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Abstract We prove that any complete, uniformly elliptic Weingarten surface in Euclidean
3-space whose Gauss map image omits an open hemisphere is a cylinder or a plane. This
generalizes a classical theorem by Hoffman, Osserman and Schoen for constant mean
curvature surfaces. In particular, this proves that planes are the only complete, uniformly
elliptic Weingarten multigraphs. We also show that this result holds for a large class of
non-uniformly elliptic Weingarten equations. In particular, this solves in the affirmative
the Bernstein problem for entire graphs for that class of elliptic equations.

1. Introduction

A Weingarten surface is an immersed surface Σ in R3 whose mean curvature H and Gauss
curvature K are related by some smooth equation

(1.1) W (H,K) = 0.

For our purposes, it will suffice to require that W is of class C2. We say that Σ is an elliptic
Weingarten surface if (1.1) is elliptic when viewed as a fully nonlinear second order PDE in local
graphical coordinates on Σ. In the elliptic case, (1.1) can be rewritten as

(1.2) H = g(H2 −K), 4t(g′(t))2 < 1 for all t ≥ 0,

for some C2 function g : [0,∞) → R; the inequality in (1.2) is precisely the ellipticity condition
for the equation. Note that, when g is constant, (1.2) is the constant mean curvature (CMC)
equation. Elliptic Weingarten surfaces are sometimes called special Weingarten surfaces. Their
global geometry has been studied in depth by many authors; see e.g. [1, 2, 4, 6, 7, 9, 11, 12, 18,
19, 20, 24, 25, 26, 29].

The most fundamental open problem in the global theory of elliptic Weingarten surfaces is
probably the Bernstein problem, see e.g. Rosenberg and Sa Earp [24]:

Bernstein problem: Are planes the only entire elliptic Weingarten graphs in R3?

If g(0) 6= 0, there are no entire graphs satisfying (1.2), as follows from an easy application of the
maximum principle and the fact that spheres of radius 1/|g(0)| satisfy (1.2). That is, the Bernstein
problem is only meaningful for Weingarten surfaces of minimal type, i.e., when g(0) = 0.

The Bernstein problem has an affirmative answer when (1.2) is uniformly elliptic, that is, when
there exists some constant Λ ∈ (0, 1) such that

(1.3) 4t(g′(t))2 ≤ Λ < 1 for all t ≥ 0.
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This follows from a deep theorem by L. Simon ([27, Theorem 4.1]) about entire graphs with
quasiconformal Gauss map, not necessarily satisfying a Weingarten equation; see e.g. [26]. Note
that this result includes the classical Bernstein theorem for minimal surfaces (H = 0). Not much
is known about classes of Weingarten surfaces for which the Bernstein problem can be solved, if
(1.3) does not hold (see [23]). One of our contributions in this paper is to solve in the affirmative
the Bernstein problem for a wide class of non-uniformly elliptic Weingarten equations; see the
Corollary at the end of the introduction.

The Bernstein problem is related to the spherical image of the Gauss map N : Σ → S2 of
elliptic Weingarten surfaces Σ in R3. Indeed, note that if Σ is a graph, N(Σ) lies in an open
hemisphere. Conversely, if N(Σ) lies in some open hemisphere, then Σ might not be a graph, but
it is a multigraph, i.e., a local graph with respect to a specific fixed direction of R3.

A classical theorem by Hoffman, Osserman and Schoen [17] proves that if the Gauss map image
N(Σ) of a complete CMC surface Σ lies in a closed hemisphere, then Σ is a plane (H = 0) or a
cylinder (H 6= 0). So, this theorem can be seen as a solution to a generalized Bernstein problem
for CMC multigraphs, and motivates the following

Bernstein problem for multigraphs: Are planes and cylinders the only complete, elliptic
Weingarten surfaces in R3 whose Gauss map image lies in a closed hemisphere of S2?

Observe that this problem asks, in particular, if complete (not necessarily entire) elliptic
Weingarten graphs in R3 are planes. This time, in contrast with the case of entire graphs, the
problem is non-trivial if g(0) 6= 0 in (1.2). Also, one should note that there exist complete,
rotational CMC unduloids in R3 whose Gauss map image lies in an arbitrarily small tubular
neighborhood of a geodesic of S2. These examples show the necessity of the hypothesis on the
Gauss map image in this problem.

We now state the main results of this paper. In Section 2 we will show (see Lemma 2.2):

Lemma A: If the Gauss map image N(Σ) of an elliptic Weingarten surface Σ lies in a closed
hemisphere, then either Σ is a multigraph (i.e., N(Σ) lies in the interior of this hemisphere), or Σ
is a piece of a plane or a cylinder.

Thus, in order to classify elliptic Weingarten surfaces whose Gauss map image lies in a closed
hemisphere, it suffices to classify elliptic Weingarten multigraphs.

In Section 3 we will prove that the Bernstein problem for elliptic Weingarten multigraphs (and
in particular for entire graphs) can be solved whenever we have a bound on the norm of the second
fundamental form. From Lemma A and Theorem 3.1 we have:

Theorem A: Planes and cylinders are the only complete elliptic Weingarten surfaces in R3 with
bounded second fundamental form and Gauss map image contained in a closed hemisphere.

The proof of Theorem A is based on an argument by Hauswirth, Rosenberg and Spruck [16] in
the context of CMC surfaces in the product space H2×R, where H2 denotes the hyperbolic plane,
and subsequent modifications of it in other geometric theories by Espinar and Rosenberg [10], and
Gálvez, Mira and Tassi [14]; see also Manzano-Rodrı́guez [21] and Daniel-Hauswirth [8].

Theorem A reduces the Bernstein problem for elliptic Weingarten graphs or multigraphs to
the obtention of a priori estimates for the norm of the second fundamental form (usually called
curvature estimates). In Section 4 we will prove such a curvature estimate for the uniformly elliptic
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case (Theorem 4.2). This estimate is based on a paper by Rosenberg, Souam and Toubiana [28]
on stable CMC surfaces in Riemannian 3-manifolds. A key difficulty in our situation is that, in
the natural blow-up process that one uses to obtain such curvature estimates, the equation (1.2) is
lost in the limit. That is, even if one finds a limit surface after the blow-up, this limit surface might
not be, in general, an elliptic Weingarten surface anymore. As a consequence of this estimate, we
obtain from Lemma A and Theorem 4.1:

Theorem B: Planes and cylinders are the only complete, uniformly elliptic Weingarten surfaces
in R3 whose Gauss map image is contained in a closed hemisphere.

Note that Theorem B extends the most general known result for the Bernstein problem
(consequence of Simon’s theorem [27]) to the multigraph case, and also extends the Hoffman-
Osserman-Schoen theorem from CMC surfaces to uniformly elliptic Weingarten surfaces.

Thus, Theorem B solves the Bernstein problem for multigraphs in the uniformly elliptic case.
In order to explain our results in the non-uniformly elliptic case, it is convenient to rewrite the
elliptic Weingarten equation (1.2) in terms of the principal curvatures κ1, κ2 of the surface as,

(1.4) κ2 = f(κ1).

Here, f is a C2 function on an open interval If ⊂ R, that satisfies f ′ < 0 (by ellipticity) and
f ◦ f = Id (by symmetry of the relations 2H = κ1 + κ2 and K = κ1κ2). Moreover, If is of the
form (a,∞), (−∞, b) or R. The uniform ellipticity condition (1.3) is written for f in (1.4) as

(1.5) 0 < Λ1 ≤ −f ′(x) ≤ Λ2 for all x ∈ If = R,

where Λ1,Λ2 are positive constants. That is, the slope of the graph of f is negative and uniformly
bounded away from 0 and −∞. As a matter of fact, by the symmetry properties of f , it suffices to
impose one of the two inequalities in (1.5) to obtain the other one.

Note that If = R for any uniformly elliptic Weingarten equation. Thus, the most typical
examples of non-uniformly elliptic Weingarten equations happen when the function f in (1.4)
is not globally defined on R; for instance, this is the case of the linear Weingarten equation
2aH + bK = c, with a, b, c ∈ R satisfying the ellipticity condition a2 + bc > 0, and b 6= 0.

When If 6= R, we use Theorem A and the family of parallel surfaces to give an affirmative
answer to both the Bernstein problem and the generalized Bernstein problem for multigraphs. By
Lemma A and Theorem 5.1 we have:

Theorem C: Let Σ be a complete elliptic Weingarten surface in R3 whose Gauss map image is
contained in a closed hemisphere. Assume that the function f of its associated Weingarten relation
(1.4) is not defined in all R. Then Σ is a plane or a cylinder.

Corollary: Planes are the only entire graphs in R3 that satisfy an elliptic Weingarten equation
(1.4) with If 6= R.

