + 2) j−1

Hence, in this case the result holds for t + 1.
Corollary 1: Let p(n) = a0 + a1 · n + · · · + ak · nk be

a polynomial of degree k such that ai ∈ Z, i = 0, 1, . . . , k.
Let �p(n) be the deterministic transition P system considered
in Definition 2. Then, polynomial p(n) is computed by the
system �p(n) according with Definition 1.

Proof: From Theorem 1 we deduce that for each t ∈ N

at configuration Ct+1 the content of membrane labeled by 1 is
the following multiset:

{o f+(p(t))
1 o f−(p(t))

2 p
∑k−1

i=0 f+(ai
k)·t i

1 p
∑k−1

i=0 f−(ai
k)·t i

2

b1 b(t+1)
2 b(t+1)2

3 · · · b(t+1)k−1

k }
In order to know the multiplicity of objects o1 and o2 in

membrane labeled by 1 at configuration Ct+1, two cases are
distinguished:

• If p(t) ≥ 0 then f+(p(t)) = p(t) and f−(p(t)) = 0.
So, the multiplicity of o1 is f+(p(t)) = p(t) and the
multiplicity of o2 is f−(p(t)) = 0.

• If p(t) < 0 then f+(p(t)) = 0 and f−(p(t)) = −p(t).
Thus, the multiplicity of o1 is f+(p(t)) = 0 and the
multiplicity of o2 is f−(p(t)) = −p(t).

IV. DESCRIPTIVE COMPUTATIONAL RESOURCES

In this section, the descriptive computational resources
required by the deterministic transition P system �p(n) con-
sidered in Definition 2 which computes polynomial p(n) with
integer numbers coefficients, is depicted.

• The size of the working alphabet: k+4.
• The initial number of objects: 1 + |a0|.
• The number of rules: k+5.

• The total number of objects involved in the rules is

2k + k + 9 +
k−1∑

|ai
k|.

i=0
Hence, the total amount of descriptive computational resources
is exponential in the size of the polynomial.

V. DISCUSSIONS

Until now, two kinds of methods have been reported in lit-
erature to implement automatic design of membrane systems.
One is the reasoning way presented in this paper and [27],
which is called REASON. The other is the metaheuris-
tic approaches (META) already used in membrane systems
design, such as genetic algorithms [21], [23], [25], in particular
Permutation Penalty Genetic Algorithms (PPGAs) [26], and
quantum-inspired evolutionary algorithm (QIEAs) [22], [24].

REASON and META have the following differences:
• Concept: META uses a metaheuristic approach to

evolve a population of candidate P systems (feasi-
ble or infeasible) toward the successful P systems, while
REASON uses inductive method (from simple to com-
plex P systems) to obtain the successful P systems.
A metaheuristic approach may be a genetic algorithm,
a quantum-inspired evolutionary algorithm or others.

• Usage: META is quite easy to understand and master
for a beginner, while REASON sounds a quite complex
technique to a beginner.

• Generation: META is a more general technique than
REASON and therefore it is possible to use META to
design different P systems. While in REASON, different
P systems are designed by using different specific rea-
soning techniques.

• Resource: In REASON, it is possible to calculate the
resource required by a P system with respect to com-
puting time and workspace. While in META, it is quite
hard to summarize the resource.

• Software: The evaluation of a successful P system in
META is performed by using the well-known P system
simulator, P-Lingua [28]. REASON does not need any
software.

• Extendibility: REASON can be easily extended from a
specific to a general P system, e.g., from a low-degree to
high-degree polynomial P system, for a kind of membrane
system. This extendibility is not suitable for META.

VI. CONCLUSION

This paper extends the work in [27] from the automatic
design of deterministic transition P systems for computing
polynomials with natural number coefficients to the automatic
design of such kind of membrane systems for computing poly-
nomials with integer coefficients, by analyzing the syntactical
and semantics ingredients of cell-like membrane systems. This
is a significant step for the programmability of membrane
systems, namely how to automatically design a P system by
using programs so as to develop a useful toolbox for the
community of membrane computing.

