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Abstract—This paper proposes a graphic modeling approach, 
fault diagnosis method based on fuzzy reasoning spiking neural P 
systems (FDSNP), for power transmission networks. In FDSNP, 
fuzzy reasoning spiking neural P systems (FRSN P systems) with 
trapezoidal fuzzy numbers are used to model candidate faulty sec-
tions and an algebraic fuzzy reasoning algorithm is introduced to 
obtain confidence levels of candidate faulty sections, so as to iden-
tify faulty sections. FDSNP offers an intuitive illustration based 
on a strictly mathematical expression, a good fault-tolerant ca-
pacity due to its handling of incomplete and uncertain messages in 
a parallel manner, a good description for the relationships be-
tween protective devices and faults, and an understandable diag-
nosis model-building process. To test the validity and feasibility of 
FDSNP, seven cases of a local subsystem in an electrical power 
system are used. The results of case studies show that FDSNP is 
effective in diagnosing faults in power transmission networks for 
single and multiple fault situations with/without incomplete and 
uncertain SCADA data, and is superior to four methods, reported 
in the literature, in terms of the correctness of diagnosis results.
Index Terms—Electric power system, fault diagnosis, fuzzy pro-

duction rules, fuzzy reasoning, fuzzy reasoning spiking neural P 
system, linguistic term, trapezoidal fuzzy number.

I. INTRODUCTION

W HEN operating electric power systems (EPS), one of
the key objectives is to supply reliable and stable power

to customers. Impacted by various factors such as disturbances
and equipment failures, interruption of power service or even
blackout may happen in power systems [1], [2]. To reduce the
loss caused by the two latter undesired events, it is essential for
dispatchers to quickly identify the faulty sections in the power
system to restore power supply. When a fault occurs, a large
number of alarm messages from supervisor control and data ac-
quisition (SCADA) systems are poured into dispatchers' con-
soles in a short period of time. These messages are often in-
complete and uncertain [3]–[6]. Thus, it is necessary to develop
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a good method to help dispatchers evaluate where the faults are
and which sections fail [4].
Fault diagnosis of a power system is a complicated process

because it contains lots of sections such as generators, trans-
mission lines, bus bars and transformers which are protected
by a protective system consisting of protective relays, circuit
breakers (CBs) and communication equipments [5]. In recent
decades, fault diagnosis has been implemented by various ap-
proaches, such as expert systems (ES) [1], [2], fuzzy logic (FL)
[3]–[7], artificial neural networks (ANNs) [8], [9], Petri nets
(PNs) [4], [5], [10], Bayesian networks (BNs) [11], [12], multi-
agent systems (MAS) [13], [14], optimization methods (OM)
[15]–[17], cause-effect networks (CE-Nets) [6], [7], [18], and
information theory (IT) [19], [20]. Each method has its own
merits and demerits.
ES is the earliest artificial intelligence method for power

system fault diagnosis. ES makes full use of experts' knowl-
edge, but it has a slow inference speed due to its sequential
search nature, and the difficulties of designing and maintaining
a rule-based knowledge system [2], [18]. FL expresses impre-
cision and uncertainty, but it needs to be combined with other
methods [18], [20]. ANNs have the advantages of good toler-
ance and strong learning ability, and the disadvantages of the
empirical design of network structures and parameters, prema-
ture convergence and the need for numerous samples [18]. The
major features of PN-based methods are graphical knowledge
representation and parallel information processing, however,
bad tolerance and combinatorial explosion in large power net-
works are their weaknesses [6]. Fault diagnosis models based
on BNs are intuitive and can find relationships of causality
between data, but it is difficult for these methods to obtain ac-
curate prior probabilities and model complex power grid [12],
[20]. In MAS, several agents corresponding to several methods
cooperate to fulfill fault diagnosis, but how to properly combine
different methods and how these agents cooperate are unsolved
issues [13], [20]. Although OM may obtain globally optimal
solutions of a complex fault diagnosis problem, it is not easy
to construct an objective function reflecting the discrepancy
between the expected and actual states of protective devices
and to adjust the parameters in the optimization model [16],
[18]. CE-Nets are a graphical tool for knowledge representation
with easy algebraic reasoning and parallel information pro-
cessing ability, but their fault tolerance needs to be improved
and their forward reasoning strategy makes CE-Nets unable to
visually represent all possible combinations of main, first and
second protections [18], [21]. IT-based methods are a novel
approach emerging with the informatization of power systems.
To a certain extent, these methods deal with the uncertainty in



failure processes with fast diagnosis speed, but it is difficult
to dynamically describe the fault information needed [20].
Therefore, much attention should be paid to the improvements
of the aforementioned methods and the exploration of new ones
to solve fault diagnosis problems.
This paper discusses a novel fault diagnosis approach for