Bernstein’s problem remains open when If = R and (1.2) is not uniformly elliptic. For an
alternative formulation of the Corollary above when we write the Weingarten equation as (1.2)
instead of as (1.4), see Theorem 5.3.

2. Elliptic Weingarten surfaces

2.1. The Weingarten equation. Let us start by clarifying some aspects about the different ways
of writing an elliptic Weingarten equation.
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First, a word of caution. It is not a good idea to work directly with the simple form (1.1) of the
Weingarten equation, because it can be misleading. For instance, both planes and round spheres
of radius 1/2 satisfy the simple linear Weingarten equation K = 2H , which can be proved to be
elliptic. At first sight, this would seem to contradict the maximum principle for elliptic PDEs. This
is explained by the fact that the equation K = 2H actually contains two different elliptic theories
(see Figure 3.1 and the discussion below).

The Weingarten equation (1.1) can be rewritten in terms of the principal curvatures κ1, κ2 as

(2.1) Φ(κ1, κ2) = 0,

where Φ ∈ C2(R2) is symmetric, i.e. Φ(k1, k2) = Φ(k2, k1). With this formulation, the ellipticity
condition for the Weingarten equation is written as (see e.g. [20], pg. 129)

(2.2)
∂Φ

∂k1

∂Φ

∂k2
> 0 if Φ = 0.

Thus, if (2.2) holds, we see using the symmetry of Φ that each connected component of
Φ−1(0) ⊂ R2 can be written as a graph

(2.3) k2 = f(k1),

where f is defined on an interval If := (a, b) ⊂ R, and satisfies the following conditions:

(i) f is C2, and f ′ < 0 (by ellipticity).
(ii) f ◦ f = Id (by symmetry of Φ).

(iii) If a 6= −∞, then b = +∞ and f(x)→ +∞ as x→ a.
(iv) If b 6= +∞, then a = −∞ and f(x)→ −∞ as x→ b.

Each connected component of Φ−1(0) gives rise to a different elliptic theory, with different
geometric properties. For instance, the already mentioned Weingarten relation K = 2H can be
rewritten as Φ(κ1, κ2) = κ1 + κ2 − κ1κ2 = 0, and it is clear that Φ−1(0) has two connected
components; see Figure 3.1. In one of them, all surfaces have principal curvatures greater than
1, and so are convex, while all surfaces of the other connected component have non-positive
curvature.

Figure 2.1. The two connected components of Φ−1(0) in the (κ1, κ2)-plane, for
the Weingarten equation Φ(κ1, κ2) = 0 corresponding to K = 2H .



Elliptic Weingarten surfaces 5

Alternatively, and also by the symmetry and ellipticity conditions on Φ, it is easy to see that
each connected component of Φ−1(0) can be seen as a graph of the form

(2.4)
k1 + k2

2
= g

(
(k1 − k2)2

4

)
,

where g ∈ C2([0,∞)) satisfies, by the ellipticity inequality (2.2), the condition

(2.5) 4t(g′(t))2 < 1 for all t ≥ 0.

This shows that there is no loss of generality in working with (1.2) or with (1.4) when dealing with
a class of elliptic Weingarten surfaces in R3, and that both formulations are equivalent. Thus, a
surface Σ in R3 is an elliptic Weingarten surface if its curvature diagram (κ1(Σ), κ2(Σ)) ⊂ R2 is
a subset of a regular curve of R2 of the form (2.3).

We note that for graphs z = u(x, y), the Weingarten equation (1.2) is equivalent to the fully
nonlinear elliptic PDE

(2.6) F (ux, uy, uxx, uxy, uyy) = 0,

where F (p, q, r, s, t) := H− g(H2 −K) ∈ C2(R5), for

(2.7) H(p, q, r, s, t) :=
(1 + q2)r − 2pqs+ (1 + p2)t

2(1 + p2 + q2)3/2
, K(p, q, r, s, t) :=

rt− s2

(1 + p2 + q2)2
.

Here, the ellipticity of (2.6) is equivalent to the ellipticity condition (2.5) for g. In particular, if
g verifies (2.5), the class Wg of elliptic Weingarten surfaces in R3 given by (1.2) satisfies the
maximum principle in its usual geometric version.

The number α := g(0) has a geometric meaning in the class of Weingarten surfacesWg, and
is called the umbilical constant of the class Wg, because umbilics of any surface in Wg have
principal curvatures equal to α. Note that by making, if necessary, the change g(t) 7→ −g(t)
in (1.2) while reversing the orientation of the surface, we may assume without loss of generality
that α = g(0) ≥ 0. If g(0) = 0, planes belong to the Weingarten classWg, and the Weingarten
equation (1.2) is said to be of minimal type. If g(0) > 0, spheres of radius 1/α with their inner
orientation are elements ofWg.

When we write the Weingarten equation as (1.4), the umbilical constant α is given by the
relation f(α) = α, and the equation is of minimal type if f(0) = 0. Moreover, if f is defined at
x = 0 with f(0) 6= 0, the cylinders in R3 of principal curvatures {0, f(0)} are elliptic Weingarten
surfaces satisfying (1.4).

2.2. Weingarten multigraphs. Given an immersed oriented surface Σ in R3 with unit normal
N : Σ→ S2, we will refer to the set N(Σ) ⊂ S2 as the Gauss map image of Σ.

Definition 2.1. A surface Σ in R3 is a multigraph if there is some plane P in R3 such that Σ can
be seen locally around each point p ∈ Σ as a graph over P . Equivalently, Σ is a multigraph if its
Gauss map image is contained in an open hemisphere of S2.

After a change of Euclidean coordinates, we can always assume without loss of generality
for a multigraph Σ that N(Σ) lies in the upper open hemisphere S2

+, and so, that ν > 0 where
ν := 〈N, e3〉 is the angle function of Σ. Obviously, any graph z = u(x, y) is a multigraph.

Note that the surfaces with vanishing angle function, ν ≡ 0, are open pieces of flat surfaces of
the form Γ× R, where Γ is some immersed curve in R2.
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Lemma 2.2. Let Σ be an elliptic Weingarten surface, and assume that its angle function satisfies
ν ≥ 0. Then either ν ≡ 0, or ν > 0 on Σ. If ν ≡ 0, then Σ is a piece of a plane or a cylinder.

Proof. Let f be the smooth function defining the relation (1.4). If f is not defined at 0, then
by properties (i)-(iv) of f it follows that Σ has positive curvature. In particular, its Gauss map
N : Σ → S2 is a local diffeomorphism, hence an open mapping. Thus, if ν ≥ 0, it must actually
happen that ν > 0, and Lemma 2.2 holds in this case.

Assume next that f is defined at 0, and let q0 ∈ Σ satisfy ν(q0) = 0. Without loss of generality,
we assume that q0 is the origin and N(q0) = (1, 0, 0). If f(0) = 0 (resp. f(0) 6= 0), let C denote
the vertical plane (resp. the vertical cylinder with principal curvatures 0 and f(0)) that is tangent
to Σ at q0, with the same orientation. Note that both Σ and C satisfy the elliptic Weingarten
relation (1.4). Thus, both Σ and C can be seen around the origin as graphs x = hi(y, z), i = 1, 2,
over their common tangent plane, and h1, h2 are solutions to the same C2 fully nonlinear elliptic
PDE, associated to (1.4). In these conditions, it is well known that the difference h = h1 − h2

satisfies a second order, linear, homogeneous elliptic PDE L[h] = 0 with C1 coefficients. Note
that Dh(0, 0) = (0, 0), where Dh = (hy, hz). Also hz = (h1)z , since h2(y, z) does not actually
depend on z, because it corresponds to the vertical plane (or cylinder) C.

Assume that h is not identically zero. Then, it is a standard fact (see e.g. Bers [3]) that there
exist coordinates (u, v) obtained by a linear transformation of (y, z) such that h has the local
representation around the origin

h(u, v) = w(u, v) + o(
√
u2 + v2)k

where w(u, v) is a homogeneous harmonic polynomial of degree k ≥ 2. In particular, the image
of Dh cannot lie in a half-plane around the origin. Thus, there exist points arbitrarily close to the
origin where hz > 0. Hence, ν < 0 at those points, what contradicts that ν ≥ 0 in Σ. Therefore,
h must be identically zero, and so Σ is a piece of the cylinder (or plane) C. This concludes the
proof. �

2.3. The linearized Weingarten equation. Let Σ be an immersed oriented surface in R3 with
unit normal N . Given φ ∈ C∞0 (Σ), consider the normal variation of Σ associated to φ,

(2.8) (p, τ) ∈ Σ× (−ε, ε) 7→ p+ τφ(p)N(p),

and denote by H(τ) and K(τ) the mean curvature and Gauss curvature of the corresponding
surface Στ in (2.8). In [24] it is shown (see equation (1.1)) that

(2.9) 2H′(0) = ∆φ+ (4H2 − 2K)φ, K′(0) = div(T1∇φ) + 2HKφ.

