
Implementing Enzymatic Numerical P Systems
for AI Applications by Means of Graphic
Processing Units

Manuel Garcı́a–Quismondo, Luis F. Macı́as–Ramos, and Mario J. Pérez–Jiménez

Abstract. A P system represents a distributed and parallel computing model in 
which basic data structures are, for instance, multisets and strings. Enzymatic Nu-
merical P Systems (ENPS) are a type of P systems whose basic data structures 
are sets of numerical variables. Separately, GPGPU (general-purpose computing 
on graphics processing units) is a novel technological paradigm which focuses on 
the development of tools for graphic cards to solve general purpose problems. This 
paper proposes an ENPS simulator based on GPUs and presents general concepts 
about its design and some future ideas and perspectives.

Introduction

Membrane computing is a bio-inspired branch of natural computing, abstracting 
computing models from the structure and functioning of living cells and from the 
organization of cells in tissues or other higher order structures [29]. This branch 
of natural computing studies the design and properties of membrane systems or P 
systems. P systems are non–deterministic distributed and parallel computing mod-
els structured in compartments known as membranes. Basic data structures such as 
multisets, strings or numerical variables [30] are associated with membranes. Ac-
cording to the way in which membranes are structured, there are several types of 
P systems. For instance, there exist cell-like P systems [29], tissue P systems [26] 
and spiking neural P systems [17], along with other types. In P systems, membranes 
and their associated data structures are processed by means of rewriting rules or 
programs associated to the cells, in order to perform sequences of configurations 
(computations) [29][30]. P systems have been successfully applied in a wide range 
of domains [4]. For instance, they have been applied in microbiological modelling
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in order to model phenomena such as quorum sensing in Vibrio fischeri populations 
[38] and ecological modelling to predict the evolution of the bearded vulture [3] 
and the Pyrenean chamois [9] populations in the Catalan Pyrenees, as well as im-
age thresholding [7]. Such a versatility makes P systems a useful tool for gaining 
knowledge about a vast variety of different domains, thus providing a promising 
tool whithin the range of disciplines which composes the field of study of artificial 
intelligence.

A special type or cell-like P systems are Enzimatic Numerical P Systems 
(ENPSs) [36]. ENPSs describe a deterministic, maximally–parallel model in which 
the basic data structures associated to membranes are numerical values which evolve 
by means of programs associated to them [30]. In order for a program to be applied, 
a certain value of a specific variables (enzyme) may be needed. Otherwhise, the 
program cannot be applied [36]. This model of computation has already been suc-
cessfully used in model robot controllers, in which a robot needs to avoid obstacles 
situated in a closed circuit [37].

Separately, GPGPU (general-purpose computing on graphics processing units) 
is a novel technological discipline which consists of the application of graphic cards 
(GPUs) in order to perform parallel, distributed algorithms [40]. The basic idea is to 
take advantage of the parallel architecture of GPUs, traditionally used for graphics 
processing, to execute algorithms which can be performed in parallel, thus accel-
erating these algorithms by dividing them in concurrent tasks and executing these 
tasks in a parallel mode.

In this paper, we propose a GPU simulator for ENPSs. The parallel architecture of 
ENPS makes the simulations of their computations a suitable task to be parallelized, 
thus expecting an acceleration in the simulation times if compared to their sequential 
counterparts.

This paper is structured as follows. Section 10.2.2 provides a quick introduction 
to Numerical P Systems (NPSs) as a model of computation. Section 10.3 describes 
ENPSs as an extension of NPSs. Section 10.4 provides a general overview of the cur-
rent state-of-the-art about the results obtained by previous GPU simulators within 
the field of membrane computing. Finally, section 10.7 presents the conclusions ob-
tained and proposes some directions for future work.

2 Preliminaries

2.1 P Systems

Membrane Computing is a young and emergent branch of Natural Computing in-
troduced by G. Păun [30]. It has received important attention from the scientific 
community since then, with contributions by computer scientists, biologists, for-
mal linguists and complexity theoreticians, enriching each others with results, open 
problems and promising new research lines. In fact, membrane computing was se-
lected by the Institute for Scientific Information, USA, as a fast Emerging Research 
Front in computer science, and [35] was mentioned in [42] as a highly cited paper



in October 2003. This new model of computation starts from the observation that
the cell is the smallest living thing, and at the same time it is a marvellous tiny
machinery, with a complex structure, and from the assumption that the processes
taking place in the compartmental structure of a living cell can be interpreted as
computations. The challenge is to take the cell itself as a support for computations,
to find in the structure and the functioning of the cell seen as a whole those ele-
ments useful for computations. Computations in general, at the mathematical level,
but with the hope to bring something useful to practical computing, either in the
same style as genetic algorithms and neural computing, of improving the use of the
existing computers, or proposing new types of electronic computers, or, possibly to
lead to ways to use the cells themselves as computing supports. The devices of this
model are called P systems. Roughly speaking, a P system consists of a cell-like
membrane structure, in the compartments of which one places multisets of objects
which evolve according to given rules.

