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Abstract. We introduce a hyperbolic Gauss map into the Poincaré disk for any surface in H2×R with
regular vertical projection, and prove that if the surface has constant mean curvature H = 1/2, this
hyperbolic Gauss map is harmonic. Conversely, we show that every nowhere conformal harmonic
map from an open simply connected Riemann surface Σ into the Poincaré disk is the hyperbolic
Gauss map of a two-parameter family of such surfaces. As an application we obtain that any
holomorphic quadratic differential on Σ can be realized as the Abresch-Rosenberg holomorphic
differential of some, and generically infinitely many, complete surfaces with H = 1/2 in H2 × R.
A similar result applies to minimal surfaces in the Heisenberg group Nil3. Finally, we classify all
complete minimal vertical graphs in H2 × R.

1. Introduction. It is a classical result that the Hopf differential of a sur-
face of constant mean curvature (CMC) in R3, and more generally in any 3-
dimensional space form, is holomorphic. Regarding more general target spaces,
Abresch and Rosenberg [AbRo1] have recently proved that, even though the
usual Hopf differential fails to be holomorphic on CMC-surfaces in H2 × R
and S2 × R, a certain perturbed Hopf differential is always holomorphic on
any surface of this type. This striking theorem has put the topic into a new
light, and is inspiring many research works on CMC surfaces in general ambient
spaces [AbRo2], [BeTa], [Dan], [HLR], [NeRo3], [NeRo2], [SaE], [SaTo] (see
also [ACT], [AEG]).

On the other hand, a condition stronger than the holomorphicity of the Hopf
differential holds on any CMC surface in R3: the Gauss map of a CMC surface in
R

3 is a harmonic map into S2. Let us recall that if h: Σ→ (M2, 〈, 〉) is a harmonic
map from a Riemann surface Σ into a Riemannian surface M2, then the quantity
〈hz, hz〉dz2 is a holomorphic quadratic differential on Σ. So any harmonic map
into S2 comes along with a holomorphic differential, and in the case of CMC
surfaces in R3 the differential induced by its harmonic Gauss map agrees up to
a constant with the Hopf differential of the surface.

As a general rule of thought, the appearance of a geometrically defined har-
monic map in the study of some class of surfaces should not be ignored, because
it may allow to use techniques from the highly developed theory of integrable
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systems in the description of such surfaces. So, it is natural to analyze if the
Abresch-Rosenberg holomorphic quadratic differential comes from some har-
monic map geometrically defined on any CMC surface in H2 × R and S2 × R.

The starting point of the present work is that for the special value H =
1/2 of the mean curvature H of a surface in H2 × R, a geometrically defined
harmonic Gauss map into the Poincaré disk can be constructed. Furthermore the
holomorphic quadratic differential associated to this harmonic map coincides up
to a sign with the Abresch-Rosenberg holomorphic differential.

In the previous works on CMC surfaces in H2 × R it has become clear that
the H = 1/2 class is a limit case between two different situations. For instance,
an embedded CMC surface in H2×R can be compact only if H > 1/2 ([HsHs],
[NeRo3]). In this sense, the mean curvature one half surfaces in H2 × R are
analogous to the surfaces with H = 1 in H3, usually called Bryant surfaces.
These Bryant surfaces have a quite explicit form in terms of holomorphic data
that is not shared by general CMC surfaces in H3, and their geometry has been
studied in great detail (see for instance [Bry], [UmYa2], [UmYa1], [UmYa3],
[CHR], [HRR], [GaMi] and references therein). Another similarity between mean
curvature one half surfaces in H2 ×R and Bryant surfaces is described in [Dan]
in terms of a Lawson-type correspondence for CMC surfaces in homogeneous
spaces.

In this line, our results seem to confirm to some extent these analogies, as
they suggest that the surfaces with H = 1/2 in H2 × R admit a more explicit
treatment than the CMC surfaces with H �= 0, 1/2 in H2 × R.

Our main purpose in this paper is to use the above harmonic Gauss map
in order to study the surfaces with mean curvature one half in H2 × R. Our
working scheme here goes along the lines of [AbRo1]. There, a geometric deep
result (the classification of CMC spheres in product spaces) is obtained as a
consequence of a known theorem from an independent theory (nonexistence of
nonzero holomorphic quadratic differentials on the sphere), once an adequate
geometrical object (a Hopf type differential) has been found. In this work, we
will use our construction of a harmonic Gauss map for surfaces with H = 1/2 in
H

2 ×R to translate into solutions to difficult geometric problems several known
results from the theory of harmonic maps into the Poincaré disk.

We will also deal in this paper with minimal surfaces in H2×R. It is known
that the horizontal factor N as well as the height function h of a minimal surface
ψ = (N, h) in H2×R are harmonic maps into the Poincaré disk and the real line,
respectively. So, this class fits into our discussion.

The geometry of minimal surfaces in spaces of the form M2×R has received a
big number of contributions in recent years [Ros], [MeRo2], [MeRo1], [NeRo1],
[Hau], [ADR], [SaTo], [SaE], [MMP]. The most studied situation is when M2

has nonnegative curvature, since in that case many clean classification theorems
can be obtained. However, when the curvature of M2 is negative, the situation
changes radically. For instance, while complete minimal vertical graphs in M2×R



are totally geodesic if M has nonnegative curvature [Ros], [ADR], there are many
complete minimal vertical graphs in H2 × R, as shown in [NeRo1]. Our main
result regarding minimal surfaces is the description of the space of all complete
minimal vertical graphs in H2 × R. Again, we will use for that known results
from the theory of harmonic maps into the Poincaré disk.

Let us describe briefly our main results. Let ψ = (N, h): Σ → H
2 × R ⊂ L4

be a conformal immersion from a Riemann surface Σ into H2 × R. Assume that
N: Σ → H

2 is regular everywhere, and let η = (N̂, u) be the unit normal to ψ.
Then u �= 0 at every point, and we can thus consider the map ξ := (η+N)/u, taking
values in the intersection of the light cone N3 ⊂ L4 with the horizontal affine
hyperplane x3 = 1 of L4. Thus there is some G: Σ→ H

2 such that ξ = (G, 1). We
call G the hyperbolic Gauss map of ψ, because of its similarity with the usual
hyperbolic Gauss map for surfaces in H3.

With the above construction, we prove in Section 3 that G is a harmonic
map on every mean curvature one half surface in H2 × R with regular vertical
projection. Moreover, we shall show that in this case 〈Gz, Gz〉dz2 agrees with the
Abresch-Rosenberg holomorphic differential up to a sign.

Also in Section 3 we deal with the inverse problem: is every harmonic map
into H2 the hyperbolic Gauss map of some mean curvature one half surface in
H

2 × R? We shall provide an answer to this question in the simply connected
case, by characterizing the harmonic maps that are realized as hyperbolic Gauss
maps. In particular, every nowhere conformal harmonic map into H2 belongs to
this class. Furthermore, we will show that the class of surfaces with H = 1/2 that
share the hyperbolic Gauss map is a continuous 2-parameter family, and we will
determine when two such surfaces are congruent in H2×R. This property makes
a big difference with the case of Bryant surfaces, where the space of surfaces
with the same hyperbolic Gauss map can be infinite dimensional. We shall also
provide an explicit formula that recovers from a harmonic map G: Σ → H

2 all
the mean curvature one half surfaces in H2 × R having G as their hyperbolic
Gauss map.

In Section 4 we will provide several applications of the previous results. The
main one deals with the existence of complete examples, and is the following: any
holomorphic quadratic differential on an open simply connected Riemann surface
can be realized as the Abresch-Rosenberg differential of some, and generically
infinitely many, complete surfaces with H = 1/2 in H2 × R. Prior to this result,
the only known examples of complete non-minimal CMC surfaces in H2 × R
were invariant by some 1-parameter group of rigid motions of the ambient space
[AbRo1], [MoOn], [NeRo3], [SaE], [SaTo]. In connection with this theorem, we
shall obtain an existence result for a Plateau problem at infinity for complete
surfaces with H = 1/2 in H2 × R. We will also construct explicit examples of
surfaces with H = 1/2 and a prescribed simple hyperbolic Gauss map, and we
will show that any surface with H = 1/2 has a parallel-like mean curvature one
half surface with the same hyperbolic Gauss map. Also in Section 4 we will



describe a Schwarz reflection principle in our context. In the end of the section,
we shall see how the extended Lawson correspondence in [Dan] lets us construct
infinitely many complete minimal surfaces in the 3-dimensional Heisenberg group
with prescribed holomorphic quadratic differential.

At last, in Section 5 we turn our attention to minimal surfaces in H2 × R.
Given a complete minimal vertical graph in H2 × R with height function h, we
can consider the canonical 1-form of the graph as the holomorphic part of dh.
We will show that the map carrying each congruency class of complete minimal
vertical graphs to its associated canonical 1-form (defined with a ± ambiguity)
is a bijection onto the space of holomorphic 1-forms on C or D, except for those
of the form ω = c dz on C for some c ∈ C. Our result also classifies all complete
orientable minimal surfaces in H2 × R whose angle function u: Σ → [ − 1, 1]
omits some interior value. In the end, we will apply some known results from
the theory of harmonic maps into the Poincaré disk in order to describe domains
in H2 over which a complete minimal vertical graph in H2 × R can be built or
not.

Acknowledgments. The authors wish to express their gratitude to the referee
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text, and have helped them to make the article more geometric.

2. Setup. In this preliminary section we will describe some general facts
that will be used in the study of both minimal surfaces and surfaces with H =
1/2 in H2 × R. First, we will analyze the structure and compatibility equations
of an immersed surface in H2 × R in terms of a conformal parameter for its
first fundamental form. Subsequently, we will make some comments regarding
harmonic maps into the hyperbolic plane H2 and their relation with spacelike
CMC surfaces in the Lorentz-Minkowski 3-space L3.

Integrability of surfaces in H2×R. We shall realize H2×R in the Lorentz-
Minkowski 4-space L4 as

H
2 × R = {(x0, x1, x2, x3) ∈ L4: −x2

0 + x2
1 + x2

2 = −1, x0 > 0}.

Here we view L4 endowed with the Lorentzian metric 〈, 〉 = −dx2
0 +dx2

1 +dx2
2 +dx2

3,
in canonical coordinates.

Let ψ: Σ→ H
2×R be an immersed surface in H2×R, that will be assumed

to be simply connected. We will use the notation ψ = (N, h): Σ → H
2 × R to

denote the vertical projection N: Σ → H
2 and the height function h: Σ → R of

ψ, respectively.
If h is constant on an open set U ⊂ Σ, then ψ|U is a piece of a totally geodesic

slice H2 × {t0} ⊂ H2 × R. We shall rule out this trivial situation from now on,
and consider only surfaces on which h is never locally constant.



