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Abstract

Path planning is a widely studied subject due to its vast number of applications,
specially for robots and unmanned vehicles. Strategies to solve it can be cate-
gorised as classical methods and heuristic methods, each one with its own advan-
tages and disadvantages. Generally speaking, analytical methods are very complex
for actual applications, whereas the heuristic methods are penalized by the size
of the search space. For the case of unmanned aerial vehicles this penalization
cannot be afforded, since due to weight and reaction time constrains, paths should
be computed on line with fast and computationally light algorithms. In this work
the use recurrent neuronal networks to contour this problem is proposed. The
neuronal network is tasked with learning the underlying optimal trajectory flight
dynamics, which are in turn numerically estimated by a time consuming heuristic
method. More precisely, a recent heuristic method (OSPA) is used to compute a
set of optimal trajectories for the ornithopter and then, the neuronal network is
tasked with learning the underlying function from it. The goal is to obtain similar
performances to the heuristic method with much faster computation times. The
effectiveness and efficiency of the proposed algorithm are demonstrated through
numerical simulations on validation data sets. In addition, far from blindly ap-
plying a recurrent neuronal network, a mathematical framework will be developed
in other to justify the choices made and the resulting performance. Such frame-
work will be supported by the universal approximation theorem, the algebraic
feedforward neuronal network equations and the maximum likelihood method.
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Resumen

El cálculo de trayectorias es un área con múltiples aplicaciones, especialmente
para robots y vehículos no tripulados. Las estrategias para su resolución pueden
ser categorizadas en métodos clásicos y heurísticos, cada uno con sus ventajas e
inconvenientes. De manera general, los métodos analíticos son demasiado compli-
cados para aplicaciones reales mientras que los heurísticos son penalizados por el
espacio de búsqueda.

En el caso de vehículos aéreos no tripulados, dicha penalización no es acept-
able debido a los requerimientos de tiempo de reacción y peso, lo que conlleva la
necesidad de algoritmos ligeros y rápidos. En este trabajo se propone el uso de
redes neuronales recurrentes para salvar dichas limitaciones. La red es encomen-
dada con la tarea de aprender la dinámica de vuelo de trayectorias óptimas que
han sido previamente estimadas numéricamente por un algoritmo heurístico. En
concreto, se utiliza un novedoso algoritmo heurístico (OSPA) para calcular un set
de trayectorias óptimas y la red neuronal recurrente tiene la tarea de aprender de
él la función subyacente. El objetivo es obtener métricas similares en tiempos de
computación mucho menores. La efectividad y eficiencia de la red será validada
mediante simulaciones en un set se validación. Adicionalmente, lejos de aplicar in-
discriminadamente una red neuronal, un marco matemático será desarrollado para
justificar las elecciones hechas y los resultados obtenidos. Dicho marco será desar-
rollado a partir del teorema de aproximación universal, las ecuaciones algebraicas
de la red y el método de máxima verosimilitud.
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Chapter 1

Introduction

1.1 Motivation and goal

As an aeronautical engineer, I have been passionate about flight and flight dy-
namics. As a control engineer, how this flight could be made autonomously. On
the other hand, mathematics has always been a fundamental element of robotics
research, being path planning one of the most studied problems in the interplay
of the two fields. This work gives me the opportunity to wrap all these things to-
gether by solving a flight path optimization problem with neural networks using a
probabilistic framework. The main goal of this work consists on computing the tra-
jectory optimization of an ornithopter by learning the underlying flight dynamics
by means of a recurrent neural network.

An ornithopter is a flapping wing airplane DeLaurier (1994) which is normally
designed to imitate the flight of a bird, a bat or an insect. Due to the complexity of
its flight dynamics, autonomous flight is still a challenging task Baek et al. (2011).
This task is even harder when there is the need not only for the ornithopter to
travel from point A to B, but also for the ornithopter to do this through an opti-
mal trajectory, where we define as trajectory optimization the process of designing
a trajectory that minimizes (or maximizes) some measure of performance while
satisfying a set of constraints, see for example Ross (2009). A recent approach
for the problem of optimizing ornithopters trajectories is Rodríguez et al. (2020),
which uses the planner OSPA (which stands for Ornithopter Segmentation-based
Planning Approach) applied to real ornithopter prototype. Despite outperform-
ing alternative probabilistic kinodynamic planners both in cost (total energy) and
accuracy (distance to the target), the high computational load makes it too slow
for real mid-range ornithopter online applications. On the contrary, as any other
unmanned air vehicle, ornithopters require low weight and fast reaction times. Tak-
ing into account the low computational resources available, any proposed strategy
should then rely on a simple and low demanding algorithm. Therefore, a much
more simplistic approach is needed to reduce the computational time from minutes
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16 CHAPTER 1. INTRODUCTION

Figure 1.1: Machine Learning

to fractions of a second.

This is where neuronal networks appear into scene, as they are widely known
for solving complex problems with simple linear algebra operations. If a neuronal
network can be trained to estimate an optimal trajectory, then it can be embarked
in the ornithopter to efficiently compute the trajectory with little need of com-
putation resources and time. Building on the ability of the OSPA algorithm to
compute optimal trajectories for the ornithopter, our recurrent neuronal network
will be tasked with learning the underlying flight dynamics from it. The goal is to
obtain similar performances to the heuristic method with much faster computation
times.

Instead of applying blindly a neural network, a mathematical framework will
be given in other to justify the choices made and the corresponding performance
results. Despite the wide spread use of neuronal networks, there are not many
mathematical models able to explain their effectiveness. Therefore, many times
neuronal networks are treated as black boxes where data is poured in one side
and answers are obtained from the other side as depicted on Figure 1.1. When
linked to math, neuronal networks are often associated with linear algebra as most
of the common algorithms make extensive use of it. However, when interested
in explaining their effectiveness, other mathematical approaches as probability or
information theory are more suitable Shwartz-Ziv & Tishby (2017).

To sum-up, the goal of this work is to define, train and evaluate a recurrent
neuronal network to the concrete case of the computation of the optimal trajectory
for an ornithopter, so the complex underlaying flight dynamics are learnt. The
training data is obtained from the results of the OSPA heuristic approach proposed
in Rodríguez et al. (2020). The choices made and results will be discussed and
justified using a probabilistic approach.
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1.2 Related work
The ornithopter optimal trajectory problem itself is defined in Rodríguez et al.
(2020), where the authors have developed an algorithm (OSPA) to compute min-
imal energy consumption trajectories. This thesis builds upon their experience in
optimal algorithms and explores Recurrent Neural Networks as a way to contour
the problems they found, especially the long computation times.

The application of neural networks to trajectory optimization is not new, see
Glasius et al. (1995), Horn et al. (2012), Yang &Meng (2000) amongst others. Even
the application of Recurrent Neural Networks (RNNs) to trajectory optimization
is not new Wang (1999). However, most authors tackle this problem directly,
embedding the trajectory constraints in the neural network equations and using
the NN’s loss function to optimize the trajectory. Generally speaking, a lot of
work exists on using neural networks to directly solve Non-Linear Programming
problems (NLP), for example approximating an optimal controller for Unmanned
Aerial Vehicles Xu et al. (2007). However this approach is very complex and can
only be afforded if the vehicle mechanics are simple.

As introduced in section 1.1, the flight dynamics from our ornithopter are by
no means simple, but rather it is composed by a complex nonlinear differential
equation system Rodríguez et al. (2020). Including such complexity in our net-
work’s loss function or network’s optimization algorithm would be an impossible
endeavour. Therefore the approach of this work consists on designing a NN that
will mimic the behaviour of the OSPA algorithm just by learning from a data
set of optimal trajectories generated by OSPA. This type of NN application is
called function approximation. Previous work on NN function approximation for
trajectory optimization can be found in Mordatch & Todorov (2014).

In this thesis we are going to apply a very special type of neural networks, the
recurrent neural networks. The reason behind is because this type of networks are
able of modeling dynamic systems, from electronics Luongvinh & Kwon (2005) to
engines Tan & Saif (2000).

Instead of a blind implementation, a mathematical framework is given by the
use of three pillars:

• The universal estimator theorem.

• The development of the NN algebraic equations derived from the neuron
ones.

• The use of the maximum likelihood

There are many attempts to understand how neural networks work, but not
that much results. A first, general overview on the mathematical aspects of neural
networks can be found on Goodfellow et al. (2016). Although NN are driven by
algebra, this book already introduces probably and information theory concepts
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as a mean to understand NN behaviour. In Murphy (2012) the reader can get a
deeper dive into a probabilistic perspective of machine leaning and neural networks
in particular. However, the best insights are given in Shwartz-Ziv & Tishby (2017),
where the author uses information theory to present a comprehensive theoretical
understanding on how Deep Neural Networks learn. This approach is further
explained on Saxe et al. (2019) by means of the information bottleneck theorem.

