Handling Languages with Spiking Neural
P Systems with Extended Rules

Haiming CHEN!, Tseren-Onolt ISHDOR.J?,
Gheorghe P AUN23, Mario J. PEREZ-JIMENEZ3

!Computer Science Laboratory, Institute of Software
Chinese Academy of Sciences
100080 Beijing, China
E-mail: chm@ios.ac.cn

2Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

3Research Group on Natural Computing
Department of Computer Science and Al

University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: tseren@yahoo.com, gpaun@us.es, marperQus.es

Abstract. We consider spiking neural P systems with spiking rules allowed
to introduce zero, one, or more spikes at the same time. A tool-kit for computing
(some) operations with languages generated by such systems is provided. Com-
puting the union of languages is easy. However, computing the concatenation
or the intersection with a regular language is not so easy. A way to compute
weak encoding is also provided. The main results of the computing power of
the obtained systems are then presented, when considering them as number
generating and as language generating devices. In particular, we find direct
characterizations of finite and recursively enumerable languages (without using
any squeezing mechanism, as it was necessary in the case of restricted rules).

1. Introduction

We combine here two ideas recently considered in the study of the spiking neural
P systems (in short, SN P systems) introduced in [3], namely the exztended rules from
[5] and the string generation from [1].

For the reader’s convenience, we shortly recall that an SN P system consists of a set
of neurons placed in the nodes of a graph and sending signals (spikes) along synapses
(edges of the graph), under the control of firing rules. One neuron is designated
as the output neuron of the system and its spikes can exit into the environment,
thus producing a spike train. Two main kinds of outputs can be associated with
a computation in an SN P system: a set of numbers, obtained by considering the
number of steps elapsed between consecutive spikes which exit the output neuron,
and the string corresponding to the sequence of spikes which exit the output neuron.
This sequence is a binary one, with 0 associated with a step when no spike is emitted
and 1 associated with a step when a spike is emitted.

The case of SN P systems as number generators was investigated in several papers,
starting with [3], where it is proved that such systems are Turing complete (hence also
universal, because the proof is constructive; universality in a rigorous framework was
investigated in [5]). In turn, the string case is investigated in [1], where representations
of finite, regular, and recursively enumerable languages were obtained, but also finite
languages were found which cannot be generated in this way.

Here we consider an extension of the rules, already used in [5], namely we allow
rules of the form F/a® — aP, with the following meaning: if the content of the
neuron is described by the regular expression F, then c spikes are consumed and
p are produced and sent to the neurons to which there exist synapses leaving the
neuron where the rule is applied (more precise definitions will be given in the next
section). Thus, these rules cover and generalize at the same time both spiking rules
and forgetting rules as considered so far in this area — with the mentioning that we
do not also consider here a delay between firing and spiking, because in the proofs we
never need such a delay.

In Section 3 we present constructions of SN P systems for computing some usual
operations with languages: union, concatenation, weak coding, intersection with reg-
ular languages. Computing the union of languages is easy, but computing the concate-
nation or the intersection with a regular language is not so easy. A way to compute
weak encoding is also provided. The main results of the computing power of these
systems are recalled in Section 4. As expected, the use of extended rules allows much
simpler constructions for the proof of universality in the case of considering SN P
systems as number generators. More interesting is the case of strings produced by SN
P systems with extended rules: we associate a symbol b; to a step when the system
sends ¢ spikes into the environment, with two possible cases — by is used as a sepa-
rated symbol, or it is replaced by A (sending no spike outside is interpreted as a step
when the generated string is not grown). The first case is again restrictive: not all
minimal linear languages can be obtained, but still results stronger than those from
[1] can be proved in the new framework because of the possibility of removing spikes
under the control of regular expressions. The freedom provided by the existence of
steps when we have no output makes possible direct characterizations of finite and re-
cursively enumerable languages (not only representations, modulo various operations
with languages, as obtained in [1] for the standard binary case).