power systems by using membrane systems or P systems, which
are theoretical computing devices in the area of membrane
computing. As a newly attractive research field of computer
science, membrane computing, formally introduced by Păun
[22], aims at abstracting computing models from the structure
and the functioning of living cells, as well as from the way that
cells are organized in tissues or higher order structures.A spiking
neural P system (SNP system) is the type of P system inspired by
the neurophysiological behavior of neurons sending electrical
impulses (spikes) along axons from presynaptic neurons to post-
synaptic neurons in a distributed andparallelmanner [23].AnSN
Psystemcanbe considered as a set of nodes representingneurons
in a directed graph whose arcs express synaptic connections
among neurons. The contents of each neuron are composed of
several copiesof a singleobject type.Likewise, eachneuronhas a
finite set of firing (spiking) and forgetting rules. Firing rules send
information between neurons in the formof spikes and forgetting
rules remove spikes fromneurons.The rules associatedwith each
neuronareused ina sequentialmanner, butneuronscommunicate
with eachother inparallel.Recently,SNPsystemshavebecomea
hot topic inmembrane computing [24]–[30].
SN P systems are a class of distributed and parallel computing

modelswithgoodunderstandabilityanddynamics [28], [29].The
fault occurrence in power systems is a discrete and dynamical
process [4]–[6]. Thus, SN P systems can be used for diagnosing
faults inpowersystems. In thepreliminarywork,wediscussedthe
knowledge representation ability of FRSN P systems [26], [27].
To successfully fulfill diagnosis knowledge representation and
reasoning, an FRSN P system with real numbers was presented
in [28],where only one transformerwas considered. In these sys-
tems, the potential value that a spike can take within a neuron
and the truth value of a fuzzy proposition (or confidence factor
of a production rule) are represented by real numbers in [0, 1]. In
[21], an approach based on the FRSNP system, presented in [28],
for fault diagnosis of power systemswas discussed and three dif-
ferent applications were used to verify its effectiveness. How to
handle the incompleteness and uncertainty of the alarm informa-
tion indifferentpowersystemsisworth furtherdiscussing.
To handle incompleteness and uncertainty in power transmis-

sion network fault diagnosis in electric power systems, a method
based on FRSN P systems, FDSNP, is developed in this paper.
In FDSNP, an FRSN P systemwith trapezoidal fuzzy numbers is
introduced to model candidate faulty sections and an algebraic
fuzzy reasoning algorithm of the FRSN P system is presented
for matrix-based fault reasoning to obtain confidence levels of
candidate faulty sections and identify faulty sections. In order to
make the process of building diagnosis models based on FRSN
P systems easily understandable, fault fuzzy production rule sets
to obtain the relationships between protective devices and faults
are presented.
The main contribution of this work is summarized as follows.

This study provides a fault diagnosis method based on FRSN

Fig. 1. Equipments and sections in a power transmission network.

P systems with trapezoidal fuzzy numbers for power transmis-
sion networks. The main ideas of this method include the in-
troduction of trapezoidal fuzzy numbers into FRSN P systems,
the fuzzy reasoning algorithm within the framework of FRSN
P systems with trapezoidal fuzzy numbers and the fault fuzzy
production rule sets based on syntactical ingredients of FRSN P
systems with trapezoidal fuzzy numbers. The use of trapezoidal
fuzzy numbers is helpful to express potential values of spikes
contained in neurons and the fuzzy truth values of the neurons
and consequently allows us to handle incompleteness and un-
certainty in power systems. The presented reasoning algorithm
uses an easily understandable description and has various kinds
of synaptic matrices to describe relationships among faulty sec-
tions, protective relays and their CBs more flexible and effec-
tive. The fault fuzzy production rule sets for main sections in-
cluding transmission lines, buses and transformers in transmis-
sion networks can offer the causality between the faults and the
statuses of protective relays and their corresponding CBs in an
intuitive and visual way.
The remainder of this paper is organized as follows.

Section II states the problem to solve. Section III presents
FDSNP. Following, seven case studies are provided in
Section IV. Conclusions are finally drawn in Section V.

II. PROBLEM DESCRIPTION

Strictly speaking, fault diagnosis includes fault detection,
fault section identification, fault type estimation, failure iso-
lation and recovery [17]. Among the five processes, fault
section identification is especially important [4], [5]. A power
transmission network is composed of transmission equipments
and converting equipments, as each of which consists of
many kinds of sections as shown in Fig. 1. In this paper, we
focus on the fault diagnosis of a power transmission network
because it is one of the major networks in power systems. In
this study, the faults of lines, buses and transformers in power
transmission networks are diagnosed by using the statuses of
protective relays and circuit breakers (CBs) because they are
normally read from a power SCADA system. The protective
relays consist of main protective relays (MPRs), first backup
protective relays (FBPRs) and second backup protective relays
(SBPRs). It is worth pointing out that there is not any FBPR for
buses. Fig. 2 shows a schematic illustration of the transmission
network with sections and protective relays considered in this
study.
Protective relays of transmission lines are of two types:

sending end protective relays and receiving end protective
relays. To illustrate the operational rules of different



Fig. 2. Schematic illustration of the power transmission network with sections
and protective relays considered in this study.

