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Abstract

UAVs (Unmanned Aerial Vehicles) or drones have long been used to autonomously op-
erate on a terrain and many strategies have been proposed when the environment is un-
known. When the drone is tasked with a path planning problem in a unknown terrain,
it must be able to correctly perceive its environment online and plan its path without
human supervision. Particularly, covering or patrolling of a speci�c area has been a chal-
lenging optimization problem in robotics. �is work addresses a particular covering task
in unknown outdoor environments in which the drone has a limited power. �e agent
has to return to a base station when it is running out of ba�ery. �e problem is then
to generate an optimal path that starts and ends at a base station and covers the target
area through several tours. A covering planner based on Deep Reinforcement Learning
is proposed where a Deep Q-network is trained to learn a control policy to approximate
the optimal strategy at each step. Simulation results showed that the algorithm is able to
learn and generalizes well to di�erent types of environments. A�er multiple sequences
of the training process, the virtual mobile drone gets information of the whole space
with a coverage rate of over 80%. �e experiments also demonstrate that the drone �nds
a trajectory balancing the goals of safe recharging and maximum coverage ratio.





Resumen

Los UAV (Vehı́culos Aéreo no Tripulados) o drones se vienen utilizando desde hace
tiempo para operar de forma autónoma en un terreno y se han propuesto muchas es-
trategias para cuando el entorno es desconocido. Cuando el dron se le encomienda una
tarea de plani�cación en un terreno desconocido, debe ser capaz de percibir correcta-
mente su entorno en tiempo real y plani�car su camino sin supervisión humana. En
particular, cubrir o patrullar un área especı́�ca ha sido todo un desafı́o en el campo de
la optimización en robótica. Este trabajo aborda una tarea de cobertura en entornos ex-
teriores desconocidos en los que el dron tiene un tiempo de vida limitado. Por lo tanto,
el agente tiene que regresar a una estación base cuando se está quedando sin baterı́a. El
problema es generar un camino óptimo que comience y termine en una estación base y
cubra el objetivo usando para ello varios recorridos. En esta tesis se propone un plani-
�cador de cobertura basado en el aprendizaje reforzado profundo (Deep Reinforcement
Learning) donde se usa un aprendizaje de una polı́tica de control para aproximar la es-
trategia óptima en cada paso. Los resultados de la simulación mostraron que el algo-
ritmo es capaz de aprender y generaliza bien a diferentes tipos de ambiente. Después de
múltiples secuencias del proceso de entrenamiento, el dron móvil virtual obtiene infor-
mación de todo el espacio con una tasa de cobertura del 80%. Los experimentos también
han demostrado que el dron es capaz de encontrar una trayectorı́a equilibrando los dos
objetivos planteados: recarga segura y ratio de cobertura.
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Introduction

Unmanned aerial vehicles (UAVs or drones) have been largely used in missions involving
navigating through an unknown environment, as they can host a wide range of sensors
to measure the environment with relative low operation costs and high �exibility. How-
ever, it is di�cult to a�ain this in most realistic implementations, since the knowledge
and data regarding the environment are normally limited or unavailable. Using Rein-
forcement Learning (RL) is a good approach to overcome this issue because it allows a
UAV or a UAV team to learn and navigate through the changing environment without a
model of the environment [24]. Deep reinforcement learning (DRL) is the combination
of reinforcement learning and deep learning. �is �eld of research has been able to solve
a wide range of complex decision making tasks in robotics [14]. �e main idea is that an
agent may learn by interacting with its environment, similarly to a biological agent. Us-
ing the experience gathered, the agent should be able to optimize some objectives given
in the form of cumulative rewards.

In this paper we use DRL to compute a tour that enables a mobile agent to cover
points of an area of interest. �en the optimal tour is iteratively used to cover the over-
all required zone. �us, our problem is relating with well known NP-hard problems:
Travelling Salesman Problem, the Lawn Mowing Problem and the Milling problem [3].
In the robotics area, [11] provides a survey of general (ground robotics) approaches to
coverage path planning. A recent surveys for UAVs is [8].

�e main constraint in UAV path planning is the ba�ery endurance. Despite recent
improvements in ba�ery technology, the maximum �ying range of small UAVs is still
a severe constraint. From a computational point of view, the problem is quite di�erent
when a limited lifetime is considered. Indeed, some planning problems can be solved in
polynomial time when the ba�ery endurance is considered unlimited but could be NP-
hard when the power is a constraint, see [2] for an example. �en, the power constraint
leads to challenging optimization problems when a drone or a team of drones are tasked
to navigate in a speci�c scenario.

In the following we mention some related work. Collecting data from sensor devices
in an outdoor environment imposes challenging constraints on the trajectories design
for autonomous UAVs. Ba�ery energy restricts mission duration for the drones severely,
while the complex urban environment poses challenges in obstacle avoidance. A recent
tutorial covering the paradigms of trajectory planning for data collection with drones
is given in [26]. Bithaset al. [6] provide a survey on machine learning techniques, in-
cluding but not limited to reinforcement learning(RL), for various UAV communications
scenarios. Most existing approaches to UAV data collection are not based on RL and only
�nd a solution for one set of scenario parameters at a time. For example, Esra�lianet al.
[9] proposed a two-step algorithm to optimize a UAV’s trajectory and its scheduling deci-
sions in an urban data collection mission using a combination of dynamic and sequential
convex programming. However, deep reinforcement learning has been explored in UAV
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communication scenarios. In [5], a UAV base station serves two ground users and the
goal is to show the advantages of neural networks over table-based Q-learning. However,
any explicit assumptions about the environment is considered at the price of long train-
ing time. On the other hand, deep deterministic policy gradient was proposed by Qiet al.
[22] to learn a continuous control policy for a UAV providing persistent communications
coverage to a group of users in an environment without obstacles. A more related work
is given by Liu et al. [16], where an RL multi-agent algorithm collecting data simulta-
neously with ground and aerial vehicles in an environment with obstacles and charging
stations is proposed. �eir approach also makes use of convolutional nertworks to ex-
ploit a map of the environment but, in contrast to our method, control policies have to
be relearned entirely when scenario and environmental parameters change. Finally, we
mention a recent paper that proposes the use of DRL to �nd an optimal path under the
assumption that not all the areas have the same coverage requirements. Picarelli et al.
[21] propose a reinforcement learning approach that, given a relevance map represent-
ing coverage requirements, a robot autonomously chooses the best actions to optimize
the coverage. However, they do not consider the ba�ery endurance constraint. To the
best of our knowledge, DRL has not been considered for UAV for coverage path planning
in a unknown environment under power constraints before.

�e main goal of this thesis is serve a �rst step and a basis for path planners that
are based on DRL, especially those under energetic constraints. �is is particularly in-
teresting for some type of applications with UAVs. �e idea is to achieve sensor-based
navigation in unknown scenarios with the help of the Reinforcement Learning frame-
work in order to succeed in covering the ground with a good coverage rate which is
evaluated with appropriately de�ned metrics. �e simple problem formulation makes it
possible to quickly generalize the solution concept to various domains with li�le changes
or adjustments in the structure. �is is made possible thanks to the mathematical tools
used in the scope of this thesis.

�e rest of the work is outlined as follows. In chapter 1, we gives an overview of the
Reinforcement Learning and the underlying concepts, in Markov Decision Processes
in particular. �e learning problem is introduced as well as the mathematical frame-
work and tools used to implement the proposed Deep Reinforcement Learning algo-
rithm. Chapter 2 de�nes the type of neural networks used in this study as well the deep
neural networks. Section 3 presents the method to solve the problem. Finally, in chapter
5, we summarize the work and draw directions for future work.

16



1 Reinforcement learning

Reinforcement learning is an area of machine learning, that becomes popular recently
thanks to its capabilities in solving learning problem without relying on a model of the
environment. It is a computational approach to understanding and automating goal-
directed learning and decision making. �e RL problem can be formalized as an agent
that has to choose an action in an environment to maximize a numerical signal, called
reward, that measures the performance of the agent (see Figure 1.1). A learning agent
must be able to interact with environment and to take actions that a�ect the state. �e
agent does not know which action to take. It deals with the exploration/exploitation
dilemma while learning. �e agent must try a variety of actions and progressively favor
those that appear to be best. Doing this the agent is seeking for a goal or goals relating
to the state of the environment.

In this chapter we will introduce the basic concepts of the reinforcement learning
algorithm and describe the mathematics behind it. We will base base this study on Su�on
and Barto’s RL book [24]. It covers RL fundamentals and re�ects new progress, e.g.,
in deep Q-network, AlphaGo, policy gradient methods, as well as in psychology and
neuroscience. Xintian Han gives a brief summary of the the mathematical approach of
the problem [12]. [20] focus his paper ”Autonomous uav navigation using reinforcement
learning” on applying RL algorithm for drones. Many other papers also use RL concepts
into di�erent �eld of robotics ([21, 18, 19] and others).

1.1 Problem Setup

�e general RL problem is formalized as a discrete time stochastic control process where
an agent interacts with its environment in the following way: the agent starts, in a given
state within its environment s0 ∈  . At each time step t, the agent receives a state st ∈ 
and selects an action at ∈ , following the policy �(at|st), which is the agent’s behavior.

Figure 1.1: �e agent–environment interaction in a Markov decision process[24].
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�e agent obtains a scalar reward rt, and transitions to the next state st+1, according to
the environment dynamics, or model, for reward function (s, a) and state transition
probability (st+1|at+1) respectively. In an episodic problem, this process continues until
the agent reaches a terminal state and then it restarts. �e return Rt =

∑∞
k=0 

krt+k is
the discounted, accumulated reward with the discount factor  ∈ (0, 1]. �e agent aims
to maximize the expectation of such long term return from each state. �e problem is
set up in discrete state and action spaces. It is not hard to extend it to continuous spaces.

1.2 Markov Decision Processes

Reinforcement learning uses the formal framework of Markov decision processes to de-
�ne the interaction between a learning agent and its environment in terms of states,
actions, and rewards.