Here, H,K denote the mean curvature and Gauss curvature of Σ; ∆,div,∇ are the Laplacian,
divergence and gradient operator on Σ, and T1 := 2HId− S, where S is the shape operator of Σ.

Assume now that Σ satisfies an elliptic Weingarten equation (1.2). Let {Στ}τ∈(−ε,ε) be a normal
variation of Σ associated to some function φ ∈ C∞0 (Σ), and denote

(2.10) W(τ) := H(τ)− g(H(τ)2 −K(τ)) : Σ× (−ε, ε)→ R,

with the previous notation, where g is the function in (1.2). Then, taking into account (2.9), the
linearized operator of the Weingarten equation (1.2) satisfied by Σ is

(2.11) W ′(0) = Lg[φ] =

(
1− 2gg′

2

)
∆φ+ g′div(T1∇φ) + qφ,
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where g, g′ are evaluated at H2 −K, and

q := 2g2(1− 2gg′)− (1− 4gg′)K.

We remark that Lg in (2.11) is a linear elliptic operator, since (1.2) is elliptic.

3. Weingarten multigraphs with bounded second fundamental form

The present section is devoted to the proof of the following theorem:

Theorem 3.1. Planes are the only complete elliptic Weingarten multigraphs with bounded second
fundamental form.

Proof. We will argue by contradiction. Let Σ be a complete elliptic Weingarten multigraph with
bounded second fundamental form, and assume that Σ is not a plane. Let f ∈ C2(If ), If ⊂ R,
be the function that defines the Weingarten relation (1.4) satisfied by Σ. We denote by α ≥ 0 the
ellipticity constant of f , given by f(α) = α. Up to an Euclidean change of coordinates, we can
assume that N(Σ) is a subset of S2

+.

We will start by noting that f is defined at 0, i.e., that 0 ∈ If . Indeed, otherwise we have from
α ≥ 0 that If ⊂ (0,∞), and by the properties of f we deduce that If = (a,∞) for some a ≥ 0,
and f(x) → ∞ (resp. f(x) → a) as x → a+ (resp. x → ∞). Thus, both principal curvatures of
Σ are positive, by monotonicity of f . Since Σ has bounded second fundamental form, we easily
see from there that its Gaussian curvature satisfies K ≥ c > 0 for some constant c. Thus, Σ is
compact, a contradiction with N(Σ) ⊂ S2

+.

So, from now on we will assume that there exists f(0). In the rest of the proof, Wf will
denote the class of all immersed oriented surfaces in R3 that satisfy (1.4) for our choice of f . By
ellipticity, surfaces inWf satisfy the maximum principle. Note that if f(0) 6= 0, then f(0) > 0
(by monotonicity, since α > 0 in this case).

We proceed with the proof. Since N(Σ) ⊂ S2
+, the surface Σ can be locally seen as a graph

z = u(x, y). Take from now on an arbitrary point p ∈ Σ, and let R > 0 be the largest value for
which an open neighborhood V ⊂ Σ of p can be seen as a graph z = u(x, y) over D = D(q̂, R),
where q̂ = π(p), with π(x, y, z) := (x, y). See Figure 3.1. That this radius R exists, i.e., that R is
not infinite, is proved in Assertion 3.2 below:

Figure 3.1. Initial situation of the proof of Theorem 3.1.
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Assertion 3.2. In the previous conditions, R <∞.

Proof. If α > 0, any sphere Sα of radius 1/α lies in the Weingarten class Wf for its inner
orientation. In case R > 1/α, we could place a sphere Sα above the graph V , and then move it
downwards until reaching a first contact at an interior point of both surfaces. This is a contradiction
with the maximum principle for surfaces inWf . Therefore, R ≤ 1/α if α > 0.

Assume now that α = 0, i.e., f(0) = 0, and so Σ is a Weingarten surface of minimal type. Let
κ1 ≥ κ2 denote the principal curvatures of Σ. Since |σ|2 := κ2

1 + κ2
2 is bounded, it is clear by

monotonicity of f and the condition f(0) = 0 that the set (κ1(Σ), κ2(Σ)) ⊂ R2 lies on a wedge
regionR of the form

(3.1) R = {(x, y) : x ≥ y,m1x ≤ y ≤ m2x}, m1,m2 < 0.

This easily implies the inequality

(3.2) κ2
1 + κ2

2 ≤ γ κ1κ2,

for some γ ∈ R at every point of Σ, a condition that is equivalent for any surface Σ in R3 to the
property that its Gauss map N : Σ→ S2 is quasiconformal; see Section 16.6 in [15].

So, assume R =∞. Then, Σ is an entire graph with quasiconformal Gauss map. By a theorem
of L. Simon ([27, Theorem 4.1]), Σ must be a plane, a contradiction. This completes the proof of
Assertion 3.2. �

Remark 3.3. Recall that, by hypothesis, Σ has bounded second fundamental form, that is, we
have |σ(p)| ≤ γ < ∞ for some constant γ, for all p ∈ Σ. This implies a well-known
uniformicity property for Σ as a local graph, see e.g. Proposition 2.3 in [28]. In our conditions,
this property implies that there exists some δ = δ(γ) > 0 for which the following holds:

Any p ∈ Σ has a neighborhood Up ⊂ Σ that is a graph over the disk Bp(2δ) ⊂ TpΣ centered
at the origin and of radius 2δ of its tangent plane at p. Also, if u denotes the function that defines
this graph in any such disk Bp(2δ), it holds |Du| < 1 inBp(2δ), whereDu denotes the Euclidean
gradient of u. Moreover, there exists µ = µ(γ) > 0, such that the C2 norm of u is at most µ/2 on
any of the disks Bp(2δ); that is, ||u||C2(Bp(2δ)) < µ/2.

We remark that δ, µ only depend on the bound γ for the second fundamental form of Σ, and not
on p or Σ. These numbers δ, µ > 0 will be considered fixed from now on in the proof.

Let us fix next some notation for the rest of the proof of Theorem 3.1.

First, note that by Assertion 3.2 there exists some q ∈ ∂D for which u cannot be extended to
a neighborhood of q. We let C1 := Γ1 × R, C2 := Γ2 × R, denote the two vertical cylinders
in R3 of radius 1/f(0) that pass through q, and whose unit normals at q are orthogonal to ∂D;
(if f(0) = 0, C1, C2 are actually the same vertical plane with opposite orientations). Note that
Ci ∈ Wf , i = 1, 2, for their inner orientation. We will let Γi(s) be an arclength parametrization
of the circle (or straight line) Γi, with Γi(0) = q.

Given s0 ∈ R, ε > 0, for each i = 1, 2 we let Ni(s0, ε) denote the open one-sided tubular set

(3.3) Ni(s0, ε) := {Γi(s) + τ ηi(s) : |s− s0| < δ, τ ∈ (0, ε)} ⊂ R2,

where ηi(s) denotes the unit normal of Γi(s) that, at q, points in the direction q̂− q, where q̂ is the
center of D. See Figure 3.2.

Assertion 3.4. In the above conditions, there exists ε > 0 such that u(x, y) extends smoothly to
D ∪ Ni(0, ε), for some i = 1, 2. Moreover, this extension satisfies that u(x, y) diverges to either
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Figure 3.2. The two circles Γi, i = 1, 2, that are tangent to ∂D at q, and their
associated one-sided tubular domains Ni(0, ε) at q.

+∞ or−∞ when (x, y) ∈ Ni(0, ε) approaches Γi. Specifically, if f(0) 6= 0, we have that u→∞
(resp. u→ −∞) if D lies in the interior (resp. exterior) of Γi.

The proof of Assertion 3.4 essentially follows from some technical arguments developed by
Hauswirth, Rosenberg and Spruck in [16] in the context of surfaces of constant mean curvature
H = 1/2 in the homogeneous product space H2 × R. Thus, we will postpone the proof to the
Appendix, where we will only give a sketch of it. Let us indicate that a key point of the proof in
our case is the use of Nirenberg’s a priori C2,α-estimates for fully nonlinear elliptic equations in
dimension two.