Fig. 3. Local sketch map of the protection system of an EPS.

types of protections, a local sketch map of the protection
system of an EPS is chosen from [4], [17] and shown in
Fig. 3, which includes 28 system sections, 40 CBs and 84
protective relays. For the convenience of description, some
notations are described as follows. A single bus, double
bus, transformer and line are represented by , , ,
and , respectively. and represent the sending and
receiving ends of the line , respectively. , , and
denote the main protection, the first backup protection
and the second backup protection, respectively.
The 28 sections are labeled as

and the 40 CBs
are labeled as .

The 84 protective relays are composed
of 36 main ones, represented by

, and denoted as

.
The operational rules of the protective relays for the three

kinds of sections, lines, buses and transformers, are described
in [17] as follows.
1) Protective relays of lines

Both ends of a line have their own main, first and second
protections. When the main protective relays of a line op-
erate, CBs connected to the line are tripped. For example,
if line fails, MPRs and are operate to trip

and , respectively. Likewise, when the main
protections of a line fail to operate, the first backup protec-
tive relays operate to trip CBs connected to the line. For
example, if line fails and main protection relay (MPR)

fails to operate, first backup protective relay (FBPR)

Fig. 4. Flowchart of FDSNP.

operates to trip . If line fails andMPR
fails to operate, FBPR operates to trip . When
the adjacent regions of a line fail and their protections fail
to operate, the second backup protections operate to protect
the line. For example, if section fails and fails to
trip off, second backup protective relay (SBPR) op-
erates to trip . If section fails and fails to
trip off, SBPR operates to trip .

2) Protective relays of buses
When the main protective relays of a bus operate, all CBs
direct connected to the bus will be tripped. For example, if
bus fails, MPR operates to trip , , and

. Similarly, if bus fails, MPR operates to trip
, , and .

3) Protective relays of transformers
When the main protective relays of a transformer operate,
all CBs connected to the transformer are tripped. For ex-
ample, if transformer fails, MPR operates to trip

and . Likewise, when the main protections of
a transformer fail to operate, the first backup protective re-
lays operates to trip CBs connected to the transformer. For
example, if transformer fails and MPR fails to op-
erate, FBPR operates to trip and . When
the adjacent regions of the transformer fail and their protec-
tions fail to operate, the second backup protections operate
to protect the transformer. For example, if bus fails and

fails to trip off, SBPR operates to trip to
protect .

In this study, FDSNP is used to fulfill fault diagnosis of main
sections, transmission lines, buses and transformers, in power
transmission networks when some incomplete and uncertain
status information about protective relays and CBs is detected.
The flowchart of FDSNP is shown in Fig. 4. First, the status
information is read from the SCADA system. Second, outage
areas are identified to obtain the suspected fault sections using
network topology analysis method [10], [31]. Third, a fault
diagnosis model for each section in each candidate outage area
is built. Then, each fault diagnosis model performs a fuzzy rea-
soning algorithm to obtain fault confidence levels of suspicious
fault sections. Finally, faulty sections are determined according
to their fault confidence levels. The key ingredients and steps
of FDSNP are presented in detail in Section III.



III. FDSNP

This section presents a graphic modeling approach, FDSNP,
for fault diagnosis of power transmission networks based on
FRSN P systems with trapezoidal fuzzy numbers. We first give
the definition of an FRSN P system with trapezoidal fuzzy num-
bers and then describe its algebraic fuzzy reasoning algorithm.
Subsequently, the fault fuzzy production rule sets for main sec-
tions including transmission lines, buses and transformers in
power transmission networks are presented. Finally, FDSNP is
algorithmically illustrated.

A. FRSN P Systems With Trapezoidal Fuzzy Numbers

Definition 1: An FRSNP systemwith trapezoidal fuzzy num-
bers (with degree ) is a construct

where
1) is a singleton alphabet ( is called spike);
2) are neurons of the form

, where
a) is a trapezoidal fuzzy number in [0, 1] representing

the potential value of spikes (i.e., the value of elec-
trical impulses) contained in neuron ;

b) is a trapezoidal fuzzy number in [0, 1] representing
the fuzzy truth value corresponding to neuron ;

c) represents a firing (spiking) rule associated with
neuron of the form , where is a
regular expression, and and are trapezoidal fuzzy
numbers in [0, 1].