2. Spiking Neural P Systems with Extended Rules

We assume the reader to be familiar with basic language and automata theory,
e.g., from [7] and [8], so that we introduce here only some notations and notions used
later in the paper.

If x = ajag...an, a; € V, 1 < i < n, then mi(z) = ap...a2a;. A morphism
h : Vi* — V{* such that h(a) € {a, A} for each a € V; is called a projection, and a
morphism h : Vi* — V5" such that h(a) € VoU{A} for each a € V; is called a weak cod-
ing. If L1, Ly C V* are two languages, the left and right quotients of L1 with respect
to Lo are defined by Lo\L; = {w € V* | zw € Ly for some = € Lo}, and respectively
Li/Ly ={w € V* | wzx € Ly for some xz € Ly}. When the language Ly is a singleton,
these operations are called left and right derivatives, and denoted by 9. (L) = {z}\L
and 07 (L) = L/{z}, respectively. We denote by FIN, REG,CF,CS, RE the fami-
lies of finite, regular, context-free, context-sensitive, and recursively enumerable lan-
guages. The family of Turing computable sets of numbers is denoted by NRE (these
sets are length sets of RE languages, hence the notation). Let V' = {b1,ba,...,bn},
for some m > 1. For a string € V*, let us denote by val,,(x) the value in base
m + 1 of z (we use base m + 1 in order to consider the symbols by, ..., b, as digits
1,2,...,m, thus avoiding the digit 0 in the left hand of the string). We extend this
notation in the natural way to sets of strings.

We directly introduce the type of SN P systems we investigate in this paper; the
reader can find details about the standard definition in [3], [6], [1], etc.

An extended spiking neural P system (abbreviated as extended SN P system), of
degree m > 1, is a construct of the form Il = (O, 01, ..., 0., syn, i), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. 01,...,0m, are neurons, of the form o; = (n;, R;),1 < i < m, where:
a) n; > 0 is the initial number of spikes contained in o;;
b) R; is a finite set of rules of the form E/a® — aP, where E is a regular
expression over a and ¢ > 1,p > 0, with the restriction ¢ > p;
3. syn C{1,2,...,m} x{1,2,...,m} with ¢ # j for each (i,5) € syn, 1 <i,j <m
(synapses between neurons);
4. ig € {1,2,...,m} indicates the output neuron (o;,) of the system.

A rule E/a® — aP is applied as follows. If the neuron o; contains k spikes,
and a* € L(E),k > ¢, then the rule can fire, and its application means consuming
(removing) ¢ spikes (thus only k& — ¢ remain in ;) and producing p spikes, which will
exit immediately the neuron. A global clock is assumed, marking the time for the
whole system, hence the functioning of the system is synchronized.

Note that we do not consider here a delay between firing and spiking (i.e., rules of
the form E/a® — a?;d, with d > 0), because we do not need this feature in the proofs
below, but such a delay can be introduced in the usual way. (As a consequence, here
the neurons are always open.)

If a rule E/a® — aP has E = a° then we will write it in the simplified form
a® — aP.

The spikes emitted by a neuron o; go to all neurons o; such that (i, 5) € syn, i.e.,
if 0; has used a rule F/a® — aP, then each neuron o; receives p spikes.

If several rules can be used at the same time, then the one to be applied is chosen
non-deterministically.

During the computation, a configuration of the system is described by the number
of spikes present in each neuron; thus, the initial configuration is described by the
numbers ni,ng, ..., Ny

Using the rules as described above, one can define transitions among configura-
tions. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where no rule can be
used. With any computation (halting or not) we associate a spike train, the sequence
of symbols 0 and 1 describing the behavior of the output neuron: if the output neuron
spikes, then we write 1, otherwise we write 0 (note that at this stage we ignore the
number of spikes emitted by the output neuron into the environment in each step,
but this additional information will be considered below).

