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A theorem of H. Hopf and the Cauchy-Riemann
inequality II
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and Renato Tribuzy

Abstract. This is a sequel to “A theorem of H. Hopf and the Cauchy-Riemann in-
equality” [AdCT]. Here the result of the previous paper is extended (see the precise 
statement in Section 1 of the present paper) to surfaces in three-dimensional homoge-
neous Riemannian manifolds whose group of isometries has dimension four and the 
bundle curvature is nonzero, whereas in the previous paper only the case of vanishing 
bundle curvature was treated.
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1 Introduction

Let E3 be a 3-dimensional simply-connected homogeneous riemannian mani-
fold with a 4-dimensional isometry group. Such a manifold is a riemannian
fibration with bundle curvature τ over a 2-dimensional space form with sec-
tional curvature k. They are classified, up to isometries, by k and τ , where k
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trans- E ( , τ ) τ = lations along which generate a Killing vector field ξ . 
The bundle curvature τ is
given by ∇X ξ = τ ξ × X , where ∇ is the covariant derivative, X is any vector R
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field, and × is the cross product in E3(k, τ ). We refer to [D] for further details
on these spaces and their immersed surfaces.

For the case τ = 0, Abresch and Rosenberg [AR1] considered a surface M
immersed in M2(k)× R and introduced a quadratic form on M by

Q(X, Y ) = 2Hα(X, Y )− k〈ξ, X〉〈ξ, Y 〉,

where X and Y are tangent vectors, α is the second fundamental form and H
is the mean curvature of M . Introduce in M isothermal parameters (u, v) (this
means that the induced metric on M is ds2 = λ2(du2 + dv2)) and let z = u + iv
be the corresponding complex parameter.

Abresch and Rosenberg proved the (2, 0)-component Q(2,0) of Q is holomor-
phic if H = const. This generalizes a previous result of H. Hopf [H] for the
case where M is immersed in R3. Furthermore, they showed that if M is home-
omorphic to a sphere, then M is an embedded surface invariant by rotations of
M2(k)× R around the factor R.

Alencar, do Carmo and Tribuzy [AdCT] showed that it is not necessary to
assume that H = const. in the above result. They proved the following result

Theorem A. Let M be a compact immersed surface of genus zero in M2(k)×R.
Assume that

|d H | ≤ g|Q(2,0)|,

where |d H | is the norm of the differential d H of the mean curvature H of M ,
and g is a continuous, nonnegative real function. Then Q(2,0) is identically zero,
hence by [AR1], M is a CMC (constant mean curvature) embedded surface
invariant by rotations in M2(k)× R.

The goal of the present paper is to generalize Theorem A for immersed sur-
faces M in E3(k, τ ), for τ 6= 0.

For that, we first introduce the quadratic form

Q(X, Y ) = 2(H + iτ )α(X, Y ) − (k − 4τ 2)〈ξ, X〉〈ξ, Y 〉

for tangent vectors X , Y in M . The expression of the above form was inspired
in a joint paper of Abresch and Rosenberg [AR2] in which they announce that
the theorem of [AR1] (case H = const.) can be extended to surfaces immersed 
in E3(k, τ ). As usual, we denote by Q(2,0) the (2, 0)-component of Q in the
complex structure of M determined by the induced metric. We prove

Theorem 1. Let M be a compact surface of genus zero immersed in E3(k, τ ) 
with mean curvature H . Assume that

|d H | ≤ g|Q(2,0)|,
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where g is a continuous nonnegative real function. Then Q(2,0) is identically
zero and, by [AR2], M is a CMC surface invariant by rotations in E3(k, τ ).

2 Preliminaries

Set θ = H + iτ , c = k − 4τ 2 and write Q as

Q(X, Y ) = 2θ α(X, Y )− c〈ξ, X〉〈ξ, Y 〉.

The (2, 0)-component of Q is

Q(2,0) = ψ(z)dzdz.