3) with for all
, is a directed graph of synapses

between the linked neurons;
4) indicate the input neuron set and

the output neuron set of , respectively.
In an FRSN P system, the pulse value contained in each

neuron is not the number of spikes represented by a real
number, but a trapezoidal fuzzy number in [0, 1], which can
be interpreted as the potential value of spikes contained in
neuron . The motivation for the introduction of trapezoidal
fuzzy numbers comes from three aspects. First of all, due to
experts' subjectivity, professional knowledge acquisition has
various uncertainties. Subsequently, human knowledge in the
real world, such as knowledge in fault diagnosis process, is
usually expressed by using linguistic terms with a certain
degree of uncertainty. For example, we often use fuzzy con-
cepts (absolutely-false, very-low, low, medium-low, medium,
medium-high, high, very-high, absolutely-high) to describe a
degree of uncertainty. In addition, the knowledge in practical
applications may contain a certain degree of uncertainty. For
instance, the operation process of protective devices in fault
diagnosis usually includes uncertainly protective messages
such as maloperation and misinformation.
The trapezoidal fuzzy number in Definition 1 can be param-

eterized by a 4-tuple , as shown in Fig. 5,
where and are real numbers such that

Fig. 5. Trapezoidal fuzzy number.

, which are the four horizontal axis values of the trape-
zoid. The membership function of the trapezoidal fuzzy
number is defined as follows:

(1)

Let and be two trapezoidal fuzzy numbers,
and . The arithmetic

operations of the trapezoidal fuzzy numbers and are listed
as follows. More operations can be seen in [6] and [32].
1) Addition :

;
2) Multiplication :

.
We define four logic operations as follows, where and

are trapezoidal fuzzy numbers, and , are real numbers.
1) Minimum operator : ;
2) Maximum operator : ;
3) and :

;
4) or :

.
We also define a scalar multiplication operation as follows,

where is a trapezoidal fuzzy number and is a real number.
1) Scalar Multiplication:

.
With regard to the pulse value , if , neuron
contains a spike with value , otherwise, the neuron contains

no spike. The firing condition means that the spiking
rule associated with neuron can be applied if and only if the
number of spikes that neuron receives at any computational
step equals , otherwise, the firing rule cannot be applied. If the
number of spikes that neuron receives is less than , neuron
performs the operation or on the potential values carried

by these spikes to update its pulse value.
According to their usage, in an FRSN P system the neurons

are divided into two categories: proposition neurons and rule
neurons. Each neuron corresponds to either a proposition or
a fuzzy production rule, which will be described later in this sec-
tion. Thus, the trapezoidal fuzzy number can be understood
as either the fuzzy truth value of a proposition or the certainty
factor of a fuzzy production rule.



Definition 2: A proposition neuron, as shown in Fig. 6, cor-
responds to a proposition in the fuzzy production rules. Such a
neuron is represented by the symbol .
The fuzzy truth value of a proposition neuron equals to

the fuzzy truth value of the proposition corresponding to this
neuron. If such a proposition neuron receives one spike, i.e.,

, it will fire and emit a spike. The parameter of the
firing rule contained in such a proposition neuron is identical
to . If a proposition neuron is an input, then its pulse value
equals to the fuzzy truth value of this neuron. Otherwise, if
there is only one presynaptic rule neuron, then equals to the
pulse value transmitted from this neuron. In any other case,
equals to the result of the operation on all pulse values

received from its presynaptic rule neurons.
There are three types of rule neurons: general, and and or,

which are represented by the three symbols , and , re-
spectively. We use to denote a rule neuron. If the number of
spikes a rule neuron receives equals the number of its presy-
napses, it will fire and emit a spike. In what follows we define
each type of rule neurons.
Definition 3: A general rule neuron , as shown in Fig. 7 (i),

corresponds to a fuzzy production rule which has only one
proposition in the antecedent part of the rule. The consequent
part of the fuzzy production rule may contain one or more
propositions.
A general rule neuron has only one presynaptic proposition

neuron and one or more postsynaptic proposition neurons. The
fuzzy truth value of a general rule neuron equals to the certainty
factor of the fuzzy production rule corresponding to its neuron.
If a general rule neuron receives a spike with potential value
and its firing condition is satisfied, then the neuron fires and

produces a new spike with potential value .
Definition 4: An and rule neuron , as shown in Fig. 7 (ii),

corresponds to the fuzzy production rule which has more than
one proposition with an and relationship in the antecedent part
of the rule. The consequent part of the fuzzy production rule
contains only one proposition.
An and rule neuron has more than one presynaptic proposi-

tion neuron and only one postsynaptic proposition neuron. The
fuzzy truth value of an and rule neuron equals to the certainty
factor of the fuzzy production rule corresponding to its neuron.
If an and rule neuron receives spikes with potential values

, respectively, and its firing condition is satisfied,
then the neuron fires and produces a new spike with the poten-
tial value .
Definition 5: An or rule neuron , as shown in Fig. 7 (iii),

corresponds to the fuzzy production rule which has more than
one proposition with an or relationship in the antecedent part
of the rule. The consequent part of the fuzzy production rule
contains only one proposition.
An or rule neuron has more than one presynaptic proposi-

tion neurons and only one postsynaptic proposition neuron. The
fuzzy truth value of an or rule neuron equals to the certainty
factor of the fuzzy production rule corresponding to its neuron.
If an or rule neuron receives spikes with potential values

, respectively, and its firing condition is satisfied,
then the neuron fires and produces a new spike with the poten-
tial value .