Remark 3.5. We point out the following consequence of Assertion 3.4, for later use. Assume
that we are in the conditions of Assertion 3.4 with f(0) 6= 0, call Γ := Γi, and suppose, for
definiteness, that u → −∞. Then, by the asymptotic behavior of u, and taking a smaller ε > 0
if necessary, the graph U0 ⊂ Σ given by z = u(x, y) on Ni(0, ε) can be seen as a normal graph
over an open set of the limit cylinder Γ× R, of the form

{(Γ(s), t) : |s| < δ, t ∈ (−∞, t0(s))} ⊂ Γ× R,
where t0(s) is a continuous function on [−δ, δ]. Moreover, U0 lies in the exterior region of Γ×R,
and converges asymptotically to Γ× R as t→ −∞.

Assertion 3.6. The statement of Theorem 3.1 holds if f(0) = 0.

Proof. We first prove that if f(0) = 0, then Σ is a graph. Note that since f(0) = 0, the cylinders
Ci = Γi × R are vertical planes, and the one-sided tubular domains Ni(0, ε) of Assertion 3.4 are
open rectangles in R2.

Using the notation of Assertion 3.4, take q′ ∈ Ni(0, ε)∩D given by q′ = Γi(δ/2) + τ0ηi(δ/2)
for τ0 ∈ (0, ε) small enough, and let p′ = (q′, u(q′)) ∈ Σ. Then, we can apply again the extension
process in Assertion 3.4, but this time starting with p′ instead of p = (q̂, u(q̂)). In this way, we see
that u can also be extended to a one-sided tubular domain Ni(δ/2, ε1), i.e., to

(3.4) {Γi(s) + τ ηi(s) : s ∈ [−δ/2, 3δ/2], τ ∈ (0, ε1)} ⊂ R2

for some ε1 > 0, and in particular to the union Ni(0, ε) ∪ Ni(δ/2, ε1). By repeating this process,
we conclude that u can be extended to a union of domains Ni(kδ/2, εk) for k ∈ Z, and so, to
a one-sided tubular neighborhood NΓ of the straight line Γ ⊂ R2 that is tangent to ∂D at q.
Moreover u(x, y)→ ±∞ as (x, y)→ Γ. See Figure 3.3, left.

We claim next that u can actually be extended to the slab SΓ of R2 contained between Γ and
the line parallel to Γ that passes through q̂. To see this, take for each θ ∈ (−π/2, π/2) the open
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segment σθ that joints q̂ with Γ and that makes an angle θ with the segment σ0 that joints q̂ and q.
Note that u is well defined on σθ for sufficiently small values of θ. Let θ0 > 0 be the supremum
of the values for which u can be extended to the open triangular region (see Figure 3.3, left)

Ω0 := {∪σθ : |θ| < θ0}.

Figure 3.3. Left: the one-sided tubular neighborhood NΓ of the line Γ, and the
triangular region Ω0. Right: the union of the two strips SΓ and SΓ1 .

If θ0 6= π/2, there exists q0 ∈ σθ0 ⊂ ∂Ω0 such that u cannot be extended around q0. By the
previous process, we see that u → ±∞ along the whole segment σθ0 . But this is a contradiction,
since the open segment σθ0 intersects the one-sided tubular set NΓ, where u is well defined.
Therefore, θ0 = π/2, and this means that u can be extended to the slab SΓ.

Next, let P+ denote the open half-plane of R2 with ∂P+ = Γ and q̂ ∈ P+. Assume that u,
which is at first defined on an open subset of P+, cannot be globally extended to P+. Then, there
exists some r1 ≥ R and some q1 ∈ P+ ∩ ∂D(q̂, r1) such that u is well defined on P+ ∩D(q̂, r1)
but cannot be smoothly extended around q1. Then, by repeating the previous argument, but this
time with respect to q1 (instead of q), we deduce that u is well defined in the slab SΓ1 between
the line Γ1 that is tangent to ∂D(q̂, r1) at q1, and the line parallel to Γ1 that passes through q̂.
Moreover u→ ±∞ as we approach Γ1. See Figure 3.3, right.

Observe here that Γ1 needs to be parallel to Γ. Indeed, otherwise the union of the slabs SΓ∪SΓ1

is a simply connected domain in R2 where u is globally well defined, but this is impossible since
u→ ±∞ as we approach Γ1, which actually intersects SΓ.

Then, it clearly follows from this argument that u can be extended to a domain Ω ⊂ R2

that is either a half-plane or a strip between two parallel lines, and so that u(x, y) → ±∞ as
(x, y)→ ∂Ω. In particular, the complete multigraph Σ is actually the graph z = u(x, y) over Ω.

Finally, let us recall that the Gauss map N : Σ → S2 of Σ is quasiconformal; see the proof of
Assertion 3.2. By Theorem 3.1 in [27] (see also equation (3.26) in [27]), and since Σ is a graph,
there exist constants c′ > 0 and α ∈ (0, 1) such that

(3.5) ||N(x)−N(x̄)|| ≤ c′
(
||x− x̄||

%

)α
,
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for all x, x̄ ∈ Σ that are at an extrinsic distance at most %/2 from some arbitrary point x0 ∈ Σ;
here, % > 0 and || · || denotes the Euclidean distance in R3. Since u → ±∞ as (x, y) → ∂Ω, we
deduce that Σ is proper; hence, by letting % → ∞ in (3.5) we conclude that N must be constant,
i.e., Σ must be a plane, a contradiction (recall that Ω is not R2). This completes the proof of
Assertion 3.6. �

Remark 3.7. For the purposes of the proof of Theorem 4.2, let us observe that the fact that Σ is
an elliptic Weingarten surface is only used in the proof of Assertion 3.6 to ensure:

(1) that Σ has quasiconformal Gauss map (this uses that |σ| is bounded), and
(2) that Assertion 3.4 holds for Σ.

In particular, the proof of Theorem 3.1 when f(0) = 0 makes no use of the maximum principle.

Assertion 3.8. The statement of Theorem 3.1 holds if f(0) 6= 0. That is, there are no complete
elliptic Weingarten multigraphs with f(0) 6= 0 and bounded second fundamental form.

Proof. Let us recall that we are using the notation explained before Remark 3.3. Let Γ be the
circle Γi in Assertion 3.4 (i.e., either Γ1 or Γ2); note that Γ has radius r0 = 1/f(0).

To start, consider the graph U0 ⊂ Σ given by z = u(x, y) in the small one-sided tubular set
NΓ(0, ε), defined as in (3.3). Note that this time we cannot apply Assertion 3.4 recursively as
we did in (3.4) to extend u(x, y) to a one-sided tubular neighborhood of Γ, since now Γ is not
simply connected. To avoid this difficulty, we will adapt to our situation a perturbation argument
by Espinar and Rosenberg [10], originally developed for the case of CMC surfaces in Riemannian
product spaces M2 × R.

First, we will suppose from now on, for definiteness, that NΓ(0, ε) lies in the exterior of Γ (the
argument is basically the same ifNΓ(0, ε) lies inside the circle Γ). That is, we assume that U0 lies
in the exterior of Γ× R.

Let S0 be the universal cover of the cylinder Γ× R, parametrized by

(3.6) (s, t) ∈ R2 7→ (Γ(s), t) ∈ Γ× R.

Consider the universal cover of R3 minus the axis of Γ × R, and choose there the natural
cylindrical coordinates (s, t, ρ), so that ρ gives the distance to the axis of Γ × R, and (s, t)
correspond to the parameters in (3.6). In particular, S0 corresponds to the horizontal plane ρ = r0.

Then, by Remark 3.5, the surface U0 ⊂ Σ lifts to a graph ρ = v(s, t) over an open set of the
plane S0, of the form {(s, t) : |s| < δ, t < t0(s)} for t0(s) : [−δ, δ] → R continuous. Moreover,
this graph lies above S0, and converges asymptotically to S0 as t→ −∞.

Once here, we can make an extension process similar to the one that we performed in (3.4), but
this time with respect to the coordinates (s, t, ρ). In this way, we obtain that a certain subset of
Σ lifts to a graph ρ = w(s, t) over a domain Ω̃ ⊂ S0 of the form {(s, t) : s ∈ R, t < t0(s)},
for some continuous function t0(s) on R. Call M to this graph. Note that M lies above S0 and
converges asymptotically to S0 as t→ −∞. See Figure 3.4.

We now make a deformation argument on the universal cover S0 of Γ× R.

Let us parametrize S0 as in (3.6). Then, its first and second fundamental forms are I = ds2+dt2

and II = 2H0ds
2. Note that 2H0 = κ1 = 1/r0, a constant positive value, and K = 0. If we write

the Weingarten equation satisfied by Σ (and by S0) as in (1.2), then a computation shows that the
linearized operator Lg given by (2.11) is written on S0 with respect to the flat parameters (s, t) by

(3.7) Lg[φ] = Aφss +Bφtt + Cφ,
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for any φ ∈ C∞0 (S0), where A,B,C are the constants

A =
1

2
(1− 2g(H2

0 )g′(H2
0 )), B = A+ 2H0g

′(H2
0 ), C = 4AH2

0 .