The main syntactic ingredients of a cell-like membrane system are the membrane
structure, the multisets of objects, and the evolution rules. A membrane structure
consists of several membranes arranged in a hierarchical structure inside a main
membrane (the skin), and delimiting regions (the space in–between a membrane and
the immediately inner membranes, if any). Each membrane identifies a region inside
the system Regions defined by a membrane structure contain objects corresponding
to chemical substances present in the compartments of a cell. The objects can be
described by symbols or by strings of symbols, in such a way that multiset of objects
are placed in regions of the membrane structure. The objects can evolve according
to given evolution rules, associated with the regions (hence, with the membranes).

The semantics of the cell-like membrane systems is defined through a non de-
terministic and synchronous model (in the sense that a global clock is assumed) as
follows: A configuration of a cell–like membrane system consists of a membrane
structure and a family of multisets of objects associated with each region of the
structure. At the beginning, there is a configuration called the initial configuration
of the system. In each time unit we can transform a given configuration in another
configuration by applying the evolution rules to the objects placed inside the re-
gions of the configurations, in a non-deterministic, and maximally parallel manner
(the rules are chosen in a non-deterministic way, and in each region all objects that
can evolve must do it). In this way, we get transitions from one configuration of the
system to the next one.

In the last years, many different models of P systems have been proposed. In
particular, computational devices inspired from the cell inter–communication in tis-
sues, and adding the ingredient of cell division rules of the same form as in cell–like
membrane systems with active membranes, but without using polarizations. In these
systems, the rules are used in the non-deterministic maximally parallel way, but we
suppose that when a cell is divided, its interaction with other cells or with the en-
vironment is blocked; that is, if a division rule is used for dividing a cell, then this
cell does not participate in any other rule, for division or communication. The set
of communication rules implicitely provides the graph associated with the system
through the labels of the membranes. The cells obtained by division have the same



labels as the mother cell, hence the rules to be used for evolving them or their objects 
are inherited.

The idea of spiking neurons, currently an active research topic in neural comput-
ing (see, e.g., [16], [22], [23]), was recently incorporated in membrane computing 
(see [18]) – the resulting formal systems are called spiking neural P systems, abbre-
viated as SN P systems. The structure of an SN P system has a form of a directed 
graph with nodes representing neurons, and edges representing synapses. The neu-
rons contain spikes, objects of a unique type. A neuron (node) sends signals (spikes) 
along its outgoing synapses (edges). Each neuron has its own rules for either send-
ing spikes (firing rules) or for internally consuming spikes (forgetting rules). the 
rules of the first type consume some spikes and produce a new spike, which is sent 
to all neurons linked by a synapse to the neuron where the rule was used, while the 
forgetting rules just remove spikes from neurons. In the initial configuration a neu-
ron stores the initial number of spikes, and at any time moment the currently stored 
number of spikes (current contents) is determined by the initial contents and the his-
tory of functioning of σ (the spikes it received from other neurons, the spikes it sent 
out, and the spikes it internally consumed/forgot). One of the neurons is the output 
one, and its spikes can also exit into the environment, thus providing a trace of the 
system evolution. Like in neurobiology, we call this trace – sequence of moments 
when a spike exits the system – spike train.

2.2 Numerical P Systems

As years went by, different types of P systems have been introduced. In the founda-
tional transition P system model, the cell structure consists of a rooted tree, in which 
each node represents a membrane of the structure. Edges represent the hierarchical 
relationships between membranes existent in the structure. However, some models 
propose new types of cell structures. For instance, SN P Systems describe an archi-
tecture based on a directed graph, in which cells or neurons act as nodes, whereas 
firing rules act as arcs. These rules send information from one neuron to another af-
ter a specific amount of time or delay [19]. Similarly, in Tissue P systems, instead of 
a hierarchical structure, membranes are placed at the nodes of a non-directed graph. 
The edges of the graph represent symport/antiport rules which communicate the 
membranes in the graph, thus moving objects across membranes [26]. Also, even 
variants of these ones have evolved. For instance, in the case of SN P Systems, new 
features such as SN P Systems with several kinds of spikes [19] and SN P systems 
with neuron division and budding [27]. As regards to Tissue P Systems, there exist 
Tissue P Systems with cell division [33], Tissue P Systems without environment [8] 
as an example.

Besides, not only have membrane structures evolved across the Membrane Com-
puting literature. The data structures which evolve by means of applications of rules 
through computation steps have also been affected. As a proof of that, in String P 
Systems sets of strings are considered instead of multisets of objects. These strings 
are rewritten by means of rewriting–like rules on each computation step [6].



Following this trend, a new kind of P system was introduced by Gheorghe and
Andrei Păun in 2006. In these P systems, known as Numerical P Systems (NPSs
[29]), the traditional multisets of objects associated to membranes are replaced by
sets of numerical variables. These variables evolve by means of programs associated
to the membranes. As in the foundational model, the membrane structure is a tree-
nested hierarchy, so no new membrane architecture is introduced in this model.

A numerical P system of degree m≥ 1 is a tuple:

Π = (H,μ ,(Var1,Pr1,Var1(0)) . . . (Varm,Prm,Varm(0)))

where:

• H is an alphabet with m symbols used as labels of the m membranes of the
system. The labels contained in H are the labels of the membranes in Π .

