
Implementing ENPS by Means of GPUs for AI
Applications

Manuel Garćıa–Quismondo and Mario J. Pérez–Jiménez

Research Group on Natural Computing
Dpt. of Computer Science and Artificial Intelligence, University of Sevilla

Avda. Reina Mercedes s/n. 41012 Sevilla, Spain
{mgarciaquismondo,marper}@us.es

Abstract. A P system represents a distributed and parallel comput-
ing model in which basic data structures are, for instance, multisets
and strings. Enzymatic Numerical P Systems are a type of P systems
whose basic data structures are sets of numerical variables. Separately,
GPGPU is a novel technological paradigm which focuses on the devel-
opment of tools for graphic cards to solve general purpose problems.
This paper proposes an ENPS simulator based on GPUs and presents
general concepts about its design and some future ideas and perspec-
tives.

Keywords: numerical P systems, enzymatic numerical P systems,
membrane controllers, distributed and parallel systems

1 Introduction

Membrane computing is a bio-inspired branch of natural computing, abstract-
ing computing models from the structure and functioning of living cells and
from the organization of cells in tissues or other higher order structures [15].
This branch of natural computing studies the design and properties of mem-
brane systems or P systems. P systems are distributed and parallel computing
models structured in compartments known as membranes. Membranes have
associated basic data structures such as multisets, strings or numerical vari-
ables [16]. According to the way in which membranes are structured, there are
several types of P systems. For instance, there exist cell-like P systems [15],
tissue P systems [14] and spiking neural P systems [11], along with other types.
In P systems, membranes and their associated data structures are processed
by means of rewriting rules or programs associated to the cells, in order to
perform sequences of configurations or computations [15][16].



28 M. Garćıa–Quismondo, M. J. Pérez–Jiménez

P systems have been successfully applied in a wide range of domains [4].
For instance, they have been applied in microbiological modelling in order to
model phenomena such as quorum sensing in Vibrio fischeri populations [20]
and ecological modelling to predict the evolution of the bearded vulture [3]
population in the Catalan Pyrenees, as well as image thresholding [6]. Such a
versatility makes P systems a useful tool for gaining knowledge about a vast
variety of different domains, thus providing promising approaches within the
range of disciplines which composes the field of study of artificial intelligence.

A special type of P systems are enzymatic numerical P systems (ENPSs) [18].
ENPSs describe a deterministic, parallel model in which the basic data struc-
tures associated to membranes are numerical values which evolve by means
of programs associated to the membranes [16]. In order for a program to be
applied, a certain amount of a specific type of variable (enzyme) may be
needed [18]. This model of computation has already been successfully applied
to model robot controllers for obstacle avoidance, in which a robot needs to
avoid obstacles situated in a closed circuit [19].

Separately,GPGPU is a novel technological discipline which consists of the
application of graphic cards (GPUs) in order to execute parallel, distributed
algorithms [22]. The basic idea is to take advantage of the parallel architec-
ture of GPUs, traditionally used for graphics processing, in order to execute
algorithms which can be performed in parallel, thus accelerating them.

In this paper, a GPU simulator for ENPSs is proposed. The parallel archi-
tecture of ENPSs makes the simulation of their computations a suitable task
to be parallelized, thus expecting an acceleration in the simulation times if
compared to the ones obtained by using sequential simulators.

This paper is structured as follows. Section 2 provides a quick introduc-
tion to ENPSs as a model of computation and discusses their applications
in artificial intelligence. Section 3 provides a general overview of the current
state-of-the-art about the results obtained by previous GPU simulators within
the field of membrane computing. Finally, section 4 presents the conclusions
obtained and proposes some directions for future work.

