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Dr. José Francisco Quesada Moreno, University of Seville

in partial fulfilment of the requirements for the degree of Máster Universitario en Matemáticas.
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Abstract

During last years the application of deep learning techniques has changed our lives from

banking operations to medical diagnosis techniques. Unfortunately the ancient stereotype

of neural networks as black boxes remains almost unaltered. We need models able to shed

light on the endless list of unanswered questions about deep learning but our society has

clearly tipped the balanced in favour of gaining accuracy of models. With everyday passing,

the lack of a solid mathematical framework is becoming a greater problem.

In this thesis a research line in the opposite direction is presented: the interpretation of Re-

current Neural Networks as discrete time dynamical systems. This idea offers a completely

new point of view for an understanding of neural networks. This ”simple fact” equips us

with the huge machinery of this branch of mathematics. Concepts such as state spaces,

orbits, limit sets and attractors take on meaning in a new scenario.

Instead of a simple enumeration of the implications of this new perspective we have selec-

ted a dual approach. First, highlighting the connections between recurrent networks and

dynamical systems. Secondly, these ideas have been applied to a simple but illustrative

toy case. A sequence of type anbn is used as input to a RNN that tries to predict the

next symbol of the sequence. First of all, different dimensionality reduction techniques are

explored in order to obtain interpretable 2D/3D plots. Using these graphs the state space

of the network after training is analysed. The transitions between states are made expli-

cit and the orbits deformations during network training can be observed. Using different

initial seeds the existence of line attractors becomes evident. Hidden layer dimensionality

parameter space is studied obtaining that an increment in the distance between attractors

is observed as dimension increases. Finally, it is shown the impact of noise on the attractors

structure.



Resumen

Durante los últimos años hemos asistido a cambios en nuestra vida cotidiana asociados

al deep learning: desde las operaciones bancarias hasta el diagnóstico médico. Desgra-

ciadamente, el estereotipo de caja negra que desde sus inicios ha acompañado a las redes

neuronales apenas se ha visto alterado. Necesitamos modelos que arrojen luz a la lista inter-

minable de preguntas sin respuesta relacionadas con el deep learning pero, como sociedad,

hemos preferido centrar los esfuerzos en arañar décimas a la precisión de los modelos. De

hecho, cada d́ıa que pasa, el no disponer de un marco matemático sólido es un problema

mayor.

En este trabajo se muestra una de las ĺıneas de investigación en la dirección opuesta: la

interpretación de las redes neuronales recurrentes como sistemas dinámicos en tiempo dis-

creto. Este ”simple hecho” nos permite acceder a la potente maquinaria de esta rama de las

matemáticas. Conceptos como espacios de estados, órbitas, conjuntos ĺımite o atractores

cobran sentido en este nuevo escenario.

En lugar de una mera exposición de las implicaciones de esta nueva perspectiva, hemos

optado por una visión dual. Presentando, en primer lugar, las conexiones entre las redes

recurrentes y los sistemas dinámicos. Para posteriormente ilustrar estas ideas mediante

un caso de uso muy simple. Para ello, alimentamos una RNN mediante una secuencia de

entrada del tipo anbn y la red debe predecir el siguiente śımbolo en la secuencia. En primer

lugar, hemos explorado diferentes técnicas de reducción de la dimensionalidad para obtener

representaciones en 2D/3D del espacio de estados de la red tras el entrenamiento. Las transi-

ciones entre estados se muestran expĺıcitamente y se pueden observar las deformaciones de

las órbitas durante el entrenamiento. Mediante la utilización de diferentes semillas podemos

ver claramente la existencia de attractores unidimensionales. Asimismo, analizamos el es-

pacio de parámetros de la dimensión de la capa oculta, mostrando como una reducción de

la dimensionalidad, reduce la distancia entre los atractores. Finalmente, añadimos ruido a

la señal de entrada observando cambios en la estructura de los atractores.
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Chapter 1

Introduction

Last decade has witnessed huge advances in the application of deep neural networks into

different fields of Artificial Intelligence (AI). First practical advances were obtained thanks

to the application of convolutional architectures (CNN) to image problems (Zou et al.

2019). After that, the development of different types of recurrent networks (RNN) has

successfully tackled problems related to natural language processing (NLP) (Baktha and

Tripathy 2017). In parallel the field of non-supervised learning has been addressed using,

among others, adversarial networks (GAN).

The above problems were mainly related to the so called non-structured data types (i.e.

images, audio waves or video) while other classical machine learning techniques were con-

sidered more suitable to deal with structured-data problems (i.e. classical tabulated data-

sets). As a result, neural networks were initially discarded as an useful approach for this

type of problems. In the last years a complete reversal of this former view has happened,

brought about among other things by excellent results obtained in the analysis, treatment

and forecasting of time series (Hewamalage et al. 2020). These success has been possible

thanks to the reuse and combination of techniques initially design for structured-problems.

All these achievements have been made possible by deep learning (DL) and its complex ar-

chitectures. Associated to these advances, a great variety of techniques have been developed

for network training: drop-out, weight-decay, batch-normalization, different strategies for

weight initialization or even activation functions with desirable properties. All these tech-

niques have made possible training deep networks and augmented their generalization cap-

abilities.

In parallel new fresh ideas as Transfer Learning have arisen, where the knowledge captured

by the network during the problem resolution, can be reused as a starting point for solving

problems of a different nature than the original one.

Current memory storage price is nearly free allowing a huge data availability in almost

every field. On the other hand, the generalized use of GPUs and TPUs are providing

computational capabilities never known before. These technical advances are all fostering

the development of real life applications based on DL techniques with impact in our society.
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Imagine a deep learning model used for medical diagnosis. One day the model throws a

completely different treatment to the proposed by human experts. Which one should be

selected? Nowadays, there is probably no doubt: we would rely on the human criteria. But

what makes humans to be scared about certain machines decisions? As a good black box,

neural networks are not able to argue their decisions, becoming a matter of faith based upon

their excellent accumulated results. Sooner rather than later, the argument of the Minority

Report movie will become true, where the foreknowledge of precogs will be substituted by

deep learning models. On that day, our lives will be in the hands of machines forecasting

possible crimes. Do you think is not worth investing time in mathematical foundational

models of deep learning?

Hence, before any neuronal network is deployed it seems reasonable to understand the

internal mechanisms used by the network to solve a problem, why the results are the ones

offered by the model and not another ones or to identify if the model presents some kind

of bias not obvious for the designer.

Once in this wave, deeper questions arise: why some architectures are more suitable for a

problem than another, why a concrete number of layers and neurons per layer is suitable for

a problem or if there exist critical parameters in the net that should not be altered to ensure

the stability of the results. What if a trade-off between different parameters of the network

could be identified. Perhaps modifying some elements an equivalent simplified network

could be found or, even further, which high-level network parameters impact in the training

speed. What if there exists a theoretical limit to the minimum amount of training data

necessary to solve a problem. It could be interesting to determine if there exists a critical

point where it is not worth obtaining more training data because the resulting increase of

accuracy would be negligible. A countless amount of questions can be formulated.

Unfortunately, this successful history of DL techniques solving real life problems has not

been accompanied by a deep comprehension of its internal mechanisms and there is a lack of

solid mathematical foundations. On the contrary, practical solutions are evolving towards

increasingly complex structures with dozens of layers and hundred of nodes per layer. Such

a complexity level makes even more challenging to understand what is happening inside the

net, how it has been able to generalise and which are the core ideas its behaviour is relying

on. It is the famous idea of neural networks as black-boxes. As a result, all the previous

questions remain already unanswered.

As in any other science or engineering field, there is a moment when although practical

successes are accumulating, rigorous mathematical models are needed to push further the

frontiers of knowledge in the field. It would allow to base conclusions obtained from empir-

ical results, identify wrong conclusions and understand what has lead to those errors. On
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the other hand new mathematical models allow to formulate questions in a new framework,

to derive unexpected conclusions, to study known problems from a fresh point of view or

even to study unexplored related problems.

This Master Thesis is an alligate against a narrow vision of neural networks and deep

learning: many times based on hypes that distract the investigation from core ideas. We

have lost a primitive idea that impregnated neural networks that year after year has been

buried under tons of excellent practical results. It is the perspective of neural networks as

dynamical systems.

This work is structured as follows, Chapter 1 presents a general justification of the interest

of the ideas included in this work. In Chapter 2 it is shown that since their origins connec-

tionist models have a ”dynamical flavour” around them. Also a brief description of the main

milestones in the history of neural networks are presented and how they have led to the

classical feed-forward networks. Chapter 3 highlights the limitation of these feed-forward

networks to tackle problems when time is involved. The evolution of RNNs until its cur-

rent situation is presented and the most common conventions for representing RNNs are

described. The mathematical formulation of RNNs obtained in Chapter 4 allows us to inter-

pret this type of networks as discrete time dynamical systems enabling us to analyse them

under a completely new perspective. The ideas exposed in the previous chapter are only

valid for autonomous systems but real-life systems are input driven non-autonomous sys-

tems much more difficult to analyse. Consequences of this issue in RNN training are exposed

in Chapter 5 and some recent works trying to avoid this non-autonomous consequences are

also presented. In Chapter 6 these ideas are applied to a simple but illustrative toy problem

where a RNN is fed with a sequence of type anbn and the net is trained to predict the next

symbol in the sequence. The dimensionality of the network makes the visual interpretation

of the phenomenon difficult. Thus, in Chapter 7 dimensionality reduction techniques are

analysed and Principal Component Analysis (PCA) and Multidimensional Scaling (MDS)

are selected as suitable for our problem. These projections in a 2D/3D space are used in

Chapter 8 to plot the orbits in the state space of the trained network. This idea is exten-

ded and the intermediate state spaces captured during network training are composed to

show how orbits suffer deformations while the optimization process is acting on the network

weights. A core idea in dynamical systems is the existence of different kind of attractors.

In Chapter 9 orbits obtained using different seeds are plotted and two clear regions appear

acting as line attractors. The hidden dimension role in attractors topology is analysed,

obtaining that it controls the distance between line attractors. The higher the network

dimensionality, the greater the distance between the attractors. Noise addition to the input

sequence is considered in Chapter 10 giving rise to spreader attractors and making net-

work predictions more difficult. Finally in Chapter 11 some conclusions and further lines
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of investigation are presented.

All the results presented in this work have been performed using a custom library developed

from scratch using Python3 as programming language. As the main purpose of this thesis

is to present a general overview of the dynamical system theory applied to RNNs, no

source code descriptions have been included. However, some footnotes are given during

the dissertation to make easier the association between library variables and the presented

ideas. 1

1github: https://github.com/esanchek/State Space Analysis



Chapter 2

Back to the roots: dynamics everywhere

2.1 Parallel Distributed Processing Framework

In the 80’s the MIT PDP Research Group (Parallel Distributed Processing) proposed a new

framework for modelling human cognition (perception, memory, learning and, in general,

any intelligent information processing). This model was called connectionist because its

central idea was that our brain is composed by a great number of elementary units (neurons)

connected in a network. In this context, mental processes consist of interactions between

neurons in a parallel manner rather than as mere sequential operations. Following this idea,

knowledge is no longer stored in localized structures. Instead, it consists of connections

between pairs of neurons distributed throughout the network. The most impressive idea

that underlies behind this model is that intelligence would emerge from the interaction of

large number of simple processing units. With these works, the sadly period known as AI

Winter came to an end (David E. Rumelhart and James L. McClelland 1986).

These units, organized into sets called pools, and the weighted connections between pools,

known as projections, constitute the network architecture within which excitatory and in-

hibitory signals propagate. Units receive inputs from other neurons and also may receive

external inputs. Meanwhile, outputs may be propagated out of the network. Processing

takes place in a single step of time and consists on propagating activation signals from units

to others, weighted by the strength of the connection between each pair of units. All these

weighted signals are added at the receiving input and passed through an specific activation

function that provides the activation for the next processing step. Those units that can

receive direct input from outside the network are called visible units and those that can-

not are called hidden units. The connection weights could be adjusted as a result of some

training processing.

According to this description, PDP could be thought as is a mere proto-description of a

nowadays deep learning network, assimilating pools to layers and projections to the con-

nections between layers. But PDP is a framework that generalizes them where any kind of

connections are allowed: between units of different pools, neurons of the same pool and even
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bidirectional connections. Therefore, it is not feasible to prefix a global learning mechanism

of projection layer weights.

Applying constraints to the architecture elements, a broad range of different network oper-

ating schemas can be obtained. Two of them are analysed in the following sections:

� The competitive learning architecture implements an unsupervised learning schema

where interactions among its neurons give rise to a dynamics in the system associated

to changes in connection weights until an equilibrium point is reached. Kohonen maps

are an special case of this structures.

� Pattern associators architectures work under a supervised learning paradigm. In this

case, there exists a reference of the correct output of the network for each input

pattern. The difference between the expected output and the obtained is used to

adjust weights between neurons. The well known feed-forward networks are a type of

pattern associators.

As we will see, in both cases there exists a dynamical behaviour associated to the network.

In competitive learning the dynamics is ”explicit”, consisting on an adjustment of its weights

until a new equilibrium is reached each time a new pattern is presented to the network. In

pattern associators there exists an ”implicit” dynamics associated to the learning process

via backpropagation until an optimal set of weights is reached.