Let η: Σ → S
3
1 ⊂ L4 denote the unit normal of ψ in H2 × R, where here

S
3
1 = {(x0, x1, x2, x3) ∈ L4: −x2

0 + x2
1 + x2

2 + x2
3 = 1} is the de Sitter 3-space. In this

way, the metric conditions 〈dψ, η〉 = 〈N, η〉 = 0 hold, and the pair {η, N} is an
orthonormal frame of the (Lorentzian) normal bundle of ψ in L4. We shall also
use the splitting notation η = (N̂, u): Σ → L

3 × R. Following [ADR], we shall
call u: Σ→ [− 1, 1] the angle function of ψ.

As Σ inherits via ψ a Riemannian metric, it has an associated Riemann
surface structure. Thus, there exists a global conformal parameter z on Σ with
respect to which the induced metric of ψ is written as 〈dψ, dψ〉 = λ|dz|2 for a
positive smooth function λ on Σ. Let us also define the Hopf differential of ψ as
pdz2 = −〈ψz, ηz〉dz2, i.e. as the (2, 0)-part of its complexified second fundamental
form. If H: Σ→ R denotes the mean curvature of ψ in H2 × R and A := −uhz,
then it holds

ηz = −Hψz −
2p
λ
ψz̄ + AN.

More generally, if we consider the moving frame

σ = (ψz,ψz̄, η, N)T(2.1)

the structure equations for the immersion are

σz = Uσ, σz̄ = Vσ,(2.2)

where

U =


( logλ)z 0 p −h2

z

0 0 Hλ/2 (λ− 2|hz|2)/2

−H −2p/λ 0 A

1− 2|hz|2/λ −2h2
z/λ A 0

 ,

and

V =


0 0 Hλ/2 (λ− 2|hz|2)/2

0 ( logλ)z̄ p̄ −h2
z̄

−2p̄/λ −H 0 Ā

−2h2
z̄/λ 1− 2|hz|2/λ Ā 0

 .

By examining the last coordinate in these equations, we deduce the following



relations between the coefficients:

(C.1) hzz =
λz

λ
hz + pu

(C.2) hzz̄ =
λH
2

u

(C.3) uz = −Hhz −
2p
λ

hz̄

(C.4)
4|hz|2
λ

= 1− u2.

(2.3)

The integrability condition of the system (2.2) is given by

Uz̄ − Vz + [U ,V] = 0.(2.4)

Of this matrix identity, the entries (1, 1), (1, 3), (1, 4) and (3, 4) provide, respec-
tively, the Gauss-Codazzi-Ricci equations:

Gauss: λ( logλ)zz̄ = 2(|p|2 − λ2(H2 − 1)/4− λ|hz|2).

Codazzi: 2pz̄ = λ(Hz + A)

Codazzi (bis): −(h2
z )z̄ + (|hz|2)z = AHλ/2− Āp + λz|hz|2/λ

Ricci: Az̄ − Az =
4i
λ

Im(p h2
z ).

(2.5)

All the other entries of (2.4) provide relations that are trivial, or that follow from
(2.5). Hence the equations (2.5) are the necessary and sufficient conditions for
the integrability of (2.2).

Many of the equations we have obtained up to now are superfluous. For
instance, the Ricci equation follows directly from (C.3), and Codazzi (bis) is
obtained by putting together (C.1) and (C.2). A somewhat lengthier computation
also indicates that the Gauss equation may be obtained from (C.1), . . . , (C.4).
At last, (C.1) may be derived from (C.2), (C.3) and (C.4) by differentiation of
(C.4). It is also important to observe that, using (C.2), the Codazzi equation is
written as

Codazzi : Qz̄ = 2pHz̄ + λHHz, Q := 2Hp + h2
z .(2.6)

So, after these simplifications, only the Codazzi equation (2.6) and the last three
equations in (2.3) remain as the integrability conditions of the system. More
specifically, we have proved:

PROPOSITION 1. Let Σ denote a simply connected Riemann surface. The system
(2.2) admits a solution σ: Σ → C

4 × C4 × L4 × L4 if and only if the coefficients
λ, H, u, h: Σ→ R and p: Σ→ C verify (C.2), (C.3), (C.4) and (2.6).



This fact will be used in the proof of Theorem 11 to show that by choosing
an adequate initial condition σ(z0) = σ0, the above equations actually produce
a surface in H2 × R. In other words, equations (C.2), (C.3), (C.4) and (2.6)
are sufficient for the integrability of surfaces in H2 × R. We do not detail this
argument here, as a proof of this last statement (actually of a more general one)
is obtained in [FeMi] and in [Dan].

Moreover, we have the following consequence of (2.6):

COROLLARY 2. (Abresch-Rosenberg) The quadratic differential Qdz2 is holo-
morphic on any surface with constant mean curvature H in H2 × R.

We shall refer to the holomorphic quadratic differential Qdz2 as the Abresch-
Rosenberg differential of a constant mean curvature surface in H2 × R.

Let us also point out that the holomorphicity of Qdz2 is not equivalent to
the constancy of the mean curvature, as there surfaces whose Abresch-Rosenberg
differential is holomorphic and that are not CMC surfaces (see [FeMi]).

Harmonic maps into the hyperbolic plane. Let Σ be an open simply
connected Riemann surface, and let G: Σ → H

2 be a smooth map. Then G is
harmonic if and only if the (2, 0)-part of its complexified first fundamental form,
i.e. Q0dz2 := 〈Gz, Gz〉dz2, is a holomorphic quadratic differential. We shall call it
the Hopf differential of the harmonic map G.

Let µ: Σ→ [0, +∞) be the smooth function so that

〈dG, dG〉 = Q0dz2 + µ|dz|2 + Q̄0dz̄2(2.7)

holds for the harmonic map G: Σ→ H
2. Then we have the following elementary

facts:
• As 〈dG, dG〉 is Riemannian, we get µ2 − 4|Q0|2 ≥ 0, and equality holds

exactly at the singular points of G.
• A point z0 ∈ Σ is a branch point of G (i.e., dG(z0) = 0) if and only if

µ(z0) = Q0(z0) = 0.
• Q0(z0) = 0 at some point z0 ∈ Σ if and only if G is conformal (holomorphic

or antiholomorphic) at z0. Moreover, any conformal map from Σ into H2 is
trivially a harmonic map with Q0 = 0.

Let us now relate the harmonic maps in H2 with surfaces in L3. For this, let
us consider f : Σ→ L

3 a spacelike surface in L3, oriented so that its unit normal
G takes its values in H2, i.e. in the upper sheet of the hyperboloid H2 = {x ∈
L

3: 〈x, x〉 = −1}. Let also H: Σ→ R denote its mean curvature. It is then well
known that G is a harmonic map into H2 if and only if f is a CMC surface.

Suppose now that H = 1/2, and write 〈df , df 〉 = τ0|dz|2 for a positive smooth
function τ0. As H = 1/2, the Hopf differential of G agrees with the Hopf differ-
ential of f in L3. Furthermore, {Q0, τ0} verify the Gauss equation for f in L3,



that is,

( log τ0)zz̄ = τ0/8− 2|Q0|2/τ0.(2.8)

In addition, the metric of the Gauss map G is given by

〈dG, dG〉 = Q0dz2 + µ|dz|2 + Q̄0dz̄2, µ =
τ0

4
+

4|Q0|2
τ0

.(2.9)

Consider now the map f � := f − 2G: Σ→ L
3, which is a parallel surface of

f . It is well known, and also straightforward to check, that f �: Σ → L
3 has the

same conformal structure that f , it has G as its Gauss map, it has constant mean
curvature H� = −1/2 and its Hopf differential is Q� = −Q0.

Let τ � be the conformal factor of the metric of f �, i.e. 〈df �, df �〉 = τ �|dz|2.
The above comments imply that {Q0, τ �} verify the Gauss equation (2.8), and it
also holds that

µ =
τ0

4
+

4|Q0|2
τ0

=
τ �

4
+

4|Q0|2
τ �

.(2.10)

Hence, τ � = 16|Q0|2/τ0, what shows that the singular points of f � are located at
the umbilics of f .

Let us also observe that if we reverse the orientation of f �, we get a spacelike
surface in L3 with H = 1/2 and whose Gauss map is −G: Σ → H

2
−, being

H
2
− = H2 \H2 the lower sheet of the hyperboloid H2 ⊂ L3.

Motivated by these facts, we formulate the following definition:

Definition 3. Let G: Σ → H
2 be a harmonic map into H2 with Hopf dif-

ferential Q0dz2. We shall say that G admits Weierstrass data if there exists a
smooth positive function τ0: Σ → (0, +∞) so that (2.9) holds. In that case, the
pair {Q0, τ0} will be called Weierstrass data for G.

The most obvious examples of harmonic maps admitting Weierstrass data
are the Gauss maps of spacelike surfaces with H = 1/2 in L3. This is just a
consequence of the previous discussion. It is also immediate to realize that if
G: Σ → H

2 is a conformal map without branch points, and we denote τ0 :=
8〈Gz, Gz̄〉 > 0, then {Q0 = 0, τ0} are Weierstrass data for G.

Conversely, we have the main conclusion of this subsection:

LEMMA 4. If {Q0, τ0} are Weierstrass data for a harmonic map G: Σ → H
2,

then they satisfy the Gauss equation (2.8).

Proof. If G is conformal and regular, we have Q0 = 0, and (2.8) holds trivially
for τ0 := 8〈Gz, Gz̄〉 > 0.

Now, assume that G is not conformal. This means that Q0 only has isolated
zeros in Σ. Let Z ⊂ Σ be the set of zeros of Q0, and take z ∈ Σ \ Z . Then



it is known (see [AkNi]) that around z, G is the Gauss map of a unique (up
to translations) spacelike surface f in L3 with constant mean curvature 1/2. Let
τ denote the conformal factor of the metric of f . Then our previous discussion
ensures that {Q0, τ} are Weierstrass data for G around z, and that we have τ = τ0

or τ = 16|Q0|2/τ0. But at this point it is a direct computation to check that an
arbitrary positive smooth function δ on Σ verifies (2.8) with respect to Q0 if
and only if 16|Q0|2/δ verifies (2.8). Consequently, (2.8) holds for the original
Weierstrass data {Q0, τ0} at every point z ∈ Σ \ Z . As Z is discrete, we con-
clude by continuity that {Q0, τ0} satisfy (2.8) globally on Σ. This concludes the
proof.