• μ is a membrane structure, a rooted tree with m membranes.
• Vari = {x1,i . . .xki,i} is the set finite of variables associated with compartment i,

(1≤ i≤ m)
• Vari(0) = {λ1,i . . .λki,i} are numerical values (real numbers) for the variables

in Vari. These values are considered as initial values; at time = of the system
evolution we have x j,i = λ j, i(1 ≤ i≤ m,1≤ j ≤ ki).

• Pri = Pr1,i . . .Prqi,i is the set of programs from comparment i of μ(1 ≤
i ≤ m). The l-th program Prl,i from compartment i is of the form Prl,i =
(Fl,i(x1,i, . . . ,xki,i),cl,1|v1 + . . .+ cl,ni |vni) where Fl,i(x1,i, . . . ,xki,i) is the l-th pro-
duction function from compartment i and cl,1|v1 + . . .+ cl,ni |vni) describes the
repartition protocol.

The production function Fl,i(x1,i, . . . ,xki ,i) from compartment i is a a real function
having as variables those from this compartment. The expresion cl,1|v1 + . . .+
cl,ni |vni describes the repartition protocol which has the following meaning: let
v1 . . .vni be the set of variables from compartment i, from the parent membrane
of i and for all compartments corresponding to children of comparment i. The coef-
ficients cl,1 . . .+ cl,ni are natural numbers that specify the proportion of tehe current
production distributed to each variable v1 . . .vni .

More precisely, at any instant t ≥ 0, a program Prl,i on each set Pri (1≤ i≤m) is
non–deterministically chosen. Then, we compute Fl,i(x1,i(t), . . . ,xki,i(t)) and Cl,i =

∑ni
j=1 cl, j. The values of all variables on which Fl,i depends are consumed and reset to

0. The value q =
Fl,i(x1,i(t),...,xki,i

(t))
Cl,i

represents the “unitary portion” to be distributed

to variables v1, . . . ,vni , according to coefficients cl,i, . . . ,cl,ni in order to obtain the
values of these variables at time t + 1. Specifically, variable vl, j will receive q×
cl, j(1 ≤ j ≤ ni) from compartment i. If a variable receives such “contributions”
from several neighbouring compartments, then they are added in order to produce
the value of the variable at time t + 1.

This model of computation was initially aimed to capture the nature and be-
haviour of economic processes [29]. There had been some previous works on the
modelling of economic processes by means of Membrane Computing [34], and this
work proposed some research lines on the application of NPSs for the modelling of
economic phenomena.



3 Enzymatic Numerical P Systems

3.1 Description of Enzymatic Numerical P Systems

As it is usual on membrane computing models, a new kind of P systems has risen 
as an extension of NPSs. This model is known as Enzymatic Numerical P Systems 
(ENPSs). Although this parallel model of computation has many points in common 
with Numerical P Systems, there are some aspects which differenciates both models. 
This way, in contrast to Numerical P Systems, Enzymatic Numerical P Systems de-
scribe a deterministic model of computation. Thus, instead of non–deterministically 
chosen, the programs to be applied are controlled by specific variables known as 
enzyme–like variables.

An Enzymatic Numerical P System of degree m≥ 1 is a tuple:

Π = (H,μ ,(Var1,Pr1,Var1(0)) . . . (Varm,Prm,Varm(0)))

where:

• H, μ and (Var1,Var1(0)) . . . (Varm,Varm(0)) have the same meaning than in Nu-
merical P Systems described in section 10.2.2.

• Pri is the set of programs associated to membrane i. Each l-th program in set Pri

may have one of the following forms:

– Prl,i = (Fl,i(x1,i, . . . ,xki,i),cl,1|v1 + . . .+ cl,ni |vni)
– Prl,i = (Fl,i(x1,i, . . . ,xki,i),(el,i→),cl,1|v1 + . . .+ cl,ni |vni)

In both forms, all values which also appear in section 10.2.2 have the same mean-
ing, with el,i being a variable in Vari. This variable is known as the enzyme–like
variable associated to Prl,i and its value cannot be consumed by this program.
Enzyme–like variables are exclusive ingredients of ENPSs. That is, they do not
appear in NPSs.

The main novelty introduced by ENPSs has to do with the use of enzyme–like vari-
ables to control the execution flow of programs. This way, each program may have
an associated enzyme–like variable which controls its application. If a program is
to be applied at time t, then this program is active at this time. On each computa-
tion step, all active programs in each membrane are applied in parallel. Programs in
ENPSs are applied the same way than in NPSs. However, a program is active only
in the following cases:

• The program does not have an associated enzyme.
• The program has an associated enzyme and the value of this enzyme is greater

than the minimum of the values of the variables consumed by the program.

ENPSs have been successfully applied within the field of robotics. For instance,
they have been used to model deterministic mobile robot controllers for obstacle
avoidance. In this model, the speed of the two robot motors is set according to the
values assigned to two variables of the system. Thus, the dynamical evolution of
these variables describes the behavior of the robot through a closed circuit [37].
More information about ENPSs can be found in [36][37].