We remark that A,B > 0 (by ellipticity of (1.2) and thus of Lg), and so C > 0 as well.

Let Ω0 ⊂ S0 be the compact domain parametrized by (s, t) ∈ [−L,L]× [−r, r] for some fixed
arbitrary values L, r > 0. Define next the function

(3.8) φ(s, t) := cos
(πs

2L

)
cos

(
πt

2r

)
.

Then, φ satisfies the following properties:

(1) φ > 0 in the interior of Ω0, and φ = 0 on ∂Ω0.
(2) If L, r are large enough, Lg[φ] > 0 in the interior of Ω0.

For the second property, simply note that, by (3.7) and (3.8), we have

Lg[φ] =

(
−A

( π
2L

)2
−B

( π
2r

)2
+ C

)
φ,

and that A,B,C are constants with C > 0.

Let now S0(τ) denote the normal variation of the compact domain Ω0 ⊂ S0 given by (2.8) with
respect to the function φ in (3.8). Note that, for L, r large enough, the operator W(τ) in (2.10)
associated to this variation satisfies W ′(0) > 0, by (2.11) and Lg[φ] > 0. It follows then that
for τ ∈ (−ε, ε) small enough, we have the following properties when we view the surfaces in the
(s, t, ρ) coordinates:

(1) S0(τ) is a compact immersed surface, with boundary ∂S0(τ) = ∂Ω0 ⊂ S0.
(2) If τ < 0 (resp. τ > 0), the interior of S0(τ) lies above (resp. below) the plane S0; note

that this follows by (2.8), since φ > 0 in the interior of Ω0 and the unit normal of S0 is
vertical and points downwards.

(3) If Hτ ,Kτ denote the mean curvature and Gauss curvature of S0(τ), and τ < 0 (resp.
τ > 0), then it holds

(3.9) Hτ − g(H2
τ −Kτ ) < 0, (resp. > 0).

This follows sinceW(0) = 0 andW ′(0) > 0.

We next make a comparison argument between S0(τ) and the graph M defined above, with
respect to the coordinates (s, t, ρ). See Figure 3.4.

Figure 3.4. Sliding process of the graph S0(τ) over the plane S0, as we make t
decrease to −∞ from an initial disjoint possition from M .
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Note that the boundary ∂M is at a positive distance from the plane S0 when we restrict to the
strip of S0 given by {(s, t) : |s| ≤ L}. Thus, taking τ < 0 sufficiently close to 0, we may assume
that the maximum height of S0(τ) over S0 is smaller than this distance, and so all translations
of S0(τ) in the t-direction are disjoint from ∂M . Note that both M and the interior of S0(τ) lie
above S0. Then, we can slide S0(τ) horizontally by increasing the t-coordinate, until it is disjoint
fromM , and then start sliding it again but in the opposite direction (i.e., making t decrease). Since
M converges asymptotically to S0 as t → −∞ and we have avoided ∂M in this sliding process,
it is clear that we will eventually find an interior first contact point between M and S0(τ). Around
this first contact point, S0(τ) lies below M . That is, S0(τ) lies on the side of M to which their
common unit normal points at. But now, observe that H − g(H2 −K) = 0 on M by (1.2), and
that S0(τ) satisfies (3.9). Since the Weingarten equation (1.2) is elliptic and S0(τ) lies below M
in the previous sense, this situation contradicts the comparison principle for fully nonlinear elliptic
PDEs (see e.g. Theorem 17.1 in [15]).

This contradiction finishes the proof of Assertion 3.8. Let us point out that, in the situation
where our initial graph U0 ⊂ Σ lies inside the cylinder Γ×R, the same argument applies, but now
we should take τ > 0 so that the surfaces M and S0(τ) lie below S0, and contradict again the
comparison principle; for this, note the change of sign in (3.9). �

Observe that Assertions 3.6 and 3.8 end up the proof of Theorem 3.1. �

4. Bernstein-type theorem in the uniformly elliptic case

In this section we prove a curvature estimate (Theorem 4.2) that, together with Theorem
3.1, classify the complete, uniformly elliptic Weingarten multigraphs:

Theorem 4.1. Planes are the only complete, uniformly elliptic Weingarten multigraphs in R3.

Proof. Let Σ be a complete multigraph that satisfies a uniformly elliptic Weingarten equation. By
Theorem 4.2 below, Σ has bounded second fundamental form. Thus, Σ is a plane, by Theorem
3.1. �

So, it remains to prove the following curvature estimate.

Theorem 4.2. Let Σ be a complete surface in R3, possibly with boundary ∂Σ, and whose Gauss
map image N(Σ) is contained in an open hemisphere of S2. Assume that Σ satisfies a uniformly
elliptic Weingarten equation (1.2) for some g : [0,∞) → R, and let Λ > 0 denote the ellipticity
constant of g in (1.3).

Then, for every d > 0 there exists a constant C = C(Λ, g(0), d) such that for each p ∈ Σ with
dΣ(p, ∂Σ) ≥ d, it holds

|σ(p)| ≤ C.
Here, dΣ and |σ| denote, respectively, the distance function in Σ and the norm of the second
fundamental form of Σ.

Proof. The basic strategy of the argument is inspired by a general curvature estimate for stable
CMC surfaces in Riemannian 3-manifolds by Rosenberg, Souam and Toubiana [28]. For
other adaptations of the Rosenberg-Souam-Toubiana estimate to different geometric theories, see
[5, 14].

To start, arguing by contradiction, assume that there is a sequence of complete immersed
surfaces ψn : Σn −→ R3, possibly with boundary, such that:
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(1) The Gauss map image of each Σn lies in the upper hemisphere S2
+.

(2) Each Σn satisfies a uniformly elliptic Weingarten equation H = gn(H2 − K), with
ellipticity constant Λ, and gn(0) = g(0).

(3) There exist points pn ∈ Σn such that dΣn(pn, ∂Σn) ≥ d and |σΣn(pn)| > n.

Let us first of all explain the idea behind the proof, in the case of CMC surfaces. First, one
makes a blow-up process to the immersions ψn after sending the points pn to the origin, to obtain
new immersions ϕn = λnψn with λn → ∞, such that the second fundamental forms of the ϕn
are uniformly bounded, and equal to 1 at the origin. Then, a standard compactness argument of
CMC surface theory would prove that a subsequence of the ϕn converges uniformly on compact
sets to a complete minimal surface Σ0 in R3, that would have Gauss map image contained in a
closed hemisphere, and non-zero Gauss curvature at the origin. This would contradict the classical
Osserman theorem according to which the Gauss map image of a complete, non-planar minimal
surface is dense in S2, thus giving the desired curvature estimate.

To prove the above compactness property, a key point is to ensure that the bound of the second
fundamental form implies local uniform C2,α estimates for all the immersions ϕn. In the CMC
case, this follows easily by Schauder theory (see Chapter 6 in [15]), because the CMC equation is
quasilinear.

In order to extend these well-known CMC ideas to our general elliptic Weingarten setting, the
two main sources of complication are, on the one hand, that the fully nonlinear nature of the
Weingarten equation prevents the direct use of Schauder estimates in order to obtain local uniform
C2,α estimates for the sequence of surfaces ϕn; and, on the other hand, that even if the limit
surface Σ0 exists, it will not be minimal or satisfy an elliptic Weingarten equation (there is no C1

convergence of the equations in this case).

Taking these considerations in mind, we split the proof of Theorem 4.2 into several steps:

Step 1: A blow-up process

Let Dn = DΣn(pn, d/2) be the compact metric disk in Σn of center pn and radius d/2, and let
qn be the maximum in Dn of the function

hn(q) = |σΣn(q)|dΣn(q, ∂Dn), q ∈ Dn.

Obviously, qn lies in the interior ofDn since hn vanishes on ∂Dn. Define next λn := |σΣn(qn)|
and rn := dΣn(qn, ∂Dn). Then,

(4.1) λnrn = |σΣn(qn)| dΣn(qn, ∂Dn) = hn(qn) ≥ hn(pn) > n
d

2
.

Thus, limn λn = ∞. Also, observe that if we let D̂n := DΣn(qn, rn/2) ⊂ Dn, then for any
wn ∈ D̂n we have

(4.2) dΣn(qn, ∂Dn) ≤ 2dΣn(wn, ∂Dn).