Remark 1. The above comments easily imply the following fact: if G: Σ→
H

2 is a harmonic map admitting Weierstrass data {Q0, τ0}, and if Q0 vanishes
somewhere, then τ0 is unique, i.e. the Weierstrass data are unique for G. In
contrast, if Q0 never vanishes, then a second set of Weierstrass data, namely,
{Q0, τ � := 16|Q0|2/τ0}, is available for G. Moreover, by Lemma 4, τ � still
satisfies (2.8). Let us also observe that by (2.10) we have at every point in Σ that

{τ0, τ �} ∈ 2(µ±
√
µ2 − 4|Q0|2).(2.11)

So, G is singular everywhere if and only if the solutions τ0 and τ � coincide.

We conclude this section with two elementary lemmas that will be used later
on:

LEMMA 5. Let G: Σ → H
2 be a harmonic map that is singular on an open

subset of Σ. Then G(Σ) lies in a geodesic of H2.

Proof. First of all, observe that by analyticity, G is singular everywhere in
Σ. As a result, we have µ2 = 4|Q0|2 everywhere. It follows that if Q0 vanishes
identically, G is constant and the result trivially holds. If not, Q0 only has isolated
zeros. Take z0 with Q(z0) �= 0. Then, by changing locally the complex parameter
z around z0, we may assume that Q0dz2 = (1/4)dz2, and so µ = 1/2. Denoting
z = s + it, this implies by (2.9) that 〈Gt, Gt〉 = 〈Gs, Gt〉 = 0, so G = G(s). But
finally, the harmonicity of G indicates that Gss is collinear with G. In other words,
G parametrizes locally a piece of a geodesic in H2. By analyticity, G(Σ) lies in
this geodesic and we are done.

LEMMA 6. Let G, G̃: Σ→ H
2 be two harmonic maps for which (2.7) holds for

the same functions µ, Q0. Choose z0 ∈ Σ a regular point of G, and assume that
G(z0) = G̃(z0) and Gz(z0) = G̃z(z0). Then G = G̃.

Proof. By the initial conditions, both G, G̃ are regular surfaces in L3 around z0.
Moreover, their respective orientations agree at z0. By hypothesis, both surfaces
have the same first fundamental form. In addition, as both of them lie in H2 and



Figure 1. The normal vector ξ.

their orientations agree, their second fundamental forms also agree. Finally, as
they share the initial conditions at z0, G and G̃ must coincide around z0, and thus
globally by analyticity.

These two lemmas prove, in particular, that if G: Σ → H
2 is a harmonic

map admitting Weierstrass data {Q0, τ0}, then any other harmonic map into H2

having the same Weierstrass data {Q0, τ0} differs from G just by an isometry of
H

2. In other words, the Weierstrass data determine the harmonic map uniquely
up to rigid motions.

3. Surfaces of mean curvature one half in H2×R. Our aim in this section
is to study the mean curvature one half surfaces inH2×R in terms of an associated
hyperbolic Gauss map. We will first of all describe this hyperbolic Gauss map,
and then we will analyze how to recover a mean curvature one half surface from
its hyperbolic Gauss map.

The hyperbolic Gauss map. Let ψ = (N, h): Σ→ H
2×R be an immersed

surface whose vertical projection N: Σ → H
2 is regular, i.e. dN is a linear

isomorphism at every point. By (C.4), the regularity condition imposed to N is
equivalent to the fact that the angle function u: Σ → [ − 1, 1] never vanishes.
This provides a canonical orientation for any surface of this type. Specifically,
we will always assume that ψ is oriented so that its angle function u is positive.

So, for any surface in H2 ×R with regular vertical projection we can define
the map

ξ =
1
u

(η + N): Σ→ N
3 := {x ∈ L4: 〈x, x〉 = 0, x0 > 0}.

Let us remark here that ξ0 > 0 because N0 > 0 and 〈ξ, N〉 = −1/u < 0.
If we observe that the last coordinate of ξ is constantly 1, the fact that ξ lies

in N3 implies the existence of a map G: Σ→ H
2 ⊂ L3 such that ξ = (G, 1): Σ→

L
3 × R ≡ L4.



Definition 7. The map G: Σ→ H
2 will be called the hyperbolic Gauss map

of the surface with regular vertical projection ψ: Σ→ H
2 × R.

The terminology of this definition has been motivated by its similarity with
the construction of the classical hyperbolic Gauss map for surfaces in H3 [Eps],
[Bry]. Specifically, let f : Σ→ H

3 be a surface with unit normal ν: Σ→ S
3
1. Then

the map N := f + ν is a normal vector field taking its values in the positive light
cone N3. Moreover, if N = (N0, . . . ,N3), the map G := (N1/N0,N2/N0,N3/N0)
can be viewed as a map from Σ into S2, and satisfies that N/N0 = (1,G). This
map G is the hyperbolic Gauss map of f .

We also would like to remark that G can indeed be called a Gauss map
because of the following property: two surfaces in H2 × R with regular vertical
projection meeting at a point p ∈ H2 × R have the same hyperbolic Gauss map
G(p) if and only they are tangent at p. Indeed, two surfaces meeting at p = (N, h)
have the same hyperbolic Gauss map G(p) if and only if their respective null
normal vectors ξ, ξ̃ verify ξ(p) = (G(p), 1) = ξ̃(p), if and only if their respective
normal bundles in L4 at p are both spanned by {N, (G(p), 1)}, if and only if they
have the same tangent plane at p. We are grateful to the referee for this interesting
observation.

The following theorem, whose proof follows easily from our previous dis-
cussion, is the key tool for the main results of this work regarding surfaces with
H = 1/2 in H2 × R.

THEOREM 8. The hyperbolic Gauss map of a mean curvature one half surface
in H2 × R with regular vertical projection is harmonic.

Proof. A direct computation from the structure equations and (C.4) shows
that for every surface ψ = (N, h) in H2 × R it holds

〈(η + N)z, (η + N)z〉 = (p + h2
z )(2H − 1− u2).

So, if ψ has constant mean curvature H = 1/2 and Q is its Abresch-Rosenberg
differential, we see that

〈ξz, ξz〉 =
1
u2 〈(η + N)z, (η + N)z〉 = −Q.(3.1)

As Q is holomorphic, 〈ξzz̄, ξz〉 = 0, i.e. 〈Gzz̄, Gz〉 = 0. So, G is harmonic on H2.

Remark 2. Let ψ: Σ → H
2 × R be a surface with mean curvature H = 1/2

with respect to some selected orientation on Σ. Assume that ψ has regular vertical
projection. Then H = ±1/2 holds with respect to the canonical orientation on
Σ given by u > 0. However, if H = −1/2 holds, its vertical symmetry is a
surface in H2×R with regular vertical projection for which H = 1/2 holds for its
canonical orientation. Thereby, we do not lose generality by restricting ourselves
to the H = 1/2 case.



It is immediate to observe from the above proof that if ψ: Σ→ H
2 ×R is a

surface with H = 1/2 and hyperbolic Gauss map G, then the Abresch-Rosenberg
differential Q of ψ and the Hopf differential Q0 of G are related by Q = −Q0.
Moreover, we have:

THEOREM 9. Let G: Σ→ H
2 be the hyperbolic Gauss map of a mean curvature

one half surfaceψ: Σ→ H
2×Rwith regular vertical projection. Let Q,λ, u denote,

respectively, the Abresch-Rosenberg differential, the conformal factor of the metric,
and the angle function of ψ. Then {−Q,λu2} are Weierstrass data for G.

In particular, the hyperbolic Gauss map of a surface with H = 1/2 always
admits Weierstrass data.

Proof. By the structure equations and (2.9) we have

µ = 2〈Gz, Gz̄〉 =
2
u2 〈(η + N)z, (η + N)z̄〉 =

λu2

4
+

4|Q|2
λu2 .

So, Definition 3 and the relation Q = −Q0 finish the proof.

Let us also remark that by Theorem 9, the hyperbolic Gauss map of a mean
curvature one half surface with regular vertical projection cannot be constant.

Remark 3. A mean curvature one half surface in H2 × R can have points
with non-regular vertical projection, as evidenced by some helicoidal examples
in [SaTo]. But except for one particular example, these singular points have empty
interior on a general mean curvature one half surface. Indeed, if u = 0 holds on
an open piece of a surface with H = 1/2, a simple look at the integrability
conditions shows that Q vanishes, the height function h is harmonic and the
metric is flat. Thus we get a piece of a right cylinder over a horocycle in H2 (see
[AbRo1], [SaE]).

Remark 4. The harmonicity of this hyperbolic Gauss map has close ties with
the theory of Bryant surfaces in the hyperbolic 3-space H3. Let f : Σ → H

3 be
a Bryant surface in H3 with unit normal ν: Σ → S

3
1, and define again N =

f + ν: Σ → N
3. Then the (2, 0)-part of the second fundamental form of f in the

direction of N agrees with the Hopf differential of the surface, −〈 fz,Nz〉 = Q,
and thus is holomorphic. In addition, the hyperbolic Gauss map G = N/N0 turns
out to be conformal [Bry].

In our situation of mean curvature one half surfaces in H2 × R, the key
observation is that the null normal vector field η + N also has the property that
−〈ψz, (η + N)z〉 is holomorphic (it is the Abresch-Rosenberg differential). The
final step is suggested by the case of Bryant surfaces, and is to note that if we
divide η+N by its last coordinate (rather than by its first one), the map we obtain
has its values in H2 and is harmonic.



Surfaces with prescribed hyperbolic Gauss map. We have seen that any
surface with H = 1/2 and regular vertical projection in H2 × R has an associ-
ated harmonic Gauss map. Next we shall deal with the inverse problem: can a
harmonic map G: Σ → H

2 from a simply connected open Riemann surface into
H

2 always be realized as the hyperbolic Gauss map of a mean curvature one half
surface in H2 × R?

The following lemma is a key ingredient in order to provide an answer to
the above question.

LEMMA 10. Let {−Q, 2τ} be Weierstrass data of a harmonic map from an open
simply connected Riemann surface Σ into H2. Let z0 ∈ Σ be an arbitrary point in
Σ. Then for any ϑ0 ∈ C the second order differential system

hzz = ( log τ )z hz + Q

√
τ + 2|hz|2

τ
,

hzz̄ =
1
2

√
τ (τ + 2|hz|2),

(3.2)

has a globally defined solution h: Σ→ R, unique up to additive constants, satisfying
the initial condition hz(z0) = ϑ0.

Proof. Consider firstly the first order differential system
ϑz = ( log τ )z ϑ + Q

√
τ + 2|ϑ|2

τ
,

ϑz̄ =
1
2

√
τ (τ + 2|ϑ|2).

(3.3)

From (2.8) and Qz̄ = 0, a straightforward computation indicates by means of (3.2)
that the following condition is satisfied:

∂

∂z̄

( log τ )z ϑ + Q

√
τ + 2|ϑ|2

τ

 =
∂

∂z

(
1
2

√
τ (τ + 2|ϑ|2)

)
.

