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Abstract. To analyze the dynamics of small, spherical, rigid bubbles in a certain class of turbulent 
shear flows dominated by large scale coherent vortical structures, we model the plane free shear layer 
with a periodic array of Stuart vortices. The equation of motion of the bubbles is then integrated 
numerically to obtain the Lagrangian description of the bubbles, the long-term dynamics of which 
depends on the free-stream Reynolds number, the Stokes number, the gravitational field, and the 
strength of the vortices. Depending on the values of these four parameters, it is found that either there 
exists a stable equilibrium point near the center of each vortex, where bubble accumulation occurs, 
or all bubbles escape from captivity by the vortices. In the limiting case of dominant viscous drag 
forces, an Eulerian description of the "bubble flow field" is derived. Furthermore, the divergence of 
this flow field is negative in the neighborhood of a vortex center, where it achieves its minimum. 
This indicates that bubbles accumulation may indeed exist, and thus qualitatively confirms the more 
general numerical results obtained without the assumption of dominant viscous drag forces. 
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1. I n t r o d u c t i o n  

In this paper, we examine the dynamics  of  bubbles in a certain class of  turbulent 
shear flows dominated by large scale vortical structures. To this end, the plane 
free shear layer  be tween two parallel s treams is modeled with a spatially periodic 
array of  vort ices given by Stuart 's  [6] solution to the two-dimensional ,  steady-state,  

incompress ible  Euler  equation. We assume that the size of  the bubbles and their 

concentrat ion are sufficiently small  so that their mutual  interactions and effects on 
the base  flow can be neglected. Furthermore,  surface tension is also assumed to be 

large enough so that the bubbles  take the form of  a spherical rigid particle. 

The mot ion of  heavy  particles in a row of  Stuart vortices under  the influence of  
gravity has been studied by Gafifin-Calvo and Lasheras  [2]. It is found that heavy  
particles can be permanent ly  suspended in motion along open trajectories above 
the vortices. In the case of  bubbles,  however,  this suspension mode  does not exist. 
Instead, a bubble  either escapes  due to its buoyancy,  or is captured by a vortex and 
remains  t rapped at the stable equil ibrium point near  the center o f  the vortex. The 
ent rapment  of  bubbles  by  a vortex has also been observed in other types of  vortical 
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flows, such as a Langmuir cellular flow [4] and the flow field generated by a line 
vortex [7, 8]. 

In this paper, we present the results obtained by numerically integrating the 
equation of motion of the bubbles. We also investigate the effects of the parameters 
in the governing equations on the dynamics of the bubbles. These parameters are: 
the free stream Reynolds number, the Stokes number, the strength of the Stuart 
vortices, and gravity. 

2. Governing Equations 

In dimensionless form, the dynamics of a small, rigid, spherical bubble is governed 
by the momentum equation [1, 3] 

d V  
= 3 u .  V u  + ( u -  V)  Afd + 2Bey (1) 

dt 

together with 

d x p  
- v ,  (2)  

dt 

where V = (Vx, Vy) and u = (ux, Uy) are the bubble and fluid velocities, re- 
spectively, Xp denotes the instantaneous position of the bubble, and ey is a unit 
vector in the y-direction. In equation (1), the density of the gas inside the bubble 
has been ignored in comparison to the fluid density. The non-dimensionalization of 
equations (1)-(2) is accomplished through the use of the length scale L -- A/2zr, 
the time scale T = L/Uoo, and the free-stream velocity Uoo. Here, A is the distance 
between the centers of two contiguous vortices. The two dimensionless quantities 

36uL Lg 
A = Uood2, B =- U2 , (3) 

where u is the fluid viscosity, d the bubble diameter, and g the acceleration of 
gravity, are the inverse of the Stokes number and the gravitational parameter, 
respectively. Note that we have chosen gravity to point in the negative y direction. 
The coefficient fd accounts for the effect of non-zero Reynolds number on the 
viscous drag acting on the bubble, and is given by [5] 

( 2 
J 3 (1 + 0.1Rer), Rer < 2.0 

fd [ 0.621Re °'22, 2.0 < Rer <_ 50.0. 