2 Enzymatic Numerical P Systems

Numerical P systems (NPSs) are a special kind of P systems in which numer-
ical variables evolve from initial values by means of programs. Each program
is composed of a production function and a distribution protocol. Each pro-
duction function is a numerical function over a set of variables. If a variable
appears on at least one production function, then it is consumed and its value



Implementing ENPS by Means of GPUs 29

is set to 0. Each repartition protocol updates its values according to the re-
sult of the production function of its program and a coefficient associated to
each variable [15]. A special kind of NPSs are enzymatic numerical P sys-
tems (ENPSs). Unlike NPSs, ENPSs describe a deterministic, parallel model
of computation. ENPSs introduce the optional use of enzymes associated to
programs. Thus, a program is applied only in the following cases: 1) The
program does not have an associated enzyme. 2) The value of its associated
enzyme is greater than the minimum of the values of the variables consumed
by the program. All active programs in each membrane are executed in par-
allel. More information about ENPSs can be found in [18][19].

ENPSs have been successfully applied within the field of robotics. For
instance, they have been used to model deterministic mobile robot controllers
for obstacle avoidance. In this model, the speed of the two robot motors is
set according to the values assigned to two variables of the system. Thus,
the dynamical evolution of these variables describes the behavior of the robot
through a closed circuit [19].

2.1 ENPSs and Artificial Intelligence

Mobile robot control problems, such as obstacle avoidance and odometric lo-
calizacion, can be considered as artificial intelligence problems. For instance,
obstacle avoidance can be considered as a high-level planning problem [13].
In obstacle avoidance, the objective is to find a sequence of movements in a
static or dynamical environment. The objective of this sequence is for robots
which follow it to avoid crashing with any obstacles they might find in the en-
vironment. The input data is given as a series of sensor lectures obtained from
the environment. This type of path planning problems arising from the field of
robotics has already been attacked by using artificial intelligence techniques
such as ant colony algorithms [9][8].

Odometric localization is a widely used method for estimation of the mo-
mentary pose of a mobile robot with respect to its starting pose [12]. This
estimation is affected by several error sources, such as imprecission in the mo-
bile robot kinematic parameters and errors in the sensor lectures [1]. Thus,
odometric localization entails an optimization problem, i.e., minimizing the
global error in the pose estimation. As an optimization problem, odometric
localization has been previously tackled by using well-known artificial intel-
ligence paradigms, such as genetic algorithms [10] and artificial neural net-
works [7]. All in all, ENPs propose a new framework which can be applied in
order to solve artificial intelligence problems arising from robotics [19].



30 M. Garćıa–Quismondo, M. J. Pérez–Jiménez

2.2 Simulation of ENPSs

ENPSs describe a parallel model. Therefore, the huge computational power
required by extensive models (for instance, those necessary for massive robot
swarms and robots with complex sensor networks) accounts for the need for
high performance computing platforms to simulate them. Besides, their par-
allel structure makes them appropriate to be simulated by means of parallel
architectures such as GPUs, FPGAs and computer clusters.

3 Compute Unified Device Architecture (CUDA)
Parallel Programming Model

Modern GPUs can physically contain up to 240 processor cores and 30,720
threads. All these threads are executed in parallel. Thus, modern GPUs define
an architecture composed of a large number of parallel processing units with
a certain degree of independency from each other [22]. In order to make the
most of this massively parallel architecture, it is necessary to make use of
programming languages specifically designed for these devices. Two of the
main standards in GPGPU are OpenCL [21] and CUDA [23]. CUDA defines
a parallel programming model which is an abstraction of the specific parallel
device where the program is to be executed. The CUDA programming model
developed by NVIDIA allows developers to write scalable parallel programs for
GPUs using a straightforward extension of the C language (named CUDA-C ).
CUDA-C is a language designed to make the most of the GPGPU approach by
enabling programmers to encode parallel applications to be run on GPUs [5].
That is, programmers are able to develop code to be executed on each GPU
thread at the same time. This way they can take advantage of the GPU parallel
architecture in order to obtain enormous speed-up if compared to sequential
versions of the same code. More information about the CUDA programming
model can be found on [23].

GPGPU and CUDA have been already successfully applied in order to
simulate different kinds of P systems. To the best of our knowledge, they
have been applied to simulate cell-like object-based P systems [5] and spiking
neural P systems [2]. Their results include data which show noticeable speed-
ups in comparison to their sequential counterparts. These results demonstrate
the suitability of the GPGPU approach for simulating P systems in a parallel
mode.