First we will de�ne the Markov process. A sequence of states is Markov if and only
if the probability of moving to the next state St+1 depends only on the present state st
and not on the previous states S1, S2, ..., St−1. �at is, for all t,

ℙ[St+1|St] = ℙ[St+1|S1, S2, ..., St] (1.1)

We always talk about time-homogeneous Markov chain in RL, in which the proba-
bility of the transition is independent of t:

ℙ[St+1 = s′|St = s] = ℙ[St = s′|St−1 = s] (1.2)

De�nition 1.1 (Markov Process). A Markov Process (or Markov Chain) is a tuple
( ,), where

•  is a (�nite) set of states.
•  state transition probability matrix. ss′ = ℙ[St+1 = s′|St = s].

If we introduce reward, action and discount into a Markov process, we get a Markov
decision process.

De�nition 1.2 (Markov Decision Processes). A Markov decision process is a tuple
( ,, , ,), where

•  is a �nite set of states.
•  is a �nite set of actions.
•  state transition probability matrix. a

ss′ = ℙ[St+1 = s′|St = s, At = a].
•  ∈ (0, 1] is a discount factor.
•  ∶  × → ℝ is a reward function.

In the MDP, the transition to the next state St + 1 depends not only on the current
stateSt, but also depends on the actionAt you make at the current state. Also, each state-
action pair is a�ached with a reward function. MDPs are a mathematically idealized form
of the reinforcement learning problem for which precise theoretical statements can be
made.

18
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1.2.1 Returns and Episodes

We have said that the agent’s goal is to maximize the cumulative reward it receives in
the long run. If the sequence of rewards received a�er time step t is denoted Rt+1, Rt+2,
Rt+3, ..., than we seek to maximize the expected return, where where the return, denoted
Gt, is de�ned as some speci�c function of the reward sequence. For reinforcement learn-
ing tasks, which break naturally into sub-sequences, called episodes (episodic task), the
return function is the sum of the rewards:

Gt
.
= Rt+1 + Rt+2 + Rt+3 + ... + RT (1.3)

where T is a �nal time step. On the other hand, in many cases the agent–environment
interaction does not break naturally into identi�able episodes, but goes on continually
without limit.We call these continuing tasks. �e �nal time step would be T = ∞, and
the return could itself easily be in�nite. To avoid it we add an additional parameter
 ∈ [0, 1], called the discount rate. We can de�ne the expected discounted return as:

Gt
.
= Rt+1 + Rt+2 + 2Rt+3 + ... =

∞
∑

k=0
kRt+k+1 (1.4)

Returns at successive time steps are related to each other:

Gt
.
= Rt+1 + Gt+1 (1.5)

We can de�ne the return, in general for both episodic and continuing tasks:

Gt
.
=

T
∑

k=t+1
k−t−1Rk (1.6)

including the possibility that T = ∞ or  = 1 (but not both).

1.2.2 Policies and Value Functions. Bellman equation

Formally, a policy is a mapping from states to probabilities of selecting each possible
action:

� ∶  → p( = a|S) (1.7)
If the MDP is episodic, i.e., the state is reset a�er each episode of length T , then

the sequence of states, actions, and rewards in an episode constitutes a trajectory of the
policy.

�e state-value function for policy �, denoted v�(s), is the expected return when start-
ing in s and following � therea�er. For MDPs, we can de�ne v�(s) formally by

v�(s)
.
= E�[Gt|St = s] = E�

[

∞
∑

k=0
kRt+k+1

|

|

|

|

|

St = s

]

, for all s ∈  (1.8)

where E denotes the expected value of a random variable given that the agent follows
policy �, and t is any time step.

�e action-value function for policy �, denoted q�(s, a), as the expected return starting
from s, taking the action a, and therea�er following policy �:

q�(s, a)
.
= E�[Gt|St = s, At = a] = E�

[

∞
∑

k=0
kRt+k+1

|

|

|

|

|

St = s, At = a

]

. (1.9)
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We can decompose the state-value function into two parts: the immediate reward Rt+1
and discounted value of successor state v�(St+1):

v�(s)
.
= E�[Gt|St = s]
= E�[Rt+1 + Gt+1|St = s]
= E�[Rt+1 + v�(St+1)|St = s]
= E�[Rt+1|St = s]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

immediate reward

+ E�[v�(St+1)|St = s]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

discounted value of successor state

(1.10)

Similarly, the action-value function can be decomposed as follows:

q�(s, a)
.
= E�[Gt|St = s, At = a] = E�[Rt+1 + v�(St+1)|St = s, At = a] (1.11)

To simplify notations, we de�nea
s = E�[Gt|St = s, At = a]. We can see the relationship

between v�(s) and q�(s, a):

v�(s) =
∑

a∈
�(a|s)q�(s, a) (1.12)

q�(s, a) = a
s + 

∑

s′∈
a
ss′v�(s

′) (1.13)

Expressing q�(s, a) in terms of v�(s) in the expression of v�(s), we get a Bellman equation
for v� ,

v�(s) =
∑

a∈
�(a|s)

(

a
s + 

∑

s′∈
a
ss′v�(s

′)

)

(1.14)

�e Bellman equation relates the state-value function of one state with that of other
states. Similarly, we also have a Bellman equation for q�(s, a),

q�(s, a) = a
s + 

∑

s′∈
a
ss′

∑

a′∈
�(a′|s′)q�(s′, a′) (1.15)

One use for the Bellman equation is to compute the value function for a given policy.
If we combine all the Bellman equations in an MDP with n states, we get n linear equa-
tions for the n unknown value functions. We can get the value functions by solving lin-
ear equations ((recursion)). However, this step may take O(n3) time complexity. Other
solution is to use the dynamic programming.

1.2.3 Optimal Policy and Optimal Value Functions

Solving a reinforcement learning task means, roughly, �nding a policy that achieves a
lot of reward over the long run. A policy � de�ned to be be�er than or equal to a policy
�′ if its expected return is greater than or equal to that of �′ for all states. In other words,
� ≥ �′ if and only if v�(s) ≥ v�′(s) for all s ∈  . �e optimal policy is a policy that be�er
than or equal to all other policies. We denote all the optimal policies by �∗. �ey share
the same state-value function, called the optimal state-value function, denoted v∗, and
de�ned as

v∗(s)
.
= max

�
v�(s) (1.16)

for all s ∈  .
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�e optimal value function speci�es the best possible performance in the MDP. We
say an MDP is “solved” when we know the optimal value function.

Similarly, we can de�ne the action-value function as the maximum action-value func-
tion over all policies:

q∗(s, a)
.
= max

�
q�(s, a) (1.17)

for all s ∈  and a ∈ (s).
�eorem 1.1. For any Markov Decision Process,

• �ere exists an optimal policy �∗ ≥ �, for all �
• All optimal policies achieve the optimal value function, v�∗(s) = v∗(s).
• All optimal policies achieve the optimal action-value function, q�∗(s, a) = q∗(s, a).

Because v∗ is the value function for a policy, it must satisfy the self-consistency con-
dition given by the Bellman equation for state values (1.14). We can �nd the relationship
between the optimal state-value function and the optimal action-value function,

v∗(s) = maxa q∗(s, a), (1.18)

q∗(s, a) = a
s + 

∑

s′∈
a
ss′v∗(s

′) (1.19)

Expressing q∗(s, a) in terms of v∗(s) in the expression of v∗(s), we get a Bellman opti-
mality equation for v∗:

v∗(s) = maxa

(

a
s + 

∑

s′∈
a
ss′v∗(s

′)

)

(1.20)

We also have a Bellman equation for q∗:

q∗(s) = a
s + 

∑

s′∈
a
ss′ maxa′ q∗(s′, a′) (1.21)

�e Bellman optimality equations are non-linear and there is no closed form solution in
general.

1.3 Dynamic Programming

�e term dynamic programming (DP) refers to paradigm that can be used to compute
optimal policies given a perfect model of the environment as a Markov decision process
(MDP). We usually assume that the environment is a �nite MDP: its state, action, and
reward sets, , and are �nite, and that its dynamics are given by a set of probabilities
p(s′, r|s, a), for all s ∈  , a ∈ (s), r ∈ , and s′ ∈ + + is  plus a terminal state
if the problem is episodic). �e key idea of DP, and of reinforcement learning generally,
is the use of value functions to organize and structure the search for good policies. We
can write the Bellman optimality equations (1.20), (1.21) as:

v∗(s) = maxa E[Rt+1 + v∗(St+1)|St = s, At = a]

= max
a

∑

s′,r

p(s′, r|s, a)
[

r + v∗(s′)
]

, (1.22)
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q∗(s, a) = E
[

Rt+1 +  maxa′ q∗(St+1, a′)
|

|

|

St = s, At = a
]

=
∑

s′,r

p(s′, r|s, a)
[

r +  max
a′
q∗(St+1, a′)

]

,
(1.23)

for all s ∈  , a ∈ (s), r ∈ , and s′ ∈ +. We will introduce three paradigms
of dynamic programming in reinforcement learning: policy evaluation, policy iteration
and value iteration. Policy evaluation is used to �nd the value function of a certain
policy. Policy iteration and value iteration are used to �nd the optimal value function
and optimal policy.