Fig. 1 Enzymatic Numerical P System

3.2 ENPSs and Artificial Intelligence

Mobile robot control problems, such as obstacle avoidance and odometric local-
izacion, can be considered as artificial intelligence problems. For instance, obsta-
cle avoidance can be considered as a high-level planning problem [21]. In obstacle 
avoidance, the objective is to find a sequence of movements in a static or dynamical 
environment. The objective of this sequence is for robots which follow it to avoid 
crashing with any obstacles they might find in the environment. The input data is 
given as a series of sensor lectures obtained from the environment. This type of path 
planning problems arising from the field of robotics has already been attacked by 
using artificial intelligence techniques such as ant colony algorithms [12][11].

Odometric localization is a widely used method for estimation of the momentary 
pose of a mobile robot with respect to its starting pose [20]. This estimation is 
affected by several error sources, such as imprecission in the mobile robot kinematic 
parameters and errors in the sensor lectures [1]. Thus, odometric localization entails 
an optimization problem, i.e., minimizing the global error in the pose estimation. 
As an optimization problem, odometric localization has been previously tackled by 
using well-known artificial intelligence paradigms, such as genetic algorithms [15] 
and artificial neural networks [10]. All in all, ENPs propose a new framework which 
can be applied in order to solve artificial intelligence problems arising from robotics 
[37].

3.3 Simulation of ENPSs

ENPSs describe a parallel model. Therefore, the huge computational power required 
by extensive models (for instance, those necessary for massive robot swarms and 
robots with complex sensor networks) accounts for the need for high performance 
computing platforms to simulate them. Besides, their parallel structure makes them 
appropriate to be simulated by means of parallel architectures such as GPUs, FPGAs 
and computer clusters.



4 The Compute Unified Device Architecture (CUDA)
Standard for GPU Computing

4.1 Outline of the CUDA Programming Model

Modern GPUs consist of a large number or processing units. For instance, Fermi 
cards contain up to 448 processor cores and 1.536 processing units per core, thus 
resulting in a total number of 448×1.536 = 688.128 threads [41]. These threads are 
executed in parallel with a certain degree of dependency from each other [40].

In order to make the most of this massively parallel architecture, it is necessary 
to make use of standards specifically designed for these devices. Two of these main 
standards in GPGPU are OpenCL [39] and CUDA [41].

The CUDA programming model is an abstract GPU model provided by NVIDIA. 
This model is an abstraction of the specific parallel device where the program is to be 
executed. The model defines a grid. This grid is an abstraction of the current GPU 
card where the code is to be executed. The grid is composed of multiprocessing 
computing devices known as blocks. Similarly, each block is composed of several 
stream monoprocessing units known as threads(see figure 10.2). Threads execute 
parallel pieces of code or kernels. On any instant in the execution of a GPU program, 
the same kernel is run on every thread at the same time.

It is convenient to batch threads which perform operations in common in the same 
block. The reason is that threads in the same block can communicate with each other 
through fast on-chip memory, whereas threads in different blocks use slow off-chip 
memory to communicate. Thus, it is important to minimize the communication be-
tween threads from different blocks, turning it into communication between threads 
in the same block when possible. Besides, they are allowed to synchronize with 
each other via barriers. On the other hand, the only way of synchronizing threads of 
different blocks is by ending the kernel execution. The CUDA programming model 
requires thread blocks in the same kernel to be independent. It means that the fi-
nal result of the computation cannot depend on the order in which the blocks are 
executed, giving the same result without depending on their order of execution.

4.2 The CUDA–C Programming Language

CUDA–C is an extension of the C language to work against the CUDA programming 
model. This language is designed to make the most of the GPGPU approach by 
enabling programmers to encode parallel applications to be run on GPUs [5]. That 
is, programmers are able to develop code to be executed on each GPU thread at the 
same time. This way they can take advantage of the GPU parallel architecture in 
order to obtain enormous speed-up if compared to sequential versions of the same 
code.

The structure of CUDA-C programs consists of two main parts: The host part and 
the device part. The main difference between them consists of the specific device in 
which they are executed. Thus, the host part is executed on the CPU, whilst the de-
vice part is executed on the GPU [5]. The host part includes calls to kernels. The



Fig. 2 The CUDA programming model

device part is composed of kernels which define the operations to be performed in 
parallel. The developer organizes the threads to execute the kernels in two hierarchi-
cal levels of parallelism. These levels are a reflection of those in which the CUDA 
programming model is organized. In order the organize the threads to execute the 
kernels, the programmer defines the structure of the thread blocks. This is done by 
programmatically setting the number of threads per block, as well as the total num-
ber of blocks in the grid. This way, both parts of the program can cooperate in order 
to obtain a global result. More information about the CUDA programming model 
and the CUDA-C language can be found on [41][24].

A sample code of a typical high-performance operation on GPU can be found 
on [4]. In this sample, the summing of the elements in two vectors is computed. 
Each pair of elements are assigned to a different thread. Therefore, each pair of 
elements are added in a parallel way. Although this example may seem too simple, 
it illustrates quite well the way in which the CUDA parallel mode can be applied 
to parallelize operations, thus obtaining a tremendous speed-up due to the parallel 
computing approach.