(4) 

In equation (4), Rer is the instantaneous Reynolds number of the bubble based 
on its velocity relative to the fluid, and is given by Rer = [u - VI Re, where 
Re =- Uood/u is the free stream Reynolds number. 
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Fig. 1. T h e  trajectories of  a bubble  trapped by a vortex and one  that escapes.  The  dashed  curves  are 
the s t reamlines .  The  four  parameters  are: k = 0.25, A = 7, B = 0.1, R e  = 100. 

The flow field selected for our study consists of a periodic array of Stuart 
vortices. In dimensionless form, the velocity field is given by 

sinh y k sin x 
= - - ( 5 )  

ux cosh y - k cos x '  uu - cosh y - k cos x '  

where the parameter k is a measure of the strength of the vortices. For k = 1 the 
flow field consists of a row of point vortices, while k = 0 corresponds to the tanh y 
shear layer. 

3. Results and Discussion 

The dynamical system of (1)-(2) is integrated using the fourth-order Runge-Kutta 
scheme with a time step of 0.01. The accuracy of this integration step is examined 
in a few test cases and appears to be acceptable. To integrate (1)-(2), the initial 
bubble velocity is chosen to be equal to that of the fluid particle at the initial 
position of the bubble. 

Depending on the values of the four parameters A, B, k, and Re ,  either all 
bubbles escape to y = oo or some of them are trapped by the vortices. In the 
entrapment regime, a bubble, depending on its initial position, either escapes to 
y = oo, or is captured by a vortex and spirals into a fixed point located near the 
vortex center. These two possibilities are clearly illustrated in Figure 1. We point 
out that the bubbles trapped by a vortex all asymptotically approach the same 
stationary point, where they remain at rest. In fact, linear stability analyses of 
equations (1) and (2) reveal that this stationary point is stable[9]. 

In Figure 2, we show the regions of entrapment and no entrapment of bubbles 
in three subsets of the parametric space with fixed k and Re.  As an illustration, 
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Fig. 2. Regions of entrapment and no entrapment of bubbles in three subsets of the parametric space 
with fixed k and Re. Each curve represents the boundary between the two regions of its respective 
subset. Curve 1, k = 0.2, Re = 100; curve 2, k = 0.2, Re = 150; curve 3, k = 0.3, Re = 100. 

consider the case represented by curve 1, for which k = 0.2 and Re = 100. 
For  a fixed A, say 7.0, and a sufficiently small B,  bubbles which do not escape 
to y = oc asymptotically accumulate at the stable equilibrium point inside the 
vortices. However ,  when B is increased beyond the threshold value of  0.875 given 
by curve 1, the buoyancy force becomes so large that no bubble can be held captive 
and all o f  them escape to y = co; this situation corresponds to the disappearance 
of  the equil ibrium points of  the dynamical  system of  (1)-(2). When Re increases, 
so does the threshold values of  B for bubble entrapment, and curve i shifts upward 
(compare curves 1 and 2). Apparently, an increase in Re results in a greater viscous 
drag so that it can counteract  against a larger B.  Since a larger k corresponds to 
stronger Stuart vortices, an increase in k results in the larger threshold values of  B 
for bubble entrapment;  this is clearly illustrated by cases 1 and 3 of  Figure 2. 

To gain further insight to the dynamics of  bubbles in the Stuart vortex flow, let 
us assume that the viscous drag is the dominant force acting on the bubbles. Then, 
under  the assumption of  3' = 1lArd << 1, we obtain from equation (1) the bubble 
velocity 

V ,-~ u q- 2 [u • X7u q- Bey]  3, q- 0 (3,2),  (6) 

which states that the velocity of  a bubble is equal to that of  the local fluid particle, 
except  for  a small perturbation of  O (7). Taking the divergence of  the "bubble flow 
field", equation (6), we obtain 

k2 (cos2x +cosh2ff) - (k2 + l) kcosxcoshy 
V • V = 47  (cosh y - k cos x) 4 (7) 
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Fig. 3. Spatial variation of D = (1/47) V.  V for k = 0.25. 

In Figure  3, the quant i ty  D = (1/43,) V • V is plot ted for  the case o f  k = 0.25. 

No te  that D < 0 in the ne i ghbo rhood  o f  the vor tex center, where  it achieves  its 

m i n i m u m  value. Intuit ively,  this means  that cor rec t  up to O (-y), bubbles  captured  

by  a vor tex  all accumula te  at the center  o f  that  vortex. 
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