So, as Σ is simply connected, by the Frobenius theorem we get the existence
of a unique global solution ϑ: Σ → C of (3.3) verifying the initial condition
ϑ(z0) = ϑ0. Observing now that by (3.3) it holds ϑz̄ ∈ R, we can finally infer
the existence of a function h: Σ→ R, unique up to additive constants, satisfying
hz = ϑ.

Now we can establish the main theorem of this section. For technical reasons,
we will assume that the set of singular points of the harmonic map G we start
with has empty interior. The case in which G is singular on an open set will be
discussed in Section 4.



THEOREM 11. Let G: Σ → H
2 ⊂ L3 be a harmonic map from an open simply

connected Riemann surface into the hyperbolic plane admitting Weierstrass data
{−Q, 2τ}. Assume that the set of singular points of G has empty interior, choose
z0 ∈ Σ a regular point of G, and ϑ0 ∈ C.

Then, there is a unique (up to vertical translations) mean curvature one half
surface ψ = (N, h): Σ→ H

2 × R ⊂ L4 such that:
(i) G is the hyperbolic Gauss map of ψ.
(ii) τ = λu2/2, where 〈dψ, dψ〉 = λ|dz|2 and u is the angle function of ψ.
(iii) dh(z0) = ϑ0dz + ϑ0dz̄.
Moreover, such ψ can be recovered in terms of G as

ψ =

4 Re (Gz(2Qhz + τhz̄))
τ 2 − 4|Q|2 + G

√
τ + 2|hz|2

τ
, h

 .(3.4)

Here h: Σ→ R is the unique (up to additive constants) solution to the differential
system (3.2) with hz(z0) = ϑ0.

Before coming to the proof of this result, let us make some brief comments
regarding its hypothesis and its most basic consequences:

(1) By Theorem 9, the quantities {−Q,λu2} are always Weierstrass data for
the hyperbolic Gauss map of a mean curvature one half surface in H2×R. So, if
the Weierstrass data of G in Theorem 11 are unique (i.e., if Q vanishes at some
point), the condition (ii) holds automatically on any surface with H = 1/2 having
G as its hyperbolic Gauss map.

(2) As explained in Section 2, the Weierstrass data of a harmonic map into
H

2 are defined up to the ambiguity τ0 ↔ 16|Q0|2/τ0, if Q0 never vanishes. If
this is the case, we obtain in Theorem 11 two different surfaces with H = 1/2 in
H

2 × R having G as hyperbolic Gauss map and with dh(z0) = ϑ0dz + ϑ0dz̄ (one
for each choice of τ0). A geometric interpretation of this duality will be carried
out in Section 4.

(3) Equation (3.4) is at first defined only at the regular points of G. However,
as by hypothesis the singular set of G has empty interior, we obtain by continuity
that (3.4) must actually hold everywhere in Σ.

(4) It follows from Theorem 9, Theorem 11 and Proposition 18 (that will
be proved in Section 4) that a harmonic map from an open simply connected
Riemann surface Σ into H2 is the hyperbolic Gauss map of a surface with H = 1/2
in H2 × R if and only if it admits Weierstrass data (see Definition 3).

(5) It is directly deduced from Theorem 11 that the space of mean curvature
one half surfaces with the same hyperbolic Gauss map G can be seen as a
3-parameter family, where two parameters are obtained by varying the initial
condition ϑ0 ∈ C, and the other one is the height h(z0). However, as the variation
of this last parameter only produces a vertical translation on the surface, we will
not take it into account. In other words, we will regard the space of surfaces



with H = 1/2 and the same hyperbolic Gauss map as a 2-parameter family. We
will discuss later on when two surfaces of this 2-parameter family are actually
congruent.

The remainder of this section is devoted to prove Theorem 11. So, we fix the
notations of this theorem and consider the function h: Σ→ R given in Lemma 10
with hz(z0) = ϑ0. Now define the following functions on Σ:

u =

√
τ

τ + 2|hz|2
, λ = 2τ + 4|hz|2.(3.5)

LEMMA 12. The functions u,λ, h verify the following identities on Σ:

hzz = ( logλ)z hz + (Q− h2
z )u,(3.6)

hzz̄ =
λu
4

,(3.7)

uz =
−1
2

hz −
2Q− 2h2

z

λ
hz̄ =

−u2

2
hz −

2Q
λ

hz̄,(3.8)

u2 = 1− 4|hz|2
λ

.(3.9)

Proof. Formula (3.9) is a direct consequence of the definition of the func-
tions u, h and λ. Moreover, (3.6) and (3.7) follow from (3.2) and (3.5). At
last, (3.8) is obtained after differentiating u2 in (3.5), and with the aid of (3.2)
and (3.9).

This lemma shows that the functions u, h and λ satisfy the integrability equa-
tions (C.1) to (C.4) for H = 1/2 and p := Q − h2

z . In this way, by our general
discussion in Section 2, we infer that the system given by (2.2) is integrable
(recall that Q is holomorphic). Thus, (2.2) has a globally defined solution

σ = (ψz,ψz̄, η, N): Σ→ C
4 × C4 × L4 × L4,

where ψ: Σ → L
4. Moreover, ψ is unique once we fix initial data σ(z0) = σ0 ∈

C
4 × C4 × L4 × L4.

Our aim now is to check that for an adequate initial condition σ0, the map
ψ is actually a regular surface in H2×R, it has mean curvature one half, and its
hyperbolic Gauss map coincides with G. First, we define

ξ :=
1
u

(N + η).(3.10)



From (2.2), (3.5), (3.8) and (3.9) we obtain

ξz =
u
2
ψz −

2Q
λu

ψz̄ +
1
2

(
−uhz +

4Qhz̄

λu

)
ξ

=
u
2
ψz −

2Q
λu

ψz̄ −
u
2

(
hz −

2Qhz̄

τ

)
ξ.

(3.11)

With this, we can fix initial conditions for σ at z0 ∈ Σ in the following way:

Definition 13. (Initial data) We will denote by σ = (ψz,ψz̄, η, N)T the unique
solution of (2.2) with the following initial conditions:

ξ(z0) = (G(z0), 1), ξz(z0) = (Gz(z0), 0),

N3(z0) = 0, 〈N, ξ〉(z0) = − 1
u(z0)

,

〈N, ξz〉(z0) =
1
2

(
hz −

2Qhz̄

τ

)
(z0).

Here z0 ∈ Σ is a regular point of G and N3 denotes the last coordinate function
of N.

This definition guarantees that the vectors {ξ(z0), ξz(z0), ξz̄(z0)} are linearly
independent, as we have chosen z0 as a regular point of G. Thus the value of
ψz(z0) and ψz̄(z0) can be computed in terms of the frame {ξ(z0), ξz(z0), ξz̄(z0)} by
means of (3.11) and its conjugate expression. Here, we have used that as G is
regular at z0, by (2.9) we have τ �= 2|Q| at z0. So, the conditions in Definition 13
determine completely the value of σ(z0), using (3.10) and (3.11).

LEMMA 14. Let σ: Σ → C
4 × C4 × L4 × L4 be the map described in Defini-

tion 13. Then the following metric relations hold on z0:

〈ψz,ψz〉|z0 = 0, 〈ψz,ψz̄〉|z0 = λ(z0)/2,

〈N, N〉|z0 = −1, 〈η, η〉|z0 = 1,

〈N,ψz〉|z0 = 0, 〈η,ψz〉|z0 = 0,

〈N, η〉|z0 = 0.

Proof. We omit the point z0 for the sake of simpleness. Start by noting that,
by (3.11),

0 = 〈ξz, ξ〉 =
u
2
〈ψz, ξ〉 −

2Q
uλ
〈ψz̄, ξ〉,

and so 〈ψz, ξ〉 = 0. In addition, the following relations follow from (3.11), (2.9)



and Definition 13:

−Q = 〈Gz, Gz〉 = 〈ξz, ξz〉 =
u
2
〈ψz, ξz〉 −

2Q
λu
〈ψz̄, ξz〉.

1
4

(
τ +

4|Q|2
τ

)
= 〈Gz, Gz̄〉 = 〈ξz̄, ξz〉 =

u
2
〈ψz̄, ξz〉 −

2Q
λu
〈ψz, ξz〉.

Hence, 〈ψz, ξz〉 = −Q/u and 〈ψz̄, ξz〉 = λu/4. This lets us write

−Q
u

= 〈ψz, ξz〉 =
u
2
〈ψz,ψz〉 −

2Q
λu
〈ψz,ψz̄〉,

λu
4

= 〈ψz, ξz̄〉 =
u
2
〈ψz,ψz̄〉 −

2Q
λu
〈ψz,ψz〉,

what gives 〈ψz,ψz〉 = 0 and 〈ψz,ψz̄〉 = λ/2.
Let us see now that 〈N, N〉|z0 = −1. Indeed, write N(z0) = (n, 0) ∈ L3 × R =

L
4. Since z0 is a regular point for G we can write in L3

n = αGz + ᾱGz̄ + γG, α, γ ∈ R.(3.12)

These numbers α and γ can be computed from the conditions in Definition 13,
to obtain

α = 2
2 Qhz + τhz̄

τ 2 − 4|Q|2 and γ = 1/u.(3.13)

Therefore

〈N, N〉 = 〈n, n〉 = −α2Q− ᾱ2Q +
2|α|2

4

(
τ +

4|Q|2
τ

)
− 1

u2 = −1.

From this and Definition 13 we also get

〈N, η〉|z0 = 0, 〈η, η〉|z0 = 1.

Furthermore,

hz

2
− Qhz̄

τ
= 〈Gz, N〉 = 〈ξz, N〉 =

u
2
〈ψz, N〉 − 2Q

uλ
〈ψz̄, N〉 +

hz

2
− Qhz̄

τ
,(3.14)

from where 〈ψz, N〉 = 0. Finally, by 〈ψz, ξ〉 = 0, this leads to 〈ψz, η〉 = 0.

Proof of Theorem 11. We will start proving existence, by showing that the
map ψ: Σ → L

4 obtained via (2.2), (3.5) and Definition 13 is a regular surface
in H2 × R with the desired conditions.



First of all, we use a standard argument to ensure that the metric relations
appearing in Lemma 14 actually hold everywhere on Σ, and not just at z0.