2.2 Competitive learning and Self-Organizing Maps (SOM)

In this structure, as shown in Fig.2.1, processing units are organized in a set of hierarchically

layered competitive pools where each unit of a layer receives an input of each unit of the

other layer and also can project to each unit of the next layer. The number of layers is

arbitrary and units of a layer are divided into a set of non-overlapping clusters. All elements

within a cluster inhibit all other neurons in the same cluster such that the more strongly any

particular unit responds to an incoming stimulus, the more it shuts down the other members

of its cluster. Thus, only one unit per cluster may be active achieving its maximum value

while all other units are pushed to their minimum value. In this schema units are all the

same except for some randomly distributed parameter which makes each of them respond

slightly differently to a set of input patterns.

The learning rule distributes a fixed amount of weight associated to each unit among its

input connections. If an unit responds to a particular pattern and wins the competition,

each of its input lines gives a proportion of its weight that is distributed equally among the
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active input lines. With this strategy, a random initialization of network weights, after some

cycles the system reaches a stable equilibrium configuration i.e. the weights on average are

not changing any more. Hence, configurations of active units in a layer can be thought as

representations of the input signal provided by a layer to the next one. Following this idea,

it can be seen as an unsupervised learning algorithm implementation on a network.

Figure 2.1: The architecture of the competitive learning mechanism. Source: David E.

Rumelhart and Zipser 1985.

Different variants of this basic architecture have been proposed (Grossberg 1976; David E.

Rumelhart and Zipser 1985). Among them, Kohonen Maps are a class of models born from

a modification of competitive learning models when neighbourhood constraints are applied

on the output units. More concretely, output units are arranged in a spatial grid (Kohonen

1982). However, instead of just moving the winning unit weights, the winning unit and its

neighbours are adjusted. The amount of adjustment is determined by the distance in the

grid of a given unit from the winning one. As a result, output units tend to respond to

similar input pattern producing a ”topology preserving” map from input space to output

space.
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2.3 Pattern associators

Let’s consider another basic network architecture: the pattern associator. It has a set of

input units connected to a set of outputs by a single layer of modifiable connections that

are suitable for training with quite a simple rules, e.g. the Hebb’s rule and the delta rule.

One-layer pattern associators have several suggestive properties that have made them at-

tractive. They can generalize their responses to novel inputs that are similar to the inputs

that they have been trained on. Another interesting property is that in the course of

processing they can learn incrementally. The first two classical learning procedures were:

� Hebb’s rule or correlational learning rule (Hebb 1949). It can be resumed in the

phrase: ”cells that fire together, wire together”, i.e. when a neuron participates in

firing another, the strength of the connection between them should be increased. That

is, particular units, when active, will tend to excite other units whose activations have

been correlated with them in the past. These correlations sometimes produce useful

associative learning. However, often they are not sufficient to allow a network to learn

even very simple associations between patterns of activation.

� Delta rule (Rosenblatt 1958). A solution for the Hebb’s learning rule drawbacks is the

idea of adjusting weights using some error measure of the difference between target

activations and outputs obtained through learning. Because the rule is driven by

differences it was called the delta rule. The training procedure is continued for several

cycles through the whole set of patterns and each of these cycles is called a training

epoch.

If the output units of the pattern associator, are equipped with linear threshold units we

have the perceptron of Rosenblatt (Rosenblatt 1958). In this case, if the sum of all the

weighted inputs is greater than a threshold the unit is turned on, otherwise it is turned off.

The perceptron learning rule, i.e. the delta rule, compares this output to the desired one.

If the input vector is correctly categorized, no change is made to the weights.

The learning limitations of this basic perceptron structure are well known and they are

evidenced by the classical XOR problem (Minsky and Papert 1972). The proposed solution

to this problem consists in the addition of more dimensions or features to the problem

allowing a multilayered perceptron. The units of these multilayered networks are classified

in three classes: input units, which receive the input patterns, output units associated to

the targets and hidden units, not directly connected to the ”environment”. Nowadays, these

multilayered pattern associators with non-linear activation functions are called feed-forward

networks.
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The next question is to know which new features ought to be learn by intermediate layers to

solve each concrete problem. For that purpose an error measure must be defined (typically

summed squared error for regression and cross-entropy for classification problems) and the

delta rule must be readapted. Now, the weights are modified proportionally to the negative

of the derivative of this error with respect to each weight. Following this mechanism each

weight is moved towards its own minimum. The selected algorithm to find their minimum is

the gradient descent. Hence, when all the weights have reached their minimum, the system

has achieved an equilibrium. Possibly, due to the existence local minima in the error curve

the problem probably is not solved exactly but it will find at least a set of weights that

produces an error as small as possible.

This idea gives rise to new difficulties: how to compute the derivative of the error function

with respect to any weight in the network, using gradient descent in a least squared sum

function in non-linear multilayer perceptrons. The backpropagation rule came to the rescue

of the problem (David E Rumelhart and James L McClelland 1987). First of all, a differ-

entiable output function is needed not the threshold function used in the perceptron. A

common choice are sigmoid family functions, i.e. logistic function and hyperbolic tangent

functions. Now, the chain rule can be applied to compute the partial derivatives of the error

function with respect to any particular weight.

As any gradient descent procedure, backpropagation follows the contour of an error surface,

always moving downhill. In multilayer networks these surfaces can be quite complex with

multiple local minima. Some of them can be global minima, in the sense that a completely

errorless state is reached. Other possibility is that some residual error remains and the

gradient descent can not find the best solution to he problem. For this reason, great efforts

have been done to refine this gradient descent algorithm to avoid the local minima problem,

three of the main proposal are the use of adjustable learning rates, momentum, weight

decay and symmetry breaking.

The constant of proportionality that controls the changes in the weights is called the learning

rate. To make the optimization process faster it would be desirable to set high values of

this learning rate. Unfortunately, this can lead to steps that overshoot the minimum,

resulting possibly in a large increase in error. To maintain learning rate in high values

without leading to oscillation, a momentum term is included that determines the effect

of past weight changes on the current direction of movement. This technique filters out

high-frequency variations of the error surface in the weight-space.

On the other hand, the weight decay technique includes a tendency for weights to be reduced

very slightly every time they are updated. It can be seen as a procedure for minimizing the

total magnitude of the weights, minimizing the sum of the squares of the weights.
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Finally, if all weights start with equal values and the solution is such that weights must be

unequal, the network will never learns. This is because error is back-propagated through

the network in proportion to the values of the weights. Hence, all hidden units change

exactly in the same amount. As a result, after each update the weights maintain equal

values. To avoid this problem weights are initialized with small random values to break any

initial symmetry.

In this minima finding process there exists a dynamic behaviour while moving through the

error function. But this dynamic is usually hidden by the use of the chain rule and the

facilities given by the different deep learning libraries to perform these painful computations

without suffering for users.



Chapter 3

Recurrent Neural Networks

3.1 A new approach is needed when time is involved

Feed-forward neural network are suited specially well for task related to machine percep-

tion, where the raw underlying features are not individually interpretable. This ability is

attributed to their inherent capacity to learn hierarchical representations, unlike traditional

machine learning methods that rely on hand-engineered features (Farabet et al. 2013). But

they have two main drawbacks:

a) Despite this ability, feed-forward networks make a limited analysis of inputs relying

upon the assumption of independence among the samples. After each data point is

processed, the output of the system is lost when the following input sample completes

its travelling throw the network. When data points are generated independently, this

is not a problem but in many situations input samples are related in time or spatially.

Hence, in these cases, feed-forward networks are clearly wasting valuable information.

b) The second limitation is that feed-forward networks rely on input data being vec-

tors of fixed length. Thus, information must be chopped into chunks of a concrete

size. Specially in problems with dependency between samples the selection of the

most appropriate length can be problematic and even any choice may lead to loss of

information e.g. in audio waves analysis.

The independence assumption fails in several tasks involved in cognition as a temporal com-

ponent is present e.g. Natural Language Processing problems that commonly are studied

as word sequences in the context of a whole phrase. Hence, time representation problem

arises associated to the identification of temporal patterns in data. A classical solution was

to represent time as an explicit variable in the same manner as any other feature could be

considered in tabulated data, giving rise to an extra dimension. The main drawback of this

approach is an inherent difficulty to distinguish relative temporal structures in data. Even

a simple shift produces completely dissimilar representations. Consider the 3-D unitary

vectors u1 = [1,0,0], u2 = [0,1,0] and u3 = [0,0,1]. They can be interpreted as one position



Interpretation of DNN as Dynamical Systems 18

shifted versions one of each other but their geometrical representation cannot be worst to

capture the underlying idea of temporal correlation as they form an orthogonal base.

To overcome these problems it seems clear that a new representation paradigm for temporal

data was needed. A new one where time is represented by its effect on processing. Under

this point of view time is implicitly embedded in the processing procedure represented by its

effect on processing, but not as an additional dimension of input data. This objective can

be accomplished giving the processing system some kind of dynamic properties responsive

to time sequences. In other words, the system needs some kind of memory to be able to

learn temporal information contained in the sequences. One option for introducing this

notion of time in the model is by the augmentation of feed-forward neural networks with

the inclusion of feedback or recurrent connections. This approach gives rise to Recurrent

Neural networks.

3.2 Early Recurrent Networks

Recurrent networks have roots in both cognitive modelling and supervised machine learning.

Not surprisingly three of the main foundational papers were published in cognitive science

and computational neuroscience journals in the 1980s.

In a famous paper, Hopfield (Hopfield 1982) wondered if the stability of memories, the

construction of categories of generalization, or time-sequential memory could be emergent

properties of a system composed by simple interacting neurons. The author also identifies

the classes of physical systems whose spontaneous behaviour can be used as a form of general

content-addressable memory. When the time evolution of a system can be described by a

set of general coordinates, the instantaneous condition of the system is represented as a

point in a state space and its evolution can be seen as a flow in that space. If the system

flow is attracted to locally stable points, then the system is potentially useful to be used as

a memory.

A set of system that fulfils the previous requirements is proposed: recurrent neural networks

or feed-forward networks with strong back-couplings as he called them. They are simple

neurons with step activation functions with a concrete threshold. The state of the system

is identified as the vector whose components are each neuron output. These nets run

according to its update rules flowing from one attractor (representing a learnt pattern)

to another attractor (representing another pattern). In the training procedure an energy

function associated to the net is involved and the system moves towards states of minimum

energy. These Hopfield networks have been useful for recovering a stored pattern from a

corrupted version and are the forerunners of Boltzmann machines and auto-encoders.
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Jordan (Jordan 1986) introduced an architecture consisting of a feed-forward network with

a hidden layer which is extended by new units called state units. This structure allows the

network’s output to be seen by the network hidden units. Hence, the network’s behaviour

can be influenced by its previous outputs obtaining the main goal: give the network memory.

This initial idea had some structural constraints. Firstly, there was a one-to-one connection

between output and hidden states. Secondly, the weights associated to these connections

had fixed and unitary values.

This Jordan architecture was simplified by Elman (Elman 1990). The network input was

augmented by additional inputs called Context Units and these context units were a one-

to-one identity map of the traditional hidden units. In this way the context units remember

the previous state of the network, providing it with memory. Each context unit takes as

input the state of the corresponding hidden node at the previous time step. At each time

cycle both the input units and the context units activate the hidden units that feed forward

to activate the output units. This architecture is equivalent a RNN where each hidden node

has a self-connected recurrent edge. Elman trained this network using backpropagation and

showed that it can learn time dependencies.

In these early stages there was an absence of a common nomenclature or even graphical

representation of the proposed recurrence as shown in Fig. 3.1:

Figure 3.1: a) Original simple recurrent architecture proposed in (Jordan 1986). b) En-

hanced structure suggested in (Elman 1990).

A last seminal paper proposed the application of backpropagation to recurrent networks

(David E. Rumelhart and James L. McClelland 1986). The key idea is that, as Minsky
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and Papert pointed out, every recurrent network can be transformed into a feed-forward

network with identical behaviour (over a finite period of time). This transformation has a

cost: ”hardware” is duplicated many times over for the feed-forward version of the network

as many times as time periods are considered. Additionally, the weights at each level of the

feed-forward networks were constrained to be the same.

3.3 Representation of RNNs

In Fig.3.2 a) is shown a modern schematic representation of an RNNs with input x, hidden

unit h, resulting prediction ŷ and the recurrence from hidden layer into input is remarked

explicitly with a feedback arrow. In its most basic operation mode, data runs through this

loop a fixed number of time steps. Only after a certain amount of steps the output ŷ is

inspected using it as the prediction for the problem under analysis.

Figure 3.2: Folded and unfolded representation of a RNN

Thus, there is an important parameter in RNNs, typically called nsteps indicating how many

past samples of the sequence are considered for the prediction. The representation used in

Fig.3.2 a) is called the folded representation of the RNN because time evolution is not made

explicit and nsteps cannot be deduced from it.

On the other hand, as seen in the previous section, a natural approximation to RNNs train-

ing is to extend the backpropagation algorithm used for feed-forward networks usually called
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BPTT (BackPropagation Through Time) (David E. Rumelhart and James L. McClelland

1986) and (Werbos 1990). In RNNs the forward propagation step is straightforward but

backpropagation computations of gradients of the error function with regard to weights is

much trickier. To compute these partial derivatives the explicit relations between model

output variables and weights are needed. But an additional element increases the technical

complexity: recurrence loop is computed nsteps times.