As the result of a computation, in [3] and [6] one considers the distance between
two consecutive steps when there are spikes which exit the system, with many possible
variants: taking the distance between the first two occurrences of 1 in the spike train,
between all consecutive occurrences, considering only alternately the intervals between
occurrences of 1, etc. For simplicity, we consider here only the first case mentioned
above: we denote by Na(II) the set of numbers generated by an SN P system in the
form of the number of steps between the first two steps of a computation when spikes
are emitted into environment, and by SpikeSN€P,,(ruley, cons,, prod,) the family
of sets No(IT) generated by SN P systems with at most m neurons, at most & rules
in each neuron, consuming at most p and producing at most ¢ spikes. Any of these
parameters is replaced by * if it is not bounded.

Following [1] we can also consider as the result of a computation the spike train
itself, thus associating a language with an SN P system. Specifically, like in [1],
we can consider the language Ly, (IT) of all binary strings associated with halting
computations in II: the digit 1 is associated with a step when one or more spikes exit
the output neuron, and 0 is associated with a step when no spike is emitted by the
output neuron.

Because several spikes can exit at the same time, we can also work on an arbitrary
alphabet: let us associate the symbol b; with a step when the output neuron emits ¢
spikes. We have two cases: interpreting by (hence a step when no spike is emitted) as
a symbol or as the empty string. In the first case we denote the generated language
by Lyes(II) (with “res” coming from “restricted”), in the latter one we write L (II).

The respective families are denoted by Lo SN°P,, (ruleg, consy, prod,), where o €
{bin,res, A} and parameters m, k, p, q are as above.

3. A Tool-Kit for Handling Languages

We present first several extended SN P systems which perform operations with
languages in order to let the reader have an idea how these systems work.

For instance, starting with two SN P systems IIj,Il5, we look for a system II
which generates the language Ly (II;) ¢ Ly(Il2), where ¢ is a binary operation with
languages.

For the union of languages, such a system II is easy to be constructed (as already
done in [3]): we start with the systems II;, ITs without any spike inside and we consider
a module which non-deterministically activates one of these systems, by introducing
in their neurons as many spikes as we have in the initial configurations of IT; and IIs.

Not so simple is the case of concatenation, which, however, can be handled as in
Fig. 1. We start with system II; as it is (with the neurons loaded with the necessary
spikes), and with system Il without any spike inside.

I
dl d4
ai — CLi
am+1+i N am+1+i H2
1<i<m
a—a a— a a—a
Cc1 C; Cn

Fig. 1. Computing the concatenation of two languages.

We have in Fig. 1 three sub-systems/modules with specific tasks to solve. For
instance, neurons o4, 04, , 04, non-deterministically choose a moment when the string
generated by system II; is assumed completed. After using rule a®> — a in o4, neuron
04, fires, this activates neurons o, ..., 0., , and these neurons both “flood” neuron
o4, with m + 1 spikes and activate the neurons of system Il,, introducing as many
spikes as II; has in its initial configuration. Specifically, we have n = max{m +
1, spin(Il3)}, where m is the cardinality of the alphabet we work with, and spin(Ilz)

is the maximum of the number of spikes present in any neuron of Il in the initial
configuration. Then we have synapses (¢;,dy) for 1 <i <m+ 1, and (¢;, k), for o} a
neuron in Iy, for 1 < i < ng, where ny is the number of spikes present in oy in the
initial configuration of Il,.

Fig. 2. Computing the intersection with a regular language.

The pair of neurons o4,, 0oyt takes care of the output of the whole system, first
passing the output of II; to g,,+ and then taking the output of Il and sending it out.
If 04, receives any further spike from II; after neurons oy, 044,04, have “decided”
that the work of II; is finished, then o4, fires (note that it cannot fire for exactly
m+ 1 spikes), this makes o4, fire, and then the computation will never finish, because
of the pair of neurons og4,,04,.

Thus, the computation ends if and only if after sending out a complete string
generated by II; we also send out a string generated by Il,, hence we generate the
concatenation of strings produced by the two systems.