Let us introduce the notation σ = (ψz,ψz̄, η, N)T = (σ1,σ2,σ3,σ4)T . From
(2.2) we can deduce that the functions Φi,j := 〈σi,σj〉, i, j = 1, . . . , 4, satisfy the
following linear system of partial differential equations,

{
(Φi,j)z =

∑4
k=1 (Ui,kΦk,j + Uj,kΦk,i),

(Φi,j)z̄ =
∑4

k=1 (Vi,kΦk,j + Vj,kΦk,i),

where Ui,j (resp. Vi,j) denotes the (i, j) element of the matrix U (resp. V).
On the other hand, it is direct to see that the functions φi,j = φj,i described by

φ1,1 = φ2,2 = φ1,3 = φ2,3 = φ1,4 = φ2,4 = φ3,4 = 0,

φ1,2 = λ/2, φ3,3 = −φ4,4 = 1

also provide a solution to this system. Since both solutions coincide at z0

(Lemma 14) they must coincide at any point of Σ. Particularly, ψ is a regular
spacelike immersion into L4.

Now let us show that

(ψz)3 = hz, N3 = 0 and η3 = u.(3.15)

Let γ := ((ψz)3, (ψz̄)3, η3, N3)T . Then

γz = Uγ and γz̄ = Vγ.

This system also has (hz, hz̄, u, 0) as a solution, by (C.1) to (C.4). So, we only
need to check that both solutions agree at z0. By the conditions N3(z0) = 0
and ξ3(z0) = 1 of Definition 13, we obtain η3(z0) = u(z0). In addition, since
(ξz)3(z0) = 0, by examining the last coordinate of (3.11) we get (ψz)3(z0) = hz(z0),
as we wished to show.

Let us check next that ψ lies in H2 × R. By (2.2) we know that

Nz =

(
1− 2|hz|2

λ

)
ψz −

2h2
z

λ
ψz̄ − uhz η.

On the other hand, (3.15) gives

h̃z =
2|hz|2
λ

ψz +
2h2

z

λ
ψz̄ + uhz η,



where here we are denoting h̃ = (0, 0, 0, h). More specifically, this identity fol-
lows from (3.15), since the equations in (3.15) imply the relations 〈h̃z, η〉 = uhz,
〈h̃z, N〉 = 0, 〈h̃z,ψz〉 = h2

z and 〈h̃z,ψz̄〉 = |hz|2.
With this, ψz = Nz + h̃z = (Nz, hz) and therefore, up to a translation, ψ = (N, h).

So, ψ lies in H2 × R, and by (2.2) it has mean curvature one half, and its unit
normal is η. Moreover, by its own construction, it holds τ = λu2/2 and dh(z0) =
ϑ0dz + ϑ0dz̄. It is also straightforward that ψ has regular vertical projection.

It remains to check that the hyperbolic Gauss map of ψ is G. Let G denote
the hyperbolic Gauss map of ψ, that is, ξ = (G, 1). From (3.11) we have

〈Gz,Gz〉 = −Q = 〈Gz, Gz〉

and

〈Gz,Gz̄〉 =
1
4

(
τ +

4|Q|2
τ

)
= 〈Gz, Gz̄〉.

As by Definition 13 we have G(z0) = G(z0) and Gz(z0) = Gz(z0), and as z0 is a
regular point of G, we conclude as in Lemma 6 that G = G on Σ. This finishes
the existence part.

For uniqueness, suppose that ψ̃: Σ → H
2 × R, ψ̃ = (Ñ, h̃), is another mean

curvature one half surface in the conditions of the theorem, and let λ̃ denote
the conformal factor of its metric. Let η̃ denote its unit normal, with the last
coordinate ũ > 0, and assume that dh(z0) = dh̃(z0). Then by τ = λ̃ũ2/2 and (C.1)
to (C.4) for ψ̃, a somewhat lengthy but otherwise direct computation shows that
h̃z satisfies the differential system (3.2). Consequently h̃z = hz.

Moreover, by hypothesis we have λu2/2 = τ = λ̃ũ2/2. But using (C.4) for ψ̃
it is easy to check that

ũ =

√
τ

τ + 2|h̃z|2
=

√
τ

τ + 2|hz|2
= u,

and so it also holds λ̃ = λ.
Thus the structure equations for ψ̃ and ψ are the same, and their respective

moving frames coincide at z0. This implies that ψ̃ = ψ up to vertical translations
in H2 × R.

Finally, the expression (3.4) follows directly by repeating the computations
described in (3.12) and (3.13) at an arbitrary regular point z ∈ Σ, and not just at
z0, and using that the set of regular points of G is dense by hypothesis. This ends
the proof.

Let ψ = (N, h): Σ→ H
2 ×R be a surface with constant mean curvature one

half and regular vertical projection, and suppose that its hyperbolic Gauss map



G is in the conditions of Theorem 11. As a consequence of this theorem, up to
vertical translations, ψ is uniquely determined (once we fix Weierstrass data for
G) by the value of the differential of its height function h at a fixed point z0 ∈ Σ.
Moreover, from (3.14) we infer that, at the regular points of G, we have

hz =
2τ (τ〈N, Gz〉 + 2Q〈N, Gz̄〉)

τ 2 − 4|Q|2 .(3.16)

This shows that ψ = (N, h) is uniquely determined (up to vertical translations, and
after prescribing G and Weierstrass data for G) also by the value of its vertical
projection N(z0) at an arbitrary regular point z0 ∈ Σ of G.

Conversely, the quantity ψ(z0) can be specified as initial condition for recov-
ering a mean curvature one half surface in terms of its hyperbolic Gauss map.
Indeed, we have:

COROLLARY 15. Let G: Σ → H
2 be a harmonic map from an open simply

connected Riemann surface into the hyperbolic plane admitting Weierstrass data
{−Q, 2τ}. Assume that the set of singular points of G has empty interior, choose
z0 ∈ Σ a regular point of G, and ψ0 ∈ H2 × R.

Then, there is a unique mean curvature one half surfaceψ = (N, h): Σ→ H
2×R

such that:
(i) G is the hyperbolic Gauss map of ψ.
(ii) τ = λu2/2, where 〈dψ, dψ〉 = λ|dz|2 and u is the angle function of ψ.
(iii) ψ(z0) = ψ0.

Proof. Let ψ0 = (N0, h0) ∈ H2 × R and consider, motivated by (3.16), the
complex number ϑ0 ∈ C given by

ϑ0 =
2α0τ

2(z0) + 4τ (z0)α0Q(z0)
τ 2(z0)− 4|Q(z0)|2 ,(3.17)

where α0 = 〈N0, Gz(z0)〉 ∈ C (recall that z0 is a regular point of G and therefore
τ 2 − 4|Q|2 �= 0 at z0). It is obvious that from (3.17) we actually have that

α0 =
ϑ0

2
− Qϑ̄0

τ
.(3.18)

Let ψ = (N, h): Σ → H
2 × R be the mean curvature one half surface obtained

from Theorem 11 in terms of G, {−Q, 2τ} and ϑ0, and with h(z0) = h0. By (3.4)
and (3.18) it is immediate to check that

〈N(z0), Gz(z0)〉 =
ϑ0

2
− Qϑ̄0

τ
= α0 = 〈N0, Gz(z0)〉.

But now, as z0 is a regular point of G, and we also know that N0 ∈ H2, N(z0) ∈



H
2, we must necessarily have N(z0) = N0. This completes the existence part.

Uniqueness was already proved above.

Remark 5. The above corollary has the following consequence: given an open
simply connected Riemann surface Σ, the space of conformal immersions of Σ
into H2×R with H = 1/2 and regular vertical projection can be parametrized in
terms of the space of harmonic maps from Σ into the Poincaré disk that admit
Weierstrass data, up to a certain initial condition.

Let G: Σ→ H
2 be a harmonic map in the conditions of Corollary 15, and let

{−Q, 2τ} be Weierstrass data for G. Then, by Corollary 15, it follows that the
class of simply connected mean curvature one half surfaces with G as hyperbolic
Gauss map is a two-parameter family, where the parameters are given by the
variation of the initial condition ψ0 ∈ H2 × R (more specifically, of N0 ∈ H2).
Then, a natural question arising here is whether all these surfaces are mutually
noncongruent or not. This will depend on the symmetries of G, as we discuss
next.

Let ψ, ψ̃: Σ→ H
2×R be two surfaces with H = 1/2 and the same hyperbolic

Gauss map G: Σ→ H
2, and assume that they are congruent. Thus there is some

positive rigid motion Φ of H2 × R and some automorphism Γ of the Riemann
surface Σ such that Φ ◦ ψ = ψ̃ ◦ Γ. As both ψ and ψ̃ are canonically oriented as
surfaces with regular vertical projection (i.e., their angle functions are positive),
we find that the positive rigid motion Φ must preserve the orientation of the
vertical factor. So, Φ = (Ψ, Id + c), where c ∈ R and Ψ: H2 ⊂ L3 → H

2 ⊂ L3 is
an isometry of H2. Then we get that Ψ ◦G = G ◦ Γ. That is, Ψ is a symmetry of
the hyperbolic Gauss map G.

Conversely, let G: Σ → H
2 denote a regular harmonic map on an open

simply connected Riemann surface Σ admitting Weierstrass data {−Q, 2τ}, and
let Ψ: H2 → H

2 be a symmetry of G. That is to say, Ψ ◦ G = G ◦ Γ for
some automorphism Γ of Σ. Let ψ: Σ → H

2 × R be a mean curvature one half
surface with hyperbolic Gauss map G constructed as in Theorem 11 (or as in
Corollary 15). It is then clear that ψ̃ := Ψ−1 ◦ ψ ◦ Γ: Σ→ H

2 ×R is the surface
with H = 1/2 and hyperbolic Gauss map G constructed via Corollary 15 from
Q, τ and ψ̃0 := Ψ−1(ψ(Γ(z0))) ∈ H2 × R.

All of this draws the following conclusions:
• Given a harmonic map G: Σ → H

2 admitting Weierstrass data, if two
initial conditions ψ0 = (N0, h0), ψ̃0 = (Ñ0, h0) ∈ H2 × R determine via Corollary
15 congruent mean curvature one half surfaces, then G necessarily has some
symmetry. Thus, in the generic case, the class of noncongruent simply connected
surfaces with H = 1/2 sharing the hyperbolic Gauss map is a continuous two-
parameter family.
• If we fix ψ0 = (N0, h0) ∈ H2 × R an arbitrary point, each symmetry of G

provides a point ψ̃0 = (Ñ0, h0) ∈ H2×R such that {G, ψ̃0} and {G,ψ0} generate



congruent surfaces with H = 1/2. In this sense, the larger is the symmetry group
of G, the smaller is the class of noncongruent mean curvature one half surfaces
with G as hyperbolic Gauss map.