To derive the explicit relations requires us to expand or unfold the computational graph of

the RNN one time step at a time to obtain the dependencies. Then, based on the chain rule,

backpropagation is applied to compute gradients and adjust weights to solve the problem.

The result of the expansion process is called the unfolded version of the RNN as shown

in Fig.3.2 b). In this representation the computational flow moves from left to right along

with time course, nsteps is highlighted making clear that the prediction is the output value

after nsteps.

The increasing application of RNN to concrete problems have expanded the possible oper-

ating modes of an RNN. Using the unfolded representation these modes can be classified

based on the number of past samples of the sequence (number of inputs) considered to

perform the operations and how many intermediate snapshots are taken from the output

(number of outputs).

The operation mode in Fig.3.3 a) is called ”many-to-one”, multiple samples of the sequence

(multiple inputs) are used to obtain a single prediction after completing T recurrent pro-

cessing steps (single output). A typical application field for this mode is sentiment analysis,

where all words of the sentence or paragraph are available and a score must be assigned

after analysing them as a whole.

As shown in Fig. 3.3 b) nothing prevents us from inspecting what is happening to the output

not only in the very final step but at intermediate computation steps from t = 1, . . . , T .

This mode is called ”many-to-many” as multiple inputs are considered to obtain multiple

outputs. This structure is useful in sequence to sequence learning problems and many

different variants can be found. This type of structures is applied to machine translation

where a sentence with multiple words must be translated into a second language, obtaining

a new sequence of multiple words. Another classical application is the NLP problem of

Name Entity Recognition.

Some applications can be even more surprising, using a simple input to generate a sequence

with multiple outputs. This ”one-to-many” mode is shown in Fig.3.3 c). In the context of

NLP, automatic text generation is an application of this operating mode, letting the user

select a word as input to the model that responds generating a sentence or even news about

the selected theme.
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In Fig.3.3 d) the number of time steps is reduced up to a single one obtaining the ”one-to-

one” mode corresponding to a traditional feed-forward network. Hence, the simplest RNN

mode to be analysed is the many-to-one configuration and it has been selected in posterior

chapters for a practical demonstration of the dynamical system ideas presented in this work.

Figure 3.3: Different RNN operating modes.1

In the previous figures, boxes in green represent inputs or past samples of the sequence, red

ones are the system output at each time step but nothing has yet been said about the blue

boxes or hidden layer. These boxes are simply a feed-forward layer that has been trapped

in the recurrent loop. Obviously, hidden layers in an unfolded RNN are all identical.

1Source: figures 3.2, 3.3 and 3.5 are modified versions of figures obtained from Stanford University

webpage https://stanford.edu/ shervine/teaching/cs-230/
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Figure 3.4: Basic RNN hidden layer

In Fig.3.4 a RNN’s typical hidden layer is represented with a 2D-input sequence. The input

to the layer is a sample xi of the sequence whose dimensionality ninput is given by the number

of dimensions of the sequence. Unidimensional case is the simplest one, e.g. when sequence

under study represents the unemployment rate in a country. However, for modelling many

problems multidimensional sequences are a must, e.g if GPB and unemployment rate are

considered jointly.

Hence, xi input travels through a dense layer. The number of neurons of this layer (com-

monly denoted as nhidden) is known as the hidden layer dimensionality. Thus, the input

sample is transformed from its original dimensionality ninput into a nhidden dimensional rep-

resentation. In later chapters formal relations are deduced but roughly speaking if input is

called x(t), and Win is the input weight matrix, the output h(t) = Winx(t) is received by

the activation functions σi of each neuron i. Typically, all these activation functions are

identical σ1 = . . . = σn. Therefore, the transformed signal h(t) = σ(Winx(t)) is the output

of the hidden layer.

The RNN structure exposed in this section is commonly called a traditional RNN as many

improvements have been proposed in the last years for the connections between cells and

the hidden layer internal structure.
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3.4 Training difficulties

The problem of learning with classical recurrent networks can be specially challenging

mainly due to the difficulties to capture long-range dependencies (Y. Bengio, Frasconi et al.

1993). The two main problems are vanishing gradients and exploding gradients (i.e. deriv-

ative of the error function with respect to the network parameters) that appears when the

network is trained using backpropagation across many time steps. In practice, this means

that after a certain amount of steps, some weights of the network tend to become zero while

others are given an excessive relevance.

To obtain an intuition of the problem, consider a linear simplification of an RNN where non-

linearities (generated by the activation functions σ) are removed, obtaining the following

equation:

h(t) =Wrech(t − 1) (3.1)

where Wrec is the weight matrix of the recurrence loop and h is the hidden state of the

system.

Taking into account that a RNN can be seen as the composition of a map multiple times

(in this case, a linear map) Eq.3.1 can be rewritten considering an initial state h(0):

h(t) =W t
rech(0) (3.2)

Suppose that Wrec admits an spectral decomposition: Wrec = QΛQT where Λ is the diagonal

eigenvalues matrix and Q is the eigenvectors matrix. Hence, based on the properties of the

obtained decomposition:

h(t) = QΛtQt h(0) (3.3)

The p-power of the eigenvalues diagonal matrix is again a diagonal matrix whose diagonal

elements are the original eigenvalues to power p:

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0

0 ... 0

0 0 λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Λp =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λp1 0 0

0 ... 0

0 0 λpn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Hence, after p time steps those eigenvalues whose absolute value is larger than one will

explode exponentially while those smaller than one will decrease asymptotically to zero

when p→∞.

To avoid gradients explosion, truncation techniques have been applied successfully as clip-

ping and Truncated Backpropagation Through Time (TBPTT) while fighting against gradi-

ents vanishing is much trickier and more advances were needed.
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3.5 Improving structure: Modern Recurrent Networks

In the late 1990s important improvements were proposed to overcome this problem of gradi-

ents vanishing.

A first important enhancement was the proposal of networks called LSTM (Long Short-

Term Memory) (Hochreiter and Schmidhuber 1997) where traditional nodes in the hidden

layer are replaced by memory cells acting as units of computation. These new cells are

composite units built from simpler nodes (input node, input gate, internal state, forget

gate and output gate) following a specific connectivity pattern. The use of gates is a novel

distinctive feature of LSTM where input gates have a multiplicative function while forget

gates provide the capacity to flush the contents of the internal state, i.e. the capacity to

forget.

In traditional RNNs the output of an unit is always replaced with a new value computed

from the current input and the previous hidden state. On the contrary, LSTM keeps the

existing content and add the new content on top of it. This additive behaviour has two

advantages. First, it is easier for each unit to remember the existence of a specific feature

in the input stream for a long series of steps. Secondly, this addition operation creates

shortcut paths that bypass multiple temporal steps. These shortcuts allow the error to be

back-propagated easily without vanishing too quickly. Thus, in practice, LSTM networks

outperforms the results obtained by traditional RNN learning long-range dependencies.

A second important proposal was the introduction of Bidirectional Recurrent Networks

(BRNN) (Schuster and Paliwal 1997). In this architecture information from both the future

and the past are used to determine the output. In contrast with the previous networks where

only past inputs are considered. For that purpose, the unique hidden layer of the previous

RNNs architectures is replaced by two layers of hidden nodes.

The first layer has recurrent connections from the past time steps while the second layer

receives a flipped version of the input, making use of the future time steps. Of course, if the

model is running online it is not possible to have future samples and this limitation is its

main drawback. However, there are many problems suitable for BRNNs e.g. part-of-speech

tagging in NLP where the information about all the words in the sentence is available and

can be used to increment the accuracy of word labelling.

A third proposal are GRUs (Gated Recurrent Units) (Cho et al. 2014). It is also a gated

structure that can be considered a particular case of LSTM where its internal gate structure

is simpler. As in LSTM, the gating units modulate the flow of information inside the unit.

However, in GRUs the separated memory cells are eliminated making it easier to train the
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Figure 3.5: Unfolded representation of LSTM-RNN and Bidirectional RNN.

network. Performance comparisons between LSTM and GRUs are not conclusive throwing

highly dependent results of the working dataset.

These techniques are represented Fig.3.5 using the same conventions as in previous fig-

ures. The key innovations introduced by each technique can be clearly seen: LSTM (and

GRU) introduces modifications on the hidden units while BRNN modifies the connections

regardless of what type of hidden units it is made from.

As a final remark the early RNNs where neither BRNN nor LSTM / GRU techniques are

used, are usually called ”vanilla RNN”. In the following chapters only this type of RNN is

considered.



Chapter 4

RNNs and discrete-time dynamical systems

4.1 RNNs are iterative processes

The defining feature of a RNN is its recurrent feedback. In this chapter an interesting

consequence of this issue will be analysed.

Consider a typical vanilla RNN with nhidden neurons and an input signal x(t) of ninput di-

mensionality. The current output of each hidden layer neuron hi(t), i = 1, . . . , nhidden is gen-

erated from the previous hidden state of all neurons in the layer hj(t− 1), j = 1, . . . , nhidden

and the current external input to the system x(t). A typical implementation with nhidden = 3

and ninput = 2 is shown in Fig.4.1.

Figure 4.1: Detailed hidden layer structure of a vanilla RNN with nhidden = 3 and ninput = 2

.
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Recurrent feedback is made through weights wij , i = 1, . . . , nhidden, j = 1, . . . , nhidden while

the external input enters the system through weights uik, i = 1, . . . , nhidden, k = 1, . . . , ninput

obtaining:

hi(t) =
nhidden

∑
j=1

wijhj(t − 1) +
ninput

∑
k=1

uikxk(t) (4.1)

Finally, the aggregated signal in Eq. 4.1 feeds a non-linear activation function σi ∶ R→ I ⊆ R
that takes values in a real interval I. Usually σi(⋅) takes a sigmoidal form, i.e. tanh(x)
with I = [−1,1] or a logistic function 1/(1 + e−x) with I = [0,1]. Thus, the hidden states

only take values in the hypercube In ⊆ Rn.

Usually a compact formulation is considered where:

� H = Inhidden , the state space of the network.

� h(t) = (h1(t), . . . , hnhidden
(t)) with h(t) ∈ I, the state at time t.

� x(t) = (x1(t), . . . , xninput(t)) with x(t) ∈ Rninput , the external input to the system.

� W = {wij} with W ∈ Rnhidden × nhidden , the connection weight matrix.

� U = {uik} with U ∈ Rnhidden × ninput , the input weight matrix.

� σ = (σ1(⋅), . . . , σnhidden
(⋅)) the network activation function. Usually σ1 = . . . = σnhidden

=
σ. In this case, it is said that σ(⋅) is applied component-wise.

obtaining:

h(t) = σ(Wh(t − 1) +Ux(t)) (4.2)

Hence, the evolution of the hidden layer activations is determined by the map: h↦ σ(Wh+
Ux).

4.2 RNNs as dynamical systems

Mathematically a dynamical system formalizes the concept of a deterministic process based

on the evolution of some state variables in time following a deterministic evolution law.

Hence, two elements are needed: a set X of all possibles values of these state variables and

the law F that describes their evolution through time t ∈ T .

Classical literature considers:

x(t + 1) = F (x(t), t) (4.3)
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as a discrete-time dynamical system (DT-DS). More formally a DT-DS is defined by a

triple D = (X,T,φ), consisting of a state space X, a discrete temporal domain T ⊆ Z and a

function F ∶X × T →X that describes how the system changes in time t ∈ T .

Because dynamical systems theory is focused on the asymptotic behaviour of solutions, this

definition of DT-DS has two major drawbacks.

� First, the existence of solutions for t → ∞ is not guaranteed for all x0 ∈ X. In

particular, solutions may escape to infinity within finite time. Hence, the solutions

have to stay in X,∀t ≥ 0.

� Second, it is usually demanded that F does not depend on time t explicitly and the

dynamical system is said to be autonomous. Otherwise, a non-constant evolution law

over time implies that the dynamical system and its properties could change with t.

In this case the system is called non-autonomous.

Alternatively, modern authors define dynamical systems as a family of maps {ϕt}t∈T with

ϕt ∶X →X where t ∈ T and T = Z which obey the semigroups equations:

� ϕ0 = id

� ϕt+s = ϕt ○ ϕs, ∀s, t ∈ T

The map ϕt is called evolution operator and maps initial states x0 ∈ X into same state

x(t) ∈X at time t. With two remarks:

� The reduction of T = Z ensures the existence of solutions x(t),∀x0 ∈X and t→∞.

� The existence of solutions is ensured if the image of X under F is a subset of X, i.e.

F ∶X →X.

Therefore it holds ϕt = F t,∀t ∈ N and ϕ0 = id. As a consequence, a DT-DS is completely

defined by its time-one-map ϕ1 ≡ F .

In Eq.4.2 it was shown that a RNN changes following a map of the type: h↦ σ(Wh +Ux)
where h is a bounded map h ∶ H → H. As seen previously, H ⊂ In ⊆ Rn, i.e. the hidden

states only take values in the hypercube In (n = number of neurons in the hidden layer)

given by the output interval I of the activation function.

Thus, a RNN is a discrete-time dynamic system with ϕ1 ≡ F given by:

h(t) = F (h(t − 1), t) = σ(Wh(t − 1) +Ux(t)) (4.4)
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where h(t) ∈ H is the state of the RNN at time t and u(t) is the respective input vector.

W and U are their respective weight matrices and σ denotes an element-wise application of

the node output function.