Implementing ENPS by Means of GPUs 31

3.1 Design of the Simulator

The objective of the proposed ENPS GPU-based simulator is to fully simu-
late the behaviour of enzymatic numerical P systems, performing operations
in parallel whenever possible. In order to do that, it is crucial to identify the
operations susceptible for parallelization and write parallel kernels for them.
This way the simulator can take advantage of the underlying parallel architec-
ture. Thus, in each computational step, the simulator performs the following
operations.

First, it checks each program in a different thread. This checking selects
those programs which can be applied. Then, it assigns the production function
of each applied programs to a thread. If there is at least one applicable pro-
gram to consume a variable, then that variable is set to 0. Once all consumed
variables have been cleared, each applicable production function is computed
in parallel. Then, the contribution of each applicable distribution protocol to
each variable is computed in parallel. Eventually, all contributions are added
to the variables in order to update their values.

This simulator will be published under open source license. It can be used
for simulating complex distributed processes modeled with enzymatic numer-
ical P systems. Therefore, several robot behaviors can be simulated in parallel
(for example, a robot could avoid obstacles, follow another robot or look for
a target at the same time). The synchronization between several behaviors
of one robot is done by the help of the enzyme variables which can be used
as stop conditions [19]. Apart from simulating several behaviors for only one
robot in parallel, the simulator could be used to simulate interaction and
cooperation between several robots in complex distributed robotic systems.

3.2 Simulator Performance

All parallel parts of the algorithm are executed with a degree of parallelism of
at least equal to the number of programs of the simulated model. The degree
of parallelism can be even greater when the repartition protocol is applied.
Hence, a theoretical acceleration of at least the number of programs of the
model could be reached, if compared to the runtime of sequential simulators.
Specifically, the simulator was tested by using an ENPS model of obstacle
avoidance [19] as an example, along with other models. These models were
simulated by using SNUPS [18]. Then, the resulting runtimes were compared
with the GPU simulator runtimes, in order to get an approximate speed-
up. In the specific case of the obstacle avoidance model, the total number of
programs is 41 [19]. Hence, an acceleration of at least 41 is to be theoretically
expected in this case, if compared to sequential ENPSs simulators.



32 M. Garćıa–Quismondo, M. J. Pérez–Jiménez

4 Conclusions

In this paper, a GPU-based simulator for enzymatic numerical P systems
is proposed. Enzymatic numerical P systems describe a parallel computing
model with applications in artificial intelligence. This simulator might be suit-
able for large scale models which can be applied within the field of robotics.

The massively parallel environment provided by the GPUs is suitable for
enzymatic numerical P systems simulations. However, it would be interesting
to explore the possibility of scaling-up the currenly existing robot behaviors
modeled with ENPSs and simulate them by means of GPU clusters or other
parallel architectures (such as FPGAs or computer clusters). These systems
might be applied to model the behavior of massive robot swarms and complex
sensor networks.

References

1. Antonelli, G., Chiaverini, S., Fusco, G.: A calibration method for odometry of
mobile robots based on the least-square technique: Theory and experimental
validation. IEEE Transactions on Robotics, 21, 5, 994-1004 (2005)

2. Cabarle, F., Adorna, H., Mart́ınez-del-Amor, M.A.: A Spiking Neural P system
simulator based on CUDA. 12th International Conference on Membrane Com-
puting (CMC12), 23/08/2011-27/08/2011, Fontainebleau, France, 77-92 (2011)

3. Cardona, M., Colomer, M.A., Pérez-Jiménez, M.J., Sanuy, D., Margalida, A.:
Modelling ecosystem using P systems: The bearded vulture, a case study. Lecture
notes in Computer Science, 5391, 95-116 (2009)

4. Cecilia, J.M. Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A, Pérez-
Hurtado, I., Pérez-Jiménez, MJ.: Simulation of P systems with Active Mem-
branes on CUDA. Briefings in Bioinformatics, 11, 3, 313-322 (2010)