Remark 6. Theorem 11 indicates clearly that the theory of surfaces with H =
1/2 in H2×R is an appropriate setting for applying integrable systems techniques.
Indeed, one can associate to a harmonic map into H2 the whole machinery of a
spectral parameter, a zero-curvature representation, a Sym-Bobenko formula, and
several Backlund-Darboux transformations. These transformations let us construct
via Theorem 11 new mean curvature one half surfaces in H2×R starting from a
previously known example. Let us also observe that away from the zeros of the
Abresch-Rosenberg differential, and up to a conformal reparametrization, by (2.8)
the local geometry of a surface with H = 1/2 in H2×R is modelled by the elliptic
Sinh-Gordon equation: ∆τ0 = sinh (τ0), where ∆ is the Euclidean Laplacian.

4. Applications. We will describe in this section how the hyperbolic Gauss
map we have introduced can be used to investigate global properties of mean
curvature one half surfaces in H2 × R, and especially, to construct complete
examples of such surfaces.

Existence of complete examples. As a surprisingly simple consequence of
our discussion, we can conclude that there are no restrictions in prescribing the
Abresch-Rosenberg differential for complete mean curvature one half surfaces in
H

2 × R:

THEOREM 16. Any holomorphic quadratic differential on an open simply con-
nected Riemann surface Σ is the Abresch-Rosenberg differential of some complete
surface with H = 1/2 in H2 × R. Moreover, the space of noncongruent complete
mean curvature one half surfaces in H2 × R with the same Abresch-Rosenberg
differential is generically infinite.

Proof. Observe first of all that the right vertical cylinder over a horocycle
in H2 × R has parabolic conformal structure (as it is flat and complete), and
vanishing Hopf differential. So, we only need to consider the case in which
Σ ≡ D, or Σ ≡ C and Q �≡ 0.

Given a holomorphic quadratic differential Qdz2 as above, Wan and Au
[Wan], [WaAu] showed that there exists a unique surface f : Σ→ L

3 with H = 1/2
whose Hopf differential is −Qdz2, and whose induced metric 〈df , df 〉 = τ0|dz|2 is
complete. Let ν: Σ→ H

2∪H2
− ⊂ L3 denote the Gauss map of f , and consider the

rigid motion P of L3 given by P = Id if ν(Σ) ⊂ H2 and P(x0, x1, x2) = (−x0, x1, x2)
if ν(Σ) ⊂ H2

−. Here H2
− = {( − x0, x1, x2) ∈ L3: (x0, x1, x2) ∈ H2 ⊂ L3}. Let

G := P ◦ ν: Σ → H
2, and let ψ: Σ → H

2 × R denote any of the mean curva-
ture one half surfaces constructed from G and τ0 via Theorem 11. Recall here
that in the generic case, the family of such mean curvature one half surfaces



is 2-parametric by our discussion at the end of Section 3. By its construction,
the Abresch-Rosenberg differential of ψ is precisely Qdz2. In addition, we have
〈dψ, dψ〉 = λ|dz|2, where

τ0 = λu2 ≤ λ.(4.1)

Thus, by the completeness of f we can conclude the completeness of ψ.

Following the path suggested by this theorem, let us formulate the following
Plateau problem at infinity: Let γ: S1 → S

1 be a continuous homeomorphism. Is
there a complete mean curvature one half surfaceψ: D→ H

2×Rwhose hyperbolic
Gauss map G: D → D extends continuously to D and verifies G|S1 = γ ? Here D
is the unit disk and H2 has been identified with the Poincaré disk (D, ds2).

The following result follows immediately from (4.1) and [Aku], [LiTa1],
[LiTa2], where the Dirichlet problem at infinity for harmonic maps G: D→ H

2

is solved.

THEOREM 17. If γ: S1 → S
1 is a C1,α-diffeomorphism, 0 < α < 1, with

deg(γ) = 1, then the above Plateau problem at infinity for mean curvature one half
surfaces has at least a solution, and generically an infinite number of them.

Apart from the previous ones, there are many results on the global con-
struction of harmonic maps into the Poincaré disk. By our discussion, all these
existence results translate directly into global existence results for mean curvature
one half surfaces in H2 × R by means of Theorem 11. It seems an interesting
problem to analyze if the constructions of this paper and the results from the
theory of harmonic maps can be applied to solve the Bernstein problem for mean
curvature one half surfaces, i.e., to find all the entire vertical graphs with H = 1/2
in H2 × R.

Let us also mention the following important open problem in the theory of
harmonic maps, due to Schoen [Sch], [ScYa]: are there global harmonic diffeo-
morphisms from the complex plane onto the Poincaré disk? This problem has been
widely investigated by means of the related theory of spacelike CMC surfaces in
L

3. In this sense, building a geometric theory with an associated harmonic Gauss
map into the Poincaré disk is interesting, since it may help to achieve a solution
to the above problem. Indeed, in our situation, this question can be formulated as
follows: is there a mean curvature one half surface inH2×R with regular vertical
projection and parabolic conformal structure, and whose hyperbolic Gauss map is
a global diffeomorphism?

Surfaces with singular hyperbolic Gauss map. In Theorem 11 we avoided
the consideration of the case in which the harmonic map G is singular on an open
set. The next result deals with this remaining case.



PROPOSITION 18. Let ψ: Σ → H
2 × R be a mean curvature one half surface

whose hyperbolic Gauss map G: Σ → H
2 is singular on an open set of Σ. Then

G(Σ) lies on a geodesic ofH2, and ψ is one of Sa Earp’s standard hyperbolic screw
motion examples.

Proof. Let {−Q, 2τ} be Weierstrass data for G. By Lemma 5, G parametrizes
a piece of a geodesic in H2.

Let us find the surface ψ explicitly in these conditions. For that, we assume
that

G = G(t) = ( cosh (t), sinh (t), 0): R→ H
2 ⊂ L3,

where here z = s + it is a global conformal parameter for ψ. In particular, 2Q =
τ = 1/2, and thus λu2 = 2τ = 1. In these conditions, the system (3.2) turns into

hzz = hzz̄ =
1
4

√
1 + 4|hz|2,

or equivalently 
hss =

√
1 + h2

s + h2
t

hst = 0

htt = 0.

This system can be explicitly integrated to obtain

h(s, t) =
(√

1 + y2

)
cosh (s + s0) + y t + c,(4.2)

for suitable constants y, s0, c ∈ R. Moreover, if we write

x(s) =
(√

1 + y2

)
cosh (s + s0),

we get by (C.4), (4.2) and λu2 = 1 that

u = 1/x(s), λ = x(s)2.

Finally, observe that the vertical projection N: Σ→ H
2 ⊂ L3 of a mean curvature

one half surface ψ = (N, h): Σ→ H
2 × R verifies the conditions

〈N, G〉 =
−1
u

, 〈N, Gz〉 =
1
2

(
hz −

2Qhz̄

τ

)
, 〈N, N〉 = −1,



where the second formula comes from (3.14). Therefore we conclude that the
vertical projection of ψ = (N, h) is given by

N0 = x(s) cosh t + y sinh t,

N1 = x(s) sinh t + y cosh t,

N2 = ±
√

x(s)2 − y2 − 1.

As a result, the surface is invariant by hyperbolic screw motions, and has a
simple explicit parametrization. This type of surfaces has been obtained in a
totally different way by Sa Earp [SaE]. They are entire vertical graphs over the
whole horizontal factor H2 of H2×R. In particular, they are complete, embedded
and stable.

Parallel surfaces. Let ψ = (N, h): Σ → H
2 × R denote a surface with

regular vertical projection, for which H = 1/2 holds with respect to its canonical
orientation (given by u > 0, where u is its angle function). Let G: Σ → H

2

denote its hyperbolic Gauss map, with Weierstrass data {−Q, τ0 = λu2}. Here
λ is the conformal factor of the metric of ψ, and Q is its Abresch-Rosenberg
differential.

Assume that Q never vanishes. Then, by our discussion just after Theorem
11 we know that there exists another surface (actually a 2-parameter family of
them in the generic case) ψ�: Σ→ H

2×R constructed via G and the Weierstrass
data {−Q, τ � = 16|Q|2/τ0}. This surface has regular vertical projection, it has
H = 1/2 with respect to its canonical orientation, and its hyperbolic Gauss map
is G.

It is then an interesting problem to establish if there is some explicit geometric
relation between ψ and ψ�. This is actually the case. The following theorem
proves that ψ and ψ� are parallel in a certain sense. This reproduces to some
point the situation for parallel CMC 1/2 surfaces in L3 with the same Gauss map
that we exposed in Section 2.

THEOREM 19. Let ψ: Σ → H
2 × R be a mean curvature one half surface

with hyperbolic Gauss map G: Σ → H
2, and assume that its Abresch-Rosenberg

differential Q never vanishes. If u: Σ→ (0, +∞) denotes its angle function, then

ψ� = −ψ +
2
u

(G, 1)
(

= −ψ +
2
u2 (η + N)

)
(4.3)

is a regular surface in H2 ×R with regular vertical projection, for which H = 1/2
holds for its canonical orientation. Moreover, its hyperbolic Gauss map is G, its
angle function is u, and its conformal metric factor is

λ� =
16|Q|2
λu4 .(4.4)



In particular, this theorem tells that ψ� as in (4.3) is the mean curvature one half
surface constructed according to Theorem 11 by means of G and the Weierstrass
data {−Q, τ � = 16|Q|2/τ0}, with the initial condition (see the formula (4.11)
below)

(h�)z(z0) =
4Q(z0)
τ0(z0)

h0.

Proof. Write ψ = (N, h): Σ→ H
2 × R, and let ξ: Σ→ N

3 be the map given
by (3.10), where η: Σ→ S

3
1 is the unit normal of ψ. Also recall that ξ = (G, 1).

The following metric relations will be used repeatedly in what follows:

〈ξ, ξ〉 = 〈ξz, ξ〉 = 〈ψz, ξ〉 = 0, 〈G, N〉 = 〈ξ, N〉 = −1
u

.(4.5)

Let us denote ψ� = (N�, h�), where by (4.3)

N� = −N +
2
u

G, h� = −h +
2
u

.(4.6)

By (4.5) and the fact that G, N take values in H2, it follows directly that 〈N�, N�〉 =
−1. Moreover, 〈G, N�〉 = −1/u < 0, what ensures that N� takes its values in H2.
So, ψ� is indeed a surface in H2 × R, possibly with singular points.

Now, observe that by (4.3) we have

(ψ�)z = −ψz +
(

2
u

)
z
ξ +

2
u
ξz.(4.7)

Thus, using (3.1), (3.11), (4.5), (4.7) and 〈ψz,ψz〉 = 0 we have

〈(ψ�)z, (ψ�)z〉 =
4
u2 〈ξz, ξz〉 −

4
u
〈ψz, ξz〉 =

4
u2 (− Q + Q) = 0.(4.8)

In other words, z is a conformal parameter for ψ�, i.e., the surfaces ψ and ψ�

have the same conformal structure.
Observe now that 〈(ψ�)z, ξ〉 = 0 follows directly from (4.5) and (4.7). So, ξ

is a null vector in L4, whose last coordinate equals 1, and that is normal to ψ�.
Therefore, if η�: Σ → S

3
1 is the unit normal of ψ� and u� is its last coordinate

(i.e. the angle function of ψ�), we must have

ξ =
1
u�

(η� + εN�), ε = ±1.