1.3.1 Policy Evaluation

We consider how to compute the state-value function v� for an arbitrary policy �. We
start from an initial guess v1 and then apply Bellman equation (1.14) iteratively to it:
v1 → v2 → v3 → ...→ v� . At each iteration k+1, for all states s ∈  , we update vk+1(s)
from vk(s′) according to Bellman equations, where s′ is a successor state of s:

vk+1(s) = E�[Rt+1 + vk(St+1)|St = s]

=
∑

a∈
�(a|s)

(

a
s + 

∑

s′∈
a
ss′vk(s

′)

)

=
∑

a∈
�(a|s)

∑

s′,r

p(s′, r|s, a)
[

r + vk(s′)
]

,

(1.24)

for all s ∈  . �(a|s) is the probability of taking action a in state s under policy �.
Clearly, vk = v� is a �xed point for this update rule because the Bellman equation for v�
assures us of equality in this case. Indeed, the sequence {vk} can be shown in general to
converge to v� as k→∞ under the same conditions that guarantee the existence of v� .
�is algorithm is called iterative policy evaluation. Formally, iterative policy evaluation
converges only in the limit, but in practice it must be halted short of this. �e pseudocode
tests the quantity:

Algorithm 1: Iterative Policy Evaluation, for estimating V ≈ v� [24]
Input �, the policy to be evaluated
Algorithm parameter: a small threshold � > 0 determining accuracy of estimation
Initialize V (S), for all s ∈ +, arbitrarily except that V (terminal) = 0.
Δ← 0
repeat

for s ∈  do
v← V (s)
V (s)←

∑

a �(a|s)
∑

s′,r p(s′, r|s, a)
[

r + V (s′)
]

Δ← max (Δ, |v − V (s)|)
until Δ < �

�e iterative process stops when the maximum di�erence between value function
at the current step and that at the previous step is smaller than some small positive
constant.
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1.3.2 Policy Iteration

Suppose we have determined the value function v� for an arbitrary deterministic policy
�. For some state s we would like to know whether or not we should change the policy
to deterministically choose an action a ≠ �(s). We know how good it is to follow the
current policy, but to know is there a new policy that is be�er than the current one,
we need to use policy iteration. If select a random action a in a state s and follow the
existing policy the value:

q�(s, a)
.
= E[Rt+1 + v�(St+1|St = s, At = a] =

∑

s′,r

p(s′, r|s, a)
[

r + v�(s′)
]

, (1.25)

�eorem 1.2 (Policy Improvement �eorem). Let � and �′ be any pair of deter-
ministic policies such that, for all s ∈  ,

q�(s, �′(s)) ≥ v�(s) (1.26)

�en the policy �′ must be as good as, or be�er than, �. �at is, it must obtain greater or
equal expected return from all states s ∈  :

v�′(s) ≥ v�(s) (1.27)

Moreover, if there is strict inequality of (1.26) at any state, then there must be strict in-
equality of (1.27) at that state.
Proof. Starting from (1.26) we keep expanding the q� side with (1.25) and reapplying
(1.26) until we get v�′(s):

v�(s) ≤ q�(s, �′(s))
= E[Rt+1 + v�(St+1)|St = s, At = �′(s)]
= E�′[Rt+1 + v�(St+1)|St = s]
≤ E�′[Rt+1 + v�(St+1, �′(St+1))|St = s]
= E�′[Rt+1 + [Rt+2 + v�(St+2)|St+1, At+1 = �′(St+1)])|St = s]
= E�′[Rt+1 + Rt+2 + 2v�(St+2)|St = s]
= E�′[Rt+1 + Rt+2 + 2Rt+3 + 3v�(St+3)|St = s]

⋮

= E�′[Rt+1 + Rt+2 + 2Rt+3 + 3v�(St+3)|St = s]

Let us consider the new greedy policy, �′, given by

�′(s)
.
= argmax

a
q�(s, a)

= argmax
a

E[Rt+1 + v�(St+1)|St = s, At = a]

= argmax
a

∑

s′,r

p(s′, r|s, a)
[

r + v�(s′)
]

,

By construction, the greedy policy meets the conditions of the policy improvement the-
orem 1.2, so we know that it is as good as, or be�er than, the original policy. �e process
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of making a new policy that improves on an original policy, by making it greedy with
respect to the value function of the original policy, is called policy improvement. Once a
policy, �, has been improved using v� to yield a be�er policy, �′, we can then compute
v�′ and improve it again to yield an even be�er �′′. We can thus obtain a sequence of
monotonically improving policies and value functions:

�0
E
←←←←←←←→ v�0

I
←←←←←→ �1

E
←←←←←←←→ v�1

I
←←←←←→ �2

E
←←←←←←←→ ⋯

I
←←←←←→ �∗

E
←←←←←←←→ v∗

where
E
←←←←←←←→ denotes a policy evaluation and

I
←←←←←→ denotes a policy improvement. �is way of

�nding an optimal policy is called policy iteration.

Algorithm 2: Policy Iteration for estimating � ≈ �∗ [24]

1. Initialization
V (S) ∈ ℝ and �(s) ∈  arbitrarily for all s ∈ 

2. Policy Evaluation
Δ ← 0
repeat

for s ∈  do
v ← V (s)
V (s)←

∑

a �(a|s)
∑

s′,r p(s′, r|s, a)
[

r + V (s′)
]

,
Δ ← max (Δ, |v − V (s)|)

until Δ < �

3. Policy Improvement
policy-stable ← true
for s ∈  do

old-action ← �(s)
�(s)← argmaxa

∑

s′,r p(s′, r|s, a)[r + V (s′)]
if old-action≠ �(s) then

policy-stable ← false
if policy-stable then

return V ≈ v∗ and � ≈ �∗
else

goto (2)

We use the term generalized policy iteration (GPI) to refer to the general idea of le�ing
policy-evaluation and policyimprovement processes interact, independent of the gran-
ularity and other details of the two processes.

1.3.3 Value Iteration

In fact, the policy evaluation step of policy iteration can be truncated in several ways
without losing the convergence guarantees of policy iteration. One important special
case is when policy evaluation is stopped a�er just one sweep (one update of each state).
�is algorithm is called value iteration. It can be wri�en as a particularly simple update
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operation that combines the policy improvement and truncated policy evaluation steps:

vk+1(s)
.
= max

a
E[Rt+1 + vk(St + 1)|St = s, At = a]

= max
a

∑

s′,r

p(s′, r|s, a)
[

r + v�(s′)
]

,

for all s ∈  . For arbitrary v0, the sequence vk can be shown to converge to v∗ under
the same conditions that guarantee the existence of v∗.

A complete algorithm with this kind of termination condition is shown below.

Algorithm 3: Value Iteration, for estimating � ≈ �∗ [24]
Algorithm parameter: a small threshold � > 0 determining accuracy of
estimation
Initialize V (s), for all s ∈ +, arbitrarily except that V (terminal) = 0 Δ← 0

repeat
Δ ← 0
for s ∈  do

v← V (s)
V (s)← maxa

∑

s′,r p(s′, r|s, a)
[

r + v�(s′)
]

,
Δ ← max (Δ, |v − V (s)|)

until Δ < �

Output a deterministic policy, � ≈ �∗, such that
�(s) = argmaxa

∑

s′,r p(s′, r|s, a)[r + V (s′)]

Value iteration e�ectively combines, in each of its sweeps, one sweep of policy eval-
uation and one sweep of policy improvement. Faster convergence is o�en achieved by
interposing multiple policy evaluation sweeps between each policy improvement sweep.

1.4 Di�erent se�ings to learn a policy from data

Two classes of learning methods can be distinguished in Reinforcement Learning: model-
based and model-free methods.

Model-based methods assume a representation of the environment where the tran-
sition function between states and the reward function are known and the agent plans
accordingly. In these cases, the environment can be represented by an MDP and when
the problem is well de�ned and its corresponding MDP is completely known, solving
it is straightforward and can be done using Bellman equations leading to the optimal
policy that maximizes the amount of reward the agent can expect to get.

In model-free methods, the agent learns with trail-and-error from experience explic-
itly. �e model (state transition function) is not known or learned from experience. In
this case, the MDP is not given beforehand and the goal is to solve it. More speci�cally,
the environment is assumed to be partially observable. As a consequence, the equations
governing the way the environment operates (especially when it is dynamic) are not
fully known across the whole space.
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In this thesis, the algorithm to be used is a model-free one which does not make use
of the distribution of probabilities of transitions  between states associated with the
MDP. �e core idea of the algorithm is based on the trial-and-error paradigm.

Temporal di�erence learning methods are a fundamental component of RL algo-
rithms that allows learning to occur directly from raw experience. TD learning o�en
consists of on-policy and o�-policy methods.

SARSA (so called because it uses state-action-reward-state-action experiences to up-
date the Q-values) is an on-policy TD learning algorithm that learns the agent policy
directly from raw experience.

In contrast, Q-learning is a popular o�-policy algorithm where a target policy of the
agent is learnt, but a di�erent behaviour policy is used to generate the behaviour of the
agent. An exploratory behaviour policy is o�en used to explore the full state and action
space.

Both on-policy and o�-policy methods in RL have their own advantages and limi-
tations. On-policy methods such as Monte-Carlo policy gradient methods (also known
as REINFORCE) o�en su�er from high variance estimates and requires large number
of on-policy samples. O�-policy methods such as Q-learning and actor-critic methods,
in contrast are sample e�cient as they can use all samples including o�-policy samples
to explore the state space. �e notion of on-policy and o�-policy can be understood as
same-policy and di�erent-policy.

In this we will introduce this method and discuss its usage for the problem posed in
this thesis.

1.4.1 Monte Carlo Methods

Any method which solves a problem by generating suitable random numbers, and ob-
serving that fraction of numbers obeying some property or properties, can be classi�ed
as a Monte Carlo (MC) method. �e Monte Carlo method for reinforcement learning
learns directly from episodes of experience without any prior knowledge of MDP tran-
sitions. Here, the random component is the return or reward. Similar to dynamic pro-
gramming, there is a policy evaluation (�nding the value function for a given random
policy) and policy improvement step (�nding the optimum policy).