Consider now an arbitrary SN P system II; and an SN P system Il simulating
a regular grammar G, with the following changes: chain rules A; — A; are added to
grammar G for all nonterminals A;; then, we assume that the number of rules (n in

the construction) is strictly bigger than the number of symbols (m) — if this is not
the case, then we simply duplicate some rules. The system looks now as in Fig. 3 (k
can be 0 only for chain rules A; — A;, where by = A). Thus, after simulating a rule
A; — by, neurons o1, 09 are “flooded” and have to stop. The grammar G — and hence
also Il — outputs a terminal symbol after an arbitrary number of steps of using chain
rules A; — A;, hence steps when nothing exits the system. This makes possible the
synchronization of II; and Il in the sense that they output spikes in the same steps.
What remains to do is to compare the number of spikes emitted by the two systems,
so that we can select the strings from the intersection Ly (I11) N Ly (Ilz).

1 2
an+m an+m
an+m+i _ an+m an+'m+i N an+m
0<i<m 0<i<m
3
a2n+m

an+m+i/an+m+i—j — ak

for A; — bpA; € P
an+m+i N an+k

for A; - by, € P

Fig. 3. Simulating a regular grammars having chain rules.

This is ensured as suggested in Fig. 2 (in order to keep the figure smaller, we have
not indicated the range of parameter i, but it is as follows: in all neurons o.; and
ocls 1<j<m-—2, we have 2 < ¢ < m). If the two systems II; and I do not spike
at the same time or one sends out r > 1 spikes and the other one s > 1 spikes for
r # s, then the neurons o, , 0., will get activated and the computation never stops:
the spikes emitted by the two systems circulate from top down along the chains of
NeUrons ey, Oc, ;.- ;0¢,, , and 0¢ .0y ,...,0- . and if we do not obtain exactly
one spike at the same time in the two columns, then the neuron oy fires and activates
the neurons o, , o, .

We do not know how to compute — in an elegant way — morphisms, but the
particular case of weak codings can be handled as in Fig. 4. The difficulty is to have

h(b;) = b; with 7 < j, and to this aim the “spike supplier” pair of neurons o, , o, is
considered. In each step, they send m +1 spikes to neuron o.,. If this neuron receives
nothing at the same time from the system II, then the m + 1 spikes are forgotten. If
i spikes come from system II, 1 <4 < m, then, using the m + 1 + ¢ spikes, neuron o,
can send j + 1 spikes to the output neuron, which emits the right number of spikes
to the environment.

At any time, the neurons o, , 0., can stop their work; if this happens prematurely
(before having the system II halted), then neuron o., will emit only one spike, and
this triggers the “never halting module”, composed of the neurons o, , 0, 0cs, Which
will continue to work forever.

The reader can check that the system produces indeed the language h(Ly (1)), for
a weak coding h which moves some b; into by, and erases other symbols b;.

We do not know how to compute arbitrary morphisms or the other AFL operations,
Kleene + and inverse morphisms.

3
[gqmHlti gkl

for h(b;) = b out
amt1+i)
1 for h(bj) = A
a™tl —)
at —a

\ for1<i<m /

Fig. 4. Computing a weak coding.

A possible way to address these problems is to reduce them to another problem,
that of introducing delays of arbitrarily many steps in between any two steps of
computations in an arbitrary SN P system II (in the same way as the chain rules

introduce such “dummy steps” in the work of a regular grammar). If such a slowing-
down of a system would be possible, then we can both compute arbitrary morphisms
and the intersection of languages generated by two arbitrary SN P systems (not only
with one of them generating a regular language, as above).

Another open problem of interest (but difficult, we believe) is to find an SN P sys-
tem, as small as possible in the number of neurons, generating a Dyck language (over
at least two pairs of parentheses). If such a systems would be found, then a representa-
tion of context-free languages would be obtained, using the Chomsky-Schiitzenberger
characterization of these languages as the weak coding of the intersection of a Dyck
language with a regular language.