GPGPU and CUDA–C have been already successfully applied in order to sim-
ulate different kinds of P systems. To the best of our knowledge, they have been 
applied to simulate cell-like object-based P systems [5] and SN P systems [2]. Their 
results include data which show noticeable speed-ups in comparison to their sequen-
tial counterparts. These results demonstrate the suitability of the GPGPU approach 
for simulating P systems in a parallel mode.



Fig. 3 A sample of CUDA–C host code

5 A GPU–Based Simulator for Enzymatic Numerical P
Systems

Taking into account these previous results, we propose a new simulator for ENPSs 
developed on CUDA-C. Thus, we expect our simulator to achieve an important ac-
celeration of the execution times in comparison to currently existent ENPS sequen-
tial simulators [36].

In this section, the guidelines for the design of the current version of the simu-
lator are outlined. Moreover, a thorough description of the data structures and the 
functioning of the simulator is explained.

The objective of the proposed ENPS GPU-based simulator is to fully simulate 
the behaviour of enzymatic numerical P systems, performing operations in parallel 
whenever possible. In order to do that, it is crucial to identify which operations 
are susceptible for parallelization and write parallel kernels for them. This way the 
simulator can take advantage of the underlying parallel architecture.

5.1 Data Representation

As it is usual in GPU computing [4], the data handled by the simulator is stored by 
means of arrays. The simulator uses three different kinds of arrays, according to the 
nature of the information stored in them:

Program arrays: These arrays are used to store the programs of the ENPS model
simulated. These arrays can be organized in three different types:

Production function: These arrays are used to store the information regarding
the production functions of rules. They are described in subsection 10.5.4.1 in
detail.

Repartition protocol: These arrays are used to store the information about the
repartition protocols. They are described in subsection 10.5.6 in detail.

Enzymes: Each program in the simulated ENPS model has an associated po-
sition in this array. This position contains the index of the enzymatic variable



associated to the program. In the case that the program is in non-enzymatic
form, the position contains a specific marker, such as -1.

Variables: This array stores the value of the variables associated to the compart-
ments in the ENPS model simulated. These values evolve as programs in the
model are applied.

Auxiliary data: These arrays store the auxiliary data needed in order to check
and apply the programs. Specifically, these arrays are:

Minimum values: This array stores the minimum values of the variables con-
sumed by programs

Production function results: This array stores the results of the calculations
of the applied production functions

Program applications: This array stores themarkers to set if programs are ap-
plied. These markers can be Active or Inactive.

Fig. 4 Arrays used by the simulator to store general information

5.2 Repartition Coefficients Normalization

This step is only taken once, as it is a pre–processing operation in order to improve 
the efficiency of the simulator. It is not performed in parallel, thus being part of the
host code. For each repartition protocol in each program Pl,i, each coefficient cl,s

associated to the repartition protocol in is replaced by
cl,s

∑
ni
j=1 cl, j

(1≤ s≤ ni). Although

the formal definition of both NPSs and ENPSs establishes that cl,s ∈ N(1 ≤ s ≤ ni), 
these new repartition coefficients are real numbers, as they are temporary values 
calculated in order to improve the efficiency of the simulation algorithm.

5.3 Program Checking

The first stage of the implemented algorithm consists of selecting which programs 
can be applied on the current step of computation. Therefore, for each program, one 
should distinguish two different cases:



• The program is in non-enzymatic form. This means that no enzyme–like variable
is associated to the program. In this case, the program is always executed. In
such a case, the program’s associated position in Enzymes should be a specific
marker, as shown in subsection 10.5.1. Hence, the program’s associated position
in Program applications is set to Active.

• The program is in enzymatic form. This means that an enzyme–like variable is
associated to the program. In this case, the simulator needs to find the minimum
value of the variables consumed by the program. Then, it is necessary to calcu-
late the minimum value of all variables consumed by the program, in order to
distinguish two different cases:

– The value of this minimum is greater than or equal to the value of the associ-
ated enzyme–like variable. In this case, the program cannot be applied.

– The value of this minimum is lower than the value of the associated enzyme-
like variable. In this case, the program has to be applied.

In terms of implementation, each thread has an associated index i in the produc-
tion function arrays (see subsection 10.5.4 for more details). Thus, each thread
has an associated program. Each thread whose associated program is in enzy-
matic form performs the following steps:

– Step through the region of the arrays in subsection 10.5.4 associated to the
production function and checking those positions in which the array Produc-
tion function node types contains the value variable.

– Check the value of the array Production function variables in these positions.
– Use the value of these positions on each thread as indexes to access the array

Variables.
– Calculate the minimum of the positions in this array.
– Compare this minimum to the value of the enzyme–like variable of its associ-

ated program.
· If the value of the enzyme–like variable is greater, then the program’s as-

sociated position in Program applications is set to Active.
· If the value of the enzyme–like variable is lower or equal, the program’s

associated position in Program applications is set to Inactive.