The RNN proposed in this work is extremely simple: only one recurrent layer
with 11 neurons. Therefore, there is no point in applying the results from Shwartz-
Ziv & Tishby (2017), which are intended for deep configurations. Instead, we
have taken the fundamental concepts from probability and information theory and
developed them into a suitable mathematical framework for our simple model.

1.3 Preliminaries

1.3.1 Introduction to neural networks

Neural networks overview

The goal of a feedforward network is to approximate some unknown function f by
learning the values of the parameters θ that result in the best function approxi-
mation f ∗(x; θ). It’s goal is thus to output for each value of x (features) a value
ŷ = f ∗(x) that is closest to y (label).

The network is associated with a directed acyclic graph (DAC) describing how
the functions are composed together. For example, if we have three consecutive
layers f 1(x), f 2(x) and f 3(x) connected in a chain, their composed function is
f(x) = f 3(f 2(f 1(x))) Goodfellow et al. (2016).

Furthermore, in accordance with the universal approximation theorem, stan-
dard multilayer feedforward networks are capable of approximating any measurable
function to any desired degree of accuracy.

Theorem 1.3.1. Hornik et al. (1989). A feedforward network with a linear output
layer and at least one hidden layer with any continuous squashing function can
approximate any Borel measurable function from one finite-dimensional space to
another with any desired non-zero amount of error, provided that the network is
given enough hidden units.

The derivatives of the feedforward network can also approximate the derivatives
of the function arbitrarily well, see Hornik et al. (1990). This can be extended to
the use of rectified linear activation functions (RLUs)(Leshno et al. (1993)).

Definition 1.3.2. A function Ψ : R → [0, 1] is a squashing function if it is non-
decreasing, limλ→∞Ψ(λ) = 1 and limλ→−∞Ψ(λ) = 0
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Figure 1.2: Feedforward neuron network schema.

These models are called feedforward because information flows through the
function being evaluated from x, through the intermediate computations, until
the output y. There are no feedback connections in which outputs of the model
are fed back into itself. When feedforward neural networks are extended to include
feedback connections, they are called recurrent neural networks, Goodfellow et al.
(2016).

In Figure 1.2, a feedforward neuronal schema can be seen. Each color represents
a layer, which is composed by several neurons. The first layer is called the input
layer and the last layer is called the output layer. Any other layer in between is
called a hidden layer.

As it can be seen, for every layer k, each neuron nki in position i is connected
to each of the neurons of the next layer via a set of weights wkji. Therefore, wkji
denotes the connection weight from neuron i belonging to layer k to the neuron j
belonging to the layer k − 1. At every neuron, the weighted sum of the outputs
from the neurons of previous layer is used to compute its output, as we will be see
next in detail.

Neuron equations

Figure 1.3 shows how a single neuron works. Every neuron nki has:

• A set of weights wkji, that connect the neuron to the outputs of the precedent
layer.

• A bias bki , which can we rewritten as wk0i if we add for every neuron an
additional input ok−10 = 1.
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Figure 1.3: Single Neuron diagram in Guarnieri et al. (2006).

• An activation function g(·) which should be continuous and inversible. This
functions transforms the sum of all weighted inputs including the bias (aki ),
into the final neuron output oki .

All these transformation can be summed-up in the equations below:

aki = bki +

rk−1∑
j=1

wkjio
k−1
j =

rk−1∑
j=0

wkjio
k−1
j

oki = g(aki )

(1.1)

As it can be deduced, the parameters θ to be optimized in the neuronal network
corresponds to the weights wkji, including the bias wk0i.

Neural Network parameter optimization

In 1.3.1 it has been introduced how a neural network form a parametric family
{f ∗(· ; θ) | θ ∈ Θ}, where Θ is called the parameter space. The family f ∗(· ; θ)
is given by the neural network architecture, which will be covered in 1.3.2. Our
goal here is to find the parameter θ̂ (which corresponds to the optimal weights
ŵkji) so that f ∗(x; θ̂) best approximates the true underlying function f . As in
any optimization problem, a cost function has to be defined. Although any cost
function can be chosen, the usage of the maximum log likelihood framework is
selected here because it is the best estimator asymptotically in terms of its rate of
convergence as the number of examples m→∞, see Goodfellow et al. (2016).
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Definition 1.3.3. Goodfellow et al. (2016) Consider a set of m examples X =
x1, ..., xm drawn independently from the true but unknown data generating distri-
bution pdata(x). Let pmodel(X; θ) be a parametric family of probability distributions
over the same space indexed by θ. The maximum likelihood estimator for θ is then
defined as:

θML = arg max
θ
pmodel(X; θ) = arg max

θ

m∏
i=1

pmodel(xi; θ) = arg max
θ

m∑
i=1

log pmodel(xi; θ)

Note that the Likelihood function it is just the joint probability density func-
tion for the independent and identically distributed random variables pmodel(xi; θ).
Here our model tries to approximate the underlying data generation distribution
pdata(x). Finally, the Log of the likelihood has been applied for convenience rea-
sons, which is possible since the log is monotonic and thus the θML will not differ.

If we rescale the expression above by the number of samples m, it can be
rewritten as:

θML = arg max
θ

E
X

[log pmodel(xi; θ)]

In the cases we are interested in predicting Y given X, we generalize it to the
conditional probability P (y|x; θ) as:

θML = arg max
θ
L(x; θ) = arg max

θ

m∑
i=1

log pmodel(yi|xi; θ)

Neural Network optimization algorithm

The simplest optimization algorithm (and the one we are going to use) is the gradi-
ent descendent back propagation. Actually, the most used optimization algorithms
are built upon it. The gradient descendent simply consist on changing the value
of the parameters θ in the negative direction of the gradient of the cost function
J(θ) with regards to θ. In our case, the cost function is the negative of the log
likelihood.

θt+1 = θt − α∂J(x, θt)

∂θ
J(X, θ) = −L(x, θ)

(1.2)

The term back propagation comes from the fact that calculation of the gradient
proceeds backwards through the network, with the gradient of the final layer of
weights being calculated first and the gradient of the precedent layer’s of weights
being calculated one at a time until the first layer is reached. The efficiency of the
algorithms comes from the fact that partial computations of the gradient in one
layer are reused for computation of the gradient in precedent layers recursively.
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This is a consequence of applying the chain rule to the partial derivative of the
cost function with regards to every weight.

For every input-output pair (xi, yi) we obtain the following result:

∂J

∂wkij
=

∂J

∂akj

∂akj
∂wkij

The first term can be rewritten as:

δkj =
∂J

∂akj
=

rk+1∑
l=1

∂J

∂ak+1
l

∂ak+1
l

∂akj
=

rk+1∑
l=1

δk+1
j

∂ak+1
l

∂akj

where rk+1 denotes the number of nodes in the next layer (k+1). Taking into
account that by definition ak+1

l =
∑rk

j=1w
k+1
jl g

(
akj
)
, this term can be expressed as:

δkj =
rk+1∑
l=1

δk+1
j

∂ak+1
l

∂akj
=

rk+1∑
l=1

δk+1
j wk+1

jl g′
(
akj
)

The second term can be rewritten as:

∂akj
∂wkij

=
∂

∂wkij

(
rk−1∑
l=0

wkljo
k−1
l

)
= ok−1i

Combining again the first and second terms, we finally obtain the partial derivative
of the error function J with respect to a weight wkij:

∂J

∂wkij
= δkj o

k−1
i = g′

(
akj
)
ok−1i

rk+1∑
l=1

wk+1
jl δk+1

l

Note that this partial derivative only depends on the errors δk+1
l at the next layer,

whereas the rest of the values were calculated during the forward propagation of
the input values xi through the network.

To wrap-up, feed forward neural networks are trained in two phases:

• The forward phase, where input values xi flow forward to compute the output
value yi

• The backwards phase, where for each pair input-output, error values flow
backwards to compute the gradient.

1.3.2 Neural network architecture

The neuronal network architecture and activation functions will define the para-
metric family {f ∗(· ; θ) | θ ∈ Θ}. They will be chosen in order to have a balanced
network capacity. The capacity is defined by:
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• Depth and width of the network: generally speaking, the deepest (more lay-
ers) and widest (more neurons per layer) the greatest number of parameters
will be available and thus a greater extent of the training information can
be learned.

• Activation functions and general architecture: they will define the represen-
tational capacity of the model, or in other words, the set of functions that can
be learned by the NN. For example, if we only use linear functions as activa-
tion functions g(∆), we will not be able to capture non-linear behaviours in
our training data. Regarding the general architecture, adding feedback loops
in our architecture will allow us to capture sequential/dynamical behaviours
as it will be explained for the recurrent neuronal networks in 1.3.3.