4. Computing Power of Extended SN P Systems

For the reader convenience, we recall now (without a proof) several results con-
cerning the computing power of SN P systems with extended rules. Details can be
found in [2].

4.1. Extended SN P Systems as Number Generators

Because non-extended SN P systems are already computationally universal, this
result is directly valid also for extended systems. However, the construction on which
the proof is based is much simpler in the extended case (in particular, it does not use
the delay feature), that is why we mention it.

Theorem 4.1. NRE = SpikaSN€ P, (rules, conss, prods).

4.2. Languages in the Restricted Case

We pass now to considering SN P systems as language generators, starting with
the restricted case, when the system outputs a symbol in each computation step.

In all considerations below, we work with the alphabet V' = {by,ba,...,by}, for
some m > 1. By a simple renaming of symbols, we may assume that any given
language L is a language over V. When a symbol by is also used, it is supposed that

bo & V.

4.2.1. A Characterization of FIN

SN P systems with standard rules cannot generate all finite languages (see [1]),
but extended rules help in this respect.

Lemma 4.1. LSNP, (rule., cons,,prod,) C FIN, a € {res, A}.
Lemma 4.2. FIN C L,SN€¢P(rule.,cons,,prod,), a € {res, A}.

Theorem 4.2. FIN = L,.;SN¢P;(rule,,cons,, prod,) =
L\SN€P;(ruley,cons,, prod,).

This characterization is sharp in what concerns the number of neurons, because
of the following result:

Proposition 4.1. L,SN¢Ps(rules, conss,prods) — FIN # 0, a € {res, A}.

4.2.2. Representations of Regular Languages

Such representations are obtained in [1] starting from languages of the form
Lyin(IT), but in the extended SN P systems, regular languages can be represented
in an easier and more direct way like in Figure 3.

Theorem 4.3. If L C V* L € REG, then {bg}L € L,.sSN€¢Py(rule,,conss,
prody).

Corollary 4.1. FEwvery language L € REG,L C V*, can be written in the form
L =08, (L) for some L' € LyesSN®Py(rule,,cons., prod.,).

One neuron in the previous representation can be saved, by adding the extra
symbol in the right hand end of the string.

Theorem 4.4. If L C V* L € REG, then L{bp} € L,csSN¢Ps(rules,cons.,
prody).

Corollary 4.2. FEvery language L € REG,L C V*, can be written in the form
L =0 (L") for some L' € L.sSN€Ps(rule,,cons,, prod).

4.2.8. Going Beyond REG

We do not know whether the additional symbol by can be avoided in the previous
theorems (hence whether the regular languages can be directly generated by SN P
systems in the restricted way), but such a result is not valid for the family of minimal
linear languages (generated by linear grammars with only one nonterminal symbol).

Lemma 4.3. The number of configurations reachable after n steps by an extended
SN P system of degree m is bounded by a polynomial g(n) of degree m.

Theorem 4.5. If f : VT — VT is an injective function, card(V') > 2, then there
is no extended SN P system II such that Ly(V) = {z f(z) |z € VT} = L.,(II).

Corollary 4.3. The following languages are not in
Lyes SNE P, (rules, cons,, prod,) (in all cases, card(V) =k > 2):

Ly = {zmi(z) |z € VT},
Ly={xz |z V],
Ly = {xc@ |z e VT cg V.
Note that language L; above is a non-regular minimal linear one, Lo is context-

sensitive non-context-free, and L3 is non-semilinear. In all cases, we can also add a
fixed tail of any length (e.g., considering L) = {x mi(z)z | z € VT}, where z € VT isa

given string), and the conclusion is the same — hence a result like that in Theorem 4.4
cannot be extended to minimal linear languages.

4.3. Languages in the Non-Restricted Case

As expected, the possibility of having intermediate steps when no output is pro-
duced is helpful, because this provides intervals for internal computations. In this
way, we can get rid of the operations used in [1] and in the previous section when
dealing with regular and with recursively enumerable languages.