Here z = u + iv, where (u, v) are isothermal parameters in M , i.e.,
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so that
dz(Z) = 1 = dz̄(Z), dz(Z) = dz̄(Z) = 0.

Notice also that

Q(Z , Z) = ψ(z) and 〈Z , Z〉 = λ2, 〈Z , Z〉 = 〈Z , Z〉 = 0.

We first prove the lemma below that will be used repeatedly in this section.

Lemma 1. With the above notation

∇Z Z = ∇Z Z = 0,

where ∇ is the covariant derivative in M .

Proof. From the symmetry of the conexion we have

∇Z Z − ∇Z Z = [Z , Z ].
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A straightforward computation shows that, for any function f on M ,
[Z , Z ]( f ) = 0, so that ∇Z Z = ∇Z Z . Now set

∇Z Z = aZ + bZ = ∇Z Z .

Then, since 〈Z , Z〉 = 0,

0 =
1

2
Z〈Z , Z〉 = 〈∇Z Z , Z〉 = bλ2.

It follows that b = 0 and ∇Z Z = aZ . Similarly, since 〈Z , Z〉 = 0,

0 =
1

2
Z〈Z , Z〉 = 〈∇Z Z , Z〉 = aλ2

so that a = 0 and ∇Z Z = ∇Z Z = 0. �

Next, we compute

dψ

dz̄
= Z Q(Z , Z) = Z(2θ〈SZ , Z〉 − c〈ξ, Z〉2),

where S is the shape operator corresponding to α.

Proposition 1. Z Q(Z , Z) = 2Z(H)α(Z , Z)+ 2θλ2 Z(H).

Proof.

Z Q(Z , Z) = 2Z(θ)〈SZ , Z〉 + 2θ〈∇Z (SZ), Z〉 − 2c〈ξ, Z〉〈∇Zξ, Z〉

− 2c〈ξ, Z〉〈ξ,∇Z Z〉,
(1)

where we have used that ∇Z Z = 0. In the Lemmas below, we compute sepa-
rately 〈∇Z (SZ), Z〉, 〈∇Zξ, Z〉 and 〈ξ,∇Z Z〉.

Lemma 2. 〈∇Z (SZ), Z〉 = 〈∇Z (SZ), Z〉 + cλ2〈ξ, N 〉〈ξ, Z〉.

Proof. By using that ∇Z Z = 0 and Codazzi equation, we obtain

∇Z (SZ) = (∇Z S)(Z)+ S(∇Z Z)

= (∇Z S)(Z)+ R̃(Z , Z)N

= (∇Z S)Z + c〈N , ξ 〉(〈Z , ξ 〉Z − 〈Z , ξ 〉Z),

where R̃ is the curvature of E3(k, τ ) and we have used Corollary 3.2 of Daniel
[D]. Finally, since 〈Z , Z〉 = 0, we conclude that

〈∇Z (SZ), Z〉 = 〈∇Z (SZ), Z〉 + c〈N , ξ 〉〈Z , ξ 〉λ2. �
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Lemma 3. 〈∇Zξ, Z〉 = i τ λ2〈ξ, N 〉, where N is the normal to the surface M .

Proof. By using ([D], proof of the Proposition 3.2) we obtain

∇Z ξ = τ ξ × Z = τ(〈J Z , ξ 〉N − 〈ξ, N 〉J Z),

where J is the complex multiplication by i . Thus

〈∇Z ξ, Z〉 = −τ 〈ξ, N 〉i λ2. �

Lemma 4. 〈ξ,∇Z Z〉 = λ2 H〈ξ, N 〉.

Proof. ∇Z Z = ∇Z Z + α(Z , Z)N .