Fig. 6. (a) Proposition neuron and (b) its simplified form.

Fig. 7. Rule neurons. (i) A general rule neuron (a) and its simplified form (b);
(ii) An and rule neuron (a) and its simplified form (b); (iii) An or rule neuron
(a) and its simplified form (b).

Fig. 8. Modeling process of Type 1 using one FRSN P system.

In what follows, we use FRSN P systems to model these
fuzzy production rules, which will be used to model fault
diagnosis in power systems. We consider four types of fuzzy
production rules. An FRSN P system is used to model one
or more fuzzy production rules. In the following description,

is the th fuzzy production rule, repre-
sents the number of fuzzy production rules, is a trapezoidal
fuzzy number in [0, 1] representing the certainty factor of
, is the th proposition appearing in the

antecedent or consequent part of , represents the number
of proportions, and is a trapezoidal fuzzy number in [0, 1]
representing the fuzzy truth value of proposition .
Type 1: . The

modeling process of this rule type by using one FRSN P system
is shown in Fig. 8, where (a), (b), and (c) represent spike being
transmitted from input neuron to output neuron . The fuzzy
truth value of the proposition is .



Fig. 9. Modeling process of Type 2 using one FRSN P system.

Fig. 10. Modeling process of Type 3 using one FRSN P system.

Type 2: .
The process of this rule type modeled by using one FRSN P
system is shown in Fig. 9, where (a), (b), and (c) represent
spike being transmitted from input neurons
to output neuron . The fuzzy truth value of the proposition
is .
Type 3: . The

process of this rule type modeled by using one FRSN P system
is shown in Fig. 10, where (a), (b), and (c) represent spike
being transmitted from input neuron to output neurons

. The fuzzy truth values of the propositions
are identical, i.e., .

Type 4: .
The process of this rule type modeled by using one FRSN P
system is shown in Fig. 11, where (a), (b), and (c) represent
spike being transmitted from input neurons
into output neuron . The fuzzy truth value of the proposition

is .
The fuzzy truth values of the propositions appearing in the

fuzzy production rules and the certainty factor of each fuzzy
production rule can also be described by using linguistic terms,

Fig. 11. Modeling process of Type 4 using one FRSN P system.

TABLE I
LINGUISTIC TERMS AND THEIR CORRESPONDING

TRAPEZOIDAL FUZZY NUMBERS

which are represented by the trapezoidal fuzzy numbers shown
in Table I.

B. Fuzzy Reasoning Algorithm
This subsection presents an algebraic fuzzy reasoning algo-

rithm for FRSN P systems with trapezoidal fuzzy numbers. If
the fuzzy truth values of the propositions corresponding to the
input proposition neurons are given, the algorithm reasons out
the fuzzy truth values of other unknown propositions corre-
sponding to the other proposition neurons in the FRSNP system.
The reasoning results are the fuzzy truth values of the proposi-
tions corresponding to the output neurons.
Let us assume that the FRSN P system used for knowledge

representation and reasoning contains proposition neurons and
rule neurons, each of which may be general, and or or rule

neurons. Thus, the total number of neurons is . To ex-
plain this reasoning algorithm, we first introduce some vectors
and matrices as follows.
1) is a vector containing the fuzzy truth

values of the proposition neurons, where is a trape-
zoidal fuzzy number in [0, 1] representing the pulse value
contained in the th proposition neuron, . If there
is not any spike contained in a proposition neuron, its pulse
value is “unknown” or (0, 0, 0, 0).

2) is a vector containing the fuzzy truth
values of the rule neurons, where is a trapezoidal fuzzy
number [0, 1] representing the pulse value contained in



the th rule neuron, . If there is not any spike
contained in a rule neuron, its pulse value is “unknown” or
(0, 0, 0, 0).

3) is a diagonal matrix, where
is a trapezoidal fuzzy number representing

the certainty factor of the th fuzzy production rule.
4) is a synaptic matrix representing the di-

rected connection from proposition neurons to general rule
neurons. If there is a directed arc (synapse) from the propo-
sition neuron to the general rule neuron , ,
otherwise, .

5) is a synaptic matrix representing the di-
rected connection from proposition neurons to and rule
neurons. If there is a directed arc (synapse) from the propo-
sition neuron to the and rule neuron , , other-
wise, .

6) is a synaptic matrix representing the di-
rected connection from proposition neurons to or rule neu-
rons. If there is a directed arc (synapse) from the proposi-
tion neuron to the or rule neuron , , otherwise,

.
7) is a synaptic matrix representing the directed

connection from rule neurons to proposition neurons. If
there is a directed arc (synapse) from the rule neuron
to the proposition neuron , , otherwise, .