Monte Carlo Policy Evaluation

�e goal here, again, is to learn the value function v�(s) from episodes of experience
under a policy pi. We know that we can estimate any expected value simply by adding
up samples and dividing by the total number of samples:

V̄�(s) =
1
N

N
∑

i=1
Gi,s (1.28)

�ere are two similar Monte Carlo (MC) methods that have di�erent theoretical prop-
erties: �rst-visit method and every-visit method. �e �rst-visit MC method estimates
v�(s) as the average of the returns following �rst visits to s, whereas the every-visit MC
method averages the returns following all visits to s. First-visit MC is shown in proce-
dural form in the box. Every-visit MC would be the same except without the check for
St having occurred earlier in the episode.
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Algorithm 4: First-visit MC prediction, for estimating V ≈ V� [24]
Input: a policy � to be evaluated
Initialize V (s), arbitrarily, for all s ∈ 
Returns(s)← an empty list, for all s ∈ 

repeat
for each episode do

Generate an episode following �: S0, A0, R1, S1, A1, R2, ..., ST−1, AT−1, RT
G ← 0
for each step of episode, t = T − 1, T − 2, ..., 0 do

G ← G + Rt+1
while St appears in S0, S1, ..., St−1 do

Append G to Returns(St)
V (St)← average(Returns(St))

until satis�ed

Monte Carlo Control

Similar to dynamic programming, once we have the value function for a random policy,
the important task that still remains is that of �nding the optimal policy using Monte
Carlo. In the classical policy improvement method, we perform alternating complete
steps of policy evaluation and policy improvement, beginning with an arbitrary policy
�0 and ending with the optimal policy and optimal action-value function:

�0
E
←←←←←←←→ v�0

I
←←←←←→ �1

E
←←←←←←←→ v�1

I
←←←←←→ �2

E
←←←←←←←→⋯

I
←←←←←→ �∗

E
←←←←←←←→ v∗

Since we do not know the state transition probabilities p(s′, r|s, a), we can’t do a look-
ahead search like DP. Hence, all the information is obtained via experience of playing
the game or exploring the environment.

Policy improvement is done by making the policy greedy with respect to the current
value function. In this case, we have an action-value function, and therefore no model
is needed to construct the greedy policy.

For any action-value function q, the corresponding greedy policy is the one that, for
each s ∈  , deterministically chooses an action with maximal action-value:

�(s)
.
= argmax

a
q(s, a) (1.29)

A greedy policy (like the above mentioned one) will always favor a certain action if
most actions are not explored properly. For Monte Carlo policy iteration it is natural to
alternate between evaluation and improvement on an episode-by-episode basis. A�er
each episode, the observed returns are used for policy evaluation, and then the policy is
improved at all the states visited in the episode. In Monte Carlo ES (Monte Carlo with
Exploring Starts) Algorithm all the state action pairs have non-zero probability of being
the starting pair. �is will ensure each episode which is played will take the agent to
new states and hence, there is more exploration of the environment.
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Algorithm 5: Monte Carlo ES (Exploring Starts), for estimating � ≈ �∗ [24]
Initialize �(s) ∈ (s)(arbitrarily), for all s ∈ 
Q(s, a) ∈ ℝ(s)(arbitrarily), for all s ∈  , a ∈ 
Returns(s, a)← an empty list, for all s ∈  , a ∈ 

repeat
for each episode do

Choose S0 ∈  , A0 ∈  randomly such that all pairs have probability > 0
Gener. an episode from S0, A0, following �: S0, A0, R1, ..., ST−1, AT−1, RT
G ← 0 for each step of episode, t = T − 1, T − 2, ..., 0 do

G ← G + Rt+1
while St appears in S0, A0, S1, A1, ..., St−1, At−1 do

Append G to Returns(St, At)
Q(St, At)← average (Returns(St, At))
�(St)← argmaxaQ(St, a)

until satis�ed

�is algorithm does not work when there is a single start point for an environment.
�e simplest idea for ensuring continual exploration – epsilon choose the action which
maximises the action value function and with probability epsilon choose an action at
random. For any "-so� policy, �, any "-greedy policy with respect to q� is guaranteed
to be be�er than or equal to �. �e complete algorithm is given in the box below.

Algorithm 6: Monte Carlo ES (Exploring Starts), for estimating � ≈ �∗ [24]
Algorithm parameter: small " > 0 Initialize �(s) an arbitrarily " - so� policy
Q(s, a) ∈ ℝ(s)(arbitrarily), for all s ∈  , a ∈ 
Returns(s, a)← an empty list, for all s ∈  , a ∈ 

repeat
for each episode do

Generate an episode following �: S0, A0, R1, ..., ST−1, AT−1, RT
G ← 0 for each step of episode, t = T − 1, T − 2, ..., 0 do

G ← G + Rt+1
while St appears in S0, A0, S1, A1, ..., St−1, At−1 do

Append G to Returns(St, At)
Q(St, At)← average (Returns(St, At))
A∗ ← argmaxaQ(St, a)
for all a ∈ (St) do:

�(a|St)←

{

1 − " + "∕|(St)| if a = A∗

"∕|(St) if a ≠ A∗

until satis�ed
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1.4.2 Temporal-Di�erence Learning

TD learning is a combination of Monte Carlo ideas and dynamic programming (DP)
ideas. Like Monte Carlo methods, TD methods can learn directly from raw experience
without a model of the environment’s dynamics. Like DP, TD methods update estimates
based in part on other learned estimates, without waiting for a �nal outcome (they boot-
strap).

Both TD and Monte Carlo methods use experience to solve the prediction problem.
A simple every-visit Monte Carlo method suitable for nonstationary environments is

V (St)← V (St) + �
[

Gt − V (St)
]

, (1.30)

where Gt is the actual return following time t, and � is a constant step-size parameter.
Whereas Monte Carlo methods must wait until the end of the episode to determine the
increment to V (St) (only then is Gt known), TD methods immediately form a target at
the next time step t + 1 and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). �e simplest TD method makes the update

V (St)← V (St) + �
[

Rt+1 + V (St+1) − V (St)
]

, (1.31)

immediately on transition to St+1 and receiving Rt+1. �is TD method is called TD(0),
or one-step TD, because it is a special case of the TD(�) and n-step TD methods. �e
di�erence between the estimated value of St and the be�er estimate Rt+1 + V (St+1)
calls the TD error and arises in various forms throughout reinforcement learning:

�t
.
= Rt+1 + V (St+1) − V (St). (1.32)

Sarsa: On-policy TD Control

We turn now to the use of TD prediction methods for the control problem. As usual, we
follow the pa�ern of generalized policy iteration (GPI), only this time using TD methods
for the evaluation or prediction part. Recall that an episode consists of an alternating
sequence of states and state–action pairs:

�e convergence of state values under TD(0) also apply to the corresponding algo-
rithm for action values:

Q(St, At)← Q(St, At) + �
[

Rt+1 + Q(St+1, At+1) −Q(St, At)
]

, (1.33)

�is update is done a�er every transition from a nonterminal state St. If St+1 is terminal,
thenQ(St, At) is de�ned as zero. �is rule uses every element of the quintuple of events,
St, At, Rt, St+1, At+1, that make up a transition from one state–action pair to the next.
�is quintuple gives rise to the name SARSA for the algorithm. It is straightforward to
design an on-policy control algorithm based on the Sarsa prediction method. As in all
on-policy methods, we continually estimate q� for the behavior policy �, and at the same
time change � toward greediness with respect to q� .
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Algorithm 7: Sarsa (on-policy TD control) for estimating Q ≈ q∗ [24]

Algorithm parameters:
step size � ∈ (0, 1], small " > 0
Initialize Q(S,A), for all s ∈ +, a ∈ ,
arbitrarily except that Q(terminal, ∙) = 0

for each episode do
Initialize S
Choose A from S using policy derived from Q (e.g., "-greedy)
repeat

for each step of episode do
Take action A, observe R,S ′
Choose A′ from S ′ using policy derived from Q (e.g., "-greedy)
Q(s, a)← Q(S,A) + �

[

R + Q(S ′, A′) −Q(S,A)
]

,
S ← S ′ ; A← A′

until S is terminal

Q-learning: O�-policy TD Control

O�-policy TD control algorithm known as Q-learning (Watkins, 1989), de�ned by

Q(St, At)← Q(St, At) + �
[

Rt+1 +  maxa Q(St+1, a) −Q(St, At)
]

, (1.34)

In this case, the learned action-value function, Q, directly approximates q∗, the optimal
action-value function, independent of the policy being followed. �e policy still has an
e�ect in that it determines which state–action pairs are visited and updated. However,
all that is required for correct convergence is that all pairs continue to be updated. �e
Q-learning algorithm is shown below in procedural form.

Algorithm 8: Q-learning (o�-policy TD control) for estimating � ≈ �∗ [24]

Algorithm parameters:
step size � ∈ (0, 1], small " > 0
Initialize Q(S,A), for all s ∈ +, a ∈ ,
arbitrarily except that Q(terminal, ∙) = 0

for each episode do
Initialize S
repeat

for each step of episode do
Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R,S ′
Q(s, a)← Q(S,A) + �

[

R + Q(S ′, a) −Q(S,A)
]

,
S ← S ′ ;

until S is terminal
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Fitted Q-learning

François-Lavet [10] in the book ”An introduction to deep reinforcement learning” intro-
duces us in using deep neural network for the Q-function approximation. �e idea is
based on the ��ed Q-learning concept.

In ��ed Q-learning, the algorithm starts with some random initialization of the Q-
values Q(s, a; �) where � refers to the initial parameters (usually such that the initial
Q-values should be relatively close to 0 so as to avoid slow learning). �en, an approx-
imation of the Q-values at the k -th iteration Q(s, a; �k) is updated towards the target
value

Y Q
k = r +  max

a′∈
Q(s′, a′; �k) (1.35)

where �k) refers to some parameters that de�ne the Q-values at the k -th iteration. In
neural ��ed Q-learning (NFQ), the state can be provided as an input to the Q-network
and a di�erent output is given for each of the possible actions. �is provides an e�cient
structure that has the advantage of obtaining the computation ofmaxa′∈Q(s′, a′; �k in a
single forward pass in the neural network for a given s0. �eQ -values are parameterized
with a neural network Q(s, a; �k) where the parameters �k) are updated by stochastic
gradient descent (or a variant) by minimizing the square loss:

LDQN =
(

Q(s′, a′; �k) − Y
Q
k

)

(1.36)

�us, the Q-learning update amounts in updating the parameters:

�k+1 = �k + �(Y
Q
k −Q(s′, a′; �k))∇�kQ(s, a; �k) (1.37)

where � is a scalar step size called the learning rate. Using the square loss is not
arbitrary. Indeed, it ensures that Q(s, a; �k) should tend without bias to the expected
value of the random variable Y Q

k . Hence, it ensures thatQ(s, a; �k) should tend toQ∗(s, a)
a�er many iterations in the hypothesis that the neural network is well-suited for the task
and that the experience gathered in the dataset D is su�cient (we describe the deep Q-
networks with more details in the section 2.3).
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2 Deep neural networks

�e area of Arti�cial Neural Networks has become a ma�er of engineering and achieving
good results in Machine Learning tasks. Among them is the idea of Q-function approx-
imation with Deep Q-Network in Reinforcement Learning. In this chapter we will give
a brief introduction to the basic concepts of Neural Networks and Deep Neural Net-
works in it particular case basing the investigation on the Charu C. Aggarwal [1] and
Sandro Skansi [23] books. We also touch the basics of Convolutional Neural Networks
(CNN) explained on Stanford university course [13]. In the end of this chapter we go
deeper to the convolutional networks application in Reinforcement learning and study
the Deep Q-learning concepts. Vincent François-Lavet [12], Yuxi Li [15], Kai Arulku-
maran [4] provide an introduction to deep reinforcement learning models, algorithms
and techniques.