The adjective balanced is used since NN with high capacity are prone to over-
fitting, whereas NN with low capacity are prone to underfitting

• Underfitting occurs when the network is not able to capture enough informa-
tion from the training set and thus the learned model f ∗(x; θ) is too simple
to correctly approximate the underlaying function f .

• Overfitting occurs when the network is not able to generalize the information
learned from the training data. That is, the learned model f ∗(x; θ) is too
specific for a particular set of training data and when a new unseen input x
is fed into the network it is not able to make a good estimation.

This problem can be described as a bias-variance problem as follows:
First, we are going to use the Mean Squared Error (MSE) as a measure of our

performance. We will see later on on 3.3 how minimizing the MSE is equivalent
to maximizing the Likelihood under certain hypothesis.

The MSE is defined as:

MSE = Ex∈data[(y − f ∗(x))2]

We also define bias and variance of our approximation function f ∗(x; θ) as:

bias[f ∗(x)] = ED⊂data[f ∗(x)]−f(x); var[f ∗(x)] = ED⊂data[f ∗(x)−ED⊂data[f ∗(x)])2]

Here ED⊂data[f ∗(x; θ)] is the expectancy of f ∗(x; θ) over the different training sets
D. Every different training set would lead to different optimal parameters θ and
thus different values of f ∗(x; θ) for the same sample x.

Finally we can assume that our data has some data noise with regards to the
true values of the unknown underlaying function f(x) and that this noise has zero
mean.

y = f(x) + ε

E[ε] = 0
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We can expand the expectancy of the Squared Error of a sample over the
different training sets D as:

ED(y − f ∗(x))2 = ED(f(x) + ε− f ∗(x))2

= ED[(f(x)− f ∗(x))2] + ED[ε2] + 2ED[(f(x)− f ∗(x))]ED[ε]

= ED[(f(x)− f ∗(x))2] + σ2
ε

= ED[(f(x) + ED[f ∗(x)]− ED[f ∗(x)]− f ∗(x))2] + σ2
ε

= ED[(f(x)− ED[f ∗(x)])2] + ED[(f ∗(x)− ED[f ∗(x)])2]− 2ED[(f(x)

− ED[f ∗(x)])(f ∗(x)− ED[f ∗(x)])] + σ2
ε

= bias[f ∗(x)]2 + var[f ∗(x)]− 2(f(x)− ED[f ∗(x)])(ED[f ∗(x)]− ED[f ∗(x)]) + σ2
ε

= bias[f ∗(x)]2 + var[f ∗(x)] + σ2
ε

Therefore, averaging over all test samples, we obtain the MSE as:

MSE = Ex[Ef∗(y − f ∗(x))2] = Ex[bias[f ∗(x)]2] + Ex[var[f ∗(x)]] + σ2
ε

As it can be deduced, big (or at least statistically representative) training
sets D reduce both the bias and the variance. Unfortunately, as we will see in
subsection 2.2, our available data set is small and thus we will be very susceptible
to a generalization error if the NN model is not wisely chosen Neal et al. (2018).

Finally, the error σε cannot be reduced by any means and it will be a lower
bound. On our specific ornithopter trajectory problem this error will be the in-
herited error from the OSPA heuristic algorithm trajectories given as input. In
section 3.1 we will try to partially overcome this error by adding the true target
value at the end of each OSPA trajectory.

Figure 1.4 shows the trade off between NN model bias and variance Papachris-
toudis (2019).

1.3.3 Recurrent neural networks

A recurrent neural network (RNN) is a class of artificial neural networks where con-
nections between nodes form a directed graph along a temporal sequence. These
connections allow previous outputs to be used as inputs while having hidden states.
Therefore, this type of neuronal network exhibits temporal dynamic behavior.
Mandic & Chambers (2001) This property will allow us to capture the underlying
flight dynamics contained in the OSPA optimal trajectories.

Figure 1.5 shows the schema of a single recurrent neuron as in Amidi (2019).

• The neuron output at time t, yt, is a function of the hidden state a time t,
at through a set of coefficients Wya, a bias by and an output activation gate
g2.
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Figure 1.4: NN model bias-variance trade off Papachristoudis (2019).

Figure 1.5: Single Recurrent Neuron schema
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Figure 1.6: RNN architecture

• The hidden state at time t, at, is itself a function of the previous hidden state
at−1 and the input to the neuron at time t, xt, through a set of coefficients
Waa, Wax , a bias by and an output activation g1.

• Here the interesting fact is that the hidden state at−1 is used by the neuron
to compute the next hidden state at, carrying with it information about
previous time steps

The associated equations of this schema can be written as:

at = g1(ba +Waaat−1 +Waxxt)

yt = g2(by +Wyaat)
(1.3)

We could retrieve back the equations of a single neuron if the input xt was
plugged directly to the last equation, or in other words, at = xt. This would in
turn remove the temporal behaviour as the output yt would not be anymore a
function of the previous states.

In order to apply all the properties seen before for feedforward networks forming
Directed Acyclic Graphs in 1.3.1 and 1.3.2, we can replace each of our single
recurrent neurons into a set of simple neurons as described in Figure 1.6 .

The schema depicted in Figure 1.6 shows how a RNN can be unfolded into an
equivalent feed forward neural network where the same parameters θ of a simple
recurrent neuron (or its equivalent set of simple neurons) are shared by each of the
different unfolded neurons, one neuron layer per time step.

Theorem 1.3.4. Goodfellow et al. (2016). The unfolding property can only be
applied if the following hypothesis is met: the conditional probability distribution
over the variables at t+1 given the variables at time t, is stationary.

In Section 4.1, the training dataset will be pre-processed so we can guarantee
that conditions required by Theorem 1.3.4 are met. The fact of being able of un-
folding the RNN into a feed forwarded one allows us to apply all the theorems and
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properties seen before. Finally, the gradient descendent back propagation algo-
rithm can be also applied with the simplification that the parameters θ are shared
between time steps (which unfold into layers in a feedforward neural network). As
it can be deduced, this fact greatly reduces the number of parameters and thus
calculations compared with a feedforward neural network with the equivalent M
layers, one per time step. Moreover, the choice of learning a single, shared model
allows generalization to sequence lengths that did not appear in the training set,
and allows the model to be estimated with far fewer training examples than would
be required without parameter sharing Goodfellow et al. (2016) which is specially
relevant for us due to the limited amount of available data.
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Chapter 2

The ornithopter trajectory
optimization problem

2.1 Problem statement
The problem we want to solve is to compute an optimal trajectory of an ornithopter
connecting two given positions A and B while minimizing the energy consumption.
This problem is defined in detail in Rodríguez et al. (2020), where the trajectories
are calculated using the OSPA heuristic method. This method has the drawback of
being too computationally heavy to be used in flight. More precisely, the efficiency
of such heuristic algorithm is determined by the size of the search space and the
complexity of the constraints. In the case of our ornithopter we have complex
constraints as the ornithopter is subject to a nonlinear differential equation system
as described on Rodríguez et al. (2020) and a wide search space which is the set
of possible flight maneuvers. These factors lead to mid-range optimal trajectories
computational times in the order of minutes, which should be reduced to fractions
of a second.

As introduced in section 1.1, the proposed approach in this work consists on
using a recurrent neural network (RNN) to learn the underlaying flight dynam-
ics that gives the optimal trajectory between two point A and B. The network
is therefore trained by feeding a number of optimal trajectories computed using
the planner OSPA (Ornithopter Segmentation Path Planning Approach). Once
trained, the RNN is expected to estimate an new optimal trajectory given two
unseen points A and B.

In this subsection we are going to explain some basic definitions regarding the
ornithopter problem statement as expressed in Rodríguez et al. (2020), that will
be used during the resolution via RNNs:

Definition 2.1.1. (Flight state) A flight state s = (x, z, u, w, θ, q) describes an
ornithopter configuration in a given instant of time, where x and z are the posi-
tional values in the plane XZ of the Earth reference frame, u and w are velocity
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Figure 2.1: Top view, the ornithopter prototype used in Rodríguez et al. (2020).
Bottom view, trajectory computed by OSPA, with three consecutive maneuvers for
100 meters before landing. The trajectory connects the flight states by integrating
the dynamic model. The first state is reached with a flapping maneuver.

components in the body reference frame, θ is the pitch angle and q is the pitch
angular velocity.

Definition 2.1.2. (Flight maneuver) A flight maneuver a = (δ, f) is a control
action performed by the ornithopter during its flight at a given flight state. We
consider two degrees of freedom to define flight maneuvers: tail deflection, deter-
mined by the deflection angle δ (up and down); and wing flapping, determined by
the flapping frequency f.