As future work we plan to extend this method in order to
design new variants of membrane systems with the capability

of performing more complex tasks like finding the mini-
mal membrane system, with respect to the number of used
objects, for a given assignment or like practical applications
such as membrane controllers for mobile robots. On the
other hand, we propose: (a) to develop software platforms
to simulate transition P systems using a weak interpretation
of the priorities as well as FPGA (Field Programmable Gate
Array) based hardware to implement them; and (b) the use
membrane-inspired evolutionary algorithms [15], [29], [30] or
optimization spiking neural P systems [31] to implement the
automatic design of a membrane systems (including spiking
neural P systems) for solving computationally hard problems.

REFERENCES

[1] Gh. Păun, “Computing with membranes,” J. Comput. Syst. Sci., vol. 61,
no. 1, pp. 108–143, Aug. 2000.

[2] Gh. Păun, G. Rozenberg, and A. Salomaa, The Oxford Handbook
of Membrane Computing. New York, NY, USA: Oxford Univ. Press,
2010.

[3] M. Gheorghe, Gh. Păun, M. J. Pérez-Jiménez, and G. Rozenberg,
“Research frontiers of membrane computing: Open problems and
research topics,” Int. J. Found. Comput. Sci., vol. 24, no. 5, pp. 547–624,
2013.

[4] Gh. Păun, Y. Suzuki, and H. Tanaka, “On the power of membrane
division in P systems,” Theor. Comput. Sci., vol. 324, no. 1, pp. 61–85,
2004.

[5] C. Martín-Vide, Gh. Păun, J. Pazos, and A. Rodríguez-Patón, “Tissue
P systems,” Theor. Comput. Sci., vol. 296, no. 2, pp. 295–326,
2003.

[6] M. Ionescu, Gh. Păun, and T. Yokomori, “Spiking neural P systems,”
Fundam. Inf., vol. 71, no. 2, pp. 279–308, 2006.

[7] L. Pan and X. Zeng, “Small universal spiking neural P systems work-
ing in exhaustive mode,” IEEE Trans. Nanobiosci., vol. 10, no. 2,
pp. 99–105, Jun. 2011.

[8] L. Pan, J. Wang, and H. J. Hoogeboom, “Spiking neural P systems with
astrocytes,” Neural Comput., vol. 24, no. 3, pp. 805–825, 2012.

[9] L. Pan, Gh. Păun, G. Zhang, and F. Neri, “Spiking neural P systems
with communication on request,” Int. J. Neural Syst., vol. 27, no. 8,
2017, Art. no. 1750042.

[10] A. Alhazov, C. Martín-Vide, and L. Pan, “Solving a PSPACE-
complete problem by recognizing P systems with restricted active
membranes,” Fundamenta Informaticae, vol. 58, no. 2, pp. 66–77,
2003.

[11] L. Pan and C. Martin-Vide, “Solving multidimensional 0–1 knapsack
problem by P systems with input and active membranes,” J. Parallel
Distrib. Comput., vol. 65, no. 12, pp. 1578–1584, 2005.

[12] B. Song, T. Song, and L. Pan, “Time-free solution to sat problem by P
systems with active membranes and standard cell division rules,” Natural
Comput., vol. 14, no. 4, pp. 673–681, 2015.

[13] G. Ciobanu, M. J. Pérez-Jiménez, and Gh. Păun, Eds., Applications of
Membrane Computing (Natural Computing Series). Berlin, Germany:
Springer, 2006.

[14] P. Frisco, M. Gheorghe, M. J. Pérez-Jiménez, Eds., Applications
of Membrane Computing in Systems and Synthetic Biology (Emer-
gence, Complexity and Computation). Berlin, Germany: Springer,
2014.

[15] G. Zhang, M. Gheorghe, L. Pan, and M. J. Pérez-Jiménez, “Evolutionary
membrane computing: A comprehensive survey and new results,” Inf.
Sci., vol. 279, pp. 528–551, Sep. 2014.

[16] G. Zhang, M. J. Pérez-Jiménez, and M. Gheorghe, Real-life Applications
with Membrane Computing (Emergence, Complexity and Computation).
Berlin, Germany: Springer, 2017.