2.1 The Basic Architecture of Neural Networks

Arti�cial Neural Networks (ANNs) were inspired with the idea of modeling biological
neural systems and proposed creating virtual neurons. As biological systems, the neu-
rons are connected together to form a network of nodes. �e type of information cir-
culating in neural nets is of scalar type, analogously to electrical signals emi�ed in a
brain of a living being. Any neural network is made of simple basic elements: neurons
or perceptrons. In this section we see the structure of this elements. Also we will to
combine them to construct a deep or multi layer networks.

2.1.1 Single Computational Layer: The Perceptron

�e simplest neural network is referred to as the perceptron. �is neural network con-
tains a single input layer and an output node. �e basic architecture of the perceptron
is shown in Figure 2.1

Consider a situation where each training instance is of the form (X, y), where each
X = {x1, ..., xd} contains d feature variables, and y ∈ (−1,+1) contains the observed
value of the binary class variable. �e input layer contains d nodes that transmit the
d features X = {x1, ..., xd} with edges of weight W = {w1, ..., wd} to an output node.
�e input layer does not perform any computation in its own right. �e linear function
X∙W =

∑d
j=1wjxj computed at the output node. �erefore, the prediction ŷ is computed

as follows:

ŷ = sign{X ∙W} = sign
{

d
∑

j=1
wjxj

}

(2.1)
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Figure 2.1: �e basic architecture of the perceptron [1].

2.1.2 Choice of Activation Function

�e choice of activation function is a critical part of neural network design. In the case
of the perceptron, the choice of the sign activation function is motivated by the fact that
a binary class label needs to be predicted. Every activation function (or non-linearity)
takes a single number and performs a certain �xed mathematical operation on it. We
use the notation Φ to denote the activation function:

ŷ = Φ{X ∙W} (2.2)

�e classical activation functions that were used early in the development of neural
networks were the sign, sigmoid, and the hyperbolic tangent functions:

Φ(v) = sign(v) (sign function)

Φ(v) = 1
1 + e−v

(sigmoid function)

Φ(v) = e2v − 1
e2v + 1

(tanh function)

�e choice of the loss function is critical in de�ning the outputs in a way that is
sensitive to the application at hand.

2.1.3 Loss function

�e data loss in a supervised learning problem measures the compatibility between a
prediction (e.g. the class scores in classi�cation) and the ground truth label. �e data
loss takes the form of an average over the data losses for every individual example. �at
is, L = 1∕N

∑

iLi where N is the number of training data.
In case of classi�cation problem we assume a dataset of examples and a single correct

label (out of a �xed set) for each example. One of two most commonly seen cost functions
in this se�ing is the support vector machine (SVM):

Li = max{0, 1 − yi(X ∙W)} (2.3)

For example, least-squares regression with numeric outputs requires a simple squared
loss of the form (y − ℎaty)2 for a single training instance with target y and prediction
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ŷ. One can also use other types of loss like hinge loss for y ∈ {−1,+1} and real-valued
prediction ŷ (with identity activation):

L = max{0, 1 − y ∙ ŷ} (2.4)

�e second common choice is the So�max classi�er that uses the cross-entropy loss:
For multiway predictions (like predicting word identi�ers or one of multiple classes),

the so�max output is particularly useful. However, a so�max output is probabilistic, and
therefore it requires a di�erent type of loss function. In fact, for probabilistic predictions,
two di�erent types of loss functions are used, depending on whether the prediction is
binary or whether it is multiway:

• Binary targets (logistic regression): In this case, it is assumed that the observed
value y is drawn from {−1,+1}, and the prediction ŷ is a an arbitrary numerical
value on using the identity activation function. In such a case, the loss function for
a single instance with observed value y and real-valued prediction ŷ (with identity
activation) is de�ned as follows:

L = log(1 + exp(−y ∙ ŷ)) (2.5)

�is type of loss function implements a fundamental machine learning method,
referred to as logistic regression. Alternatively, one can use a sigmoid activation
function to output ŷ ∈ (0, 1), which indicates the probability that the observed
value y is 1. �en, the negative logarithm of |y∕2 − 0.5 + ŷ| provides the loss,
assuming that y is coded from {−1, 1}. �is is because |y∕2 − 0.5 + ŷ| indicates
the probability that the prediction is correct. �is observation illustrates that one
can use various combinations of activation and loss functions to achieve the same
result.

• Categorical targets: In this case, if ŷ1...ŷk are the probabilities of the k classes, and
the r-th class is the ground-truth class, then the loss function for a single instance
is de�ned as follows:

L = − log (ŷr) (2.6)

�is type of loss function implements multinomial logistic regression, and it is re-
ferred to as the cross-entropy loss. Note that binary logistic regression is identical
to multinomial logistic regression, when the value of k is set to 2 in the la�er.

In practice, one rarely uses the perceptron criterion as the loss function. For discrete-
valued outputs, it is common to use so�max activation with crossentropy loss. For real-
valued outputs, it is common to use linear activation with squared loss. Generally, cross-
entropy loss is easier to optimize than squared loss.

2.1.4 Multilayer Neural Networks

Multilayer neural networks contain multiple computational layers; the additional inter-
mediate layers (between input and output) are referred to as hidden layers because the
computations performed are not visible to the user. �e speci�c architecture of multi-
layer neural networks is referred to as feed-forward networks, because successive layers
feed into one another in the forward direction from input to output. An example of mul-
tilayer network is shown in Figure 2.2
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Figure 2.2: �e basic architecture of a feed-forward network with two hidden layers and
a single output layer [1].

�e weights of the connections between the input layer and the �rst hidden layer
are contained in a matrix W1 with size d × p1 whereas the weights between the r-th
hidden layer and the (r + 1-th hidden layer are denoted by the pr × pr+1 matrix denoted
by Wr. If the output layer contains o nodes, then the �nal matrix Wk+1 is of size pk × o
�e d-dimensional input vector x̄ is transformed into the outputs using the following
recursive equations:

ℎ̄1 = Φ(WT
1 x̄) (Input to Hidden Layer)

ℎ̄p+1 = Φ(WT
p+1ℎ̄p) ∀p ∈ {1...k − 1} (Hidden to Hidden Layer)

ō = Φ(WT
k+1ℎ̄k) (Hidden to Output Layer])

As we increase the size and number of layers in a Neural Network, the capacity of the
network increases. Over��ing occurs when a model with high capacity �ts the noise in
the data instead of the (assumed) underlying relationship. It seems that smaller neural
networks can be preferred if the data is not complex enough to prevent over��ing. How-
ever, this is incorrect – we should use as big of a neural network as your computational
budget allows, and use other regularization techniques to control over��ing.

2.1.5 Training a Neural Network with Backpropagation

In the single-layer neural network, the training process is relatively straightforward be-
cause the error (or loss function) can be computed as a direct function of the weights,
which allows easy gradient computation. In the case of multi-layer networks, the prob-
lem is that the loss is a complicated composition function of the weights in earlier lay-
ers. �e gradient of a composition function is computed using the backpropagation
algorithm. �e backpropagation algorithm is a direct application of dynamic program-
ming. It contains two main phases, referred to as the forward and backward phases,
respectively. �e forward phase is required to compute the output values and the lo-
cal derivatives at various nodes, and the backward phase is required to accumulate the
products of these local values over all paths from the node to the output.
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2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs or ConvNets) are very similar to the neural net-
works that we have seen in the previous chapter: they are made up of neurons that have
parameters in the form of weights and biases that can be learned. But a di�erential fea-
ture of CNNs is that they make the explicit assumption that the inputs are images, which
allows us to encode certain properties in the architecture to recognize speci�c elements
in the images.

An important property of image data is that it exhibits a certain level of translation
invariance, which is not the case in many other types of grid-structured data. For exam-
ple, a banana has the same interpretation, whether it is at the top or the bo�om of an
image. Convolutional neural networks tend to create similar feature values from local
regions with similar pa�erns.

2.2.1 The basic elements of CNNs

A convolutional neural network is a neural network that has one or more convolutional
layers. To understand let us see the 1D-convolutional layer structure. In this case the
convolutional layer takes a 2D array and a small logistic regression with e.g. input size 4
(these sizes are usually 4 or 9, sometimes 16) and passes the logistic regression over the
whole image. �is means that the �rst input consists of components 1–9 of the �a�ened
vector, the second input are the components 2–10, the third are components 3–11, and
so on.You can see an overview of the process in the bo�om of Figure 2.3

Figure 2.3: Building a 1D convolutional layer with a logistic regression [23].

In classical convolutional neural networks we deal with pictures. In this case the
states in each layer are arranged according to a spatial grid structure. Each layer is a
3-dimensional grid structure, which has a height, width, and depth (Figure 2.4).

�e convolutional neural network functions much like a traditional feed-forward
neural network, except that the operations in its layers are spatially organized with
sparse (and carefully designed) connections between layers. �e three types of layers
that are commonly present in a convolutional neural network are convolution, pooling,
and ReLU. �e ReLU activation is no di�erent from a traditional neural network.
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Figure 2.4: �e convolution between an input layer of size 32 × 32 × 3 and a �lter of size
5 × 5 × 3 produces an output layer with spatial dimensions 28 × 28. �e depth of the
resulting output depends on the number of distinct �lters and not on the dimensions of
the input layer or �lter [1].