Definition 2.1.3. (Cost) The cost associated to trajectory is a measure of the
energy consumption needed to perform the sum of the flight maneuvers needed for
the trajectory.

In Rodríguez et al. (2020), the trajectories have been discretized in equal du-
ration time steps, where an action only takes place between time steps as it can
be seen in Figure 2.1.
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Given the aforementioned problem statement, a trajectory can be defined by:

• A sequence of flight states S = (s0, s1, s2, s3...sn) from point A to the vicinity
of point B.

• A sequence of flight maneuvers A = (a0, a1, a2, a3...an−1) that drives the
ornithopter following the aforementioned trajectory.

Given a trajectory, it’s optimality can be measured by:

• Cost: C =
∑n−1

i=0 ci, the sum of the energy consumption of each of the actions.

• Precission: The distance between the target point B and the final flight state
sn.

Note that the distance between the final flight state and the target point B has
not been used as an optimization criteria in Rodríguez et al. (2020), but rather as
a exclusion criteria of the solutions whose final point is deemed too far from the
target. Due to the fact that the RNN only computes one trajectory and that there
is no certainty that the final state will be within the desired range, we will use the
precision as a measure of the correctness of the solution.

Finally, two important characteristics of the trajectory set computed by the
OSPA heuristic method and used for the training of the NN are that:

• The starting point A is always the same.

• The time step between successive states is always the same.

2.2 Data set

As introduced in section 1.1, the OSPA algorithm is used as a data source to train
the RNN with optimal trajectories. More precisely, the OSPA trajectories are
considered to represent the true optimal trajectory distribution pdata(x) which our
neural network will try to approximate at best pmodel(x), where x corresponds to
the flight states.

The data set is composed by 236 different trajectories between two random
initial and target states. These low energy trajectories are sampled within the
intervals in Table 2.1 and the precision required at its ending point is bounded to
3 m. Of each trajectory, the state-control waypoints returned by OSPA are stored
as a set of pairs (s,m) where s is a flight state and m is the corresponding control
maneuver. Finally, the time step is set constant to 31.53 seconds.

Each of the trajectories is then composed by:

• The initial sinitial. and target starget. states.
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• The sequence of flight states S = (s0, s1, s2, s3...sn).

• The sequence of flight maneuvers A = (a0, a1, a2, a3...an−1).

• The cost of the trajectory.

• The computation time for the OSPA method.

Out of the 236 trajectories, the 80% of them are randomly selected for for
training whereas the remaining 20% is used as validation set to compute the gen-
eralization error and RNN performance metrics.

Variable Initial State Target State
X (m) 0 [25, 100]
Z (m) 0 [−40, 0]
Θ (◦) [−30, 30] 30

Ub (m/s) [1, 4] 0

Table 2.1: Ranges of initial and target state variables used in the experiments.



Chapter 3

The recurrent neural network

3.1 Input
The data set introduced in section 2.2 is pre-processed before ingestion by the
RNN. More precisely, the inputs to train our RNN are the sequences of flight
states S = (s0, s1, s2, s3...sn), which will be transformed to the distance sequences
X = (x0, x1, x2, x3...xn) by applying the following transformations:

• First, in order to include information about the target in each time step, the
flight state sequences have been changed to the distances to the target:

xi = starget − si

• Second, due to the fact that the different flight components in the flight state
(x, z, u, w, θ, q) have a great disparity in values, they have been normalized
using their standard deviations as follows:

xi =
zi
σ

Regarding the actions a = (δ, f), they will be used as they are since both orders
of magnitude are similar.

This input data follows a probability distribution which will be represented
throughout this work as pdata(x) .

3.2 Recurrent neural network layer
Feedforward neural networks learn from the training samples as if each of them
were independent and identically distributed random variables. However, we know
that this is not the case when dealing with our trajectory problem, or more gen-
erally, with sequences. In other words, the current state xt is not independent
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from the previous state xt−1. Thus, it seems logical to use the information in
the previous states to better estimate the next action. Note that for the specific
case of our trajectories, the next action is only function of the current state and
the target state. Thus, a simple neuronal network could do this job as it is not
mandatory to consider the previous states to compute the next action. In more
general sequence cases, like for example in sentence translations, it is necessary to
consider all previous words and even future ones to fully put in context the cur-
rent word. As discussed in the introduction, the recurrent neural networks exhibits
temporal dynamic behavior. Since the ornithopter trajectory can be described by
a dynamical system, a RNN seems then the perfect artificial neural network class
choice.

Furthermore, in our case we will show that we comply within Theorem 1.3.4.
This will in turn allow us to apply all the good properties of a feedforward network.
In deed, within any given trajectory, the conditional probability distribution over
the variables at t+ 1 given the variables at t is stationary. This is true since:

• For every tuple of starting and target points, it is expected to obtain the
same optimal trajectory. Therefore, considering the starting point as an
intermediate point at time t of a longer trajectory with same target point,
the following intermediary points are expected to be same.

• When dealing with discrete trajectory state values, due to the fact that
the time step is constant, the same intermediate state values are expected,
making their probability distribution stationary with time.

Finally, we can also state that our problem complies the universal approxima-
tion theorem. Following Theorem 1.3.1, this is true since:

• Any continuous function on a closed and bounded subset of RN is Borel
measurable.

• Our underlaying function f must be continuous as two optimal trajectories
can be arbitrarily close as far as the starting and target points are respectively
as close as needed.

• Our subset is bounded in IR6 as no infinite trajectory can be optimal (nor
feasible).

Note that the universal approximation theorem ensures that a NN can approx-
imate the optimal trajectory function to any degree of accuracy, but nothing is
said about how the NN should be in terms of configuration or needed number of
parameters (which can be lead in practice to unfeasible NN).

Finally, the gradient descendent algorithm can be applied as well to our RNN
as introduced in section 1.3.1 for feedforward networks. )
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3.3 Output
The NN approximation task can be divided into regression or classification prob-
lems

Classification model

As we will see in the implementation and results, the ornithopter possible action
data set is actually a finite set of 35 different action tuples. This is due to the
methodology of the heuristic method used to compute the optimal path, which
requires a finite set of possible action outcomes in order to obtain a search tree.
In the task of predicting the next action, the RNN can either output the tuple
a = (δ, f), leading to a regression model, or it can predict which is the most
probable action to apply from the aforementioned finite set of actions, leading to
a classification model. The outcome thus will be the probability to apply each
of the possible actions and one with the highest predicted probability will be
selected. Therefore, in the classification problem, the NN aims to output the
most probable action to take amongst a given set of finite options, given the
corresponding preceding flight states.

In the classification model each action ak is treated as a different category,
leading to 35 different categories:

ak = (δk, fk), k = 1, ..., 35

In this case, we want the RNN to output the probability that each category has
to be selected. This gives the following relationship between the real probability
distribution yk and our prediction ŷk to be:

ŷk = p(yk|x, θ)

where ŷk is the vector with the predicted probabilities for each category and yk is
the "one hot" representation of each category. A "one-hot" representation of the
category k consist on a vector with size the number categories where all elements
are zero except the kth element with value 1. For instance, a3 is represented by
[0, 0, 1, 0, ..., 0] . This representation indicates that the probability for category 3
is 1 whereas is zero for the rest.

Proposition 3.3.1. It is equivalent to use the Log-likelihood or the Categorical
Cross Entropy as loss function for our NN classification problem.

Proof. As for the regression case, when computing the maximum log likelihood we
end up with:

L =
m∑
i=1

log p(y|xi; θ) =
m∑
i=1

log ŷi =
m∑
i=1

N∑
k=1

p(yik) log ŷik
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The later equality is true since each probability p(yik) is zero except for the ob-
served category k that is equal to 1.

Note that this last term corresponds to the negative cross-entropy of the dis-
tribution ŷi relative to a distribution p(yi) which, for discrete probability distribu-
tions, can be written as:

H(p(yi), ŷi) = −
N∑
k=1

p(yik) log ŷik

This gives us the following result

θML = arg max
θ
L = arg max

θ
−

m∑
i=1

H(p(yi), ŷi)

The cross entropy loss function can be interpreted as the expected message-
length per datum when a wrong distribution pmodel is assumed while the data
actually follows a distribution pdata. Or in other words, when our neural network
f ∗(· ; θ∗) is used instead of the real source of data, which is our OSPA planner.
Therefore, the higher the cross-entropy is, the further our NN is from generating
the real data probability distribution. Here the locally optimal parameter θ∗ is
found by the loss optimization algorithm so that the cross-entropy values is locally
minimized for the parametric family f ∗(· ; θ).