[17] H. Peng, J. Wang, M. J. Pérez-Jiménez, H. Wang, J. Shao, and T. Wang,
“Fuzzy reasoning spiking neural P system for fault diagnosis,” Inf. Sci.,
vol. 235, pp. 106–116, Jun. 2013.

[18] C. Buiu, C. Vasile, and O. Arsene, “Development of membrane con-
trollers for mobile robots,” Inf. Sci., vol. 187, no. 1, pp. 33–51, 2012.

[19] X. Wang et al., “Design and implementation of membrane controllers
for trajectory tracking of nonholonomic wheeled mobile robots,” Integr.
Comput.-Aided Eng., vol. 23, no. 1, pp. 15–30, 2016.

[20] G. Zhang, J. Cheng, T. Wang, X. Wang, and J. Zhu, Eds., Membrane
Computing: Theory and Applications. Beijing, China: Science Press,
2015.

[21] G. Escuela and M. Á. G. Naranjo, “An application of genetic algorithms
to membrane computing,” in Proc. 8th Brainstorming Week Membrane
Comput., 2010, pp. 101–108.

[22] X. Huang, G. Zhang, H. Rong, and F. Ipate, “Evolutionary design of a
simple membrane system,” in Membrane Computing (Lecture Notes in
Computer Science), vol. 7184, M. Gheorghe, Gh. Păun, G. Rozenberg,
A. Salomaa, and S. Verlan, Eds. Berlin, Germany: Springer, 2012,
pp. 203–214.

[23] C. Tudose, R. Lefticaru, and F. Ipate, “Using genetic algorithms and
model checking for P systems automatic design,” in Nature Inspired
Cooperative Strategies for Optimization (Studies in Computational Intel-
ligence), vol. 387, D. A. Pelta, N. Krasnogor, D. Dumitrescu, C. Chira,
and R. Lung, Eds. Berlin, Germany: Springer, 2011, pp. 285–302.

[24] Y. Chen, G. Zhang, T. Wang, and X. Huang, “Automatic design of a
P system for basic arithmetic operations,” Chin. J. Electron., vol. 23,
no. 2, pp. 302–304, 2014.

[25] Z. Ou, G. Zhang, T. Wang, and X. Huang, “Automatic design of cell-
like P systems through tuning membrane structures, initial objects and
evolution rules,” Int. J. Unconventional Comput., vol. 9, nos. 5–6,
pp. 425–443, 2013.

[26] G. Zhang, H. Rong, Z. Ou, M. J. Pérez-Jiménez, and M. Gheorghe,
“Automatic design of deterministic and non-halting membrane systems
by tuning syntactical ingredients,” IEEE Trans. Nanobiosci., vol. 13,
no. 3, pp. 363–371, Sep. 2014.

[27] W. Yuan, G. Zhang, M. J. Pérez-Jiménez, T. Wang, and X. Huang,
“P systems based computing polynomials: Design and formal verifica-
tion,” Natural Comput., vol. 15, no. 4, pp. 591–596, 2016.

[28] M. García-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado,
M. J. Pérez-Jiménez, and A. Riscos-Núñez, “An overview of P-lingua
2.0,” in Workshop Membrane Computing (Lecture Notes in Computer
Science), vol. 5957, Gh. Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez,
G. Rozenberg, and A. Salomaa, Eds. Berlin, Germany: Springer, 2010,
pp. 264–288.

[29] G. Zhang, J. Cheng, M. Gheorghe, and Q. Meng, “A hybrid approach
based on differential evolution and tissue membrane systems for solving
constrained manufacturing parameter optimization problems,” Appl. Soft
Comput., vol. 13, no. 3, pp. 1528–1542, 2013.

[30] J. Xiao, Y. Huang, Z. Cheng, J. He, and Y. Niu, “A hybrid membrane
evolutionary algorithm for solving constrained optimization problems,”
Optik, vol. 125, no. 2, pp. 897–902, 2014.

[31] G. Zhang, H. Rong, F. Neri, and M. J. Pérez-Jiménez, “An optimiza-
tion spiking neural P system for approximately solving combinatorial
optimization problems,” Int. J. Neural Syst., vol. 24, no. 5, pp. 1–16,
2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