In the convolutional neural network, the parameters are organized into sets of 3-
dimensional structural units, known as �lters or kernels. �e �lter is usually square in
terms of its spatial dimensions, which are typically much smaller than those of the layer
the �lter is applied to. On the other hand, the depth of a �lter is always same is the same
as that of the layer to which it is applied.

Assume that the dimensions of the �lter in the q -th layer are Fq × Fq × dq . �e
convolution operation places the �lter at each possible position in the image (or hidden
layer) so that the �lter fully overlaps with the image, and performs a dot product between
the Fq ×Fq ×dq parameters in the �lter and the matching grid in the input volume (with
same size Fq ×Fq × dq). Each �lter position de�nes a spatial “pixel” (or, more accurately,
a feature) in the next layer.

�e p -th �lter in the q -th layer has parameters denoted by the 3-dimensional ten-
sor W (p,q) = [w(p,q)

i,j,k ]. �e indices i, j, k indicate the positions along the height, width,
and depth of the �lter. �e feature maps in the q -th layer are represented by the 3-
dimensional tensorH (q) = [ℎ(q)i,j,k]. When the value of q is 1, the special case correspond-
ing to the notation H simply represents the input layer (which is not hidden). �en,
the convolutional operations from the q -th layer to the (q + 1) -th layer are de�ned as
follows:

ℎ(q+1)i,j,p =
Fq
∑

r=1

Fq
∑

s=1

dq
∑

k=1
w(p,q)
r,s,kℎ

(q)
i+r−1,j+s−1,k ∀i ∈ {1..., Lq − Fq + 1}

∀j ∈ {1..., Bq − Fq + 1}
∀p ∈ {1..., dq + 1}

One property of convolution is that it shows equivariance to translation. In other
words, if we shi�ed the pixel values in the input in any direction by one unit and then
applied convolution, the corresponding feature values will shi� with the input values.
�is is because of the shared parameters of the �lter across the entire convolution.
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Padding

One observation is that the convolution operation reduces the size of the (q + 1)th layer in
comparison with the size of the q -th layer. �is type of reduction in size is not desirable
in general, because it tends to lose some information along the borders of the image (or
of the feature map, in the case of hidden layers). �is problem can be resolved by using
padding. In padding, one adds (Fq − 1)∕2 “pixels” all around the borders of the feature
map in order to maintain the spatial footprint. Padding in 2D is simply a ‘frame’ of n
pixels around the image (Figure 2.5). Note that it does not make much sense to use a
padding of say 3 (pixels) if we use only a 3 by 3 local receptive �eld, since it will only go
one pixel over the image border.

Figure 2.5: An example of padding. Each of the dq activation maps in the entire depth of
the q -th layer are padded in this way [1].

Strides

�e parameter which says by how many components we move the receptive �eld be-
tween taking inputs is called the stride of the convolutional layer. When a stride of Sq is
used in the q -th layer, the convolution is performed at the locations 1, Sq+1, 2Sq+1, and
so on along both spatial dimensions of the layer. �e spatial size of the output on per-
forming this convolution1 has height of (Lq−Fq)∕Sq+1 and a width of (Bq−Fq)∕Sq+1.
As a result, the use of strides will result in a reduction of each spatial dimension of the
layer by a factor of approximately Sq and the area by S2q , although the actual factor may
vary because of edge e�ects.

�e ReLU Layer

�e convolution operation is interleaved with the pooling and ReLU operations. �e
ReLU activation is not very di�erent from how it is applied in a traditional neural net-
work. For each of the Lq × Bq × dq values in a layer, the ReLU activation function is
applied to it to create Lq × Bq × dq thresholded values. �ese values are then passed
on to the next layer. �erefore, applying the ReLU does not change the dimensions of a
layer because it is a simple one-toone mapping of activation values.
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Pooling

�e pooling operation works on small grid regions of size Pq × Pq in each layer, and
produces another layer with the same depth (unlike �lters). For each square region of
size Pq × Pq in each of the dq activation maps, the maximum of these values is returned.
�is approach is referred to as max-pooling. If a stride of 1 is used, then this will produce
a new layer of size (Lq − Pq + 1) × (Bq − Pq + 1) × dq . However, it is more common
to use a stride Sq > 1 in pooling. In such cases, the length of the new layer will be
(Lq −Pq)∕Sq +1 and the breadth will be (Bq −Pq)∕Sq +1. �erefore, pooling drastically
reduces the spatial dimensions of each activation map.

Unlike with convolution operations, pooling is done at the level of each activation
map.

Figure 2.6: An example of a max-pooling of one activation map of size 7 × 7 with strides
of 1 and 2. A stride of 1 creates a 5 × 5 activation map with heavily repeating elements be-
cause of maximization in overlapping regions. A stride of 2 creates a 3×3 activation map
with less overlap. Unlike convolution, each activation map is independently processed
and therefore the number of output activation maps is exactly equal to the number of
input activation maps [1].

Other types of pooling (like average-pooling) are possible but rarely used. In the
earliest convolutional network, referred to as LeNet-5, a variant of average pooling was
used and was referred2 to as subsampling. In general, max-pooling remains more pop-
ular than average pooling.

Fully Connected Layers

Each feature in the �nal spatial layer is connected to each hidden state in the �rst fully
connected layer. �is layer functions in exactly the same way as a traditional feed-
forward network. In most cases, one might use more than one fully connected layer to
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increase the power of the computations towards the end.
As the image goes through the network, a�er a number of layers, we get a small

image with a lot of channels. �en we can �a�en this to a vector and use a simple
logistic regression at the end to extract which parts are relevant for our classi�cation
problem. �e logistic regression (this time with the logistic function) will pick out which
parts of the representation will be used for classi�cation and create a result which will
be compared with the target and then the error will be backpropagated. �is forms
a complete convolutional neural network. A simple but fully functional convolutional
network with four layers is shown in Figure 2.7

Figure 2.7: A convolutional neural network with a convolutional layer, a max-pooling
layer, a �a�ening layer and a fully connected layer with one neuron [23].

2.2.2 Training a Convolutional Network

�e process of training a convolutional neural network uses the backpropagation algo-
rithm. �e ReLU is relatively straightforward to backpropagate through because it is no
di�erent than a traditional neural network. For max-pooling with no overlap between
pools, one only needs to identify which unit is the maximum value in a pool (with ties
broken arbitrarily or divided proportionally). �e partial derivative of the loss with re-
spect to the pooled state �ows back to the unit with maximum value. All entries other
than the maximum entry in the grid will be assigned a value of 0.

�e backpropagation through convolutions is also not very di�erent from the back-
propagation with linear transformations (i.e., matrix multiplications) in a feed-forward
network. First, we describe a simple element-wise approach to backpropagation. As-
sume that the loss gradients of the cells in layer (i+1) have already been computed. �e
loss derivative with respect to a cell in layer (i+1) is de�ned as the partial derivative of
the loss function with respect to the hidden variable in that cell. Convolutions multiply
the activations in layer i with �lter elements to create elements in the next layer. �ere-
fore, a cell in layer (i+1) receives aggregated contributions from a 3-dimensional volume
of elements in the previous layer of �lter size Fi × Fi × di. At the same time, a cell c in
layer i contributes to multiple elements (denoted by set Sc) in layer (i+1), although the
number of elements to which it contributes depends on the depth of the next layer and
the stride. Identifying this “forward set” is the key to the backpropagation. A key point
is that the cell c contributes to each element in Sc in an additive way a�er multiplying
the activation of cell c with a �lter element. �erefore, backpropagation simply needs

41



drone coverage using deep reinforcement learning

to multiply the loss derivative of each element in Sc with respect to the corresponding
�lter element and aggregate in the backwards direction at c. For any particular cell c in
layer i, the following pseudocode can be used to backpropagate the existing derivatives
in layer-(i + 1) to cell c in layer-i:

Algorithm 9: Backpropagating �rough Convolutions [1]
Identify all cells Sc in layer (i + 1) to which cell c in layer i
for each cell r ∈ Sc do

let �r be its (already backpropagated) loss-derivative with respect to cell r;
let wr be weight of �lter element used for contributing from cell c to r;

�c =
∑

r∈Sc
�r ⋅wr

A�er the loss gradients have been computed, the values are multiplied with those of the
hidden units of the (i − 1) -th layer to obtain the gradients with respect to the weights
between the (i − 1) -th and i -th layer.

2.3 Deep Neural Networks and Reinforcement learn-
ing

We obtain deep reinforcement learning (deep RL) methods when we use deep neural
networks to approximate any of the following components of reinforcement learning:
value function v̂(s; �) or q̂(s, a; �), policy �(a|s; �), and model (state transition function
and reward function). Here, the parameters � are the weights in deep neural networks.

Learning a sequential decision-making task appears in two cases: (i) in the o�ine
learning case where only limited data on a given environment is available and (ii) in an
online learning case where, in parallel to learning, the agent gradually gathers experi-
ence in the environment.

In the online se�ing, the learning problem is more intricate and learning without
requiring a large amount of data (sample e�ciency) is not only in�uenced by the capa-
bility of the learning algorithm to generalize well from the limited experience. Indeed,
the agent has the possibility to gather experience via an exploration/exploitation strat-
egy. In addition, it can use a replay memory to store its experience so that it can be
reprocessed at a later time.

2.3.1 Deep Q-Networks

A deep Q network (DQN) is a multi-layered neural network that for a given state s
outputs a vector of action values Q(s, ⋅; �), where � are the parameters of the network.
For an n-dimensional state space and an action space containing m actions, the neural
network is a function from ℝn to ℝm.