We have just seen a way to interpret the Likelihood loss function. However,
we may be interested in an actual measure of dissimilarity between our model and
the underlying true data distribution.

A measure of the dissimilarity between any two distribution is the KL diver-
gence, and it is defined for discrete distributions as:

DKL(pdata ‖ pmodel) =
∑
x∈X

pdata(x) log

(
pdata(x)

pmodel(x; θ)

)
Although the KL divergence is not a true metric, since for instance DKL(p ‖ q) 6=
DKL(q ‖ p) , it is intuitively a pertinent loss function since it represents the amount
of information lost when pmodel is used to approximate pdata.

Proposition 3.3.2. It is equivalent to use the Log-likelihood or the KL divergence
as loss functions to compute the optimal parameters for our NN classification prob-
lem.
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Proof. This divergence can be rewritten as:

DKL(pdata ‖ pmodel) = DKL(p(y) ‖ ŷ) =
m∑
i=1

p(y(xi)) log

(
p(y(xi))

ŷ(xi; θ)

)
=

m∑
i=1

p(y(xi)) log p(y(xi))−
m∑
i=1

p(y(xi)) log ŷ(xi; θ)

The first term of the right corresponds to the negative of the entropy H of
p(y) and does not depend on the parameters θ. The second term on the right
correspond to the cross-entropy of ŷ(x; θ) relative to p(y).

DKL(p(y) ‖ ŷ) = −Hy +Hyŷ(x; θ)

Here we can see that the amount of information lost when ŷ is used to approximate
y actually corresponds to the difference of Entropy.

Therefore, maximizing the log likelihood is equivalent to maximizing the simi-
larity which in turn corresponds to minimize the cross-entropy.

θmDKL = θmCH = θML

When using the KL divergence as a loss function, in addition to find the locally
optimal parameter θ∗, we can actually asses the quality of our model. Knowing
that a zero KL divergence value corresponds to a perfect match between model
and the true distribution, we can consider the values in Table 3.1 as a guideline
Brownlee (2019):

KL Divergence Value (nats) Model valuation

0.00 perfect

<0.02 good

<0.05 on track

<0.2 fine

<1.0 poor

>2.0 broken

Table 3.1: Model valuation by KL divergence loss values.
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Regression model

In the regression problem, the RNN aims to output the best possible approximation
to the values of the true states in IR6 given by an OSPA trajectory. Therefore, after
training, the RNN will output a prediction ŷi given the input xi. The relationship
between the real value yi and our prediction ŷi can be written as:

yi = ŷi + ei

where ei is the error due to either non modeled aspects. Assuming that all these
aspects are independent, we can apply the central limit theorem to rewrite this
error as a Gaussian distribution with the form:

p(ei) =
1

σ
√

2π
e−

1
2( eiσ )

2

=
1

σ
√

2π
e−

1
2( yi−ŷiσ )

2

Here, it is assumed that the error has standard deviation σ and null mean. This
implies that p(yi|ŷi) follows a Normal distribution N(ŷi, σ

2I). Due to the fact that
ŷi depends on xi and θ it can be rewritten as:

p(yi|ŷi;σ) = p(yi|xi; θ;σ) =
1

σ
√

2π
e−

1
2( yi−ŷiσ )

2

Proposition 3.3.3. Given the above mentioned hypothesis, it is equivalent to use
the Log Likelihood or the Mean Squared Error as loss functions for our NN.

Proof. If we compute the Maximum log likelihood, we end up with:

L =
m∑
i=1

log p(yi|xi; θ;σ) =
m∑
i=1

log
1

σ
√

2π
e−

1
2( yi−ŷiσ )

2

= m log
1

σ
√

2π
−

m∑
i=1

1

2

(
yi − ŷi
σ

)2

θML = arg max
θ
L = arg max

θ
m log

1

σ
√

2π
−

m∑
i=1

1

2

(
yi − ŷi
σ

)2

= arg max
θ

m∑
i=1

1

2
(yi − ŷi)2 ,

which turns to be equivalent to minimizing the Mean Squared Error.

In our Neural Network, we will use a Linear Activation to output the prediction
as we expect it to be continuous in IR6.

The MSE is already a good measure of how well our model fits the true distri-
bution and it gives a measure of the estimation error from our model.

Nevertheless, we can also have the value of the measure of the dissimilarity
between the model and true distributions via the KL divergence:

DKL(pdata ‖ pmodel) =
∑
x∈X

pdata(x) log

(
pdata(x)

pmodel(x; θ)

)
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Proposition 3.3.4. It is equivalent to use the Log-likelihood or the KL divergence
as loss functions to compute the optimal parameters for our NN regression problem.

Proof. This divergence can be rewritten as:

DKL(pdata ‖ pmodel) =
∑
x∈X

pdata(x) log pdata(x)−
∑
x∈X

pdata(x) log pmodel(x; θ)

The first term of the right corresponds to the negative of the entropy H of pdata(x)
and does not depend on the parameters θ. The second term on the right correspond
to the negative log likelihood of pdata(x) and pmodel(x; θ).

DKL(pdata ‖ pmodel) = −Hpdata − L(x; θ)

Therefore, maximizing the similarity corresponds to maximizing the log likelihood.

θmDKL = θML = arg max
θ

E
X

log pmodel(x; θ)
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Chapter 4

RNN Implementation

This chapter contains an overview on how our RNN problem statement has been
actually implemented, layer by layer. Overall, all the scripts are programmed using
Jupyter notebooks and the neural networks are computed using the TensorFlow
library in Python. Jupyter Notebook allows us to explain how the code works on
the same script file and TensorFlow is a widely used Machine Learning Library
developed by Google. All RNN implementation code is published in https://
github.com/paskymail/Neuronal_Networks/tree/master/Simple_RNN.

4.1 Input pre-processing
Prior to the ingestion of the training data, the training set is pre-processed using
the script "Process_Training_Data_2.ipynb"

This pre-process consist on:

• Transforming Flight state sequences into its normalized trajectory distances
sequence as explained in Section 3.1.

• Creating distance sequences of equal length by truncation when the trajec-
tory is too long or by padding with zero distance vectors when the trajectory
is too short.

The reasons for setting equal length trajectories are:

• The RNN is trained by input batches and each batch should be of equal
length due to computation constraints.

• Only flight states belonging to the same trajectory be feed to the RNN in
order to comply with theorem 1.3.4.

As explained in Figure 4.1, the padding consist on adding zero distance vectors
when the original trajectory sequence is not long enough. For instance, if the
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Figure 4.1: Padding and trucation operation.

trajectory length is set to 5 and our trajectory only has 3 flight states, then two
zero vectors are added for the fourth and firth position of the new trajectory.

The reason for padding with zero vectors on the right is that as the trajectory
unfolds, the distance to the target is expected to get closer and closer to zero.
Thus, the padding will only keep the distance constant in the zero value after the
trajectory is finished.

This zero distance value at the end of the trajectory will be used during the
training phase to indicate the RNN that the trajectory is over and we will expect in
the prediction phase from the RNN to indicate with a Zero value the last distance
state of the predicted trajectory and end of the sequence.

4.2 Recurrent Neural layer
We have chosen Long Short Term Memory neurons in order to build the Recurrent
Neurons layer. This is just an specific class or recurrent Neural Network choice
has been made because:

• It is a common used RNN with good properties, as for instance it deals with
the vanishing gradient problem encountered by traditional RNN Sherstinsky
(2020).

• The TensorFlow API allow us to customize its behaviour and configuration,
for instance the activation functions (g1 and g2) and the behaviour of its
hidden state at

It is not the aim of this work to give much detail regarding recurrent neuron con-
figurations and therefore we refer the reader to Amidi (2019) for a brief summary
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Figure 4.2: Regression model output layer.

or Sherstinsky (2020) of an in depth review.

4.3 Output layer

The objective of the output layer is to render the results of the RNN in the correct
format so that it can be compared with the existing data. Therefore, it will depend
whether we are dealing with a regression model or a classification model.

4.3.1 Regression model

As illustrated in Figure 4.2, the output layer transforms the output of the Re-
current Layer into the correct number of components to compare. In the case of
the flight distances, we will transform an arbitrary number of outputs from the
RN into the six components x = (xx, xz, xu, xw, xθ, xq), one per each flight state
component and in the case of actions a = (δ, f) we will have the corresponding
two outputs. During the training phase, we will use the nominal values of δ, f
for each expected class and compare them against the predicted values of these
two components. During the prediction phase, we will search for the closest nom-
inal values δ, f in the class space and output the action class with the minimum
Euclidean distance to the predicted point.