Consequently we get

〈N�, ξ〉 = 〈N�,
1
u�

(η� + εN�)〉 = − ε

u�
.

On the other hand, by (4.6) we see that

〈N�, ξ〉 = 〈−N +
2
u

G, G〉 = −1
u

.

Thus u� = εu. In particular, ψ� has regular vertical projection. So, if we endow
ψ� with its canonical orientation, given by u� > 0, we have

u� = u and ξ =
1
u�

(η� + N�).(4.9)

In other words, G: Σ→ H
2 is the hyperbolic Gauss map of ψ�.

The conformal factor λ� of ψ� is obtained directly from (4.5), (4.7) and (3.11),
as follows:

λ� = 2〈(ψ�)z, (ψ�)z̄〉 = λ− 8
u
〈ψz, ξz̄〉 +

8
u2 〈ξz, ξz̄〉(4.10)

= λ− 8
u
λu
4

+
8
u2

(
λu2

8
+

2|Q|2
λu2

)
=

16|Q|2
λu4 .

That is, (4.4) holds. Moreover, as Q never vanishes, ψ� is regular.
Finally, we just need to check that ψ� has constant mean curvature H� = 1/2.

For that, let us observe first of all that by (C.3) with H = 1/2 and (C.4), and
using that Q = p + h2

z , we have

(
1
u

)
z

=
hz

2
+

2Q
λu2 hz̄.

So, since by (4.6) it holds h� = −h + 2/u, we conclude that

(h�)z =
4Q
λu2 hz̄.(4.11)

If we differentiate this expression, then by (C.1), (C.3), (C.4) and Q = p + h2
z we

get

(h�)zz̄ =
4|Q|2
λu3 .(4.12)



By (C.2), the mean curvature H� of ψ� is

H� =
2(h�)zz̄

λ�u�
.

At last, using (4.4), (4.9) and (4.12) we arrive at H� = 1/2. This ends the
proof.

Surfaces with conformal hyperbolic Gauss map. We will construct next
all the mean curvature one half surfaces in H2×R with regular vertical projection
whose hyperbolic Gauss map is conformal. A way to do this relies on the fact
that the system (3.2) can be explicitly integrated when Q ≡ 0. However, we will
instead use a shorter argument based on the parallel surfaces construction of the
previous subsection. Let us anyway indicate that the CMC surfaces with Q = 0
in H2 × R and S2 × R were classified in [AbRo1].

Let ψ = (N, h): Σ→ H
2×R be a mean curvature one half surface with regular

vertical projection. Assume, besides, that its hyperbolic Gauss map G: Σ→ H
2

is conformal, i.e. 〈Gz, Gz〉 = 0. Thus, the Abresch-Rosenberg differential Qdz2 of
ψ vanishes identically. This indicates by (4.4) that its parallel surface ψ�: Σ →
H

2 × R given by (4.3) verifies 〈dψ�, dψ�〉 = 0. In other words, ψ� is constant.
It is also clear that this property characterizes the surfaces with H = 1/2 and
conformal hyperbolic Gauss map.

Write now ψ� = (a, b) ∈ H2 ×R. We plan to recover ψ in terms of a and G.
By (4.3) we obtain

ψ = −(a, b) +
2
u

(G, 1).

Thus, by applying if necessary a vertical translation to ψ we see that h = 2/u,
and hence

ψ = (N, h) = −(a, 0) + h(G, 1).(4.13)

At last, as G ∈ H2 and a ∈ H2, the condition 〈N, N〉 = −1 provides

h = −2〈a, G〉.(4.14)

Putting (4.13) and (4.14) together we obtain that ψ is expressed in terms of the
conformal map G: Σ→ H

2 and a constant a ∈ H2 as

ψ = (− a, 0)− 2〈a, G〉(G, 1): Σ→ H
2 × R ⊂ L4.(4.15)

Conversely, if G: Σ → H
2 is conformal and regular, and a ∈ H2, then the map

ψ given by (4.15) is a mean curvature one half surface in H2 × R with regular



vertical projection, having G as its hyperbolic Gauss map. We omit the proof, as
it is a direct computation using the ideas in the proof of Theorem 19.

A reflection principle. We show next that mean curvature one half surfaces
in H2 × R admit a Schwarz reflection principle. It roughly states that a surface
with H = 1/2 in H2×R that meets orthogonally a totally geodesic vertical plane
P of H2 × R can be analytically extended by reflection across P as a surface
with H = 1/2.

Let Ω ⊆ C be a complex symmetric domain, i.e. Ω = Ω∗ := {z̄: z ∈ Ω}.
Define Ω+ = Ω ∩ {Im(z) > 0}, Ω− = Ω ∩ {Im(z) < 0}, and I = Ω ∩ R.

Let P denote a totally geodesic vertical plane of H2×R, i.e. a right vertical
cylinder over a geodesic of H2. Finally, define σ as the isometric reflection in
H

2 × R with respect to P .
Then we have:

THEOREM 20. Let ψ: Ω+ ∪ I ⊂ C → H
2 × R be a conformal C2 immersion

with H = 1/2 and regular vertical projection. Assume that ψ maps I into P and
meets P orthogonally, i.e., its unit normal η: Ω+ ∪ I → S

3
1 is tangent to P along I.

Then the map ψ: Ω ⊂ C→ H
2 × R given by

ψ(z) =

{
ψ(z) if z ∈ Ω+ ∪ I,

σ(ψ(z̄)) if z ∈ Ω−

is a conformal immersion with H = 1/2 which extends ψ symmetrically across P .

Proof. Up to a rigid motion, we can take P to be P = (H2×R)∩{x2 = 0} ⊂
L

4, and thus we have σ(x0, x1, x2, x3) = (x0, x1,−x2, x3). Then, the hypothesis on
ψ indicates that the hyperbolic Gauss map

G = (G0, G1, G2): Ω+ ∪ I → H
2 ⊂ L3

of ψ is continuous and verifies that G2(s, 0) = 0 for all s ∈ I. In the same way,
we see that

∂ψ

∂t
(s, 0) =

(
0, 0,

∂ψ2

∂t
(s, 0), 0

)
(4.16)

for all s ∈ I. Now let ξ = (G0, G1, G2, 1). As G2(s, 0) = 0, the third coordinate of
(3.11) at s ∈ I provides

∂G2

∂t
=
(

u
2
− 2Q
λu

)
∂ψ2

∂t
.

In particular Q(s, 0) ∈ R for all s ∈ I. Using this fact we infer that the imaginary



part of the first two coordinates of (3.11) at s ∈ I turn into

∂G0

∂t
(s, 0) = 0,

∂G1

∂t
(s, 0) = 0.

Therefore, we have seen that the harmonic map G: Ω+∪I → H
2 verifies that G(I)

is a part of the geodesic γ = H2 ∩ {x2 = 0} of H2, and the tangential component
of the normal derivative (∂G/∂t)(s, 0) vanishes. Hence, by the Schwarz reflection
principle for harmonic maps (see [Woo]) we conclude that G can be harmonically
extended to Ω by means of

G(z) =

{
G(z) if z ∈ Ω+ ∪ I,

G(z̄)∗ if z ∈ Ω−,
(4.17)

where here P∗ denotes the reflection of P ∈ H2 across γ ⊂ H2.
As a result, by Theorem 11, we can extend the surface ψ to a conformal

immersion ψ: Ω → H
2 × R with H = 1/2. Moreover, let Ψ: L3 → L

3 be
the symmetry in L3 that extends the isometric reflection in H2 across γ. Then
Ψ(G(z̄)) = G(z), and so σ(ψ(z̄)) = ψ(z), where σ = (Ψ, Id) is the symmetry of
H

2 × R with respect to P . This completes the proof.

Minimal surfaces in the Heisenberg group. In [Dan] the classical Law-
son correspondence between CMC surfaces in space forms was extended to CMC
surfaces in other 3-dimensional homogeneous spaces. This generalized Lawson
correspondence shows, in particular, the existence of a bijective isometric cor-
respondence between simply connected surfaces with H = 1/2 in H2 × R and
simply connected minimal surfaces in the 3-dimensional Heisenberg group Nil3.

In this final part of the section we exploit this fact in order to obtain an
existence result for complete simply connected minimal surfaces in Nil3. First
we will explain briefly this correspondence.

The space Nil3 can be regarded as the Lie group

Nil3 =




1 x1
1
2 x1x2 + x3

0 1 x2

0 0 1

 : (x1, x2, x3) ∈ R3

 ,

endowed with the left invariant metric

ds2
0 = dx2

1 + dx2
2 +
(

1
2

(x2dx1 − x1dx2) + dx3

)2

.

We denote by χ = ∂x3 the Killing vector field corresponding to the vertical
translations in Nil3.



Let ψ = (N, h): Σ → H
2 × R be a mean curvature one half immersion

from an open simply connected Riemann surface Σ, with first fundamental form
ds2 = λ|dz|2 and Hopf differential p dz2. Let χ0 be the Killing field corresponding
to the vertical translations in H2 × R, and denote by η = (N̂, u) the unit normal
of ψ. It easy to check that

χ0 =
2
λ

(hz̄ψz + hzψz̄) + uη.

Then, by the generalized Lawson correspondence in [Dan], there exists a
(unique up to rigid motions) conformal minimal immersion ψ̂: Σ → Nil3 with
first fundamental form ds2 = λ|dz|2, with Hopf differential p̂ dz2 = ip dz2 and
satisfying

χ =
2i
λ

(hz̄ψ̂z + hzψ̂z̄) + uη̂,

where here η̂ is the unit normal of ψ̂. Such a pair of immersions (ψ, ψ̂) are called
sister surfaces [Dan].

Recently, Abresch [AbRo2] (see also [BeTa], [FeMi]) has announced the exis-
tence of a holomorphic quadratic differential for CMC surfaces in the Heisenberg
group Nil3. Using the above notation, and in the case of minimal surfaces, this
differential can be written as

Q̂ = i p̂ dz2 + 〈χ, ψ̂z〉2dz2.

Thus, the relation between this differential and the Abresch-Rosenberg dif-
ferential Q for its sister surface of H = 1/2 in H2 × R is given by Q̂ = −Q.
Keeping this in mind we obtain the following corollary to Theorem 16.