Consider next the immersions ϕn := λnψn : D̂n ⊂ Σn −→ R3. Then, by (4.2), we have for any
wn ∈ D̂n that

(4.3) |σ̂n(wn)| = |σΣn(wn)|
λn

=
hn(wn)

λndΣn(wn, ∂Dn)
≤ hn(qn)

λndΣn(wn, ∂Dn)
≤ 2,

where σ̂n is the second fundamental form of ϕn. Thus, the norms of the σ̂n are uniformly bounded,
and moreover, |σ̂n(qn)| = 1. Also, by (4.1), the radii of the disks D̂n with respect to the metric
induced by ϕn diverge to infinity.
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Finally, observe that since ψn satisfies the Weingarten equation H = gn(H2 −K), it follows
that ϕn verifies the corresponding uniformly elliptic Weingarten equation

(4.4) H = Gn(H2 −K), Gn(t) :=
1

λn
gn(λ2

nt).

Note that 4t(G′n(t))2 ≤ Λ < 1, for all t ∈ [0,∞). That is, the ellipticity constant associated to
each Gn is also Λ. It is important to note here that the Weingarten equations (4.4) do not generally
converge C1 to an elliptic Weingarten equation as λn →∞.

Step 2: A local uniform C2,α-estimate for the blown-up immersions

Assume after a translation of each ϕn that ϕn(qn) = 0 for all n. Consider a subsequence of the
immersions ϕn so that the unit normals at ϕn(qn) converge to some N0 ∈ S2

+, and choose, after a
linear isometry of R3, new Euclidean coordinates (x1, x2, x3) such that N0 = (0, 0, 1).

Recall that we have the bound |σ̂n| ≤ 2 on D̂n, and so we are in the conditions of Remark 3.3.
Then, using this remark and the fact that the unit normals of the ϕn converge to (0, 0, 1) at the
origin, it follows that there exist positive constants δ0, µ0 (that correspond to δ = δ(γ), µ = µ(γ)

for γ = 2 in Remark 3.3) such that for each n large enough, a neighborhood in ϕn(D̂n) of the
origin is given by the graph x3 = vn(x1, x2) of a function vn defined on the disk Bδ0 ⊂ R2

centered at the origin and of radius δ0, and also:

(i) |Dvn| < 3/2 in Bδ0 .
(ii) ‖vn‖C2(Bδ0 ) ≤ µ0.

Since ϕn satisfies (4.4), it follows that vn(x1, x2) is a solution to the uniformly elliptic PDE

(4.5) Fn(vx1 , vx2 , vx1x1 , vx1x2 , vx2x2) = 0,

where Fn(p, q, r, s, t) ∈ C2(R5) is given by

(4.6) Fn(p, q, r, s, t) = H− Gn(H2 −K),

and H,K are defined in (2.7). Note that, by conditions (i), (ii) above, the images of the sets
(Dvn(Bδ0), D2vn(Bδ0)) lie in the fixed compact set Θ of R5 given by

(4.7) Θ := {(p, q, r, s, t) : p2 + q2 ≤ 9/4, |p|+ |q|+ |r|+ |s|+ |t| ≤ µ0}.

In order to ensure convergence of the immersions ϕn, we will prove that there exists a uniform
bound of the C2,α norm of vn in Bδ′ , for some fixed δ′ ∈ (0, δ0), some α ∈ (0, 1), and for all n.
In order to do this, we will use Nirenberg’s a priori estimate for fully nonlinear elliptic equations
in dimension two ([22, Theorem I]), applied to each elliptic equation (4.5). To apply Nirenberg’s
theorem, it suffices to check the following two conditions for the compact set Θ in (4.7):

(a) All first derivatives of all Fn are uniformly bounded in Θ.
(b) There exists a constant λ > 0 such that

(4.8) Fnr ξ
2 + Fns ξη + Fnt η

2 ≥ λ(ξ2 + η2)

at every point of Θ, for any (ξ, η) ∈ R2 and any n.

Let us prove these two conditions. The expressionH2−K is clearly homogeneous and quadratic
in (r, s, t), for each (p, q) fixed. A computation shows that it has one zero eigenvalue, and two
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positive eigenvalues λ2
1, λ

2
2 given by

(4.9) λ2
i = λ2

i (p, q) =
6 + p4 + 6q2 + q4 + p2(6 + 4q2)±

√
Q4(p2, q2)

8(1 + p2 + q2)
> 0,

where Q4(x, y) is the polynomial of degree 4

Q4(x, y) = x4 + y3(8y − 4) + 2x2y(14 + 9y) + (y2 − 2y − 2)2 + 4x(2 + 10y + 7y2 + 2y3).

Moreover, it is easy to check from (4.9) that both λi(p, q) are bounded from below by a positive
constant when we restrict to the compact set Θ. So, after an orthogonal change of coordinates
(r, s, t) 7→ (r̄, s̄, t̄), where the related orthogonal matrix depends on (p, q), we can write

(H2 −K)(p, q, r, s, t) = λ2
1 r̄

2 + λ2
2 t̄

2,

where here r̄, t̄ depend on (p, q, r, s, t), the dependence on (r, s, t) being linear.

All these functions λi, r̄, s̄, t̄ can be chosen to be real analytic in their arguments, except around
the points (p, q, r, s, t) where λ1(p, q) = λ2(p, q), i.e., around the points where the eigenvalue
multiplicity changes. Call B to this set of points.

We claim that B ∩ Θ is empty. To see this, first observe that, by (4.9), B is given by the
expression Q4(p2, q2) = 0. We can rewrite Q4 as

Q4(x, y) = ((x+ y)2 − 2(x+ y)− 2)2 + 4xy(10 + x2 + 10y + y2 + x(10 + 3y)).

So,
Q4(p2, q2) ≥

(
(p2 + q2)2 − 2(p2 + q2)− 2

)2
,

and the expression in the right hand side vanishes only when p2 + q2 = 1 +
√

3. By the definition
of Θ in (4.7), it is clear then that Q4(p2, q2) > 0 in Θ, since p2 + q2 ≤ 9/4 in Θ. Thus, Θ does
not intersect B. In particular, the functions λi, r̄, s̄, t̄ are real analytic in Θ. Now, note that for any
w ∈ {p, q, r, s, t} we have in Θ

(4.10)

∣∣∣∣(H2 −K)w√
H2 −K

∣∣∣∣ =
| (λ2

1)w r̄
2 + (λ2

2)w t̄
2 + 2λ2

1 r̄ r̄w + 2λ2
2 t̄ t̄w|√

λ2
1 r̄

2 + λ2
2 t̄

2

≤ |(λ2
1)w r̄|
λ1

+
|(λ2

2)w t̄|
λ2

+ |2λ1 r̄w|+ |2λ2 t̄w|

≤ C1 = C1(Θ)

for some positive constant C1 depending on Θ. From here and (4.6), we have in Θ:

(4.11)
|Fnw | =

∣∣∣∣Hw −√H2 −KG′n(H2 −K)
(H2 −K)w√
H2 −K

∣∣∣∣ ,
≤ maxΘ|Hw|+ 1

2C1(Θ) ≤ C2(Θ)

where we have used that
√
t|G′n(t)| < 1/2 by the ellipticity condition on G(t). Thus, all the first

derivatives of Fn with respect to any w ∈ {p, q, r, s, t} are uniformly bounded in Θ. This proves
property (a).

Once we know that (a) holds, the proof of (b) is a straightforward consequence of the fact that
all the equations (4.5) are uniformly elliptic on Θ for the same ellipticity constant, since all the
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Gn satisfy the uniform condition 4t(G′n(t))2 ≤ Λ < 1 for the same Λ. Thus, (4.8) holds for some
λ = λ(Λ,Θ).

With this, we are in the conditions of Theorem I in [22] (alternatively, see also Theorem 17.9 in
[15]), which implies what follows in our situation. Fix δ′ ∈ (0, δ0) once and for all, from now on.
Then, there exist constants C ′ > 0 and α ∈ (0, 1) such that

(4.12) ||vn||C2,α(Bδ′ )
≤ C ′

for all n. Here C ′, α depend only on Λ, in the following sense: at first, these constants depend on
δ0, µ0, δ

′, the ellipticity constant Λ and the bounds on the derivatives of Fn in Θ. Nonetheless,
δ0, µ0 are determined by the condition that |σ̂n| ≤ 2, and the bounds (4.11) obtained for Fnw on
Θ are independent of the equation Fn, i.e., they only depend on δ0. Since δ′ has been considered
fixed, the numbers C ′, α only depend on Λ.

Step 3: Existence and properties of a limit surface of the blown-up immersions

It follows by the estimate (4.12) that the set {vn}n is bounded in the C2,α(Bδ′)-norm, and
therefore is precompact in the C2,β(Bδ′)-norm, for any β ∈ (0, α). Thus, by the Arzela-Ascoli
theorem, a subsequence of the vn converges uniformly in the C2,β(Bδ′)-norm to some function
v0 ∈ C2,β(Bδ′); here, β is any number in (0, α), that we also consider fixed from now on.