In general, Eq.4.4 is non-autonomous, because input x(t) depend on time. As said before,

this can produce a variation of the dynamics over time. Classical dynamical system theory

has been developed only for autonomous systems while the analysis of non-autonomous

systems is extremely complex. Hence, authors avoid input impact making it constant,

obtaining an autonomous system. Thus, in this chapter it is also assumed constant input.

4.3 Orbits, limit sets and attractors

In dynamical system theory there are two distinct but related goals: dynamics and bifurc-

ations.

� Dynamics is concerned with the asymptotic behaviour of the network, which includes

the identification and analysis of limit sets: fixed points, periodic orbits, ... and their

asymptotic stability (stable, unstable and saddle). Usually, this is also called as state

space analysis of the system.

� On the other hand, bifurcations is concerned with how the dynamics of the system

changes as system parameters are varied. It is also commonly called as parameter

space analysis of the system.

A first important set in state space are orbits and its intimately bounded concept of traject-

ory. The evolution of an initial state x0 with time t is called trajectory of x0 starting at time

t0. More formally, trajectory is the map t↦ x(t;x0; t0) with x(t0) = x0. In continuous-time

dynamical systems (CT-DS) trajectories are curves in the state space X parametrised by t.

On the contrary, in discrete-time trajectories are sequences of points.

If the time idea associated to the trajectory is neglected, the concept of orbit is obtained.

The set of points defined by the trajectory starting in x0 is called the orbit of x0 and is

denoted by γ(x0). The collection of all possible orbits of the system is called phase portrait

or phase space of the system. As in discrete-time orbits are sequences of separated points,

their visualisation in the phase portrait requires an additional effort to highlight which

points belong to each orbit.

Interestingly, an orbit γ(x0) has infinitely many points that may not be all distinct. Consider

an autonomous dynamical system given by {ϕt}t∈T :
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� Points in the orbit can be all identical. Then, a point x̄ ∈ X is called a fixed point,

stationary state or equilibrium, if ϕtx̄ = x̄, ∀t ∈ T . Hence, if a system reaches a fixed

point it will remain in it onwards.

� On the other hand, there can be only p-distinct points in the orbit. The trajectory of

x0 is called periodic or cycle, if ∃p > 0 ∶ ϕpx0 = x0. The smallest integer p such that

holds the condition is called the period of the cycle.

Both previous concepts and more complex ideas as chaotic attractors are called invariant

sets, i.e. sets that do not change under evolution operator. Formally, a subset S ⊂ X is

said to be positive invariant under ϕt if ϕtS ⊆ S, ∀t ≥ 0. Similarly, S is said to be negative

invariant under ϕt if ϕtS ⊇ S, ∀t ≥ 0. If S is both positive and negative invariant, then S

is said to be invariant under ϕt and it holds that ϕtS ≡ S.

As the basic objective of dynamical systems theory is to describe the asymptotic behaviour

of the states as t→∞, the first main question is about the existence of the simplest type of

invariant sets in the system: fixed points or periodic orbits. Unfortunately, the analytical

computation of fixed points for difference equations is in general not possible. However, the

Brouwer’s Fixed Point Theorem guarantees the existence of a fixed point in a continuous

map F ∶ B → Rn if B is a compact convex subset of Rn, such that F (B) ⊆ B. The map F

in Eq.4.4 satisfies this theorem conditions assuring the existence of at least a fixed point in

RNNs.

Another important question is which initial states lead to these fixed points or periodic

orbits, giving rise to the idea of attractors and basins of attraction. The intuitive idea is

that basins partition the state space into sets of different asymptotic behaviour. Hence,

if a complete description of all possible attractors and their basins of attraction would be

available, the long term behaviour of each initial state could be predicted.

The concept of limit set captures the idea of all possible asymptotic states of a dynamical

system. The ω-limit set ω(B) of a set B ⊂X is defined as

ω(B) = {x ∈X ∣ ∃tn →∞, xn ∈ B ∶ ϕtnxn → x for n→∞}

Roughly speaking, ω(B) is the set that contains the limit points of orbits. If ϕt is continuous

and ⋃t≥0ϕ
tB is compact it can be shown that ω(B) is a compact invariant set. As the RNN

model obtained in Eq.4.4 is continuous and bounded, it can be proven that all its ω-limit

sets are compact invariant sets (Sell and You 2002).

The idea of basin of attraction is quite vague and admits multiple definitions that highlight

different properties of the idea of attraction. We consider a definition based on ω-limits.
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The basin of attraction B(S) of a compact invariant set S is defined as:

B(S) = {x ∈X ∣ ω({x}) ⊆ S}

where B(S) captures the idea of all states in X which asymptotically approach S, i.e. whose

ω-limit set ω(B) is in S. Hence, some sort of attraction to S is defined.

Finally, an attractor is defined as a compact invariant set A ⊂ X that attracts a neigh-

bourhood of itself. More formally, there exists a neighbourhood U of A such that ∀x ∈
U dist(ϕtx,A) → 0 for t → ∞. That is, the orbit approaches A as t tends to infinity. The

attractor is said to be minimal if it cannot be decomposed into two disjoint attractors. The

attractor is called global if it attracts every bounded set B ∈X.

If B is an absorbing bounded set, i.e. ϕtB̄ ⊂ B,∀t ≥ 0. Then ω(B) is an attractor which

attracts B. Again, boundedness of RNN in Eq.4.4 ensures the existence of an attractor.

Particularly, ω(X) which is not necessarily minimal and often can be decomposed into

smaller attractors.

4.4 Stability of fixed points

Another interesting question in system dynamics is the stability of fixed points. It is usually

analysed considering the local phase portrait near each fixed point. Consider the local phase

portrait of a dynamical system around a fixed point x̄ given by:

x = x̄ + J(x̄)(x − x̄) +O(2) (4.5)

where O(2) represents the second order terms of the expansion. From Eq.4.5 it can be seen

that locally this phase portrait depends on the eigenvalues of the Jacobian matrix evaluated

at x̄:

J(x̄) =Dxϕ(x̄) = (∂ϕi

∂xj
)
i,j

(x̄) (4.6)

The eigenvalues λ1, . . . , λn of J(x̄) determine the stability of the fixed point x̄, such that:

� If none of the multipliers of x̄ (or eigenvalues) lies on the complex unit circle, i.e.

∄λi ∈ C such that ∣λ∣ = 1. x̄ is said to be hyperbolic.

� Otherwise, x̄ is said to be non-hyperbolic.

As a generic matrix has no eigenvalues lying on the unit circle, then hyperbolicity is a

typical property of a generic fixed point on an arbitrary dynamic system.
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Determining the hyperbolicity of a fixed point is crucial because according to the Grobman-

Hartman theorem for DT-DS if x̄ is a hyperbolic fixed point of ϕ ∈ C1 then the dynamical

system is, in a neighbourhood of x̄, locally topologically conjugate to its linearisation.

In plane words, two dynamical systems are locally topologically equivalent if their local

phase portraits are similar in a qualitative sense, i.e. they can be transformed into each other

through a continuous transformation. More technically, if there exists a homeomorphism

between orbits of both systems preserving the direction of time. If the homeomorphism also

preserves that trajectories evolve with the same speed the systems are called topologically

conjugate.

Hence, applying the Grobman-Hartman theorem the phase portraits of hyperbolic fixed

points x̄ can be classified studying the eigenvalues of the Jacobian J(x̄):

� A hyperbolic fixed point x̄ is called a stable node if all its multipliers are inside the

unit circle.

� x̄ is called an unstable node if all its eigenvalues are outside the unit circle .

� Finally, if there exists multipliers both inside and outside the unit circle x̄ is called a

saddle point.

As a final summary of the previous ideas of this chapter, the dynamical system approach

explicitly describes RNN hidden states as time-varying trajectories in a high-dimensional

state space.

From the continuity and boundedness of the difference equations of an RNN in Eq.4.4

derives that:

� By the Brouwer Fixed Theorem, there exists at least a fixed point in RNNs.

� Its ω-limits are compact invariant sets and the existence of attractors (of their neigh-

bourhood) is assured.

Thus, depending of the initial state x0, the convergence of the state xt of the system to an

attractor A is guaranteed, under the repeated application of map ϕ1 ≡ F . Possibly (but not

assured), there are several different attractors in the system that describe the asymptotic

behaviour of the model. The state space X is divided into basins of attraction B, one for

each attractor. If the network is started in one basin of attraction, the model will converge

to the corresponding attractor as t grows.
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From this point of view, the fundamental problem in RNNs is to design the number, position

and stability of their invariant sets (attractors) and their basins of attraction such that the

dynamics of the network is able to solve a specific task.

4.5 First Wave: theoretical dynamical analysis of RNNs

In 1984 Hopfield suggested an associative memory model based on neurons, which was able

to memorize several desired patterns as fixed points of the underlying dynamics. Starting

from an arbitrary initial state, the dynamics approaches one of the attractors, i.e. iterating

until a fixed point is reached, recalling the corresponding pattern (Hopfield 1984). This

associative memories are examples of multiple attractor networks where representational

content is assigned to its attractors.

From this initial work a fundamental question arose: how the results of a computation are

represented in a neural network model. Even a more general issue can be raised about the

underlying computational objects of RNNs. Two families of answers were given from the

dynamical system point of view:

a) On one side attractors are considered as the fundamental elements. It was found that

even small recurrent networks exhibit complex dynamical behaviour: from traditional

fixed points to the existence of cycles or even chaotic attractors. This fact was proved

in specific discrete-time networks of two neurons in (Wang 1991).

b) Sometimes emphasis is placed on the evolving trajectory rather than in the final at-

tractor itself. Its interaction with the attractors structure and their basin of attraction

when the trajectory is captured by different attractors. e.g. when the system interacts

with an environment the space is subject to changes due to the input signals. These

RNN structures are typically associated to neuroscience and information processing

in human and animal brains where input signal is the sensorial information that alters

the topological structure of the state space.

Therefore, the interest focus on given a rich variety of dynamical behaviours how they can

be controlled and which parameter sets cause a specific dynamics. The knowledge of these

parameter sets would allow to control switching between different dynamical regimes and

to improve RNN learning algorithms.

To gain a deeper understanding of the underlying processes techniques from dynamical

systems theory are applied, specially bifurcation analysis in the parameter space of the

system. Basically, these analysis try to identify how the topological structure of attractors
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changes when some system parameter is modified in a working range. The typical output

of these analysis are bifurcation manifolds that separate regions in parameter space which

exhibit qualitatively different dynamical behaviour.

Unfortunately, analytical computation of bifurcation manifolds become infeasible for net-

works with more than three neurons. Hence, a reductionist approach was adopted by the

different authors: two and three-neuron systems were analysed as an starting point to build

more complex networks as a composition of these basic building blocks. Initial steps in this

directions obtained these bifurcation curves using numerical methods and often restricted

to simplified connection matrices.

Given that attractors are basics elements, first analytical works focused on the question

of how to constrain the weights of the RNN so that they exhibit only fixed points and

the conditions under they have an attractive behaviour. Obtaining for a rather general

class of recurrent neural networks conditions under which all fixed points of the network

are attractive determined by the weight matrix of the network. Even more, with bounded

derivatives of the non-linear activation function, these conditions, were easy to check using

simple algebraic manipulation of matrix weights (Casey 1996; Jin et al. 1994).

Two-neuron recurrent networks fixed point number, position and stability were analysed by

(Tiňo et al. 2001) for sigmoid-shaped activation functions. Also the saddle node bifurcation

mechanism was identified as the usual responsible for the creation of a new fixed point.

It creates a pair of new fixed points, one attractive and one saddle-point. Similarly, fixed

points disappear in a reverse manner: an attractor collides with a saddle and they get

annihilated. Additionally, the author exposes a partition of the state space into several

regions corresponding to different stability types of the fixed points.

Two and Three-neuron networks were deeply analysed by Haschke obtaining analytical

expressions for the bifurcation curves considering the external input as the main bifurcation

parameter. Depending on the eigenvalues of two-neuron RNN fixed points three different

types of bifurcations are possible: saddle nodes (associated to the birth of two new fixed

points), period doubling (appearance of 2-cycle) and Neimark-Sacker bifurcation (giving

rise to a limit cycle) (Haschke, Steil and Ritter 2001). The three-neuron case was studied

in (Haschke 2003) and (Haschke and Steil 2005).

Unfortunately, this first wave in dynamical system approximation to RNNs had three main

drawbacks:

� A very complex underlying mathematical analysis even for the simplest two and three-

neuron cases. The increasing complexity of the obtained results with the number of

neurons makes it almost unfeasible to extend the analysis to more complex networks.
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� As a consequence of the previous problem, the real main drawback of this approach is

its inherent difficulty to translate the obtained results to RNNs solving real-life tasks.

� Finally, these analysis are performed for autonomous systems. In order to handle non-

autonomous systems, the alternative way of think is to consider piecewise constant

inputs, i.e. inputs changing on a time scale much slower than the networks dynamics.

Hence, the dynamical system must be analysed as a sequence of slowly changing

autonomous systems. However, the natural field of application of RNNs is the analysis

of sequence that are inherently associated to time-varying inputs.



Chapter 5

Non-autonomous Dynamical Systems

5.1 Consequences of Non-autonomous

All dynamical systems concepts described in the previous chapter: fixed points, limit sets,

attractors and, in general, the qualitative description of the space portrait topology and

bifurcation analysis were developed under the assumption of constant input signal. Thus,

system evolving law remains unchanged upon time, i.e. autonomous dynamical systems.