4.3.1. Relationships with REG

Lemma 4.4. LySN°P,(rule,, cons.,prod,) C REG.
Lemma 4.5. REG C LySN¢Ps(rule,, cons., prod.).

This last inclusion is proper:

Proposition 4.2. L,SN¢Ps(rules, conss, prods) — REG # (.

Corollary 4.4. L\SN€P;(rule.,cons,,prod,) C LySN¢Ps(rule,, cons., prod.,)
C LASN¢Ps(ruley, cons,, prody), strict inclusions.

4.8.2. Going Beyond CF

Actually, much more complex languages can be generated by extended SN P
systems with three neurons.

Theorem 4.6. The family LySN€Ps(rules, consg, prods) contains non-semilinear
languages.

4.8.8. A Characterization of RE

If we do not bound the number of neurons, then a characterization of recursively
enumerable languages is obtained.

Let us write m in front of a language family notation in order to denote the sub-
family of languages over an alphabet with at most m symbols (e.g., 2RE denotes the
family of recursively enumerable languages over alphabets with one or two symbols).

Lemma 4.6. mRE C mL)\SN¢P,(rule,, ,consy, prod,,), where m' = max(m,2)
and m > 1.

Theorem 4.7. RE = L\SN¢P,(rule., cons,,prod,).

Corollary 4.5. Fvery language L € RE,L C V*, can be written in the form
L =h(L) for some L' € L.sSN€Py(rule., cons,, prod,), where h is a projection on
V U {bo} which removes the symbol by.

5. Final Remarks

We have presented here some constructions for performing operations with lan-
guages generated by SN P systems with extended rules (rules allowing to introduce
several spikes at the same time). We have also recalled some results of the power of
such SN P systems both as number generators and as language generators. Char-
acterizations of finite and recursively enumerable languages, and representations of
regular languages have been found.

Finding characterizations (or at least representations) of other families of lan-
guages from Chomsky hierarchy and Lindenmayer area remains as a research topic.
It is also of interest to investigate the possible hierarchy on the number of neurons,
extending the result from Corollary 4.4.

Acknowledgements. The work of the first author was supported by the National
Natural Science Foundation of China under Grants numbers 60573013 and 60421001.
The work of the last two authors was supported by Project TIN2005-09345-C04-01
of the Ministry of Education and Science of Spain, cofinanced by FEDER funds.

References

[1] CHEN, H., FREUND, R., IONESCU, M., PAUN, GH., PEREZ-JIMENEZ, M.J., On
string languages generated by spiking neural P systems, Proc. Fourth Brainstorming
Week on Membrane Computing, vol. I, Sevilla, 2006, pp. 169-193. Available at [9].

[2] CHEN, H., ISHDORJ, T.-O., PAUN, GH., PEREZ-JIMENEZ, M.J., Spiking neural P
systems with extended rules, Proc. Fourth Brainstorming Week on Membrane Comput-
ing, vol. I, Sevilla, 2006, pp. 241-265. Available at [9].

[3] IONESCU, M., PAUN, GH., YOKOMORI, T., Spiking neural P systems, Fundamenta
Informaticae, 71, 2-3 (2006), pp. 279-308.

[4] MINSKY, M., Computation — Finite and Infinite Machines, Prentice Hall, Englewood
Cliffs, NJ, 1967.

(5] PAUN, A, PAUN, GH., Small universal spiking neural P systems, BioSystems, to
appear, 2006.

[6] PAUN, GH., PEREZ-JIMENEZ, M.J., ROZENBERG, G., Spike trains in spiking neural
P systems, Intern. J. Found. Computer Sci., 17, 4 (2006), pp. 975-1002.

[7] ROZENBERG, G., SALOMAA, A. (eds.), Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Berlin, 1997.

[8] SALOMAA, A., Formal Languages, Academic Press, New York, 1973.
[9] The P Systems Web Page: http://psystems.disco.unimib.it.