Subsequently, we introduce following three multiplication
operations.
1) . Likewise,

, where
, .

2) , where
, .

3) , where
.

What follows is a description of a fuzzy reasoning algorithm
for an FRSN P system.

Input: the fuzzy truth values of the propositions corresponding
to the input proposition neurons

Output: the fuzzy truth values of the propositions corresponding
to the output proposition neurons

Step 1) Let be the reasoning step;

Step 2) Set initial values of , , , , and the
termination condition

. The initial values of and are set to
and , respectively.

Step 3) is increased by one.

Step 4) The firing condition of each input neuron or
each proposition neuron is evaluated. If the condition
is satisfied and there is a presynaptic rule neuron, the neuron
fires and transmits a spike to the next rule neuron.

Step 5) Compute the fuzzy truth value vector according
to (2):

(2)

Step 6) If , the algorithm stops and outputs the
reasoning results, otherwise, it go to Step 7).

Step 7) Evaluate the firing condition of each rule neuron. If
the condition is satisfied, the rule neuron fires and transmits a
spike to the next proposition neuron.

Step 8) Compute the fuzzy truth value vector according to
(3). Go to Step 3):

(3)

C. Fault Fuzzy Production Rule Sets
To obtain the causality between a fault and the statuses of its

protective devices, in this subsection we present fault fuzzy pro-
duction rule sets for main sections including transmission lines

, buses and transformers in transmission networks.
The fault fuzzy production rules consist of propositions and

certainty factors. A certainty factor represents the degree of con-
fidence that a fault occurs. Each rule has one certainty factor.
Due to the uncertainty of the knowledge of experts and senior
dispatchers, we use linguistic terms to describe certainty factors.
In the sequel, we introduce the fault fuzzy production rule

sets for three main sections: lines, buses and transformers.
A line has six types of protections: sending end main protec-

tions, sending end first backup protections, sending end second
backup protections, receiving end main protections, receiving
end first backup protections and receiving end second backup
protections. The fault fuzzy production rule set for lines con-
tains nine rules, in which the meaning of each proposition is
shown in Table II:

The fault fuzzy production rule set for buses contains two
rules, in which the meaning for each proposition is shown in



TABLE II
MEANING OF EACH PROPOSITION IN RULE SET OF L

TABLE III
MEANING OF EACH PROPOSITION IN RULE SET OF B

TABLE IV
MEANING OF EACH PROPOSITION IN RULE SET OF T

TABLE V
CONFIDENCE LEVELS OF THE OPERATED PROTECTIVE DEVICES

Table III:

The fault fuzzy production rule set for transformers contains
three rules, in which the meaning for each proposition is shown
in Table IV:

The information obtained from the SCADA system may in-
clude operation failure, maloperation and misinformation; it is
necessary to use a confidence level to describe the operation ac-
curacy of each section. Thus, we assign an empirical confidence
level to each protective device including the protective relay
of each line, bus or transformer, or each of its corresponding
CBs. Tables V and VI show the confidence levels of the oper-
ated protective devices and the non-operate protective devices,
respectively.

TABLE VI
CONFIDENCE LEVELS OF THE NON-OPERATE PROTECTIVE DEVICES

D. Algorithmic Elaboration of FDSNP
This subsection summarizes the FDSNPmethod, whose flow-

chart is shown in Fig. 4, as follows.
Step 1) Read operation messages about protective relays

and/or CBs in a power transmission network from
the SCADA system.

Step 2) Search for outage areas. We suggest network
topology analysis because it decreases the number
of candidate diagnosing areas and reduce the sub-
sequent computational workload [10]. The search
process is described as follows:

i) Let the search iteration ;
ii) Construct a set of section numbers: as-

sign a number to each section in the power
transmission network. The numbers of all
sections constitute the set ;

iii) Construct a subset of section numbers:
put the number of a randomly chosen sec-
tion from into the subset . If there is
a closed CB connecting this chosen section,
find all the closed CBs connecting it, other-
wise, go to vi). Find all the other sections
linking with each of the closed CBs and put
their numbers from into . Continue to
find the closed CBs and sections according
to those in ;

iv) is increased by one;
v) Construct the set : remove the numbers

of the sections in from and obtain
. If is not empty, the search process

goes to (iii);
vi) Find passive networks, i.e., outage areas,

from , where is the
maximum number of all numbers referring
to section subsets. The search process stops.

Step 3) If there is only one section in the passive networks
found in Step 2, this section is the faulty one and the
algorithm stops, otherwise, a fault diagnosis model
based on an FRSN P system is built for each sec-
tion. The model-building process is described as fol-
lows. A section in the passive network is chosen
randomly. According to the relay protections of the
section, we design fault fuzzy production rules and
then determine proposition and rule neurons and
create their linking relationship to obtain the FRSN
P system. The certainty factor of each rule is empiri-
cally set. According to Tables V and VI, we set con-
fidence levels for main protections, first backup pro-



TABLE VII
STATUS INFORMATION ABOUT PROTECTIVE RELAYS AND CBS

tections, second backup protections and their CBs.
Then a one-to-one relationship between the fuzzy
truth value of each input neuron and the confidence
level of each protection is established to obtain the
initial values of the model.