5.4 Calculation of Production Functions

In this section, an outline of the performing of the calculation of production func-
tions is presented. For doing so, firstly the data structures used to represent pro-
duction functions are introduced. Secondly, the way in which these data structures 
are processed is described. Finally, a brief discussion about the expected speed–up 
factor ends this subsection.



5.4.1 Structural Design of Production Functions

In the presented simulator, production functions are represented as tree–like struc-
tures. In these tree–like structures there exist two different kinds of nodes:

Non-leaf nodes: These nodes represent binary operations. On these nodes, the
operands could be constants, variables or the result of other operations.

Leaf nodes: These nodes represent constants or variables. In the case of vari-
ables, their value is the evaluation of its represented variable.

Production functions are implemented by means of five different arrays. Thus, each 
tree representing a production function is implemented as a region in these five 
arrays. Each node is implemented as a position in all these arrays. These arrays are 
described as follows:

Production function node types: For each node, this array denotes the type of
the node. It could be constant or variable (leaf nodes) or anyone of the operation
type (non-leaf nodes). Each node of the operation type tells the simulator to
perform a binary operation on its children. The values for nodes of the operation
type are:

Add: Add the value of the left child to the value of the right child.
Subtract: Subtract the value of the left child to the value of the right child.
Multiply: Multiply the value of the left child by the value of the right child.
Divide: Divide the value of the left child by the value of the right child.
Power: Power the value of the left child to the value of the right child.

Production function left offsets: Given a position in this array, if its correspond-
ing position in Production function node types is equal to constant or variable
then this position has no meaning. Otherwise, if its corresponding position in
Production function node types is equal to anyone of the operation type, then
this position contains the relative offset where the left operand of the represented
node is stored.

Production function right offsets: Given a position in this array, if its corre-
sponding position in Production function node types is equal to constant or vari-
able then this position has no meaning. Otherwise, if its corresponding position
in Production function node types is equal to anyone of the operation type, then
this position contains the relative offset where the right operand of the repre-
sented node is stored.

Production function constants: Given a position in this array, if its correspond-
ing position in Production function node types is equal to variable or anyone
of the operation type then this position has no meaning. Otherwise, if its corre-
sponding position in Production function node types is equal to constant, then
this position contains the value of the constant represented by its node.

Production function variables: Given a position in this array, if its correspond-
ing position in Production function node types is equal to constant or operation
then this position has no meaning. Otherwise, if its corresponding position in



Production function node types is equal to variable, then this position contains
the position in Variables of the variable represented by its node.

This way, one can associate an index i in all of these arrays to every node N in every
production function tree–like structure.

Fig. 5 Data structure for production functions

5.4.2 Functional Design of Production Functions

By making use of the data structures described above, calculating a production func-
tion can be simply reduced to stepping through the nodes of its representing tree. 
Then, the recursive algorithm used to calculate production functions is:

1. Given a node N, check the node type of N. In terms of implementation, it means
checking its associated position i in Production function node types as listed
above.

a. If the node type of N is constant, then return the value of the constant associ-
ated to N. In terms of implementation, it means returning the value in position
i in the array Production function constants.

b. If the node type of N is variable, then return the value of the variable asociated
to N. In terms of implementation, it means taking the value stored in position
i in the array Production function variables and using this value j as an index
to return position j in the array Variables described in section 10.5.1.

c. If the node type of N is anyone of the operator type, then:
i. Access position i in Production function left offsets. Let j be the content of

this position.
ii. Calculate the result of i+ j. Let k = i+ j.

iii. Process the node Nl whose index is k. It means going back to step 1, but
processing Nl instead of N.

iv. Access position i in Production function right offsets. Let m be the content
of this position.

v. Calculate the result of i+m. Let n = i+m.
vi. Process the node Nr whose index is n. It means going back to step 1, but

processing Nr instead of N.



vii. Apply the operation indicated by position i in Production function opera-
tors to the result of processing Nl as left child and the result of processing
Nr as right child.

viii. Return the result of this operation.
d. Store the result of the calculation in the program’s associated position o in

Production function results.

This algorithm is executed by each of the threads of the kernels, if and only if their
associated program is active. Thus, in this version of the simulator the theoretical
speed–up factor on the calculation of production functions is equal to the number of
programs of the simulated model. One could argue that some operations in these tree
steppings could be performed in parallel, thus improving the theoretical speed–up
factor. For, instance, in the production function represented in figure 10.6, x1,2 + 7
and x1,4−3 can be performed in parallel.

Fig. 6 Tree representing the production function (x1,2 + 7)+(x1,4 − 3)

However, the vast variety of different cases which can be found in these complex 
production functions makes it really difficult to design an efficient parallel imple-
mentation of their binary operations. Besides, production functions are usually short 
(though sometimes complex) functions [36], so the speed–up factor gain which can 
be obtained may not be worth increasing the design complexity of the simulator so 
much.

5.5 Variable Clearing

After calculating the result of the production functions of the applied programs, the 
next step on the algorithm is to clear the values of the variables on which these 
production functions depend. In practical terms, it means setting the value of these 
variables to 0. For doing so, each thread on the simulator has an associated pro-
duction function element. In terms of implementation, each thread whose has an 
associated index i in the production function arrays. Thus, on every thread, the fol-
lowing operations are performed:



• Check its position i in Program applications. If the value of this position is In-
active, do not execute the following steps and exit the kernel. If the value of this
position is Active, execute the following steps.