Finally, as discussed in Section 3.3, due to the fact that the expected outputs
are continuous valued in R, the activation function used in this output layer will
be linear.
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Figure 4.3: Classification model output layer.

4.3.2 Classification model

As can be seen in Figure 4.3, in this case the output layer transforms the output
of the Recurrent Layer into as many outputs as classes are considered, where each
output represents the probability of predicting that specific class. In our case, we
will have 35 outputs, one per action class.

As discussed on Section 3.3, here the goal of the output layer is to output the
probabilities of obtaining each of the categories.

Proposition 4.3.1. An output layer with a softmax function is capable of esti-
mating the probabilities of obtaining each of the categories.

Proof. We use the Bayes Theorem to compute the probability of obtaining a given
class yk as follows:

p(yk = 1|x) =
p(x|yk = 1)p(yk = 1)

p(x)
=

p(x|yk = 1)p(yk = 1)∑N
j=1 p(x|yj = 1)p(yj = 1)

In the expression above, p(yj = 1) can be estimated from the data. If we
assume that p(x|yk = 1) follows a Gaussian, which it is a fair approximation as
per Figure 4.4, this probability could be rewritten as:

p(x|yk = 1) =
1

σ
√

2π
e−

1
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2

,

which implies:
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(4.1)
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Figure 4.4: Flight state components (columns) value distribution per action cate-
gory (rows).

As can it be seen, equation 4.1 has the form of a softmax function, which will
be used as activation function for the output layer in the case of the classification
problem.

4.4 Training and evaluation

As stated before, the training of the Neural Networks consists on reducing a loss
function J(x; y; θ) which depends on the input values, expected output values
and the network parameters. As seen before, the chosen loss function is the log-
likelihood and the parameters θ are optimized to maximize it. This maximization
is equivalent to minimize the MSE in the case of the regression model or the
Cross-Entropy in the case of the classification model.

The fact that the loss function J(x; y; θ) depends on the input and expected
output values means that the resulting optimal parameters θ may vary depending
on the data. This problem is know as the generalization problem.

The generalization problems occurs when the parameters θ are optimal for
the training set (xtraining; ytraining) but it has low performance for another unseen
validation set (xvalidation; yvalidation). In other words, the networks learns to fit
closely the specific training set but in unable to fit other general unseen data set.
Due to this,the available data will be divided in two different and subsets:

• Training data (xtraining; ytraining) which accounts for 80 percent of the avail-
able data and is used for computing the loss function and thus for training.
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• Validation data (xtraining; ytraining) which accounts for the remaining 20 per-
cent of the available data and is used to evaluate the performance of the
network when faced with previously unseen data.

The actual performance of our NN will be determined by the performance of
the validation loss and the metrics values.

Finally note that as explained in the introduction section (1.3.1), the more
complex our network is, the more prone to generalization error is, as it will be able
to "memorize" to match the values of the training set. The simpler the network
is, the higher the training error will be as it won’t be able to capture all the model
details. Therefore the RNN model should be carefully designed to avoid these
issues.



Chapter 5

Results

In this chapter we are going to try four different architectures of recurrent neu-
ral networks and apply them to the ornithopter optimal trajectory estimation.
Each of the architectures is expected to have some characteristics that will be ex-
plained. Finally, the obtained results will be analyzed and justified based on the
aforementioned special characteristics.

5.1 Action prediction RNN

5.1.1 Network architecture and path computation

As explained in the problem statement chapter, our objective is to compute the
optimal trajectory of an ornithopter from point A to point B with minimum con-
sumption. Therefore, our algorithm should then be initialized with the initial and
goal states and it should compute the rest of the trajectory.

As mentioned in the ornithopter problem statement, a trajectory can be also
defined as sequence of actions A = (a0, a1, a2, a3...an−1). In practical applications,
we may be interested in knowing the action to apply at each time step instead of the
sequence of states. Our first approach consists thus on developing the trajectory
by predicting the next action given the previous states. The ornithopter dynamic
equations from Rodríguez et al. (2020) are used to compute the resulting next
state derived from applying the predicted action. This is the most straightforward
approach and could be accomplished by any feedforward NN since there is no
dynamical behaviours learnt, only a classifying network is needed.

This computation can be visualized as adding a known computation layer that
transforms the predicted action to corresponding state as in Figure 5.1. This upper
layer is not learned by the RNN, it is fixed forehand. This non neural layers are
called Lambda layers in Keras and are just a transformation layer that can be
stacked within true neural layers.

Therefore the configuration is as follows:

47
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Figure 5.1: Next action prediction from previous states.

• In the input layer we will input the last predicted state.

• The output layer is expected to output the probabilities for the next action
to apply. As explained during the problem statement, a softmax activation
function is applied.

• The fixed function xt = F (xt−1; at) will compute the next state based on the
predicted action at.

• The recurrent layer is expected to learn the function at+1 = f(ht;xt), where
xt is the predicted distance at time t and ht = fr(ht−1;xt−1) is the hidden
layer state which contains information from previous steps. These depen-
dencies can be inferred from the recurrent neuron equations (1.3).

Taking the aforementioned points in mind, the algorithm 1 is used to construct
the trajectory step by step.

In Table 5.1 a summary of the Keras Neural Network can be found. It can be
seen how the output layer has 35 neurons, one per category so its probabilities can
be compared with the real category "one-hot" representation. The neural network
contains a total of 1212 trainable parameters.

It is important to note that this approach does not take advance of the recurrent
nature of the neural network to build a complete sequence, but rather the network
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Algorithm 1: trajectory loop
Result: X = (x0, x1, x2, x3...xn), Cost
x0;
while x 6= Zero do

ai = RNN(~x);
Cost = C(ai);
xi = F (ai);
~x.append(xi);

end

is used as an action classification. Any other simple network is suitable to do this
job, but this architecture is used as a stating point to be able to evaluate further
on the benefits of other architectures capable of exploiting the recurrent properties
of the network.

5.1.2 Training

Now, we have to define the network cost function. Our goal here is to estimate the
next action to apply, therefore our target it to get the action category estimate
â = p(a|x; θ) as close as possible to the true action category value p(a|x) .

We are going to apply what it has been already developed on subsection 3.3
and the we use the KL divergence loss function as the measure of the dissimilarity
between these two distributions. which is defined for a discrete distributions as:

DKL(pdata ‖ pmodel) =
∑
x∈X

pdata(x) log

(
pdata(x)

pmodel(x; θ)

)
The computation of such loss function is implemented in the TensorFlow API by
the KL Divergence Loss function. Alternatively, the Categorical Cross-entropy
Loss function could be used with the same results.

Despite the high number of parameters, no overfitting effects have been ob-
served. In Figure 5.2 the loss (KL divergence) decrease during training is shown.
It has to be noted that the validation loss decreases jointly with the training loss,
which implies that the networks is learning properly and it is able to generalize to
unseen validation data. Finally, the KL divergence loss value reached is close to
0.02, which in accordance with Table 3.1 corresponds to a good model fit.

5.1.3 Results analysis

Figure 5.3 plots the RNN predicted X,Z trajectory again the OSPA trajectory.
We see I that the RNN trajectory is quite similar to the OSPA behavior.
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Figure 5.2: Loss (KL-divergence) decrease during training

Figure 5.3: X,Z components trajectory comparison.
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Layer Output shape parameter number

LSTM [None, None, 11] 792
Dense [None, None, 35] 420

Table 5.1: Action classifier network summary.

Figure 5.4: Comparison on the u,v, θ, q components.

This property is also true for the complete 6 components as shown in Figure
5.4, where the u, v, θ and q components of the flight state are plotted against the
x component. This is expected since there is no special priority treatment for any
component and thus the performance for each of them should be similar. In case
of any component to be prioritized, a set of weights can be assigned for each one
when computing the loss function in such a way errors on some components are
specially penalized.

The overall results can be seen in Table 5.2, which contains the following per-
formance metrics already introduced in section 2.1:

• Cost (W): is the total energy cost (battery) consumed by the ornithopter,
and it is determined by the maneuvers (actions) performed.

• Time (s): is the total elapsed time in computing the full trajectory.

• Precision (s): is the euclidean distance in the XZ-plane from the final state
to the target

• Trajectory error (m): is the mean of distance in the Z axis between the OSPA
and the RNN trajectories at 10 given intermediary X-positions.
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These metrics were identified as relevant for the OSPA performance itself and
are not used to optimize the network parameters, they are computed only for
comparison purposes.

Algorithm Cost (W) Time (s) Precision (m) Trajectory error (m)

OSPA 34.68 520 2.84 na

Action prediction 37.25 0.43 6.29 3.85

Table 5.2: Comparison with OSPA algorithm.