Step 4) The algebraic fuzzy reasoning algorithm is used to
acquire the fault confidence level of each section.

Step 5) If the confidence level of a section satisfies the
condition , the section
is faulty, otherwise, if satisfies the condition

, the section is not faulty,
otherwise, the section may be faulty.

IV. CASE STUDIES
In this section, seven cases of the local system in an EPS

shown in Fig. 3 are considered as examples to test the effective-
ness and superiority of FDSNP. These cases include single and
multiple fault situations. The status information (with/without
incompleteness and uncertainty) about protective relays and
CBs is shown in Table VII, where “ ” means that this case
includes incomplete or uncertain status information from the
SCADA system.
FDSNP is used to diagnose faults for the seven cases, and the

diagnosis results are shown in Table VIII, which contains the
faulty sections and their fault confidence levels. Table VIII lists
the fault confidence levels of only faulty sections. In fact,
FDSNP provides fault confidence levels of all diagnosed sec-
tions. Four diagnosis methods, fuzzy logic (FL) [3], fuzzy Petri
nets (FPN) [4], genetic algorithm-tabu search (GATS) [15], and
genetic algorithm (GA) [17], are used as benchmarks to perform
comparative experiments. The reason that we choose the four
methods is that they considered the same local electrical power
system as FDSNP as well as the same cases. The diagnosis

TABLE VIII
FAULT SECTIONS AND THEIR FAULT CONFIDENCE LEVELS

OBTAINED BY USING FDSNP

results of the five methods are shown in Table IX, where “-”
means that this case was not considered in the corresponding
reference. It is worth pointing out that FL in [3] used only the
information about CBs and the diagnosis results of GA in [17]
may contain multiple solutions, such as Cases 5–7.
From Table VIII, we can see that the fault confidence levels

represented by trapezoidal fuzzy numbers provide a quantita-
tive description for the faulty sections which makes these re-
sults more reliable. The linguistic terms corresponding to these
trapezoidal fuzzy numbers provide a more intuitive and flexible
way for experts and dispatchers than probability values, since
their knowledge usually contain linguistic terms with a certain
degree of uncertainty.
From Table IX, we can see that the diagnosis results of

FDSNP, in Case 1 and Cases 3–6, are the same as those in [3]
and [4], in other words, FDSNP is effective in fault diagnosis of
power transmission networks in power systems. Table IX also
shows that, in some cases, FDSNP is superior to FL, FPN, and
GA on correctly identifying fault sections. For instance, in Case
7, the fault diagnosis result of FDSNP is different from those
in [3], [4], and [17]. In this case, for section , only its second
backup protective relay operated and actually,
operated as the second backup protective relay of section .
So in fact, is not a faulty section. For section , its main
protective relay operated and tripped its corresponding
CBs, , and . So is a faulty section. Thus,
for Case 7, the diagnosis result of FDSNP and GATS is better
than those in [3], [4], and [17]. In Cases 5–7, comparisons
of diagnosis results between FDSNP and the methods in [17]



TABLE IX
COMPARISONS BETWEEN FDSNP AND FOUR FAULT DIAGNOSIS METHODS

show that FDSNP can solve the nonuniqueness problem of the
diagnosis solution, which proves the correctness of FDSNP
in diagnosing faulty sections. Besides, the diagnosis results in
Cases 2 and 7 show that FDSNP can obtain satisfying results in
the situations with incomplete or uncertain alarm information.
Therefore, from the seven typical cases, FDSNP is effective
with a good accuracy in fault diagnosis of power transmission
networks.
In what follows, we use Case 1 and Case 2 as examples to

illustrate the steps of FDSNP.
Case 1: complete information is obtained from the SCADA

system. Operated relays: , , and .
Tripped CBs: , , , , , and

.
The search process of outage areas is described as follows.
1) Construct the set of section numbers:

, where
numbers 01 04 represent four joint nodes, which are
considered as active nodes, between the local power
system in Fig. 3 and other parts of the power system.

2) Construct the subset of section numbers: add number
1 into and find all the closed CBs, i.e., , , and

, connecting the section 1. Find all the other sections,

Fig. 12. Fault diagnosis model of bus based on an FRSN P system.

i.e., 01, 13, and 14, linking with , , and and
add them into . No other closed CB is found according
to the sections in . Thus, .

3) Construct the set : remove the numbers of the
sections in from and obtain

.
4) Construct the subset : add number 2 into and exe-

cute the step 3) in Step 2 in Section III-D. We get
.