On the contrary, real-life problems consider time-varying input sequences that feeds RNNs.

Hence, the systems is suffering the influence of external forces and their update equations

exhibit a temporal change, i.e. non-autonomous dynamical systems.

The mathematical analysis of non-autonomous systems is by far more complex and it has

begun to be developed in the last decade (Kloeden and Rasmussen 2011). Extending the

theory of autonomous dynamical systems to non-autonomous ones present many difficulties.

Mainly, trivial attractors in fixed-input situations can be transformed into complex state

spaces in the non-autonomous case.

Recall that in the classical notation, a Discrete Time autonomous system on a state space

X was given by a map F ∶ X → X and the state of the system at time n is given by

xn = F (xn−1). Alternatively, a non-autonomous systems on a space X is defined as a family

of maps {Fn}, where each Fn ∶ X → X is a continuous map. In this case, the state of the

system at time n is given by xn = Fn−1(xn−1).

RNNs are a particular case of non-autonomous systems, called input-driven systems (IDS).

An IDS is given by a map F ∶ U×X →X, Fn and an input sequence {un}, with un ∈ U . In this

case, the state of the system at time n is given by xn = F (xn−1, un). Thus, Fn(⋅) = F (un, ⋅).

The key idea is that while the input signal is constant, the topology of the phase portrait

remains unchanged. Each time the input signal changes, the attractors topology can change

dramatically. Moreover, attractors are defined as sequence of sets, where the position of the

set in the sequence determines the time index. Nowadays this is an active research field.

This time-varying input signal has a direct impact on RNNs training, making them hard to
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be trained properly. As described in section 3.4 two of the main reasons are the vanishing

gradient and the exploding gradient problems described by Bengio (Y. Bengio, Simard et

al. 1994). These phenomena can be interpreted under the perspective of non-autonomous

dynamical systems.

5.1.1 Vanishing gradients: contractive basins of attraction

Vanishing gradients refers to the problem: when long-term components go exponentially to

zero making impossible to learn correlation between temporally distant events. In a classical

paper (Y. Bengio, Frasconi et al. 1993) presented interesting ideas relating gradient vanish-

ing problems in RNNs trained using backpropagation and dynamical systems theory. Even

more, he stated that any gradient descent algorithm in the output error is inappropriate to

train a non-autonomous recurrent network.

To illustrate these concepts the author considers a two-class noisy sequence classification

problem. During the training process to learn a state information (e.g. the class of the

incoming sequence) our hope is to be able to restrict the values of the system to a subset S

of the state space. Following this idea, the state can be interpreted as being located inside

S or outside S. If this region is designed as a basin of attraction it is assured the system

remains in S.

As seen in the previous section if the input sequence changes we are under the scope of

non-autonomous systems theory. Therefore, if input changes the system can be pushed out

of the current attractor possibly to the basin of attraction of another attractor indicating

that the incoming sequence is associated to a different class.

The key idea in vanishing is the so called the reduced attracting set of an hyperbolic

attractor. It is a subset of the basin of attraction whose states holds some interesting

constraints on their eigenvalues. Formally, given a DT-DS defined by ϕ1 ≡ F the reduced

attracting set Γ(X) of an hyperbolic attractor X is defined as:

Γ(X) = {x ∈ B(X) ∣ ∀p ≥ 1,all eigenvalues of Dϕp(x) < 1} (5.1)

Intuitively, an initial state x ∈ Γ(X) moving through the state space 1 is accompanied by

some kind of ”contraction” during its travelling. This ”contraction” will be given by all

its Jacobian eigenvalues located inside the unit circle during its journey (∀p ≥ 1) until the

1Future states of x are given by ϕp(x)
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attractor is reached (forced by x ∈ B(X)). By definition, for a hyperbolic attractor X,

X ⊂ Γ(X) ⊂ B(X).

Now consider a state x(0) and a ball of uncertainty around it. It can be proved that for

an hyperbolic attractor X if x(0) ∈ B(X) but x(0) ∉ Γ(X) then the size of the ball of

uncertainty will grow exponentially as t increases. Hence, small perturbations in the inputs

could push the trajectory towards another basin of attraction implying that the system is

not resistant to input noise.

On the other hand, a system is said to be robustly latched at time t0 to an attractor X if

x(t0) ∈ Γ(X), because it is guaranteed that x(t) remains within certain distance of X when

the input noise is bounded. In the case of non-autonomous systems, the ball of uncertainty

is generated by the input ut. The system remains robustly latched to X as long as ut is

such that x(t) ∈ Γ(X) for t > t0. The smaller the eigenvalues are the more robust to noise

is the system.

A price has to be paid for storing info in a way resistant to noise. If the input sequence is

such that the system remains robustly latched on attractor X, by definition of Γ(X) and

considering p = 1 it holds:

∣Dϕ1x(t − 1)∣ = ∣ ∂x(t)
∂x(t − 1)

∣ < 1 (5.2)

Hence:

∣ ∂x(t)
∂x(0)

∣ → 0 as t→∞. (5.3)

This constraint has a direct impact on the gradient descent algorithms of backpropagation,

in the first step the forward propagated cost function ε is computed and the key step is to

compute the gradients of ε with respect to the network weights W . The gradient of the

error in a RNN at time t is:

∂ε

∂W
= ∑

1≤k≤t

∂εt
∂W

= ∑
1≤k≤t

∂εt
∂x(k)

∂x(k)
∂W

= ∑
1≤k≤t

∂εt
∂x(t)

∂x(t)
∂x(k)

∂x(k)
∂W

(5.4)

The impact of Eq.5.3 is clear, the sum terms tend to zero with k << t. This means that

long-range dependencies terms tend to zero and this relations are not captured by the

network.
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5.1.2 Exploding gradients: trespassing basins of attraction frontiers

While vanishing gradients refers to components going to zero, exploding gradients problem

refers to the large increase in the norm of the gradients during training due to the explosion

of the long term components.

In dynamical systems theory, the parameters of the model are typically denoted as θ ∈ Θ

where Θ is the parameter space. To make explicit this analysis F is usually denoted as

F (x; θ). Given any parameter assignment θ the autonomous system evolves from an initial

state converging to one of the possible several attractors of the RNN.

When θ changes continuously the asymptotic behaviour of the system varies smoothly. This

smoothness is broken when certain critical value of the parameter is reached. This point is

called bifurcation point and qualitative changes occur in the phase portrait and topology

of invariant sets can be altered, i.e. attractors can change their stability, emerge, collide or

even disappear, and of course their basin of attraction shapes can be altered.

Doya hypothesizes that gradients explode when a bifurcation is crossed (Doya 1993). This

situation is illustrated in the bifurcation diagram presented in Fig.5.1 for a single unit RNN

where x represents the value of the fixed point and b is the bias of the unique neuron.

Figure 5.1: Bifurcation diagram of a 1 neuron RNN. Source: Doya 1993

Suppose the desired output of the system is x = xd. Starting from e.g. b = 0 and given an

initial state x0 the system converges to the unique fixed point given by the point x(b = 0)
located in the upper branch of the curve. As x(b = 0) ≠ xd the application of a gradient
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descent algorithm changes b making the fixed point moves toward xd. b moves continuously

until a critical point b = b1 is reached. In this moment the stable point of the upper branch

disappears and a new one appears given by the lower branch of x. There is a jump in

the convergence point for b+1 and b−1 resulting in an abrupt change in the error for a tiny

variation of b. Hence, gradient with respect to b goes to infinity at the bifurcation b = b1.
An important remark is that this huge error changes can occur with very small values of

learning rate as it happens in the step from b+1 to b−1 .

To reach xd the learning procedure flips the changing direction of b towards higher values.

This increase reaches a new bifurcation point at b = b2 giving rise to a new abrupt change

in the error. It can be observed the learning procedure remains in an infinite loop between

b1 and b2 never reaching xd.

Figure 5.2: Bifurcation diagram of a 1 neuron RNN. Source: (Pascanu et al. 2013)

This analysis has been enriched by Pascanu (Pascanu et al. 2013) arguing that:

� Crossing a bifurcation is a global event that can have no locally effects. To understand

this idea, consider a two attractors network with a certain parameter changing until

a bifurcation point is reached. Suppose that this bifurcation alters the topology of

attractors, disappearing one attractor. If in that precise moment the system’s state

is not located in the basin of attraction of that attractor, learning process will not

be affected by it. Hence, crossing a bifurcation is neither necessary nor sufficient for

gradients to explode.
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� Basin of attraction boundary crossing is a local event with effects. Consider a change

in the state of the system such that the state falls in a different basin of attraction

from the current one. Thus, the state will be attracted towards a new direction giving

rise to the gradients explosion. This effect also appears if the basin of attractions

boundaries are altered in such a way that the state of the system changes of basin.

Hence, this boundaries crossing is sufficient for gradients to explode.

In Fig.5.2 the original Doya’s Fig.5.1 is reinterpreted by Pascanu. When b decreases from

∞ there is a bifurcation point at b1 emerging a second attractor. At b2 there is a another

bifurcation point that collapses the recently created new attractor. In the interval (b1, b2)
coexist two attractors in the system and the boundary of their basins of attraction is plotted

by a dashed line. There are only two points where bifurcation appear but their a whole

region where transition between boundaries are possible.

Given that the collapse of an attractor or the appearance of a new one, implies changes

in basin of attraction boundaries, the cases considered by Doya are a particular case of

Pascanu’s proposal.

5.2 Last advances in RNN training

The training difficulties described in the previous sections have hindered the widespread

use of RNNs. It has made them to fall out of favour during almost a decade, approximately

from 2005 to 2015.

On the one hand, exploding gradients problems were successfully alleviated considering

gradient clipping of large gradients and the introduction of L2 or L1 weight norm penalties

(Pascanu et al. 2013).

On the contrary, vanishing gradients are much trickier and multiple research lines have tried

to tackle it from completely different points of view:

i) Introducing gating mechanisms in the hidden layers. As seen previously, the original

hidden units are replaced by new ones with a more complex internal architecture

incorporating gating elements. This architectures create multiple flowing paths inside

the hidden layer, the most important is an additive path that acts as a memory

retaining long-term dependencies. The most common proposals are GRU (Cho et al.

2014) and LSTM (Hochreiter and Schmidhuber 1997).

ii) Considering non-saturating activation functions. These authors proposed that tradi-

tional bounded activation functions (logistic and tanh) are the responsible of vanish-
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ing gradients due to their non-linear saturating behaviour, i.e. contractive functions

that saturate at the bounds. In that sense, Rectified Linear Units (ReLU) are non-

saturating functions and prevents gradients from vanishing (Nair and G. E. Hinton

2010). As expected, Non-saturating Recurrent Units (NRU) architectures have been

proposed as hidden layer for RNNs (Chandar et al. 2019).

iii) Improving optimization algorithms manipulating the propagation path of gradients.

This technique hypothesizes that the gradient components through the linear path in

the LSTM computational graph carries information about long term dependencies.

When LSTM weights are large, these components would be suppressed. An algorithm

has been proposed for preventing gradients flowing through this path from getting

suppressed, allowing LSTM to capture such dependencies better. (Kanuparthi et al.

2019)

iv) Introducing new optimization algorithms that substitute gradient descent techniques

considered in back propagation through time (BPTT). Gradient descent relies on a

smoothness assumption while 2nd-order optimization techniques as Hessian free can

take into account abrupt changes in error function curvature (Sutskever et al. 2011),

(Sutskever 2013).

v) Considering spectral constraints, i.e. constraints on weight matrices. The key idea is

that vanishing and exploding gradients can be modulated controlling the maximum

and minimum gain of weight matrices. One of the main ideas in this direction is

that keeping weight matrix close to orthogonality, gradient norm is preserved during

backpropagation. There are different variants of these techniques, even some authors

propose loosen the constraints to increase the rate of gradient descend convergence

(Vorontsov et al. 2017).

vi) Limiting the scope of the optimization problem to the readout weights. This gives

rise to a new paradigm known as ”Reservoir Computing” where the recurrent layer

(called a reservoir) connections are randomly initialized from uniform or Gaussian

distributions and these weights are not fined-tuned via gradient-descent optimization

mechanisms. The main idea is to exploit the rich dynamics generated by this reservoir

with an output layer (the read-out) that is optimised to solve an specific task. Hence,

gradients explosion and vanishing is avoided by not learning the recurrence and input

matrices. One example of this paradigm are Echo State Networks (Jaeger and Hass

2004). As these networks are trained introducing perturbations in the reservoir layer

and learning the output matrix, some of the previous techniques have been combined

to improve learning process, e.g. weight matrix orthogonality.
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5.3 Renaissance: practical dynamical analysis of RNNs

The good results obtained by the previous developments in RNN training have brought

a rebirth of the use of these networks. This renaissance comes hand in hand with a new

interest in their dynamical system perspective.

As seen in section 4.5, the first wave of dynamical system theory applied to RNNs was

characterized by extremely theoretical analysis of very simple two or three neuron RNNs.

On the contrary, in this second wave a practical perspective permeates all trying to capture

the essential dynamical behaviour of RNNs from a high-level perspective neglecting ”mi-

croscopic” details characteristics of the first wave, e.g. deriving attractor equations based

on network weights.

A seminal paper of this new point of view is (Sussillo and Barak 2013) were the classical

approach is refreshed. The basic line of attack is maintained, as the qualitative behaviour

of non-linear systems can vary greatly between different regions of phase space, a divide and

conquer procedure is followed. The different regions in space portrait are studied separately

and, finally, the interactions between different regions are considered.