• Check if its position i in Production function node types is equal to Variable. In
other case, abort the thread.

• Access its position i in Production function variables. Let j be the value of this
coefficient.

• Set position j in Variables to 0.

5.6 Repartition Protocol Application

The last step in the algorithm consists on distributing the result of the production 
functions. For each thread, this implies reading the value stored in Production func-
tion results and distributing it over its program’s contributed variables. As the nor-
malization of coefficients is performed at the beginning of the algorithm, this step 
only entails multiplying this read value by the associated coefficient of each vari-
able in the repartition protocol and adding the result of the multiplication to this 
variable. Before explaining in detail the implementation of this process, it is impor-
tant to introduce the data structures used to represent the repartition protocols of 
the simulated model. Each repartition protocol is stored as a region in two arrays. 
Thus, each pair coefficient–variable has an associated index, which corresponds to 
an associated position in each of these arrays.

Repartition protocol coefficients: This array contains the coefficients associated
to each variable existing in repartition protocols. On the repartition protocol step,
the content of this array is already normalized, as it is performed at the beginning
of the algorithm (see subsection 10.5.2).

Repartition protocol variables: This array contains the indexes of the variables
to which the repartition protocols are contributed. These indexes are used to ac-
cess the array Variables, in order to obtain their current value.

In terms of implementation, the distribution of the result of the production function
of each program is performed the following way. Each thread has an associated pair
coefficient-variable assigned. In terms of implementation, a position i in the reparti-
tion protocol arrays is asigned to each thread. Taking into account this consideration,
each thread performs the following operations:

1. Check its position i in Program applications. If the value of this position is In-
active, do not execute the following steps and exit the kernel. If the value of this
position is Active, execute the following steps.

2. Access its position i in Repartition protocol coefficients. Let c be the value of this
coefficient.

3. Access the position o of the program of its repartition protocot in Production
function results. Let f be the value of this result.

4. Perform the multiplcation of these values. Let m = c× f .



5. Access its position i in Repartition protocol variables. Let v be the value of this
position.

6. Add m to position v in Variables.

It is important to notice that, in this step, the theoretical speed-up factor can be
greater than 1, in the case that there exist programs in the simulated model in which
the number of pairs coefficient–variable is greater than 1. In contrast to the case of
production functions, this is usual in the studied models [37], so a greater theoretical
speed-up factor can be obtained in this stage.

Fig. 7 Data structure for production functions

5.7 Execution of a Simulation Step

As described in the former subsections, the execution of a simulation step consists 
of the checking and application of programs for a predefined number of steps. This 
number of steps, as well as the model to simulate, are specified as inputs to the 
simulator. In the case that the model simulated defines a number of steps, then this 
number prevails over the one given as input. The simulation of a model is performed 
by executing the following steps:

1. Normalize the repartition coefficients, as described in subsection 10.5.2.
2. For each simulation step, perform the following operations:

a. Assign a program to each thread. This is done by using the indexes of the
threads in the CUDA programming model.

b. Each thread checks if its program is to be applied, as described in subsection
10.5.3.

c. If its program is to be executed, each thread calculates its production function,
as described in subsection 10.5.4.2.

d. If its program is to be executed, each thread clears the values of those variables
which depend on the production function of the program (that is, consumes
its values), as described in subsection 10.5.5.

e. Assign a pair coefficient–variable from each repartition protocol to each
thread. This is also done by using the indexes of the threads in the CUDA
programming model.

f. If its repartition protocol’s program is to be executed, each thread distributes
the result of the corresponding production function according to the associated
pair, as described in subsection 10.5.6.



5.8 Remarks on the Simulator

This simulator will be published under open source license. It can be used for simu-
lating complex distributed processes modelled with ENPSs. Therefore, several robot 
behaviors can be simulated in parallel (for example, a robot could avoid obstacles, 
follow another robot or look for a target at the same time). The synchronization at 
the same time between several behaviors of one robot is done by the help of the 
enzyme variables which can be used as stop conditions [37]. Apart from simulat-
ing several behaviors for only one robot in parallel, the simulator could be used to 
simulate interaction and cooperation between several robots in complex distributed 
robotic systems.

6 Simulator Performance

6.1 Simulator Workflow

In order to ease the simulation of ENPS models, the simulator takes an input file 
describing an ENPS in XML format. The XML format used is the one accepted by 
SNUPS [36], a previously existent sequential simulator for ENPSs. This way, the 
reusability of the models is improved, as the same file can be used with indepen-
dence to the selected simulator, be it SNUPS and on the GPU-based one introduced, 
without any change in the XML file format. Hence, there is no need to change the 
file format, in the case that the same ENPS is to be simulated on both simulators.