As an overall conclusion, it can be stated that the RNN is able to generate
new optimal trajectories from unseen start and target points. Even if the RNN is
much faster (0.43s vs 520s), precision has been worsened compared to the OSPA
planer in terms of distance to the target (6.29m vs 2.84m). It has to be noted
that although the overall trajectory energy consumption has also increased (37.25
vs 34.68), it has been done in less proportion, indicating that similar trajectories
also have similar costs and that the energy consumption is not specially sensitive
within small deviations. This fact will turn useful when the states are predicted
instead of the actions and thus the cost cannot be computed.

In the next sections we will exploit the dynamic properties of the RNN to
improve our results. We will maintain the same 11 neurons in the recurrent layer
and reduce the neurons in the output layer, reducing the number of trainable
parameters. Although a reduction in performance could be expected, we will
see how the new architectures will actually improve the precision, even beyond
the OSPA algorithm. In other words, even if the number of parameters will be
reduced, we will change the parametric family {f ∗(· ; θ)} for a new and better
suited one, with increased capacity.

5.2 Sequence to sequence RNN

5.2.1 Network architecture and path computation

In our first attempt for a real recurrent network we are going to use a sequence to
sequence configuration as the one shown in Figure 5.5. This configuration will be
also the set up used for the training of the next RNN architectures.

Therefore the configuration is as follows:

• In the input layer we will input the true flight state distances trajectory
sequence

• The output layer is expected to output the same trajectory sequence shifted
by one time-step in the future
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Figure 5.5: Sequence to sequence architecture.

• The hidden layer (corresponding to the recurrent layer) is the expected to
learn the function xt+1 = f(ht;xt), where xt is the true distance at time t
and ht = fr(ht−1;xt−1) is the hidden layer state which contains information
from previous steps. This dependencies can be inferred from the recurrent
neuron equations 1.3.

Note that if we do not perform the sequence shift, the NN would learn an identity
function.

In Table 5.3 a summary of the Keras Neural Network can be found. It can be
seen how the output layer has 6 neurons, one per flight state so their estimated
values can be compared with the true ones at each time step. The neural network
contains a total of 864 trainable parameters.

Layer Output shape parameter number

LSTM [None, None, 11] 792
Dense [None, None, 6] 72

Table 5.3: Sequence to sequence network summary.

Finally, the network schema for a given time step can be seen in the Figure
5.6:

5.2.2 Training

Now, we define as usual the network cost function. Our goal here is to estimate
the same input sequence shifted by one time step, therefore our target it to get
pmodel(x; θ) as close as possible as pdata(x) .

In this case, due to the fact that we are dealing with a regression model, we are
going to use the equivalence between the Maximum Likelihood and the minimum
Mean Squared Error seen in 3.3 to use the Mean Square Error as our Loss function.
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Figure 5.6: Sequence to sequence time step.

Therefore:
θML = θmMSE

The computation of such loss function is implemented in the TensorFlow API by
the MSE Loss function.

A smooth MSE loss decrease can be seen in 5.7 with no overfitting effects. It
has to be noted that the validation loss values are very close to the training ones,
which implies that the networks is able to generalize the results perfectly.

5.2.3 Results analysis

As shown in Figure 5.8, the predicted X,Z trajectory correctly matches the OSPA
planner. Even when a change in direction occurs, the RNN is able to predict
it. Finally, the fact that the goal state is not reached is because the trajectory
is truncated to an arbitrary number of steps (10 in this case) as explained in
subsection 4.1. This behavior is also true for the complete 6 components as shown
in Figure 5.9. Again, the RNN is able to correctly predict a sudden change for the
θ and q components.

Table 5.4 shows the overall results. There are two scores to be highlighted.

• The mean distance between the OSPA and RNN predicted trajectories is
1.59 meters, which implies that both trajectories are very close to each other
and thus very similar trajectory energy costs are expected as shown in the
results analysis of subsection 5.2.
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Figure 5.7: Loss (MSE) decrease during training

Figure 5.8: X,Z components trajectory comparison
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Figure 5.9: Comparison with components u,v, θ, q.

• The precision has exceeded the one reached by the OSPA planner (1.40m vs
2.84m).

The later statement may seem to be impossible at first glance, since in accor-
dance with bias-var variance trade off explained in section 1.3.2, we are bounded by
the OSPA data noise σ2

ε due to equationMSE = Ex[bias[f ∗(x)]2]+Ex[var[f ∗(x)]]+
σ2
ε . However, the fact of having introduced the real target value at the end of each

sequence as explained in subsection 4.1 has allowed us to overcome such limitation
and exceed the OSPA performance.

Algorithm Cost (W) Time (s) Precision (m) Trajectory error (m)

OSPA 34.68 520 2.84 na

RNN sequential na 0.46 1.40 1.59

Table 5.4: Comparison with OSPA algorithm.

5.3 Use of RNN as decoder

5.3.1 Network architecture and path computation

In the previous configuration we have considered that the previous true distances
to the target are known and that we are only interested in predicting the next
distance state. However, a planner should predict the flight states of multiple
steps in the future, not only the next one. This will be the Decoder case, where
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Figure 5.10: Decoder architecture.

Figure 5.11: Decoder neuron.

only the initial distance is feed and the task is to develop a complete trajectory
from it so it can be embarked in an ornithopter for trajectory planning purposes.

As can be seen in the Figure 5.10, a decoder has a single input and develops a
sequence starting from this input. For our specific case, we will input the initial
distance and we will obtain the full trajectory.

This would be possible as long as the initial input contains enough information
in such a way that the optimal trajectory is defined, which is true in our example.
Given an starting point A and end point B, there should be a single optimal
trajectory connecting them.

Actually, the only difference with the previous networks is that at every time
step, the input consists in the prediction of the previous states instead of the true
previous states, see Figure 5.11.

Taking the aforementioned points in mind, the algorithm 2 is used to construct
the trajectory.
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Algorithm 2: trajectory loop
Result: X = (x0, x1, x2, x3...xn)
x0;
while x 6= Zero do

xi = RNN(~x);
~x.append(xi);

end

Figure 5.12: comparison with X,Z components.

5.3.2 Training

Due to the similarity with the sequence to sequence architecture, the same Keras
Neural Network and training method from section 5.2 are re-used. This means that
the network training is performed in exactly the same manner as for the sequence
to sequence configuration. Actually, we are going to re-use the previous network
training and thus use the same optimal network parameters θ∗.

5.3.3 Results analysis

Figure 5.12 shows how the OSPA trajectory is closely followed by the predicted
X,Z trajectory even if only the initial distance is given as the starting point to the
network. Again, this is true taking into account the 6 components as illustrated in
Figure 5.13. Here, the lack of precision for some components at the target point
is due to the fact that the OSPA planner has no precision constraints on u, v, θ
and q components (see details in Rodríguez et al. (2020)).

The overall results can be seen in Table 5.5, where the sequence to sequence
architecture is also included for comparison purposes. The following results deserve
to be highlighted:
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Figure 5.13: u,v, theta, q components comparison

• Far from degrading, the results have been improved with regards to the
sequence to sequence configuration.

• The precision has been improved from 1.4m to 1.19m, outperforming the
OSPA algorithm (2.83m).

The reason for the later improvement comes from the fact that the RNN is now
free to develop the complete trajectory from the starting point with no constraints
nor influence of any OSPA intermediate values. This also implies that the trajec-
tory could end anywhere, but far from diverging it follows the right trajectory up
to the target. This implies the capacity of our RNN to learn and replicate dynamic
systems. More precisely, this behaviour is possible because the network has learnt

Algorithm Cost (W) Time (s) Precision (m) Trajectory error (m)

OSPA 34.68 520 2.84 na

RNN sequence na 0.46 1.40 1.59
RNN decoder na 0.54 1.19 1.56

Table 5.5: Comparison with OSPA algorithm.

a function f ∗(θ, x) which approximates the underlaying trajectory flight dynamics
function f(x, t) for this ornithopter trajectory optimization problem. This, in turn,
is sufficient to develop the complete trajectory X from the initial state distance
x0.

X = (x0, x1, x2, x3...xn), where xt = f(x0; t)

In the classic mechanics literature, trajectories are obtained by integration over
time of the dynamic equations f ′(x; t) . Our next step will be then to modify
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our RRN architecture to perform the discrete integration overtime of the dynamic
equations f ′(t), so their behaviour can be interpreted as a classic mechanics prob-
lem, that is,

xt = f(x0; t) =

∫ t

t0

f
′
(x; t) dt+ x0

5.4 Use of RNN as an Ordinary Differential Equa-
tion Integrator

5.4.1 Network architecture and path computation

While the previous architecture has proven that our network is able to learn and
replicate dynamic systems, we are going to show next how we can give physical
meaning and interpretation to our network behaviour.