The classical first step is identifying the topological structure of the fixed points and their

behaviour is analysed locally linearising in their neighbourhood. Classical fixed points are

zero speed points such that if the system reaches a fixed point it evolves remaining in it.

However, the authors propose other areas of the phase space to linearise the system that

are not true fixed points but merely points of ”very slow movement” or slow points. To

find all these points of interest a simple optimization technique is proposed based of the

minimization of an auxiliary function that takes into account some kind of ”kinetic” energy.

In order to understand the interactions of different regions, the stability of the fixed points

must be analysed. Stable fixed points are important because states in their vicinity will

converge to them. Based on its eigenvalues there are different behaviour of unstable fixed

points: from completely unstable to saddle points. These unstable fixed points with a few

unstable modes are very useful to understand the interaction between regions. They can

funnel a large number of orbits through stable modes and them send them to different

attractors depending on which unstable mode is taken.

As an important novelty, the authors apply these ideas to different quite simple problems

revealing an unexpected but powerful key idea. Despite their theoretical capacity to imple-

ment complex, high-dimensional computations, trained RNN networks converge to highly

interpretable, low-dimensional representations, i.e. the movements of the states of the sys-

tem are restricted to a low-dimensional manifold. Hence, once trained a network to solve a
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concrete task, the states in this manifold could be projected in 3D plots with the hope of

obtaining a qualitative understanding about how the RNN solves the task.

As an example of these ideas, the authors apply them to the 3-bit flip-flop problem. In this

case, an RNN implemented as a Echo State Network, tries to predict the next state of 3

flows of bit pulses given certain transient rules that determine the output. After training

the states of the system are projected using the first three principal components in a 3D

plot shown in Fig.5.3.

In order to determine the state of three 0/1 pulses the RNN needs eight possible memory

states, i.e. stable fixed points, represented in black crosses. In green crosses are saddle

points separating fixed points. If the input signal remained unchanged it would be an

autonomous dynamical system and the system would be trapped in one of the fixed points.

But as input changes, the system is non-autonomous with all its consequences. The authors

interpret that when input changes the state of the system is perturbed and came closer to

the saddle point and then finally is send to another fixed points. Hence, saddle points have

an important role in this problem, mediating the transitions between attractors.

Figure 5.3: State space of trained ESN for the 3-bit flip-flop problem Source: Sussillo and

Barak 2013

Recently this same investigation group has published new results applying these techniques

to more complex sentiment analysis problems (Maheswaranathan et al. 2019). The solutions

mechanism found by RNN to solve the problem corresponds to phase portraits that live in

1D-attractors or ”line-attractors”. Even more, they show that this mechanism is present

across different RNN architectures (LSTMs, GRUs, and vanilla RNNs) trained on multiple

datasets.
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Finally, an interesting paper has been publish (Ceni et al. 2019) that goes a step further

in the interpretation of RNN behaviour when solving a computational task. A more ad-

vanced mathematical structure is considered: Excitable Network Attractors (ENA), which

are invariant sets in phase space composed of stable attractors (of any kind: fixed points,

limit cycle, limit tori or strange attractors) and excitable connections between them. This

underlying ENA is represented as a directed graph on which the dynamics takes place. The

nodes of the graph are the fixed points of the system and directed edges describe excitable

connections between them.

The idea is quite simple, there exists an excitable connection of amplitude δ from an attract-

ors pi to the attractor pj if a ball of radius δ around pi intersects the basin of attraction of

pj . In plain words, if an input perturbation applied in pi can reach pj ’s basin of attraction.

The authors introduce the concept of excitability threshold as the minimum δ for which the

ball intersects the basin.

This technique is applied to the same flip-flop problem as Sussillo but in a 2-bit version. The

outputs of this technique are shown in Fig.5.4. They confirm Sussillo’s ideas that dynamics

of high-dimensional RNNs take place in a much lower dimensional phase space region and

additionally, a transition graph between attractors is obtained. This model can be exploited

to provide a mechanistic interpretation of errors occurring during the computation and also

the excitability thresholds can be used to assess the robustness of RNNs to noise-induced

perturbations.

Figure 5.4: State space 2D and 3D projections and ENA of a trained RNN for the 3-bit

flip-flop problem. Source: Ceni et al. 2019



Chapter 6

Practical case selection

In order to illustrate the previous dynamical system ideas applied to RNNs we have selected

a toy problem extremely intuitive whose computational solution achieved by the RNN is

easily viewable. In the following chapters the concepts of state space, orbits, attractors and

parameter space are exposed based on this example. Hopefully, the utmost importance of

dynamics for the interpretation of RNN behaviour solving tasks will be even clearer after

these final chapters. As any problem on sequences the selected one is composed by an

specific task to solve over an input sequence and a machine learning model that tries to

complete the task.

6.1 Input: sequence a4b4

Let’s consider an uni-dimensional discrete bi-valued sequence {Xi}i>0, with Xi = (xi1) and

xi1 ∈ {0,1} i.e. only one component varies over discrete steps of a parameter i taking only

two possible values represented by 0 and 1.

Uni-dimensionality appears when an isolated variable is the case of study (e.g. daily evolu-

tion of the number of infected persons by a disease in a region). In most cases the discrete

step i at which the sequence take values represents time (i = t) but it also admits other

interpretations as spatial steps (e.g. number of infected persons at distance steps from an

suspicious initial focus point) or even more sophisticated ideas associate parameter steps

with jumps through graphs nodes.

In real cases, input sequences are usually more complex, composed by multiple variables

varying over time (e.g. daily evolution of the number of infected persons by a disease

in a region and the daily average temperature in that region). In this situations input

is represented by a vector with as many components as input variables are considered

Xi = (xi1, . . . , xin). Obviously, in these cases, the interpretation of the parameter i must be

common for all variables.

Time sequences are applied to machine learning models to solve a problem with the hope

that it conveys some kind of internal structure, i.e. long-term vs short-term dependencies.
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This internal structure in the sequence can be possibly deeply hidden in the input signal

and the model must work hardly to unveil it and make use of it to complete successfully

the task.

In our practical case, we have imposed one of the simplest patterns to the sequence, an

evident one for a human observer. In formal language theory it is the classical grammar

an1bn2 . The resultant sequence consists in the infinite repetition of a chunk composed by

n1 a’s followed by n2 b’s. For the sake of simplicity we have considered that a = 0 and b = 1.

Thus, our sequence is represented by the pattern 0n11n2 .

This pattern is simplified even more considering an equality constraint on the length of both

chunks, such that n1 = n2 = n 1 and a total sequence length long enough to be considered

infinite for our purposes even if the sequence is divided into different datasets for training,

validation and testing. 2 As a concrete value for n is needed, a length of 4 is enough to

illustrate the problem. Hence, from now on the working sequence follows a grammar with

pattern 0414, i.e. . . .00001111 . . ..

6.2 Task: Next symbol estimation

Given our arriving sequence {Xt}t>0 of 0s and 1s, the simplest machine learning problem on

this sequence is selected: the next symbol in sequence prediction. More formally, at every

time step t′ predict the next arriving element in the sequence Xt′+1 taking into account the

previously received history {Xt}0<t<t′ as shown in Fig.6.1. As the selected sequence can take

only two possible values, this prediction task can be interpreted as a classification problem

among two different classes: 0 and 1.

Figure 6.1: Next symbol prediction of a 0414 flow.

1In the python code, n1 and n2 are called len zeros and len ones respectively
2The sequence length is controlled by the parameter multiplicity representing the number of times the

pattern is replicated. In our case multiplicity is set to 1.000
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6.3 Model: Binary classifier

This problem can be tackled using different machine learning models. One of the very

common approaches consists in the use of solutions based on RNN models. The simplest

one is composed by two stages as shown in Fig. 6.2:

� A first vanilla-RNN layer that processes the input sequence in a recurrent manner.

As seen in previous chapters, there are multiple possible operating modes of a RNN.

In this case our input is the previous history of the sequence (multiple inputs) and

the expected output is a single value for the next element in the sequence, the most

suitable mode for this input-output configuration is the many-to-one configuration.

� A final dense layer that simply takes the output of the previous layer as input inform-

ation to estimate the class of the next element in the sequence.

Figure 6.2: Block structure of solutions based on RNN models.

Any vanilla-RNN stage is characterized by three main parameters:3

a) n steps: the number of time steps considered backward to estimate the next element

in the sequence. It is also known as the window width or window size used in the

prediction. To capture an 0n1n input pattern, it seems reasonable to consider a

window size higher or equal to the length n of the chunk of zeros or ones in the input

sequence. Therefore, n steps ≥ n+ 1. Applying this assumption for our a4b4 sequence

results a value for the parameter n steps = 4 + 1 = 5.

3In the code, these parameters are called: n steps, neurons and activation RNNCell.
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b) n hidden: the number of neurons of the hidden layer. One of our goals is to test the

Sussillo’s claim that trained state spaces are restricted to low-dimensional manifolds

much lower than the original high-dimensionality of the RNN. Therefore, a high-

dimensional recurrent layer is selected with n hidden = 8. In later chapters n hidden

will be considered a network parameter and its impact in the phase portrait is studied.

c) activation function: of each unit in the hidden layer. For our task we have selected

a classical tanh function.

In Fig.6.3 the obtained RNN is represented with its fixed parameters: nhidden and nsteps and

dimensions of the input data and hidden layer tensors are also shown. Input data tensor

dimensions are given by the number of variables in the sequence (sequence dimensionality),

the selected window size and the number of batches considered. Usually, the number of

batches is left open indicated as None:

(batches,window size, ninput) = (batches, nsteps, ninput) = (None,5,1)

Similarly, the shape of the hidden layer is:

(batches, nhidden) = (None,8)

Figure 6.3: Selected RNN for solving the next element of the sequence problem.

In the many-to-one operating mode the output of the hidden layer is inspected only in one

point of the unfolded representation. This hidden layer output is the state of the system at
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each time step considered in the previous chapters. This output values can be interpreted

as a 8D-representation of the input sequence built by the network in order to solve the

problem and it is offered as input to a very simple final dense layer that predicts the class

of the next element of the sequence. The number of neurons of this layer is fixed by the

dimensionality of the output of the previous stage. Therefore, only one parameter is needed

to fix this dense layer:

a) activation function:4 of the output layer of this dense block. As the task on hands

is a classification problem among two classes 0/1, the typical activation function for

this purposes is a sigmoid.

The input tensor to this dense layer is the output of the previous stage. The output

shape of this layer is simply the estimated class of the next element in the sequence

(None, sequence dim) = (None,1). Hence, its shape is:

(batches, nhidden) = (None,8)

A summary of layers, their dimensionality and the number of parameters involved in the

network is shown in Fig.6.4:

Figure 6.4: Layer summary of the selected RNN

The number of internal parameters can be easily deduced. The RNN layer receives two

inputs: the sequence and the previous time step feedback. Each one is transformed using

a weight matrix of the adequate dimension. As dim(xt) + dim(hidden) = 1 + neurons and

taking into account the bias associated to each neuron 1 × neurons, the total number of

parameters is: (1 + neurons) × neurons + 1 × neurons = 80.

4In the code is named activation dense
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On the other hand, the dense layer has an unique output neuron which receives inputs

from n hidden neurons. The associated weight matrix has n hidden×1 elements and a bias

associated to the output neuron giving a total number of n hidden× 1+ 1× 1 = 8× 1+ 1 = 9.

Hence, the total number of parameters of the model is 80+ 9 = 89. Any of these 89 network

parameters could be chosen for a parametric analysis of the system.

In the following chapters we will explore the structure of the phase portrait of the system,

the behaviour of the network under variations of sequence and model parameters. Up to

this point we can consider that our problem has the following parameters:

� Sequence parameters:

– len ones: number of elements of the chunk of zeros pattern.

– len eros: number of elements of the chunk of ones pattern.

– multiplicity: number of repetitions of the pattern.

� RNN parameters:

– n steps: window of input signal considered to predict the next element.

– n hidden: number of neurons of the output.



Chapter 7

State Space after network training: dimen-

sionality reduction and visualization

In this chapter we seek to confirm Sussillo’s hypothesis about the dimensionality of the

state space of trained RNNs. Let’s recall that this author suggests that after training a

high dimensional RNNs to solve a concrete task, the state space obtained by the network

is such that the movements of the states are restricted to low-dimensional manifolds.

To check if this idea holds in our problem we must perform the following steps:

1) Train the network as usual to solve the problem.

2) Once trained, obtain the state space, i.e. the hidden layer output in the original

8D-space.

3) Plot 2D and 3D projections of the state space. If these projections throw interpretable

results it means that the system actually performs its computations restricted to a

2D-3D space instead of the original 8D-state space.

To obtain the results presented in the following chapters a python3 library has been de-

veloped from scratch. It has been designed following a Object Oriented philosophy with

a technology agnostic flavour. Networks definition, manipulation and training has been

performed using Tensorflow package.

7.1 Model Training

As explained in the previous chapter the input sequence was built as a concatenation of the

pattern 0414. Given the simplicity of the task, there is no need for a long sequence. Hence,

1000 repetitions of the pattern have been taken obtaining a total symbol length of 80001.