Once here, we can apply a typical diagonal extension process and deduce that the graph
x3 = v0(x1, x2) can be extended to a complete immersion ψ0 : Σ0 → R3 that, by construction,
is a limit in the C2-topology on compact sets of a subsequence of the immersions ϕn. We denote
this limit surface simply by Σ0. That Σ0 is complete follows since the radii of the D̂n go to∞.

Note that Σ0 is not, in general, an elliptic Weingarten surface, since as explained before, the
elliptic Weingarten equations (4.4) do not necessarily converge C1 to a Weingarten equation.

We single out the following list of properties of Σ0, that will be proved below.

(P1) Σ0 is complete.
(P2) Σ0 has bounded second fundamental form.
(P3) The Gauss map image N(Σ0) lies in the closed hemisphere S2

+.
(P4) The Gauss map N : Σ0 → S2 is quasiconformal.
(P5) Σ0 has a local uniform C2,β-estimate, in the following sense: there exist δ′, C ′, β such

that Σ0 can be locally seen around each p ∈ Σ0 as a graph over the disk D(0, δ′) ⊂ TpΣ0,
and so that the C2,β-norm in D(0, δ′) of the corresponding graphing function is at most
C ′.

(P6) Σ0 is not a plane.

The fact that Σ0 is a complete surface was explained above. The second fundamental form
of Σ0 is bounded since it is a C2-limit of the immersions ϕn(D̂n), and |σ̂n| ≤ 2 on D̂n. That
N(Σ0) lies in S2

+ is also immediate, since all the ϕn are multigraphs (here S2
+ denotes the upper

hemisphere in the original (x, y, z)-coordinates of R3). The local uniform C2,β-estimate for Σ0 in
(P5) follows directly from the previous arguments using Nirenberg’s theorem. Since the norm of
the second fundamental form of ϕn(D̂n) is equal to 1 at the origin for all n, the same happens to
Σ0; thus, Σ0 is not a plane.

So, the only property that remains to check is (P4), i.e., that Σ0 has quasiconformal Gauss map.
To start, let us rewrite the uniformly elliptic Weingarten equation (4.4) satisfied by ϕn in the form
(1.4); that is, we rewrite (4.4) as κ2 = fn(κ1), where fn ∈ C2(R) satisfies fn ◦ fn = Id and the
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Figure 4.1. The regionRn.

uniform ellipticity condition (1.5). Let κn1 ≥ κn2 denote the principal curvatures of ϕn. Then, by
the bounds in (1.5), it is clear that there exist m1,m2 < 0 (independent of n) such that, for each
n, the set

(κn1 (D̂n), κn2 (D̂n)) ⊂ R2

lies in the wedge region of the plane

Rn := {(x, y) : x ≥ y,m1(x− αn) ≤ y − αn ≤ m2(x− αn)} ⊂ R2,

where αn is the umbilical constant of (4.4), given by Gn(0) = αn, or equivalently by fn(αn) =
αn. See Figure 4.1. Note that αn = g(0)/λn → 0 as n → ∞. Thus, the regions Rn converge to
the regionR in (3.1), and it follows that the (bounded) set (κ1(Σ0), κ2(Σ0)) ⊂ R2 lies inside this
wedge region R, where κ1 ≥ κ2 are the principal curvatures of Σ0. By the arguments explained
after (3.1), we deduce that the Gauss map of Σ0 is quasiconformal, as claimed.

Step 4: A surface Σ0 with the properties (P1)-(P6) of Step 3 cannot exist.

To start, let us recall that in Section 3 we proved that if Σ satisfies properties (P1)-(P3), and
additionally Σ is an elliptic Weingarten surface of minimal type (i.e., f(0) = 0 in (1.4)), then
Σ must be a plane; see Assertion 3.6. However, by inspecting this proof (including the proof of
Assertion 3.4 in the Appendix), we can realize that the Weingarten condition in the case f(0) = 0
is used quite mildly. Specifically, it is only used to prove the following facts (see Remarks 3.7 and
6.1 for this matter):

i) That, because |σ| is bounded, we have by Nirenberg’s theorem a uniform local C2,β-
estimate on Σ in the sense of (P5) above. In particular, we can take limits (up to
subsequence) of translations of Σ in the C2 norm on compact sets.

ii) That Lemma 2.2 holds for any of the limit surfaces of Σ by translations.
iii) That Σ has quasiconformal Gauss map.

This indicates that we can reproduce the proof of Assertion 3.6 in our context, provided that
we can check first that the properties i), ii), iii) above hold for the limit surface Σ0. But this is
clear in our situation. Indeed, since N : Σ0 → S2 is quasiconformal by (P4) and we have uniform
local C2,β-estimates on Σ0 by (P5), we only need to check that Lemma 2.2 holds for Σ0 and for
its limits by translations. That it holds for Σ0 is immediate, since quasiconformal maps are open.
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In addition, note that Σ0 satisfies the quasiconformal equation (3.2) for some constant γ. Thus,
any of its limit surfaces also satisfies (3.2), what implies that its Gauss map is also quasiconformal
(and hence, open). So, Lemma 2.2 holds for these limit surfaces. Let us point out that, for the case
of surfaces with quasiconformal Gauss map, the situation ν ≡ 0 in Lemma 2.2 implies that the
surface is a plane, since cylinders do not have quasiconformal Gauss map.

Consequently, we can deduce that a surface Σ0 satisfying properties (P1)-(P5) of Step 3 must
be a plane. But since Σ0 is not a plane in our situation by (P6), this proves Step 4. This gives the
desired contradiction, and completes the proof of Theorem 4.2. �

5. A Bernstein-type theorem in the non-uniformly elliptic case

For this section, we recall that if we write an elliptic Weingarten equation as (1.4), i.e., as
κ2 = f(κ1), the notation If indicates the domain of the function f , which is an interval of R. We
stress that Theorem 5.1 below is new even for the case of entire graphs.

Theorem 5.1. Let Σ be a complete multigraph in R3 that satisfies an elliptic Weingarten equation
κ2 = f(κ1), with If 6= R. Then Σ is a plane.

Proof. Since If 6= R, we may take t0 6∈ If . It follows then by the symmetry property f ◦ f = Id
of f that there exists ε > 0 such that

(5.1) |κi(p)− t0| ≥ ε, ∀p ∈ Σ, i = 1, 2;

here κ1, κ2 are the principal curvatures of Σ. We may take t0 6= 0 without loss of generality.

Write ψ : Σ → R3 for the immersion of Σ into R3, and consider for a := 1/t0 the parallel
surface of Σ at a distance a, given by ψa := ψ + aN : Σ→ R3, where N : Σ→ S2 is the Gauss
map of Σ. In general, ψa may have singular points; indeed, its induced metric ga can be expressed
at any point in terms of an orthonormal basis of principal directions {e1, e2} of Σ as

ga(ei, ej) = (1− aκi)2δij ,

where κi is the principal curvature of Σ in the direction ei. However, in our present situation, the
condition (5.1) ensures that ψa is everywhere regular. Moreover, it also follows from (5.1) and the
expression of ga that ga(ei, ej) ≥ a2ε2δij , and so ψa is a complete surface.

In addition, the Gauss map of ψa is equal to N (thus ψa is also a multigraph), and {e1, e2} are
also principal directions for ψa. The principal curvatures of ψa are given then by

(5.2) κai =
κi

1− aκi
, i = 1, 2.

From this expression and (5.1), it is clear that the κai are uniformly bounded, i.e., that ψa has
bounded second fundamental form.

Finally, observe that the surface ψa is also an elliptic Weingarten surface, since from κ2 =
f(κ1) and (5.2) it holds κa2 = fa(κ

a
1) for the function

fa(t) :=
f( t

1+at)

1− af( t
1+at)

.

Note that, by a simple computation, fa ◦ fa = Id and (fa)′ < 0, so this Weingarten equation is
certainly elliptic.

To sum up, ψa is a complete elliptic Weingarten multigraph with bounded second fundamental
form. By Theorem 3.1, it is a plane. Hence, Σ must also be a plane. �
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It is interesting to point out that the condition that If 6= R was only used above to ensure the
existence of a value t0 ∈ R for which (5.1) holds. Thus, essentially the same proof above gives
the following result, where we allow that If = R:

Corollary 5.2. Let Σ be a complete elliptic Weingarten multigraph whose principal curvatures
κ1, κ2 satisfy

|κi(p)− t0| ≥ ε, ∀p ∈ Σ, i = 1, 2,

for some t0 ∈ R and some ε > 0. Then Σ is a plane.