5) Construct the set : remove the numbers
of the sections in from and obtain

.
6) Construct the subset : add number 4 into and

execute step (iii) in Step 2 in Section III-D. We get

.
7) Construct the set : remove the numbers of the sections

in from and obtain .
8) Find one passive network in

, where the numbers 2, 3, 16, 20 represent
bus , bus , line and line , respectively. The
search process stops.

In what follows we take bus as an example to show how to
use Steps 3–5 in Section III-D. The fault diagnosis model of
based on an FRSN P system is constructed and shown in Fig. 12,
where there are 35 proposition neurons and 19 rule neurons. In
this figure, there are four assistant arcs (synapses), i.e., (3,41),
(3,42), (4,43), and (22,52), marked by hollow tips. We take the
arc, from to , as an example to illustrate the meaning of
these assistant arcs. The arc (3,41) means that if opens,
the operation of and is invalid and then the values
of and are set as (0,0,0,0); otherwise, the operation



of them is valid. The fuzzy reasoning process is described as
follows.
According to the alarm information in Case 1 and Tables I,

V, and VI, we obtain the trapezoidal fuzzy numbers and .
In our case studies, numbers are vectors of dimension 35 and
numbers are vectors of dimension 19:

When , we get the results

When , we get the results

When , we get the results.

When , we get the results

Thus, the termination condition is satisfied and the reasoning
process ends. We obtain the reasoning results, i.e., the fuzzy
truth values (0.975, 0.98, 1, 1) from output neuron .
According to the condition in Step 5 in Section III-D, is a

faulty section with a confidence level .
Similarly, we obtain that , and have the same con-

fidence level (0.04, 0.1, 0.18, 0.23). According to the condition
in Step 5 in Section III-D, , line , and line are not faulty
sections.
Case 2: incomplete information is obtained from the SCADA

system. Operated relays: and . Tripped CBs: ,
, , , , and . In other words, the status

information about is missing in this case.
We use the same method as in case 1 and obtain one passive

network {2, 3, 16, 20}. In what follows we also take bus as
an example to show how to use Steps 3–5 in Section III-D.
According to the alarm information in Case 2 and Tables I,

V, VI, we obtain the trapezoidal fuzzy numbers and :
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Due to limited space, only the final result of Case 2 is given.
We obtain the reasoning results, i.e., the fuzzy truth values
(0.5655, 0.6174, 0.80, 0.86) of the output neuron .
According to the condition in Step 5 in Section III-D,

may be a faulty section with a confidence level (0.5655, 0.6174,
0.80, 0.86). Similarly, we obtain that , , and have the
same confidence level (0.04, 0.1, 0.18, 0.23). According to the
condition in Step 5 in Section III-D, bus , line , and line

are not faulty sections. Therefore, we get a result that is
the faulty section with a confidence level (0.5655, 0.6174, 0.80,
0.86) ( . Although
Case 2 has incomplete alarm information, the diagnostic result
is the same as that in Case 1.
Since the analysis and fuzzy reasoning processes of other

cases are similar to Cases 1 and 2, we omit them here.

V. CONCLUSIONS

In this study, a graphic modeling approach, FDSNP, based
on FRSN P systems with trapezoidal fuzzy numbers is pre-
sented for fault diagnosis of power transmission networks. This
approach provides a good accuracy of diagnosis solutions and
a rather understandable fault diagnosis process because of its
intuitive illustration of graphical models and understandability
of diagnosis model-building process. In addition, FDSNP can
handle incomplete and uncertain messages from a SCADA
system by using trapezoidal fuzzy numbers and fuzzy produc-
tion rules.
Furthermore, this method can be used for large-scale power

transmission networks because the complexity of the fault di-
agnosis models based on FRSN P systems does not increase
sharply and quickly with the scale of networks. When a fault
occurs, outage areas are firstly identified according to SCADA
data and then fault diagnosis models for suspicious sections
in each outage area are constructed [10], [15]. Thus, FDSNP
avoids the construction of a large diagnosis model for an entire
power transmission network by sequentially and simply con-
structing one for each suspicious section. This makes the com-
putation of matrix dimensions in this fuzzy reasoning algorithm
for each used fault diagnosis model is independent of the scale
of the entire network. In other words, in FDSNP the complexity
of the FRSN P systems used does not have a direct relationship
with the scale of the network, and therefore, the complexity of
the FRSN P systems does not increase sharply with the scale
of the power transmission network, so it can be used in a large
system.
This study proposes FDSNP and tests its validity and feasi-

bility in diagnosing faults in power transmission networks. In
this method, the set of linguistic terms and their corresponding
trapezoidal fuzzy numbers are decided in an empirical way.
So the following work about the choice of the set of linguistic
terms and their corresponding trapezoidal fuzzy numbers,
FDSNP based on software, P-Lingua [33] and MeCoSim [34],
in JAVA language is now in progress. Future work will focus
on verifying the performance superiority of FDSNP, compared
with other diagnosis methods, by using performance metrics
including diagnosis time, fault section misinformation rate,
fault section missing rate and computational complexity.
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