1To reduce memory consumption an unsigned 8-bit integer datatype was selected.
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To complete our next symbol estimation task, the input sequence needs to be transformed

into two sets: feature (X) and label (Y ) datasets. The feature dataset is built chopping

the original sequence into chunks of length n steps = 5 while the label dataset consists on

picking the immediately following element in the sequence for each of input pattern in X.

Obviously, the degenerated or incomplete final samples are discarded.

As usual, these feature and label datasets are splitted into three subsets for training, valid-

ation and test following a classical schema 70-20-10 proportion. Hence, the lengths of the

different datasets are: 5596, 1599 and 800 respectively. These datasets must be reshaped

before being feeded into the network according to the tensor’s input shape restrictions as

shown in Fig. 7.1. Finally batches of one hundred samples are created using the idea of

TensorFlow DataSets 2.

Figure 7.1: Summary of the input sequence and its splitted datasets.

For the network training process, some elements need to be fixed 3.

� As usual in classification problem with only two classes, we have chosen the binary

cross-entropy as the loss function to be minimized during training.

� To perform the stochastic gradient descent on the loss function curve the selected

algorithm is the classical Adam with a learning rate = 0.01 with default values for

beta and epsilon.

� Commonly, accuracy is selected as metric to be tracked during the training of this

2In the python implementation, these variables are called: proportions and batchsize.
3In the code, their names are: loss, optimizer, metrics, and epochs.
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kind of classification problems.

� Finally, the number of epochs for the training procedure must be selected. Due to the

simplicity of the problem, 5 epochs must be more than enough to complete the task.

Given a training dataset length of 5596 and a batch size of 100, the number of batches

considered in each epoch is 5596/100 = 56 (for training) and 1599/100 = 16 (for validation

data). In Fig.7.2 the training log is shown , as expected, the network captures soon the idea

behind the input sequence, after the very first epoch a 100% accuracy is achieved. This fact

is undoubtedly due to the easy structure of our sequence.

Figure 7.2: Summary of the training progress of our model.

7.2 State space generation

Once completed the model training, a set of weights that solves the problem has been

obtained. On the other hand, from a dynamical system view, a phase space has been

generated in which the state of the system moves following orbits while the network performs

computations to solve the problem in response to input sequence samples.

This state evolves at each time step in response to the previous state of the system, the

structural characteristics of the network and the excitatory inputs to the system. Hence,

it is an input driven non-autonomous dynamic system. Thus, the trained model can be

excited with the test dataset as input signal giving raise to a state space. Each sample

of the input test brings about a state, i.e. a point in the phase space. Hence, as the test

dataset contains 800 samples, 800 states are induced in the network hidden layer.
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7.3 Dimensionality reduction technique selection

Usually, high dimensionality hidden states are employed to solve problems. As a counter-

part, a new drawback appears making it difficult to visualize the states evolution through

the portrait space. In our case, the hidden state is a 8D-vector. To gain insight into the

dynamics of the state space some kind of dimensionality reduction must be applied with

the hope of obtaining meaningful representation of reduced dimensionality.

To perform this task there is a whole battery of techniques but our analysis is limited to

the most popular ones that are also implemented in the scikit-learn library:

� Principal Component Analysis (PCA) constructs a new set of variables, called Prin-

cipal Components (PC), such that they capture the most variance. The goal is to

obtain a reduced number of PC that explains the bulk in the variance in he original

variables. Operationally it performs a matrix decomposition using Singular Value

Decomposition (SVD) (Jolliffe 2002).

� Multidimensional Scaling (MDS) is based on the notion of distance between obser-

vation points in a multi-attribute space. The objective of MDS is to find a set of

coordinates in k dimensions such that the distances between the resulting pairs of

points are as close as possible to their pair-wise distances in multi-attribute space.

Note that different measures of distance could be considered although scikit-learn

only implements euclidean distance (T. F. Cox and M. A. Cox 1994).

� t-distributed Stochastic Neighbour Embedding (t-SNE) models the probability dis-

tribution of neighbours around each point. In the original, space using a Gaussian

distribution, in the 2D space with a t-distribution. The goal is to find a mapping

that minimizes the differences between these two distributions over all points. Hence,

it is design to preserve local structure, points which are close to one another in the

high-dimensional data set will tend to be close to one another in the new space.

This technique was mainly design for visualization purposes not for dimensionality

reduction (van der Maaten and G. Hinton 2008).

� Linear Locally Embeddings (LLE) is design to discover non-linear structure in high-

dimensional data. It is based on the idea that in well-sampled manifolds a data point

and its neighbours lie close to a locally linear patch of the manifold and exploits local

symmetries of linear reconstructions of these patches (Roweis 2000).

LLE appears in different flavours: standard, modified, Hessian eigenmapping, and

Local Tangent Space Alignment (LTSA).
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� Spectral Embedding is also a non-linear technique. An affinity graph is built where

data points are the vertices and edges indicate the k-neighbours of each point in the eu-

clidean sense, producing highly connected matrices. The low dimensional embedding

is found by applying spectral decomposition to the corresponding graph Laplacian

(Belkin and Niyogi 2003).

� Isometric Mapping (Isomap) is also a method based on spectral decomposition that

tries to preserve the geodesic distances during the projection. Again an affinity

weighted matrix is built considering the k-nearest neighbours in the euclidean sense

where weights represent the geodesic distance defined as the sum of edge weights along

the shortest path between two nodes. The low dimensional embedding is found by ap-

plying spectral decomposition to a derived matrix from the previous one (Tenenbaum

et al. 2000).

Given such a wide variety of dimensionality reduction techniques an analysis of their suit-

ability to our problem is needed. To achieve this goal the following steps are considered:

1) Each of the latter dimensionality reduction techniques is applied to this new state

space obtaining a bunch of 3D projected spaces. The first two dimensions of each

projection are represented in an 2D-scatter plot. Each point in the graph represents a

state which is accompanied with a colour mark (red / blue) which represents the next

symbol of the sequence which the network must try to predict. Hence, a red point

represents a state of the RNN such that the next element in the sequence is a zero.

On the contrary, points are coloured in blue if the next element is a one. Although the

generated state spaces contains 800 states, in the plot they can appear overlapping

each other as shown in Fig.7.3.

2) A second stage consisting in a visual and qualitative exploration of these plotted

projections to determine which technique better suits our problem.

Let us recall the state of the system is a representation of the input sequence built

by the network to be provided to the dense layer trying to predict the next symbol

in the sequence. Thus, appropriate projected states must capture, at least, part of

this representation and the loss of information due to the reduction of dimensionality

should be enough to generate a meaningful result.

For a 100% score of correct predictions, the final layer must be able to separate all the

points in red from the ones in blue. This perfect accuracy is achieved by our model

as pointed out in Fig.7.2. Thus, we will consider that a reduction dimensionality

is suitable for our problem if the plotted projections capture clearly for an human

observer this fully separability property of colour groups.
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Figure 7.3: First two components of state space projected using PCA

In Fig.7.3 are represented the first two principal components of the state space of the system

projected using a PCA technique. On the other hand, the first two dimensions of a MDS

projection of the same state space are plotted in Fig.7.4. Undoubtedly, both techniques meet

the suitability requirement providing easily interpretable plot. A simply 2D-projection is

enough to separate both classes of points: the ones whose next element to be predicted is

a one from those whose next symbol in the sequence is a zero.

Meanwhile, Fig.7.5 shows the first two dimensions of t-SNE and LLE Hessian projection

methods. Both techniques present a pretty similar behaviour to each other. States do not

appear overlapped in an small amount of points but they scattered over a delimited area in

a non-separable distribution. Although, the following remarks must be done:

a) t-SNE has a tuning parameter called perplexity. Higher values (Scikit-learn default

= 50) implies considering the whole dataset in the calculus while smaller values (e.g.

perplexity = 5) forces the algorithm to limit the probability distribution to the nearest

neighbours of each point. Unfortunately, in our case, the default value generates a

messy cloud of points while lower values do not generated projections much easier to

interpret.
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Figure 7.4: First two dimensions of state space projected using MDS.

b) For a 2D projection using Hessian LLE the minimum number of neighbours to consider

is 6. Due to the reduced number of states in our problem, the technique seems to be

non suitable for our problem.

In Fig.7.6 the 2D-projections obtained using the standard and LTSA flavours of LLE are

shown. In both cases a similar behaviour can be observed: the states concentrate and

overlap in a small number of points but in a non-separable spatial distribution. In both

cases the number of neighbours selected is 4, an unit higher than the number of components

of the projected space.

The following conclusions can be obtained from the qualitative analysis of the previous

plots:

� Only PCA and MDS techniques provide easy and meaningful interpretable 2D pro-

jections of the state space. A key property of MDS is that close points in the original

high-dimensional space remain close in the projected space. In Fig.7.4 can be seen all

states have been clustered into two different areas, suggesting clearly that state space

has two differentiated areas.
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Figure 7.5: First two dimensions of the state space projected using t-SNE and LLE Hessian.

Figure 7.6: First two dimensions of the state space projected using LLE Standard and

LTSA.

� In general, non-linear techniques based on local embeddings and spectral decompos-

ition are not adequate to our concrete problem. Probably due to the reduced actual

number of different states in our phase space. In future lines of investigation these

techniques could be of interest as the number of states in non-toy problems probably

exploit.

� Of course, these conclusions about projection techniques suitability are only of applic-

ation for this concrete problem under analysis. For this reason, all these projection

techniques have been implemented in our library for future potential uses. The Object

Oriented approach in the library design makes it easy to implement new projection

techniques using polymorphism.
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7.4 Working minimum dimensionality

Once selected PCA and MDS as the useful projection techniques for our problem, the next

natural question is to determine how many dimensions or components are really needed to

work with.

In the PCA case, the most common technique to determine the best dimension number is

plotting the accumulated explained variance associated to the eigenvalues obtained in the

singular decomposition ordered decreasingly by their value as shown in Fig.7.7. A common

convention is to take a threshold of 95%. The application of this criteria to our problem

suggests that 3 components explain almost 100% of the overall variance.

Figure 7.7: Accumulated explained variance of each eigenvalue for the selection of the

adequate number of PCA components

An alternative criterion to select the number of components is the so-called Kaiser criterion,

which suggests to take the components for which the eigenvalue exceeds 1. For this purpose,

the absolute value of each eigenvalue has been added in Fig.7.7. Again, this technique

suggests to select three or four components. Hence, in the following chapters a 3D-PCA

will be considered.

For the MDS case, there are no simple methods to select an adequate dimension number
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but calculating the so called reconstruction error. Thus, taking into account the existing

parallelism between PCA and MDS techniques, also 3D-MDS will be considered.

These results confirms Sussillo’s hypotheses: after training the original 8D-RNN, the ob-

tained space state has a movement constrained to a 3D sub-manifold (i.e. the states yield

in a curve) that can be analysed using 3D-PCA and 3D-MDS.



Chapter 8

State space orbits

Up to this point we have obtained the following advances in our analysis:

1) A vanilla-RNN has been trained to solve the next symbol in sequence estimation for

a 0414 pattern input sequence. Different parameters of the network and the input

sequence have been fixed. Among them, the most relevant for our analysis is the

number of neurons in the hidden layer that determines the dimensionality of the state

space. For our problem, a 8D-space.

2) The resultant trained network can be analysed from a dynamical system theory per-

spective. In this context, the hidden layer activations can be interpreted as the state

of an input driven non-autonomous dynamical system that evolves as a response to

an input sequence to the system.

3) To obtain the orbits of the non-autonomous system, the trained model is exposed to

an excitatory signal. In our case, the test dataset plays the role of input excitation.

Given the repetitive structure of the input the whole state space is composed by an

unique orbit with eight different states.

4) Due to the high dimensionality of the 8D-state space, different dimensionality re-

duction techniques have been analysed. Linear Local Embeddings and t-SNE have

been discarded due to an incompatibility between their dimension reduction approach

based on neighbours and the reduced number of states in our problem. As a result

2D/3D-PCA and 2D/3D-MDS have been selected as suitable for our task obtaining

separable representations of the states and capturing more accurately the state space

manifold structure of this concrete problem.

5) The low dimensionality hypothesis proposed by Sussillo’s for the state space of high

dimensional trained models in real problem has been confirmed for our toy example.

The orbits followed by the model while performing the computations are constrained

to surfaces in a 3D space.
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8.1 Trained network: orbits in PCA space

The next logical step is to closely analyse the state space taking advantage of the visual-

ization possibilities of the selected 2D and 3D projection techniques. From Eq. 4.2 each

incoming input sample jointly with the previous system state contributes to generate a new

state, i.e. a new point in the phase portrait. Hence, when the next input sample is received,

the system suffers a transition from its current state to the next state in the orbit.

As shown in the previous chapter, the state space of the trained model is generated injecting

in the system the test dataset and obtaining its reaction. Therefore, it is necessary to

understand the nature of this input signal.

Its samples are the ones associated to a 0414 grammar. Thus, it consists in a 8-sample cycle

that repeats indefinitely:

...,01111,11110,11100,11000,10000,00001,00011,00111, ... (8.1)

In Fig. 8.1, 8.2 and 8.3, the 2D and 3D-PCA projections of the states in the orbit travelling

through the state space are represented. Each pair of subplots is the reaction of the network

to a new input sample received following the pattern in Eq. 8.1.

To make the visualization of these states and their transitions clearer some additional ele-

ments have been incorporated to the plots:

� As each subplot in the figures must be understood as the rise of a state in response to

a new input data exciting the system, the resultant state is labelled with the related

input sample value.