COROLLARY 21. Any holomorphic quadratic differential on an open simply con-
nected Riemann surface Σ is the Abresch differential of some complete minimal
surface in Nil3. Furthermore, the space of congruency classes of complete minimal
surfaces in Nil3 with the same Abresch differential is generically infinite.

5. Complete minimal graphs in H2 × R. Let ψ = (N, h): Σ → H
2 × R

be an orientable minimal surface, and consider Σ as a Riemann surface with the
conformal structure given by its metric. By (C.2) we see that the height function
h is harmonic, and thereby ω := hzdz is a globally defined holomorphic 1-form on
Σ, where z denotes an arbitrary complex coordinate on Σ. We call ω the canonical
1-form of the minimal surface ψ.

Consider also the unit normal η: Σ→ S
3
1 ⊂ L4 of ψ. We will define as usual

the angle function u: Σ → [ − 1, 1] as the last coordinate of η, i.e. u = 〈η, e〉
where e = (0, 0, 0, 1). Observe that u and ω are closely related by (C.4).



If we write 〈dψ, dψ〉 = λ|dz|2 for a positive smooth function λ on Σ, then
the metric of the vertical projection N of ψ is

〈dN, dN〉 = −h2
z dz2 + µ|dz|2 − h2

z̄ dz̄2, µ = λ− 2|hz|2.(5.1)

In particular, N: Σ→ H
2 is harmonic. Observe also that dN �= 0 at every point,

since λ is positive.
Conversely, if N: Σ → H

2 is a harmonic map with dN �= 0 everywhere,
and whose Hopf differential is of the form Q0dz2 = −ω2 for some holomorphic
1-form ω on Σ, then

ψ :=
(

N, 2 Re
∫
ω

)
: Σ→ H

2 × R(5.2)

is a conformal minimal surface, provided that the above integral has no real
periods.

With this, we have:

THEOREM 22. LetA denote the space of complete orientable minimal surfaces
in H2 × R whose angle function omits some value in (−1, 1). Then:

(i) The elements of A are exactly the complete minimal vertical graphs, and
the right vertical cylinders over some geodesic of H2.

(ii) All the elements of A are simply connected.
(iii) Two elements ψ1,ψ2 ∈ A are congruent if and only if their respective

canonical 1-forms ω1,ω2 verify ω1 = ±ω2.
(iv) Every holomorphic 1-form on D, and every nonzero holomorphic 1-form

on C, can be realized as the canonical 1-form of some element of A.

Proof. Observe first of all that every complete minimal vertical graph in
H

2×R lies in A, since its angle function u does not change sign. Also note that
the right vertical cylinders over geodesics of H2 have vanishing angle function,
and thus are also in A.

Let ψ: Σ→ H
2 × R be an element of A, and consider the function

σ := λ(1 + u)2: Σ→ [0, +∞).

By the hypothesis on the angle function u, and composing if necessary with an
inverse rigid motion in H2 × R, we may assume that u ≥ c > −1 for some
c ∈ (− 1, 1]. Thus σ is positive, and we have

(1 + c)2λ ≤ σ ≤ 4λ.(5.3)

Hence, the completeness of the metric σ|dz|2 is equivalent to the completeness
of the surface ψ.



Moreover, using (C.1) to (C.4) and Codazzi in (2.5) with H = 0, we see that

( log (1 + u))zz̄ =
uzz̄

1 + u
− uzuz̄

(1 + u)2 =
u|hz|2
1 + u

− 2|p|2u
λ(1 + u)

− |p|
2(1− u2)
λ(1 + u)2

=
λu(1− u)

4
− |p|

2

λ
.

Also observe that the Gauss equation in (2.5) for H = 0 together with (C.4) imply

( logλ)zz̄ =
2|p|2
λ

+
λu2

2
.

Therefore,

( logσ)zz̄ =
λu
2

.

With this, and by (C.4) we have

( logσ)zz̄ =
σ

8
− 2|hz|4

σ

(
=
λu
2

)
.

In this way, if we denote by Σ̃ the universal cover of Σ, and π: Σ̃ → Σ is
the corresponding covering map, it follows that σ ◦ π is a solution to (2.8),
the Gauss equation for H = 1/2 surfaces in L3. So, there exists a unique (up
to rigid motions in L3) spacelike surface f : Σ̃ → L

3 with H = 1/2, whose
metric is 〈df , df 〉 = (σ ◦ π)|dζ|2 (hence, complete), and whose Hopf differential
is Q0dζ2 := −(π∗ω)2. Here ζ = z ◦ π is a conformal parameter on Σ̃ and π∗ω
denotes the pullback of the 1-form ω by the covering π. Furthermore, let ν: Σ̃→
H

2 ∪ H2
− ⊂ L3 denote the Gauss map of f , and let P be the rigid motion of

L
3 so that P = Id if ν(Σ̃) ∈ H2 and P(x0, x1, x2) = ( − x0, x1, x2) if ν(Σ̃) ∈ H2

−.
Here H2

− = {( − x0, x1, x2) ∈ L3: (x0, x1, x2) ∈ H2 ⊂ L3}. Then, if we define
g = P ◦ ν: Σ̃→ H

2, by (2.9) and (5.1) we have

〈gζ , gζ〉 = Q0 = 〈(N ◦ π)ζ , (N ◦ π)ζ〉

and

〈gζ , gζ̄〉 =
σ ◦ π

8
+

2|Q0|2
σ ◦ π =

(
λ(1 + u2)

4

)
◦ π =

µ

2
◦ π = 〈(N ◦ π)ζ , (N ◦ π)ζ̄〉.

So, there exists an isometry Φ of H2 so that Φ ◦ g = N ◦ π, i.e. Ψ ◦ ν = N ◦ π
where Ψ = Φ ◦ P.

Recall now (see [ChYa], [ChTr], [Wan]) that, by the completeness of f , the
Gauss map ν: Σ̃ → H

2 is a global diffeomorphism from Σ̃ onto ν(Σ̃), except if



the surface is a hyperbolic cylinder in L3, in which case ν is a piece of a geodesic
of H2. In the first situation, by Ψ◦ν = N ◦π, we necessarily conclude that ψ is a
vertical graph in H2×R, and that π is one-to-one, that is, Σ is simply connected.
In the second one, again by Ψ ◦ ν = N ◦ π, ψ must be a right vertical cylinder
over a geodesic of H2. This proves (i) and (ii). These results let us assume in the
remaining part of the proof that Σ ≡ Σ̃ and π = Id.

To prove (iii), recall first that by [Wan] and [WaAu], a complete H = 1/2
surface in L3 is uniquely determined by its Hopf differential. So, using Ψ◦ν = N,
we get that two elements of A are congruent if and only if they produce following
the above process two congruent complete H = 1/2 surfaces in L3. Recalling
finally that the canonical 1-form ω of ψ and the Hopf differential Q0 of f are
related by Q0 = −ω2, we obtain (iii).

Finally, to prove the existence part (iv), let us start with a holomorphic 1-form
ω on Σ = C or D, in the conditions of the theorem. By [Wan] and [WaAu] there
is a unique (up to rigid motions) complete spacelike H = 1/2 surface f : Σ→ L

3

whose Hopf differential is Q0 := −ω2.
Let ν: Σ → H

2 ∪ H2
− and τ0 denote, respectively, the Gauss map and the

conformal factor of the metric of f . Define now N = P ◦ ν: Σ→ H
2, where P is

the rigid motion of L3 defined as above. Then we can construct a minimal surface
ψ = (N, h): Σ → H

2 × R by means of the representation formula (5.2). By its
construction, ψ is a vertical graph, or a right vertical cylinder over a geodesic of
H

2, and its canonical 1-form is ω. Now, putting together (5.1) and (2.9) we infer
that

λ = µ + 2|hz|2 =
τ0

4
+

4|hz|4
τ0

+ 2|hz|2 =
(τ0 + 4|hz|2)2

4τ0
≥ τ0

4
.

Hence ψ is regular and complete, and so ψ ∈ A. This ends the proof.

The classification of the complete minimal vertical graphs in H2×R follows
readily from Theorem 22.

COROLLARY 23. Consider the following spaces:

G = {congruency classes of complete minimal vertical graphs in H2 × R}.
Θ = {holomorphic 1-forms on C which are not of the type ω = c dz, c ∈ C,

and holomorphic 1-forms on D}.

Let finally Θ/Z2 denote the quotient of Θ obtained by identifying elements of Θ
differing only by a ± sign.

Then the map assigning to each element g ∈ G the class in Θ/Z2 of the
canonical 1-form of some representant ψ: Σ → H

2 × R of g is a well defined
bijective correspondence between G and Θ/Z2.



Proof. Observe first of all that the conformal structure is invariant by rigid
motions, and that by Theorem 22, all complete minimal vertical graphs in H2×R
are conformally equivalent to C or D.

Also, the canonical 1-form of any complete minimal vertical graph in H2×R
lies in Θ. Indeed, by Theorem 22, an element of A fails to be a vertical graph
if and only if it is a right vertical cylinder over a geodesic, if and only if its
associated complete H = 1/2 surface in L3 is a hyperbolic cylinder, if and only
if its conformal structure is parabolic (hence Σ ≡ C), and Q0 = a dz2 for some
a ∈ C \ {0} (this is by the completeness of the H = 1/2 associated surface), if
and only if Σ ≡ C and ω = c dz for some c ∈ C \ {0}.

With this, by part (iii) in Theorem 22, the correspondence described by the
present theorem is well defined, and it also follows directly from Theorem 22
that it is a bijection.

The previous results let us also draw the following conclusion: a harmonic
map from an open Riemann surface Σ intoH2 is the vertical projection of a complete
minimal vertical graph in H2 × R if and only if: (1) its Hopf differential is of the
form Qdz2 = −ω2 for some holomorphic 1-form ω on Σ, and (2) it is the Gauss map
of a complete spacelike CMC surface in L3 different from a hyperbolic cylinder.

Therefore, several theorems regarding the Gauss map image of complete
CMC surfaces in L3 can be translated into our context. For example, by the
results in [Aiy], [CSZ], [Xin], [XiYe] we have:

COROLLARY 24. Let M2 ⊂ H2 ×R be a complete minimal vertical graph over
a domain Ω ⊂ H2. Then:

(1) Ω cannot be bounded.
(2) Ω cannot lie inside a tubular neighborhood of a geodesic in H2.
(3) Ω cannot lie inside a horoball.

Furthermore, using [HTTW] we obtain the following consequence:

COROLLARY 25. Let M2 ⊂ H2 × R denote a complete minimal vertical graph
over a domain Ω ⊂ H2, and suppose that M2 has parabolic conformal type. Then
Ω is an ideal geodesic polygon with n vertices inH2 if and only if n is even and the
canonical 1-form of M2 is ω = p(z)dz, where p(z) is a polynomial of degree n/2.
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