Since ∇Z Z = 0 and α(Z , Z) = λ2 H . (See the proof of Lemma 2 in [AdCT]),
we conclude that

〈ξ,∇Z Z〉 = λ2 H〈ξ, N 〉. �

Putting Lemmas 2, 3 and 4 in the expression (1) of Z Q(Z , Z), we obtain

Z Q(Z , Z) = 2Z(H)α(Z , Z)+ 2θ〈∇Z (SZ), Z〉 + 2θ cλ2〈N , ξ 〉〈Z , ξ 〉

−2 ci τ λ2〈ξ, Z〉〈ξ, N 〉 − 2c λ2 H〈ξ, N 〉〈ξ, Z〉.

Since θ = H + iτ , the two last terms of the above sum cancel out with the third
term. Thus

Z̄ Q(Z , Z) = 2Z(H)α(Z , Z)+ 2θ〈∇Z (SZ), Z〉. (2)

To conclude the proof of Proposition 1, we still need some information on the
term 〈∇Z (SZ), Z〉.

Lemma 5. 〈∇Z (SZ), Z〉 = λ2 Z(H).

Proof. We first claim that

∇Z Z =
Z(λ2)

λ2
Z .

To see that, set ∇Z Z = aZ + bZ . Then

〈∇Z Z , Z〉 = bλ2 =
1

2
Z〈Z , Z〉 = 0.
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It follows that b = 0, hence ∇Z Z = aZ . But

〈∇Z Z , Z〉 = Z〈Z , Z〉 = Z(λ2) = a〈Z , Z〉.

It follows that a =
Z(λ2)

λ2
, and this proves our claim.

Now, notice that

Z(λ2 H) = Z(〈SZ , Z〉) = 〈∇Z (SZ), Z〉 + 〈SZ ,∇Z Z〉.

Thus

〈∇Z (SZ), Z〉 = Z(λ2)H + λ2 Z(H)− 〈SZ ,∇Z Z〉

= Z(λ2)H + λ2 Z(H)− 〈SZ , Z〉
Z(λ2)

λ2

= λ2 Z(H),

since 〈SZ , Z〉 = λ2 H . �

By using Lemma 5 in Equation (2) we conclude the proof of Proposition 1.

Proof of Theorem 1. By Proposition 1, we have

|Z Q(Z , Z)| = |2Z(H)α(Z , Z)+ 2θλ2 Z(H)|

≤ |d H | |λ| |2α(Z , Z)+ 2θλ2|,

where we have used that |Z(H)| = |d H(Z)| ≤ |d H | |Z | and |Z(H)| ≤
|d H | |λ|. By hypothesis, |d H | ≤ g|Q(2,0)|, for a continuous g ≥ 0. Thus

∣
∣
∣
∣
dψ

dz̄

∣
∣
∣
∣ = |Z Q(Z , Z)| ≤ h|Q(2,0)| = h|ψ(z)|, (3)

where
h = g|λ|

(
|α(Z , Z)| + 2λ2|H + iτ |

)
,

i.e., h is a continuous nonnegative function on M . We now use the Main Lemma
of [AdCT] which states that if a function ψ(z) satisfies the inequality (3) in a
neighborhood U of a zero z0 of ψ , then either ψ ≡ 0 in a neighborhood V ⊂ U
of z0 or, for all z in V ,

ψ(z) = (z − z0)
m fm(z), m ≥ 1, fm(z0) 6= 0. (4)
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From that we can conclude the proof of Theorem 1 in the same way as in
([AdCT] end of section 2). For completeness, we summarize the argument here.

By the Main Lemma, either Q(2,0) ≡ 0, hence by [AR2], M is a surface
of revolution, or Q(2,0) has a finite number of zeroes. We show that this case
leads to a contradiction. Indeed, the equation Im[Q(Z , Z)dz2] = 0 gives rise
to two fields of directions on M whose singularities are the zeroes of Q(Z , Z).
The index of any of these fields at the singular point is equal to −m/2, where m
is the order of the zero that appears in Equation (4). Since M has genus zero,
the sum of the indices of this field of directions, by Poincaré Theorem ([H],
Chapter III, sect. 2), is two. This is a contradiction, thereby concluding the
proof of Theorem 1.
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