� States are also marked in a colour indicating the correct next symbol in the sequence

that must be predicted by the network. If a point is in blue the next element in the

sequence will be a zero. On the other hand, if the point is in red, the next element

will be a one.

� Finally, let’s also recall that in discrete time dynamical systems, the orbits are se-

quences of points instead of continuous curves. Given a discrete state space, this

issue makes it difficult to visualize the order of appearance of the states in the orbits.

Therefore, transitions from one state to another one are indicated with a green dotted

line joining consecutive states. This provides us with a geometrical intuition of the

pattern followed by the transitions.
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Figure 8.1: 2D/3D PCA projections of states associated to the first three input samples.

Top: 01111, Center: 11110, Bottom: 11100.
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Figure 8.2: 2D/3D PCA projections of states associated to the following three input samples.

Top: 11000, Center: 10000, Bottom: 00001.
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Figure 8.3: 2D/3D PCA projections of states associated to the last input samples. Top:

00011, Center: 00111, Bottom: 01111.
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8.2 Interpretation of the principal components

From a closer inspection of Fig. 8.1, 8.2 and 8.3 a nice interpretation can be given to the

obtained principal components. For that purpose, consider the complete orbit represented

in Fig. 8.4:

i) Firstly, from the 2D-representation it is clear that the first principal component is

enough to separate all the points in blue from the ones in red. Therefore, it can be

directly interpreted as an indicator of the next element in the sequence. The positive

direction of the first component indicates the next element in the sequence will be a

one and the opposite direction indicates the next element to be predicted is a zero.

Lonely this first component would be enough to solve our classification problem. This

result is coherent with the high variance (approx 98%) captured by this first principal

component in the projection as shown in Fig. 7.7.

ii) Second and third principal components interpretation is much trickier and must be

done jointly. In Fig. 8.4 four areas (named RI, RII, RIII and RIV) with different

behaviours can be identified in the state space.

Figure 8.4: Topological structure of the trained network state space projected using PCA.

Left: 2D projection, Right: 3D projection. Four regions with different behaviour are iden-

tified.
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While the received input signals are 11110, 11100,11000 the system has no doubt the

next element to be predicted is a zero and the states in 2D-3D projections remain

grouped in a cluster labelled as RI, i.e. all three component values suffer only tiny

changes. However, when the input signal received is 10000, of course, the first com-

ponent changes indicating a one for the prediction but the second component also

varies abruptly to RII giving signals that a switch in the status of the sequence has

happened.

From this point on, the next element in the sequence to be predicted is a one. After

this transition and while the input signal is one of the following 00001, 00011, 00111

all three components relax again to a new cluster of points RIII where they suffer

minimal changes.

Finally, when the last input signal 10000 arrives, the first component changes indic-

ating a zero for the prediction but now the third component is excited and suddenly

changes to RIV indicating again the status of the sequence has changed.

Hence, second and third principal components capture the idea of a change in the

status of the sequence has happened in the very near past, i.e. exactly from the

previous state to the current one. In concrete, second component is an indicator

of a recent switch in the sequence from zero to one while third component is the

complementary one, indicating a transition in the prediction from ones to zeros.

8.3 Trained network: orbits in MDS space

In the previous plots we have analysed the behaviour of orbits in the state space of the

trained network with the help of 2D/3D PCA projections. In Fig. 8.5 is shown a compar-

ison between the same 8D-orbits considering both reduction techniques: 2D/3D-PCA and

2D/3D-MDS.

As mentioned earlier there exists a parallelism between PCA and MDS projections. This

behaviour can be appreciated in the previous figure where the same 8D orbit is projected

considering both projection systems. A qualitative inspection of the plots gives us the

following intuitions:

� The first dimension of MDS plays a similar role to the first principal component of

PCA. Allowing us to separate both families of states, the ones in red from the blue

ones.

� The second and third components are more difficult to interpret but it seems there is

an underlying similar but softened behaviour between both projections methods.
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Figure 8.5: Comparison of 2D-3D PCA and MDS projections of trained network state space.

Top: PCA projections. Bottom: MDS projections.

8.4 Orbits deformation during network training

In the previous section the orbits of the trained network have been analysed. The following

natural question is what has happened to the orbits during the training process.

Roughly speaking the network training process consists is a progressive adjustment of its

weights following some learning process. Although significant advances has been made in

recent years, the traditional default technique is BackPropagation Through Time (BPTT)

with some incorporations. Nevertheless, any training mechanism makes successive trans-

formations of the different weight matrices trying to optimize some loss function.
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Typically, weights are not updated after each input sample but training data is divided into

blocks called batches. This batch size is an user adjustable parameter before training in any

deep learning library. Once completed the forward step for the entire batch, the error in

the loss function is computed and weights are updated following the backpropagation idea.

Thus, during training there will be as many weight updates as batches are involved.

Each weight arrangement can be interpreted as a state space in progress towards the final

solution. These state spaces can be inspected to obtain its orbits injecting an excitation

input following the same procedure used in the previous sections. Following this idea, the

training process can be understood as an orbits deformation procedure until the training

process is completed and a final space space is reached.

To visualize this process for our problem on hands a batch size of 100 was selected for

a training dataset containing 5.596 samples. Hence, the number of steps in the training

procedure is 5596/100 ≈ 56 as indicated in Fig.7.2. These 56 steps are performed for each of

the 5 epoch selected for training. Hence, the total number of weight updates is 56×5 = 280.

Using Tensorflow callbacks an snapshot of model weights after each batch has been stored.

Thus, 280 models are registered during training. The 8D-state space of each of these models

is obtained applying the same excitation input sequence. Finally, these high dimensional

state spaces are projected using the 3D-PCA technique. In the associate notebook all the

results of this thesis are made reproducible and an animation of the orbits deformation

during training is included. In Fig.8.6 are shown the orbits for some steps during training:

� The initial step corresponds to the random weights assigned to the weights during net

initialization. In Tensorflow the default method is called Glorot uniform which draws

samples from a uniform distribution based on the number of input units and output

units in the weight tensor. In this initial step states are randomly mixed in the plane.

� Even after some initial steps the first component has captured the idea of separating

ones and zeros. It is the first principal component birth.

� In the next steps the learning mechanism shrinks and expands the orbit until the first

component captures the maximum variance creating the clusters named as RI and

RII. To create these regions the orbit has suffered major deformations.

� In the last steps, RI and RII clusters are compressed as much as possible and second

and third component try to capture their vicinity change idea creating RIII and RIV.

Finally, the orbit structure stabilizes as no more improvement in the information

capturing process can be obtained. This is coherent with the classical information

returned by Tensorflow during training shown in Fig.7.2 where after the first epoch,

the problem is solved by the network.
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Figure 8.6: Orbits deformation during network training. Top left: random weight initializ-

ation, Top: right: first PC can be appreciated (5 steps), Center left: to create clusters orbit

needs to deform (12 steps), Center right: clusters created (20 steps), Bottom left: Inform-

ation transferred between RIII and RIV (40 steps), Bottom right: Near orbit stability (59

steps ≈ 1 epoch)



Chapter 9

Line attractors

9.1 Attractors visualization

In the previous chapters we have analysed the phase space for trained networks and the

orbits deformation during weights learning process until they get stabilized when training

ends.

However, we have tiptoed around an important issue. The initial step of this training process

implies a random initialization of model weights. There exists different methods to assign

values to the initial weights but they usually consist in taking samples from a statistical

distribution (typically Gaussian or uniform) of weights (Glorot and Yoshua Bengio 2010).

The main objective of this technique is to ensure a similar variance in the gradients of the

different layers.

To obtain these random samples from the distribution a seed is considered in the Python,

Numpy and Tensorflow internal random number generators. Hence, an interesting question

to tackle is, which is the behaviour of our model when different seeds are considered as

starting points for training.

For this purpose we have obtained the orbits for a range of 20 different seeds taken from a

uniform distribution. The PCA projections are obtained for each state space individually1

and the superposition of the first two components is represented in Fig.9.1.

Two clearly differentiated regions can be identified. One region that concentrates or attract

states in blue and another one where the remaining states in red are clustered. The obtained

distribution of states is quite close to a line, When an attractor behaves in this manner is

called a line attractor. This behaviour is similar to the described in Maheswaranathan

et al. 2019 for the existence of a line attractor in the classification problem associated to

1Each state space has been projected individually and the first two components are superposed and

plotted. Another approach could be chosen, adding all the state spaces of the different seeds and obtaining

an unique projection



Interpretation of DNN as Dynamical Systems 74

sentiment analysis.

Figure 9.1: Superposition of state space PCA projections of trained networks obtained for

20 different seeds in the weight initialization process.

9.2 Parametric analysis: hidden layer dimensionality impact

As indicated in section 6.3 one of the main parameters of a RNN is the hidden layer

dimensionality. However, all practical results obtained in the previous chapters considered

a fixed 8D hidden layer. Thus, it seems reasonable to analyse the behaviour of orbits and

attractor lines when this dimensionality takes different values.

For this purpose, the orbits and line attractors are obtained for different values in the range

nhidden ∈ {3, . . . ,16}. In the accompanying notebook to the thesis 2 is presented an animated

dynamic evolution to appreciate clearly its impact. As the hidden layer dimensionality takes

higher values, the intuitive distance between both attractor lines increases.

In Fig.9.2 the line attractors for eight different values of nhidden are represented. Consider,

simply as an intuitive notion of distance, the difference between the intersection points of

the first principal component axis and each line attractor. For nhidden = 3 this distance is

roughly 4 units while for nhidden = 16 the distance increases up to 8. Hence, clearly there

exists a relationship between the hidden dimensionality and some kind of distance metric

between the attractors.

2In the github repository all the results presented in this thesis can be reproduced using a notebook.
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Figure 9.2: Line attractors obtained for different values of hidden dimension
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In some sense, although PCA explained variance analysis assigns nearly null variance to

dimensions higher than 3, during the training process the network makes use of these extra

dimensions to increases its confidence in the results obtained creating more separated line

attractors.



Chapter 10

Noise impact on line attractors

In this final chapter noise in the input sequence is considered and its impact on the state

space topology is analysed.

Let’s consider a noisy input signal obtained adding a random perturbation to the original

sequence. For the sake of simplicity, given our original sequence 0414, only noise composed

by 0’s and 1’s is considered. Each symbol of this noise is obtained sampling a uniform

discrete distribution with parameter p = error prob. The higher the error prob, more noise

is acting. The perturbed input is obtained with a modulo-2 addition between the original

signal and the random noise, i.e. when noise takes value 1 error is acting on the input, if

noise is 0, there is no noise.

To observe the impact of this noise in the attractors topology, for each value of p ranging

from 0 to 0.5 (step = 0.05), a noisy input sequence is generated, i.e. from a no-noise situation,

until a high noise impact scenario. These 9 perturbed input signal are used as input for

training our RNN model. As in the previous chapter, to observe the line attractors, the

training process is performed considering 20 different weight initialization seeds. As usual,

the model and the learned weights can be interpreted as a state space whose orbits can

be visualized injecting an excitatory signal in the network. Finally, these state spaces are

projected considering a 2D-PCA technique.

In Fig.10.1 the obtained line attractors for each error probability are represented.1 When

there is no noise presence, the situation is similar to Fig.9.1. Immediately when noise

appears, the attractor structure gets curved due to a greater sparsity of the states. As error

probability is increased, the distance between the attractors diminishes. Finally, when error

reaches 0.4 both attractors are clustered near the origin and beyond this point, the original

structure of attractors reaches a completely unrecognizable situation.

1As in previous chapters, in the github notebook an animated representation of the attractors evolution

is provided
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Figure 10.1: Linear attractors evolution for network trained with noisy dataset. Noise

ranges from error probability = 0 to 0.5



Chapter 11

Conclusions and future investigation lines

Despite the success history of deep learning application to real-life problems, the black-box

idea associated to neural networks remains left on hold. It is becoming a must to understand

the internal mechanisms behind the results provided by these models. Moreover, when the

design and implementation of neural networks is almost an art, based on heuristic rules not

based on a solid mathematical framework.

In this work a complementary approach to RNNs analysis is presented: the interpretation

of Recurrent Neural Networks as discrete time non-autonomous dynamical systems. This

idea allows us to apply powerful tools of this branch of mathematics. State spaces, orbits

and attractors can be used to get a deeper knowledge of how information is represented

during network internal computations.

To illustrate these ideas a toy example is considered. A high dimensional (8D) vanilla-RNN

has been trained to solve the next symbol in sequence estimation for a 0414 pattern input

sequence. The hidden layer of the networks is interpreted as the state of the system that

evolves as a response to an input sequence and several dimensionality reduction techniques

are analysed to obtain useful 2D and 3D representation of the phase space. Using PCA

and MDS can be observed that the state space of the trained model is constrained to low

dimensional spaces. The progressive deformation of the orbits during the training process

until the final state space is reached is also studied. taking into account different seed

for the weight initialization process, two clearly separated regions can be identified in the

space portrait, interpreted as line attractors. The distance between these two attractors

depends on the hidden layer dimensionality. If noise is introduced in the training process,

the attractors topology is altered spreading the attractors.

Future lines of investigation must consider increasingly complexity problems or alternatively

reproduce the results of state-of-art papers in this field. For this purpose the developed

library must be completed with more functionalities. In general, more analysis with toy

examples can be done as the impact of the training method on the state space or an increase

in the number of classes.
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