For the sake of completeness, we reformulate Theorem 5.1 for the situation in which the
Weingarten equation is written as (1.2), instead of (1.4):

Theorem 5.3. Let g ∈ C2([0,∞)) satisfy:

(1) 4t(g′(t))2 < 1 for all t (ellipticity condition).
(2) Either t+ g(t2) or t− g(t2) is bounded in [0,∞).

Then, any complete multigraph (in particular, any entire graph) in R3 that satisfies the Weingarten
equation H = g(H2 −K) is a plane.

Proof. By Theorem 5.1, we only need to check that the second condition on g in the statement is
equivalent to the fact that If 6= R, for the function f appearing when we rewrite (1.2) as (1.4).
Denote t := H2 − K, and note that {κ1, κ2} = g(t) ±

√
t, because of (1.2). By the symmetry

and monotonicity properties of f , the fact that f is not globally defined in R is equivalent to the
fact that one of {κ1, κ2} is globally bounded from above or from below on the graph κ2 = f(κ1).
This easily gives the equivalence of If 6= R with the second condition above. �

Conditions (1)-(2) in Theorem 5.3 have also appeared in previous works by Sa Earp and
Toubiana [25, 26] in connection with the existence of catenoids and half-space theorems for elliptic
Weingarten surfaces of minimal type. See also [9].

An elliptic linear Weingarten surface is one that satisfies the equation

(5.3) 2aH + bK = c, a, b, c ∈ R,

where the ellipticity condition is a2 + bc > 0. This family contains surfaces of constant mean
curvature (b = 0) and of constant positive curvature (a = 0), and corresponds to the family of
parallel surfaces of the class of CMC surfaces in R3. However, as the parallel surface procedure
usually creates singularities, their global geometry is not equivalent to the class of CMC surfaces.

In terms of κ1, κ2, equation (5.3) is written as κ2 = f(κ1), where

f(x) =
c− ax
a+ bx

,

which is not globally defined on R unless b = 0. Thus, we have:

Corollary 5.4. Planes and cylinders are the only complete, elliptic linear Weingarten surfaces in
R3 whose Gauss map image lies in a closed hemisphere of S2.

Proof. If b = 0, this is the classical theorem of Hoffman, Osserman and Schoen for CMC surfaces,
see [17]; note that it also follows from Theorem 4.1. Also, if b 6= 0, since f is not globally defined
in R, it follows from Theorem 5.1 that planes are the only complete multigraphs that satisfy (5.3).
Finally, by Lemma 2.2, we see that if the surface is not a multigraph, it must be a cylinder. This
completes the proof. �
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6. Appendix: proof of Assertion 3.4

Assume that we are in the conditions of Assertion 3.4, with the notations explained just before
its statement. We give only a sketch of the proof, which is essentially identical to the original one
by Hauswirth-Rosenberg-Spruck in [16] for CMC surfaces in H2 × R.

Let {qn}n ⊂ D converge to q ∈ ∂D, and denote pn := (qn, u(qn)) ∈ V ⊂ Σ. If ν(≥ 0)
denotes the angle function of Σ, then we have ν(qn) → 0, since u cannot be extended as a graph
around q (one should have in mind here Remark 3.3). Therefore, the tangent planes TpnV become
vertical as n→∞. Up to a subsequence, assume that {N(pn)}n converges to some N0 ∈ ∂S2

+.

Denote Vn := Φn(V), where Φn is the vertical translation of R3 sending pn to (qn, 0).
Note that all Vn have uniformly bounded second fundamental form, and satisfy the Weingarten
equation (1.4). Then, by Nirenberg’s a priori C2,α-estimates for fully nonlinear elliptic equations
in dimension two (see [22, Theorem I]), we can use a standard compactness argument using the
Arzela-Ascoli theorem and prove that the surfaces Vn converge (up to subsequence) in the C2-
norm in compact sets to some limit surface that also satisfies (1.4). Since ν(qn) → 0 and ν ≥ 0,
it follows from Lemma 2.2 that this limit surface is a piece of the cylinder Γ × R, where Γ is the
circle of radius 1/f(0) that passes through q with interior unit normal N0. (If f(0) = 0, Γ is an
oriented straight line with the same properties).

The circle Γ must be tangent to ∂D at q. Indeed, if Γ and ∂D were transversal at q, there would
be points in Γ ∩ D near q around which the function u is well defined, but its gradient blows up
when we approach the point (since the associated tangent planes become vertical), and this is not
possible. Thus the cylinder Γ× R is one of the cylinders Γi × R defined before Assertion 3.4.

Take now a small segment γ contained in D, that ends at q. Since the tangent planes of V
become vertical as we approach q through γ, it is clear that the restriction of u to γ is monotonic,
for values sufficiently close to q. Thus, it has a limit, which cannot be a finite number, by
completeness of Σ. In other words, the restriction of u to any such segment γ diverges to +∞ or
to −∞.

As a matter of fact, since Σ was oriented so that its angle function is positive it is easy to see,
when f(0) 6= 0, that u→∞ (resp. u→ −∞) if and only if the interior unit normal N0 to Γ = Γi
at q points in the direction q − q̂ (resp. q̂ − q).

For each p ∈ V , let Up ⊂ V denote the neighborhood of p that can be seen as a normal graph
over D(0, 2δ) ⊂ TpΣ, where δ > 0 is the one in Remark 3.3. Consider the normal segment in R2

given by γ(t) := q ± tN0, where the sign is chosen so that γ(t) lies in D for 0 < t < t0 with t0
small enough. Define the open set

Σt0 =
⋃

0<t<t0

U(γ(t),u(γ(t))) ⊂ Σ,

which is a connected neighborhood of the curve {(γ(t), u(γ(t))) : 0 < t < t0} ⊂ Σ. By the
convergence properties already proved, the projection of Σt0 into R2 contains a one-sided tubular
domain Ni(0, ε0) as in (3.3), for the i ∈ {1, 2} such that Γ = Γi. See Figure 6.1.

For each s ∈ [−δ, δ], denote by P (s) the vertical plane that is normal to Γ at the point Γ(s).
For t0 small enough, P (s) intersects Σt0 transversely for all s ∈ [−δ, δ]. Note that all points in
Σt0 ∩ P (0) belong to the curve (γ(t), u(γ(t))), and so Σt0 ∩ P (0) is a connected graphical curve
that does not intersect the cylinder Γ×R. In the same way, by transversality and the definition of
Σt0 , there is some t0 > 0 and some ε > 0 such that for each s ∈ [−δ, δ], Σt0 ∩ P (s) is exactly
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Figure 6.1. The domain Σt0 in Σ, and its projection, in the case f(0) = 0.

one curve, which is a graph over a segment in R2 of the form Γ(s) + tη(s). Here, η(s) is the unit
normal of Γ(s) in (3.3) and t varies in an interval Is that contains (0, ε).

All these properties let us conclude that Σt0 is a graph when we restrict to the points of Σt0 that
project onto the one-sided tubular domain Ni(0, ε), for the value ε > 0 above. Thus, u can be
extended as a graph to D ∪Ni(0, ε), for some i ∈ {1, 2}.

Let us also point out that (for t0 > 0 small enough) Σt0 does not intersect Γ × R. Indeed,
otherwise there would exist a smallest (in absolute value) s1 such that Σt0 ∩ P (s1) intersects
Γ×R. But Σt0 ∩P (0) does not intersect Γ×R, as explained above, so s1 > 0. By continuity we
would have that Σt0 ∩ P (s1) intersects Γ × R but it does not cross it. Hence, there would exist a
point in Σt0 ∩ P (s1) where the tangent plane to Σ is vertical, and this is not possible since Σ is a
multigraph.

The fact that Σt0 does not intersect Γ × R together with the previously proved asymptotic
convergence of the curves Σt0 ∩ P (s) to Γ × R give the asymptotic behavior of the statement of
Assertion 3.4. This completes the (sketch of) proof of Assertion 3.4.

Remark 6.1. For the purposes of the proof of Theorem 4.2, it is important to observe that the
hypothesis that Σ is an elliptic Weingarten surface has been used very mildly in this proof of
Assertion 3.4. Indeed, it has only been used for the following two purposes:

(1) To obtain the a priori local C2,α-estimate on compact sets given by Nirenberg’s theorem.
By this estimate, we can ensure convergence up to subsequence in the C2 topology on
compact sets of limits of translations of Σ in R3.

(2) To ensure that any of the limit surfaces of Σ obtained by translations via the previous
C2,α-estimate satisfies the statement of Lemma 2.2. In particular, these limits are either
multigraphs, or vertical cylinders or planes.
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José A. Gálvez



24 Isabel Fernández, José A. Gálvez, Pablo Mira
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