Thus, in order to simulate an ENPS, one needs to encode it on the same XML 
format as it is required on SNUPS. Once this P system is encoded, the resulting 
file can be parsed by the GPU simulator. After the parsing process, the simulation is 
performed. Eventually, the information is displayed on the command prompt. Figure 
10.6.1 shows a graphical representation of this process.

6.2 Performance Comparison

All parallel parts of the algorithm are executed with a degree of parallelism at least 
equal to the number of programs of the simulated model. The degree of parallelism 
can be even greater when the repartition protocol stage is applied. Hence, a theoret-
ical acceleration of at least the number of programs of the model could be reached, 
if compared to the runtime of sequential simulators. In real terms, the simulator 
was tested by using an ENPS model of obstacle avoidance [37] as an example. 
These models were simulated by using SNUPS [36]. Then, the resulting runtimes 
were compared with the GPU simulator runtimes, in order to get an approximate 
speed-up. In the specific case of the obstacle avoidance model, the total number of 
programs is 41 [37]. Hence, an acceleration of at least 41 is theoretically expected 
in this case, if compared to sequential ENPSs simulators [36].

The novelty of ENPSs as a computing model [36] accounts for the need to gen-
erate ad-hoc case studies for the simulator. That is, it is not possible to find an



Fig. 8 Workflow of the simulator

extensive collection of case studies in the literature. Thus, the authors needed to 
generate them in order to measure the experimental performance of the GPU sim-
ulator proposed. In practice, the simulator performance has been tested by using 
an obstacle avoidance model [37]. Taking this model as a starting point, some case 
studies have been generated. All of them share the same programs, variables and 
membrane structure of the obstacle avoidance model proposed in [37]. Thus, these 
models consist of 9 membranes, 41 programs and 29 variables each [37]. The only 
differences between these case studies consist of the initial values of the variables 
associated to the membranes.

Model number SNUPS GPU Acceleration
1 36.3702 6.7286 5.4053
2 14.9084 6.6304 2.2484
3 14.9040 7.7268 1.9288
4 26.3204 6.8255 3.8561
5 15.2276 6.4188 2.3723
6 18.9548 6.5659 2.8868
7 30.7377 6.7206 4.5736
8 27.0497 7.6020 3.5582
9 15.7529 6.8335 2.3052
10 30.1695 6.6364 4.5460

Fig. 9 Comparison of execution times for a sequential ENPSs simulator (SNUPS) and the 
GPU ENPSs simulator proposed



For this purpose, 10 randomly generated models were executed. Each model was
executed for 100 steps. Figure 10.9 displays the execution times for these runs. This
table compares the execution times for the same models run on SNUPS [36] and the
GPU simulator. The execution times are given in milliseconds. For each model, the
acceleration is given as the result of the division SNUPS runtime

GPU runtime .

7 Conclusions

In this paper, a GPU-based simulator for ENPSs. ENPSs describe a parallel com-
puting model with applications in artificial intelligence. This simulator might be 
suitable for large scale models which can be applied within the field of robotics.

The massively parallel environment provided by the GPUs is suitable for ENPSs 
simulations. Following this line of work, it would be interesting to simulate these 
models by means of GPU clusters or other parallel architectures (such as FPGAs 
or computer clusters). These systems might be applied to model the behavior of 
massive robot swarms and complex sensor networks.

ENPSs can be used to model different behaviours, such as follow the leader, 
obstacle avoidance and wall following (cf. Chap. 9 of this book). The resulting 
simulators could be compared in terms of execution time and performance. This 
comparison could help experts select the most suitable simulator for the task in 
hand, be it wall following, obstacle avoidance, etc.

Another interesting challenge concerning the parallel simulation of ENPS models 
has to do about exploring the possibility of simulating several robot behaviors in 
parallel on GPUs. That is, simulating situations in which robots need to achieve 
more than one objective at the same time. These simulations could help to recreate 
scenarios in which robots need to perform multi-objective tasks.

Another important open problem concers the integration of the simulator into 
user-oriented software platforms. This integration will ease the use of the simulator 
by Membrane Computing experts, thus improving the human-computer interaction 
experience. Some examples of end-user software frameworks for simulating P sys-
tems are SNUPS[36] and P-Lingua[13].

Another important point with which to deal has to do with a more exhaustive eval-
uation of the performance of the simulator. Whilst the shallow performance evalu-
ation included in this paper shows an average speed-up factor of 3x if compared to 
the Java simulator SNUPS, in order to assess the real speed–up factor to be reached 
by the simulator it is necessary to develop larger models and compare their runtimes 
not only with Java or other virtual machine-based programming languages, but also 
with languages on a lower level of abstraction, such as C or Fortran.

Nevertheless, the current models have such a small number of programs that these 
low-level simulators could yield better runtimes than the GPU simulator, as they are 
free from the overhead regarding the distribution of tasks among the GPU threads. In 
other words, the GPU simulator is expected to yield a better performance only when 
the number of programs is considerably high, that is, about thousands of programs 
per model. In order to asses the performance in these cases, it is necessary to extend



the models currently found in the literature up to new models with thousands of
programs. On these models, the GPU simulator is expected to yield lower execution
times not only compared to SNUPS execution times, but also to the times obtained
by C and Fortran simulators.
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