As per equation 1.3, a recurrent neural layer, can be written as:

ht = f(ht−1, xt; θ).

If we consider the special case described by Figure 5.14 we obtain:

xt = xt−1 + ∆t ∗ F (xt; θ),

which is Euler’s formula to integrate for one time step. Therefore, the RNN pre-
diction behaviour consists on the integration of the unknown function F over time
steps ∆t, which in our case is constant ∆t = 31.53s.

This idea comes from a extremely simplified version from Chen et al. (2018),
which proposes a RNN based ODE solver.

In Table 5.6 a summary of the Keras Neural Network can be found.

Layer Output shape parameter number connected to

Input [None, None, 6] 0 -
LSTM [None, None, 11] 792 input
Dense [None, None, 6] 72 LSTM

Additive [None, None, 6] 0 input, dense

Table 5.6: ODE network summary.

In this configuration, the recurrent layer is learning the function f ′(x; t) which
is the derivative of the one learned in the previous configuration f(x0; t).

xt = f(x0; t) =

∫ t

t0

f
′
(x; t) dt+ x0
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Figure 5.14: RNN ODE architecture.

In accordance with theorem 1.3.1, this function f can be arbitrary approxi-
mated by our network. Actually, the derivatives of the feedforward network can
also approximate the derivatives of the function arbitrarily well, see Hornik et al.
(1990).

5.4.2 Training

In Figure 5.15 the loss (MSE) decrease is shown if the same training strategy as for
the previous cases is followed. It has to be noted that the validation loss decreases
with the training loss up to a limit where a bias is maintained. This behaviour
implies that the RNN is not able to generalize correctly.

The consequence of this training bias is reflected during the prediction by the
fact that, in some cases, the trajectory diverges close to the target vicinity as can
be seen in Figure 5.16

This strange behaviour is due to the padding applied to the training data set.
When these additional states were added at the end of the sequence, the network
learns that at the target’s vicinity, the value of ∆x = xt − xt−1 should be zero,
which it is not true.

Making use of the bias-variance trade off explained in section 1.3.2, we can
identify this error as coming from the data noise σ2

ε which induces a lower bound
as per equation MSE = Ex[bias[f ∗(x)]2] + Ex[var[f ∗(x)]] + σ2

ε . Contrary to the
data noise reduction archived in section 5.2, the data pre-processing has generated
this time additional data noise coming from the padding.

Therefore the padding is removed and the network is trained again. This fact
increases the complexity of the RNN implementation in Keras, but still there is a
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Figure 5.15: Loss (MSE) decrease during training.

Figure 5.16: X,Z components trajectory comparison.
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Figure 5.17: X,Z components trajectory comparison without padding.

way to do it using Ragged Tensors which allow variable size inputs during training.

5.4.3 Results analysis

Figure 5.17 shows the predicted X,Z trajectory when padding is not used, returning
to a correct behaviour.

The overall results can be seen in Table 5.7, where it can be noted how the
overall performance remains in the range of previous architectures, as it was ex-
pected.

Algorithm Cost (W) Time (s) Precision (m) Trajectory error (m)

OSPA 34.68 520 2.84 na

RNN sequence na 0.46 1.40 1.59
RNN decoder na 0.54 1.19 1.56
RNN ODE na 0.76 1.32 1.55

Table 5.7: Metrics comparison with OSPA algorithm.

The goal of this last architecture was not to improve the performance, but
rather to show how the network architecture can be chosen so we can have a
physical interpretation of its behaviour.
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Chapter 6

Conclusion and future work

First, we are going to sum-up what has been achieved so far:

1. It has been introduced what feedforward neural networks are, what are they
for, their architecture and how their neurons work.

2. Once connected, the equations of these neurons have been developed so that
the general NN algebraic equations are obtained. This was done with the
aim of providing a general understanding on how actually NN are able to
output a prediction given an input.

3. These equations, in turn, have shown how a given neural network form a
parametric family {f ∗(· ; θ) | θ ∈ Θ}, where the family f ∗(· ; θ) is given by
the NN architecture and the parameters θ correspond to the NN weights.

4. It has been introduced the maximum likelihood framework as mean to esti-
mate the parameter value θ̂ for a given family, so that under the assumed
model f ∗(x; θ̂), the observed data is the most probable. Or in other words,
f ∗(x; θ̂) is the best approximate to the true underlying function f .

5. It has been introduced that NNs are universal approximators up to any
arbitrarily small error under certain conditions, and how our ornithopter
trajectory optimization meets them.

6. The back propagation algorithm has been developed from the feedforward
NN algebraic equations as a mean to compute the parameter θ̂ that gives
the (local) maximum likelihood for our model.

7. The general maximum likelihood expression θML = arg maxθ
∏m

i=1 pmodel(xi; θ)
has been further developed into more suitable expressions depending on the
problem. Actually, the ML was not possible to compute for our regression
problem.

65
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8. For our regression problem, the MSE optimization has been proven equiva-
lent to the ML optimization under certain hypothesis.

9. For our classification problem, the minimum KL divergence or the cross-
entropy have been proven equivalent to the ML. Additionally, these expres-
sions are shown meaningful loss functions since they quantify the loss of
information incurred in using our NN model instead of the true distribution.

10. The recurrent neurons have been introduced as a way to give our NN the ca-
pacity to learn temporal dynamic behaviours and thus increase the capacity
of our parametric family.

11. The "virtual" unfolding of the recurrent neurons layer into feed-forwarded
ones has been introduced as a way to apply the aforementioned properties
and proofs.

12. The ornithopter trajectory optimization has been introduced as a physical
application of all the aforementioned points.

13. The ornithopter trajectory optimization data has been presented and ex-
plained as well as the necessary data pre-processing.

14. A concrete Recurrent Neural Network candidate for the problem has been
presented and explained.

15. This candidate has been adapted to both the regression and classification
problems, explaining the reasons behind each output layer configuration.

16. This RNN has been applied to the ornithopter trajectory optimization prob-
lem using 4 different architectures.

17. A first architecture consisting on a classifier for the next action has shown
good results improving largely the OSPA computational times while keeping
a reasonable performance.

18. A second architecture consisting on a regression sequence to sequence config-
uration has shown even better results, outperforming the OSPA performance
regarding precision to the target.

19. A third architecture consisting on a decoder configuration has exceeded the
previous performance, proving the fact that the RNN is able to learn the
underlaying trajectory flight dynamics.

20. A fourth and last architecture creating an Ordinary Differential Equation
Integrator has shown how RNN can be designed so they behaviour can be
interpreted in physical terms.
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21. Finally, the bias-variance trade-off has been deduced from the MSE expres-
sion, which in turn has been used to explain undesired training behaviours.

6.1 Conclusion

The goals stated in the motivation have been achieved throughout this work:

• On the theoretical side, all neural network expressions or choices have been
mathematically derived or supported by three pillars:

1. The universal estimator theorem.

2. The development of the NN algebraic equations derived from the neuron
ones.

3. The use of the maximum likelihood and its derivations to determine the
optimal parameters for the paramedic family formed by the NN.

• On the applications side, several RNN architectures have been applied to the
specific problem of the ornithopter trajectory optimization, leading to the
following results:

1. The RNN has outperformed the OSPA method both in time (0.5s vs
520s) and precision to the target (1.19m vs 2.84m).

2. The RNN has been able to learn the underlying flight dynamics of the
problem.

3. The ODE Integrator architecture has given a physically interpreted
RNN behaviour.

4. All the results and choices have been justified using the mathematical
background developed at the beginning of this thesis.

6.2 Future work

Some investigation lines for future work are the following:

• In our work, the use of information theory concepts as the cross-entropy and
KL divergence has been introduced to explain the output of information of
our NN with regards to the true data distribution. The use of information
theory to explain how NNs work can be further developed by the use of the
information bottleneck theorem Saxe et al. (2019). This theory attempts
to explain the behavior of the deep learning via the transfer of information
though the successive NN layers.
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• One of the reasons of not having applied this theorem to this work, is due to
the fact that our RNN is very simple (11 neurons) and shallow (only recurrent
and output layer) to be consider deep learning. The use of a deeper and wider
network can open new fields and questions as well as improve the network’s
performance.

• The use of deep learning is subject to having enough data. Due to the limit
availability of it (236 trajectories), its usage has not been possible in this
work. However, if additional data is gathered, deeper versions of the RNN
can be considered.

• In line with the availability of additional trajectories, other trajectory types
can be added so the capacity of the RNN to learn simultaneously different
types can be tested.

• Finally, the integration of additional features to the loss function can be con-
sidered so other elements as obstacles or additional trajectory optimization
metrics can be included.
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