In the section 1.4.2 we have given the brief introduction to the Q-function approx-
imations and ��ed Q-learning. Two important ingredients of the DQN algorithm as
proposed by Mnih et al. [17] are the use of a target network, and the use of experience
replay. �is algorithm uses two heuristics to limit the instabilities:
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• �e target Q-network in Equation 1.35 is replaced byQ(s′, a′; �−k )where its param-
eters �−k are updated only every C ∈ ℕ iterations with the following assignment:
�−k = �

k. �is prevents the instabilities to propagate quickly and it reduces the risk
of divergence as the target values Y Q

k are kept �xed for C iterations. �e idea of
target networks can be seen as an instantiation of ��ed Q-learning, where each
period between target network updates corresponds to a single ��ed Q-iteration.
�e target used by DQN is then

Y Q
k = r +  max

a∈
Q(s′, a; �−k ) (2.7)

• In an online se�ing, the replay memory keeps all information for the lastNreplay ∈
ℕ time steps, where the experience is collected by following an �-greedy policy.
�e updates are then made on a set of tuples < s, a, r, s0 > (called mini-batch)
selected randomly within the replay memory. �is technique allows for updates
that cover a wide range of the stateaction space. In addition, one mini-batch up-
date has less variance compared to a single tuple update. Consequently, it provides
the possibility to make a larger update of the parameters, while having an e�cient
parallelization of the algorithm.

2.3.2 Double DQN

�e max operation in Q-learning (Equations 1.34, 1.35) uses the same values both to
select and to evaluate an action. �is makes it more likely to select overestimated values
in case of inaccuracies or noise, resulting in overoptimistic value estimates. �erefore,
the DQN algorithm induces an upward bias. �e double estimator method uses two
estimates for each variable, which allows for the selection of an estimator and its value
to be uncoupled (Hasselt, [25]). In the original Double Q-learning algorithm, two value
functions are learned by assigning each experience randomly to update one of the two
value functions, such that there are two sets of weights, � and �′. For each update, one
set of weights is used to determine the greedy policy and the other to determine its value.
�e target value Y Q

k is replaced by

Y DoubleQ
k = r + Q(s′, argmax

a∈
Q(s′, a; �k); �′k) (2.8)

�e selection of the action, in the argmax, is still due to the online weights �k. �is
means that, as in Q-learning, we are still estimating the value of the greedy policy accord-
ing to the current values, as de�ned by �k. However, we use the second set of weights
�′k to fairly evaluate the value of this policy. �is second set of weights can be updated
symmetrically by switching the roles of � and �′.
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3 ADeepRLalgorithm for constrained
drone coverage

3.1 Problem formulation

Suppose that we have a �ying robot, for example a quadcopter-type UAV, to shot an
area of interest with the onboard camera. We assume that at any position, the UAV can
observe its state, i.e. its position. If we have full information about the environment, and
the ba�ery endurance is unlimited, a robot motion planning algorithm can be used and
the problem becomes common.

In our model, the power is limited and the drone starts at a base station (BS) full of
power, and it is allowed to travel a �xed amount of moves or steps. We use a relevance
map partitioned into cells that describes the environment with costs associated to each
cell, but the drone receives the information from the map partially. In this scenario, we
consider the problem of �nding a maximum cost tour, i.e. a path that starts and ends
at BS such that the area collected is maximized. �e task is then to learn a policy to
optimize the partial coverage thought the �xed number of movements and come back
to the base station for recharging. In the learning process, the drone needs to map the
situations it faces to appropriate actions to maximize a numerical signal, called reward,
that measures the performance of the drone.

3.1.1 Relevance map

A relevance map is a bi-dimensional, rectangular map of the environment to be moni-
tored, whose values represent the relevance of a speci�c area, this is, the importance of
its observation, or the cost for the system if that area is not observed. While this map
could be dynamic throughout the mission, we focus on static maps for the duration of
one mission in this paper.

We model the relevance map as a grid with weighted cells. In our case study we use
the binary map, i.e. with values 0 and 1, to identify the zones that have any importance
to be captured. Figure 3.1 illustrates an example. �e relevance maps are used to de�ne a
priority in the need of visual coverage of parts of the environment by cameras mounted
on UAVs.

3.1.2 Agent model

In order to solve the described coverage path planning problem with reinforcement
learning, we introduce the control UAV that interacts with its environment by sampling
its state (s), performing an action (a) and receiving a reward (r). Since the continuous
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Figure 3.1: Binary map example.

space is too large to guarantee the convergence of the algorithm, in practice, normally
these set will be represented as discrete �nite sets approximately. Here we suppose that
the camera is �xed in vertical position, in other words, the camera main axis matches Z
axis of the drone. We also include the ba�ery level p to the state. �e state of the UAV is
de�ned as the 4-tuple s = [x, y, z, p] ∈  at the time step k:

• x ∈ [0, m], Y ∈ [0, n], z ∈ [0, ℎ] are the spatial coordinates of the UAV, assuming
it cannot �y outside the range of the environment with size m × n and ℎ is the
maximum �ying height;

• p ∈ [0, b] is the current ba�ery level (power). �e drone stars from its base station
fully charged and decreases the ba�ery level one every time step.

�e drone can use the following set of actions  that decreases by one the power:

• Forward, Backward, Le�, Right: move the agent to a neighboring cell in the four
main directions.

• Up, Down: increment or decrease by one the �ying height z.
• ForwardLe�, ForwardRight, BackwardLe�, BackwardRight: move the agent to a di-

agonal cell.

As we implement a Double DQN with so� update, as described in section 3.3, the
network input consists in the relevance map and the current agent state. In this case,
we cannot represent the state as a tuple as we need it as a relevance map size matrix. To
ful�ll this requirement we can get away from drone coordinates and start representing
the current state basing on the drone camera’s �eld of view (FOV).

If we accept an approximation le�ing the projection of the coordinates of the camera
on the ground plane in the world reference system match the projection of the drone
mass center coordinates, it is possible to de�ne the ground projection of the image plane
as a rectangular shape FOV enclosing the portion of ground plane observed by the agent,
as shown in Figure 3.2 (a).

�at is, the four corners of the images acquired by the camera can be represented as:
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(a) Field of view of an UAV. (b) Binary map example.

Figure 3.2: Modelling the covering at a state.

x̂ ∈
[

−z
tan �1

, z
tan �1

]

, ŷ ∈
[

−z
tan �2

, z
tan �2

]

If consider the simplest case and suppose that the camera is �xed with �1 = �2 = 45◦
we receive:

x̂ ∈ [−z, z] , ŷ ∈ [−z, z]

Other words, one step up expand the FOV on one cell each direction and one step
down shrink the FOV on one cell each direction. �e FOV with other actions changes
analogously (see Figure 3.2(b)).

�is way we represent the agent state as a matrix of the same size as the relevance
map. �e cells included in the FOV of the drone are represented by its power level on
the moment. All the rest of the cells are represented by zeros, Figure 3.3.

Figure 3.3: Drone state with its power level.
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3.1.3 Reward function

Before de�ning the reward function let us de�ne the total observed relevance � of an
agent in state s as the sum of all the relevance, as de�ned by the relevance map R, lying
within the observed area FOV:

�(s) =
∑

(x,y)∈FOV
R(x, y) (3.1)

�e reward function will be de�ned in terms of total observed relevance, meaning
that actions leading to an increase of such a value will be positively rewarded. However,
we require some additional constraints, otherwise reward maximization will always lead
to “extreme” agent states where the entire relevance map is enclosed in FOV, e.g. by
�ying at very high altitude. We thus de�ne the Constrained Total Observed Relevance
(CTOR) as:

�̂(s) = k(FOV)�(s) (3.2)
where k is a penalty function with values in [0, 1] penalizing observed areas with low
resolution. We are ready to de�ne the reward function of the Markov Decision Process
that take into account the ba�ery constraint.

If the action a, applied on state s, leads to a new state s′, the local reward is:

r(s, a) = �̂(s′) − �̂(s′), (3.3)

thus the action is rewarded proportionally with the CTOR increment. Now, let BL(s)
be the ba�ery level at the current state s, that is, the number of steps that could be
done until the ba�ery is dead. Let dist(s) be the distance to the base station, that is, the
minimum number of steps needed to reach the base station from the current state s.

�e reward function that integrates ba�ery constraint and local reward is de�ned as:

R(s, a) = (1 − P (s))[r(s, a)(1 −N(s, a)) − 100N(s, a)] + P (s)D(s, a), (3.4)
where

P (s) = 1 if BL(s) − dist(s) = 0
P (s) = 0 if BL(s) − dist(s) > 0
N(s, a) = 1 if BL(s) − dist(s′) < 0
N(s, a) = 0 if BL(s) − dist(s′) < 0
D(s, a) = (dist(s′) − dist(s))

3.2 A reinforcement learning algorithm for coverage
task

�e agent model, described in the previous section, can be interpreted like an agent-
enforcement environment interaction (Figure 1.1). �e agent has an objective to �nd a
course of actions based on its states, called a policy, that ultimately maximizes its total
amount of reward it receives over time.

�e action value function Q(st; at) is used to determine which action to take in a
given state for each time step. �e agent can iteratively compute the optimal value of
this function, and from which derives an optimal policy.
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In classic Q-learning algorithms, the Q-function updates with Bellman Equation (1.34).
�e optimal value functions computed this way are stored into tabular databases (Q-
tables). In the coverage task we can deal with very big territories. �erefore, the usual
approaches making use of tables storing values in large matrices are no longer practical
because they do not scale-up especially in continuous (hence in�nite) state spaces.

In this case it is convenient to use the deep Q-learning approach because it let us use
Deep Networks as function approximators for Q (Deep Q-Networks). �e implementa-
tion of Deep Q-Networks does not change the core concept of RL, with the exception
that the the policy is now generated by a neural network.

To let the network explore di�erent actions and allow it learn new things we should
maintain the exploration-exploitation balance. �e exploration is guaranteed with an "
- greedy policy. At each iteration, the agent picks a random action with probability "
and an action given by the network with probability 1 − ".

�e problem of the classic Q-learning is that we can not use the same network pa-
rameters � both for action selection and evaluation, because this could lead to biased
estimates for Q. �e algorithm we are proposing here adapts Double Deep Q-Network
approach introduced in section 2.3.2. �is way we train two independent networks for
selection and evaluation tasks. In the box bellow we provide the pseudocode of the dou-
ble deep Q-learning algorithm used in this work.