5. Cecilia, J.M. Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A, Pérez-
Hurtado, I., Pérez-Jiménez, MJ.: Simulating a P system based efficient solution
to SAT by using GPUs. The Journal of Logic and Algebraic Programming, 79,
317-325 (2010)

6. Christinal, H.A., Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Péerez-Jiménez,
M.J.: Thresholding of 2D Images with Cell-like P Systems. Romanian Jour-
nal of Information Science and Technology (ROMJIST), 13, 2, 131-140 (2010)

7. Conforth, M., Meng, Y.: An Artificial Neural Network Based Learning Method
for Mobile Robot Localization. Robotics Automation and Control, InTech, Ch.
6, 2008

8. Dong, J., Liu, B., Peng, K., Yin, Y.: Robot Obstacle Avoidance based on an
Improved Ant Colony Algorithm. WRI Global Congress on Intelligent Systems
(GCIS ’09), 19/05/2009-21/05/2009, Xiamen, China, 103-106 (2009)



Implementing ENPS by Means of GPUs 33

9. Du, R., Zhang, X., Chen, C., Guan, X.: Path Planning with Obstacle Avoidance
in PEGs: Ant Colony Optimization Method. International Conference on Cy-
ber, Physical and Social Computing (CPSCom) 2010, 18/12/2010-20/12/2010,
Hangzhou, China, 768-773 (2010)

10. Gill, M.A.C, Zomaya, A.Y.: Genetic algorithms for robot control. IEEE Interna-
tional Conference on Evolutionary Computation 1996, 29/11/1996-01/12/1996,
Perth, Australia, 462 (1996)

11. Ibarra, O., Pérez-Jimenez, M.J., Yokomori, T.: On spiking neural P systems.
Natural Computing, 9, 2, 475-491 (2010)

12. Ivankjo, E., Koms̆ić, I., Petrović, I.: Simple Off-Line Odometry Calibration
of Differential Drive Mobile Robots. Proceedings of 16th International Work-
shop on Robotics in Alpe-Adria-Danube Region - RAAD 2007, 07/06/2007-
09/06/2007, Ljubljana, Slovenija, 164-169 (2007)

13. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots.
The International Journal of Robotics Research, 5, 1 (1986), 90-98

14. Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue-like P sys-
tems. Journal of Complexity, 26, 3, 296-315 (2010)

15. Paun, Gh, Paun, R.: Membrane Computing and Economics: Numerical P Sys-
tems. Fundamenta Informaticae, 73, 1-2, 213-227 (2006)

16. Paun, Gh. Computing with membranes. Journal of Computer and System Sci-
ences, 61, 1, 108-143 (2000)

17. Paun, Gh.: Membrane Computing. An Introduction. Springer, XI+419 (2002)
18. Pavel, A., Arsene, O., Buiu, C.: Enzymatic Numerical P Systems - A New

Class of Membrane Computing Systems. Proceedings 2010 IEEE Fifth Interna-
tional Conference on Bio-inspired Computing: Theories and Applications (BIC-
TA 2010), 23-26/09/2010, Liverpool, UK, 1331-1336 (2010)

19. Pavel, A, Buiu, C.: Using enzymatic numerical P systems for modeling mobile
robot controllers. Natural Computing, (in press)

20. Romero, F.J., Pérez-Jiménez, M.J.: A model of the Quorum Sensing System in
Vibrio Fischeri using P systems. Artificial Life, 14, 1, 95-109 (2008)

21. Takizawa, H, Koyama, K., Sato, K. Komatsu, K., Kobayashi, H.: CheCL: Trans-
parent Checkpointing and Process Migration of OpenCL Applications. Interna-
tional Parallel and Distributed Processing Symposium (IPDPS11), 16/05/2011-
20/05/2011, Anchorage, USA (2011)

22. http://www.gpgpu.org
23. http://www.nvidia.com/object/cuda home new.html