Algorithm 10: Double Deep Q-learning algorithm for drone coverage
Algorithm parameters:
small exploration probability " ∈ (0, 1]
Initialize: relevance map;
base stations coordinates;
ba�ery limit;
movement limit;
Initialize network parameters: replay memory;
main network parameters tℎeta to random weights;
target network parameters �̃ ← �;

for each episode do
Choose initial state s0 from a base station chosen randomly
repeat

if the object state is inside the region and the ba�ery is charged then
for each step of episode do

With probability " select random action at
Otherwise select at = maxaQ(st, a)
Take action at, observe rt, st+1
Update exploration probability "
Backpropagate and update DQN with the minibatch
if C updates to DQN since last update to target network then

update the target Q-network Q̂(s, a)← Q(S,A);
else

Finish the episode
until the territory is covered or movement limit is achieved
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3.3 Implementation of Neural Network

�e input of the network is a tridimensional matrix of size (32, 32, 2). �e depth 2 refers
to two channels. �e �rst channel contains the visual information of the current drone
camera output. �e second channel encapsulates the drone position in the environment,
as well as the ba�ery level and the base stations. �erefore, we construct a Q-Network
based on convolutionals layers. Each layer reduce the two �rst dimensions of the matrix
until we get a 1x1 matrix in the �nal layer. On the other hand, the number of channels
is increased in the �rst layer and then we start to reduce it until we get as many chan-
nels as possible actions for the �nal layer. In this way we prevent from �a�ening the
convolutional layer, which allows us to perform faster computations.

Figure 3.4 shows the basic structure of the network. We use three convolutional
blocks, each one containing a convolutional layer, a batch normalization, a relu activa-
tion and a 10% dropout. Between these we have two maxpools operations. �en we have
another convolutional layer as the model output.

Figure 3.4: Network architecture.

�e network training process is managed by the agent as de�ned for the environ-
ment. It uses a SmoothL1 loss criteria, and an Adam optimizer with learning rate of
0.001. In this agent, we de�ne the current model Q and the target network Q′ as in the
q-learning technique described in [17]. We de�ne the future reward as

f (s′) = r + 0.8 ∗ argmax(Q′(s′))

were 0.8 is the  value that represents the importance of future rewards and s′ is the
state obtained from performing action a in state s following the policy �. �en we can
de�ne the loss function as

Loss(s, a) = SmoothL1(Q(s), f (�(s, a))). (3.5)
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3.4 Experimental results

3.4.1 Simulation environment

�e coverage problem is formulated as a dynamic game. To implement successfully the
described algorithm a custom environment was created using python libraries. �e li-
brary OpenAI Gym [7] speci�cally made for RL applications was used to interact with
the environment, start game episodes, observe states, collect rewards and perform ac-
tions.

�e agent can move in a two dimensional grid through action commands. Each action
consumes one unit of movement budget. �e initial step consists of a �xed map, a zero-
initialized coverage rate, a position at a base station and full power. Additionally, the
initial movement budget is uniformly sampled from a movement budget range which is
set to 200-400 for the purpose of this evaluation. �e UAV’s camera �eld of view (FoV)
depends on the height and it centered underneath the drone. A�er each step of the
mission, algorithm marks the FoV as seen in the coverage grid map (Figure 3.3).

During the training and simulation we used several binary maps on a 32×32 grid as
relevance maps. �e same algorithm can also be applied for bigger maps. To avoid the
recovering and give the robot some motivation to discover new zones, the ones from the
covered zones are converted to zero. When the robot leaves the area permi�ed by the
map it receives the negative reward. Negative rewards encourage the robot to come back
as quickly as possible because it makes the agent lose points when the game is still being
played. At the beginning, when the agent is no trained enough, it can go too far outside
and spend too much time there that slows down the learning process. To resolve this
issue we decided to end the episode each time the robot goes more than two steps out
the boundary any direction (x, y or z) or when the ba�ery is less than −100. When the
robot achieves the base station its ba�ery level changes by 100. When the agent learns
good to charge and do not leave the box, the episode can last the unlimited number of
steps. �e visual representation of the environment is shown in Figure 3.5.

Figure 3.5: �e simulation environment. A 32 × 32 grid map showing a base station in
red, the charged agent (big green square), covered area (in blue cells) and not covered
area (green cells).
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3.4.2 Training

To train the model, the input is not taken directly from the states of the observed en-
vironment. Instead, tuples (state, reward, action, next state) are collected a�er each
interaction with the environment and stored in a replay memory which is sampled. �is
approach helps increase the performance of the learning by reducing the correlation
between individual samples in a training batch.

�e training hyper-parameters used are listed in Table 3.1. �ey were obtained af-
ter a series of experimentations with the goal of determining the best combination of
parameters.

During training, the exploration factor " is varying, starting from 0.6 at the beginning
and decreasing throughout the learning process until it reaches 0.1 using the following
proportion:

" = 0.6 for i = 0
" = 0.6 ⋅ 0.9i∕300 for 0 < i < 5000
" = 0.1 for i > 5000

�is decreasing is motivated by the fact that the agent initially has not acquired any
knowledge, which forces the exploration of the free space in priority. With ongoing
training, the agent will gradually exploit and rely on the accumulated knowledge and
less on the exploration. �e presented proportion had shown good results during the
experiment but can be not the optimal one.

Parameter Value Signi�cation
M 5000 maximum number of training episodes

H ×W 32 × 32 length and width of the workspace
Z 5 hight of the workspace
m 32 minibatch size
B 400 maximum movement budget
BL 200 maximum ba�ary level
� 0.1 .. 0.6 exploration rate
 0.9 discount factor

Table 3.1: Hyper-parameters for the DQN training.

Figure 3.6 describes the evolution of the total reward (the sum of the rewards) per
episode in function of the number of training episodes. We can see that at the beginning
the agent gets a lot of negative reward as making random steps. It is almost guaranteed
leaves the environment and or goes opposite direction from the base when the ba�ery
is low. �roughout the training, the agent manages to collect positive reward which
means it learns to stay in the restricted zone, charge the ba�ery and discover the new
territories. �is shows that the learning improves and the agent gets be�er at covering
the workspace.

Figure 3.7 illustrates the progress in average number of steps per episode during
training. Every episode the agent could live more steps without going out the boundary
and charging the ba�ery on time. Note that even a�er 5000 episodes, the average number
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Figure 3.6: Average reward per episode during training. �e statistics were computed
by running an �-greedy policy.

of steps is not equal to 400 (the maximum permi�ed number of steps). It means that the
network is still not very good trained and it needs more training. But also we should
take in account that the agent also can go wrong with the random steps permi�ed by �.

Figure 3.7: Average number of steps per episode during training.

3.4.3 Simulations and Discussion

For simulation purposes we have chosen two di�erent maps to evaluate the coverage
rate made by the model. In this experiment we want to see the ability of the agent to
cover the �eld limiting the number time steps.

Figure 3.8 shows the percentage of the area that was covered for two di�erent maps
in a 32 × 32 grid. �e �rst map is full of ones (we consider that all the zones of the map
have the same importance). In the second map we have the square objects 8 × 8 cells
size staggered like a checkerboard.

It can be clearly seen that the covered area increases with movement budget, which
is expected as the drone is able to do more steps in di�erent directions. We can also
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Figure 3.8: Coverage rate for two maps with di�erent movement budget.

note that the model perfectly adapts to the di�erent type of the maps. Even so as the
model is still not very good trained, the robot does to much ine�cient steps to and
back and it can not cover the whole territory with an adequate movement budget. It is
important to say that the agent does not necessarily utilize the whole allocated budget if
it determines that there is a risk of not returning to the base in time or the coverage goal
is already ful�lled. �us, the drone �nds a tour balancing the goals of safe recharging
and maximum coverage ratio.

Figure 3.9: Ba�ery level per step.

Finally, the drone’s ability to plan a trajectory that comes back to the base station over
the full movement budget range is evaluated through Figure 3.9, showing the ba�ery
level per step in the test mode. As we can see, when the ba�ery level falls down to zero
the robot immediately goes to recharge. �e periodicity of the graphic shows us that
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the drone learned well do not exceed the �xed number of steps in coverage mode (the
power p is stated as 100 steps). As a consequence, the drone goes to charge in time and
does not go around the base with random movements.

3.5 Conclusion and future work

�is thesis focuses the problem of coverage path planning in unknown environments
using a drone with limited ba�ery endurance, with the aim of maximizing the covered
area. �e task is expressed as a game played by the drone that seeks to maximize a
carefully chosen reward.

Although there exist similar approaches in the literature, the case in which the avail-
able power is limited is usually not considered and then it is a challenge to design a learn-
ing algorithm with this realistic constraint. In this work, we have introduced a new deep
reinforcement learning approach for that optimization problem.

By feeding spatial information through map, we train a Q-network to learn a UAV
control policy that generalizes over varying starting positions and varying power con-
straints. Using this method, we observed an incremental learning process that success-
fully balances safe landing and coverage of the target area on two di�erent maps. In the
�rst environment all cells have to be visited and in the second scenario, only a distin-
guished area is considered as target. �e �rst results are promising as the agent learn to
come back to the base station to refuel and to avoid crossing the environment bound-
aries.

�e main drawback of the proposed method is that the training process is time con-
suming and the reward function could be tuned to get be�er results. In any case, the
proposed approach can be seen as an initial step for handling the ba�ery constraint in
coverage problems on unknown maps.

To complete this ongoin work, we plan to experimental show the relevance of our
method compared with other naive coverage paths, for instance the zig-zag pa�erns. In
the future we also want to investigate the possibilities of transfer learning for this prob-
lem. At �rst we will train the drone with easier problems, for example, considering four
actions, to further accelerate the training process described in this work. From there we
will examine approaches to transfer the agent learning to greater dimensions and dy-
namics. Finally, another interesting direction for future research is to adapt our method
for a more realistic scenario in which the power consumption is variable (depending on
the wind, for example), the map has di�erent topological altitudes, there exist obstacles
or forbidden zones, etc.
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