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A Hopf theorem for open surfaces in product spaces
Manfredo do Carmo and Isabel Fernández

Abstract. Hopf’s theorem has been recently extended to compact genus zero surfaces with 
constant
mean curvature H in a product space Mk

2 ×R, where Mk
2 is a surface with constant Gaussian 

curvature k �= 0 [AbRo]. It also has been observed that, rather than H = const., it suffices to assume 
that the differential dH  of H is appropriately bounded [AdCT]. Here, we consider the case of 
simply-connected
open surfaces with boundary in Mk

2 ×R such that dH  is appropriately bounded and certain 
conditions on the boundary are satisfied, and show that such surfaces can all be described.

2000 Mathematics Subject Classification: 53C42; 53C40.

1 Introduction

We consider surfaces Σ immersed in the product space Mk
2 × R, where  Mk

2 is a simply-
connected, 2-dimensional Riemannian manifold with constant Gaussian curvature k. 
Abresch and Rosenberg [AbRo] introduced a complex quadratic differential form Q (see 
Section 2 of this paper for details) and proved that Q is holomorphic if Σ is a CMC 
(constant mean curvature) surface; hence, if Σ is homeomorphic to a sphere, the quadratic 
form Q vanishes. Furthermore, they classified all the CMC surfaces with vanishing Q.

Here we consider disk-type surfaces Σ with piece-wise regular boundary ∂Σ and, under 
certain conditions, want to show that they are pieces of one of the above surfaces.

The conditions we have in mind (see Section 3, Theorem 3.1, for the precise 
statement) are as follows:

1) The surface is regular up to the boundary.
2) The condition |dH | ≤ h|Q|, where h is a real continuous, non-negative function, holds

in Σ and in its extensions across the boundary.
3) If ∂Σ has corners (vertices), the number of vertices with angles < π is at most 3.
4) The regular pieces of the boundary are curves that satisfy the equation [ImQ = 0].

Our theorem extends to M2
k × R a result that J. Choe [Ch] proved in R3. In his case,

condition (4) means that the regular pieces of the boundary are lines of curvature of Σ.
Our proof is different from Choe’s. This comes from the fact that he assumed |dH | ≡ 0
rather than our condition (2). It follows from H = constant that the complex quadratic
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formQ = ψdz2, where z is a complex parameter for Σ, is holomorphic, that is, ψ satisfies
the Cauchy-Riemann equation, whereas from our hypothesis (2) it merely follows a sort of
Cauchy-Riemann inequality for ψ ([AdCT] p. 285). Thus, we must work somewhat harder.
On the other hand, our proof becomes more conceptual, and, in fact, simpler.

In Section 2 we describe the complete surfaces for whichQ vanishes identically, classified
in [AbRo], and we extend this classification to the case of open surfaces (the corresponding
proof can be found in the appendix). In Section 3, we prove the above theorem, and in Sec-
tion 4 we apply our result to some particular cases, where condition (4) is more transparent.

2 Preliminaries

Let ψ : Σ → M2
κ × R be an immersion with mean curvature H and second fundamental

form σ.
We denote by ξ the vertical field in M2

κ ×R, that is to say, ξ = (0, 1) ∈ T (M2
κ ×R) =

T (M2
κ)×R. The tangent part of ξ to the surface will be denoted by T . If we denote by h the

last coordinate of the immersion, then T = ∇h.
Consider the following symmetric bilinear form on the surface,

σ̃(X , Y) = 2Hσ(X , Y) − κ 〈ξ, X〉 〈ξ, Y〉 = 2Hσ(X , Y) − κ dh(X )dh(Y),(1)

where 〈·, ·〉 denotes the scalar product in M2
κ × R. The (2, 0)-part of the complexification

of σ̃ is a quadratic form Q that was introduced first by Abresch and Rosenberg in [AbRo].
They showed that this quadratic differential is holomorphic when the mean curvature of the
surface is constant.

Given a conformal parameter z = u + iv on the surface, the Abresch-Rosenberg differ-
ential is given in this parameter byQ = Qdz2 where

Q = 2Hσ(Z , Z )− κ〈Z , ξ〉2 = 2Hσ(Z , Z )− κh2
z ;(2)

here hz means the partial derivative of h with respect to the complex vector field Z :=
1√
2
( ∂∂u − i ∂∂v).
The Codazzi equation for the surface has the following equivalent expression in terms of

the Abresch-Rosenberg differential (see [FerMi] eq. (2.6)):

Qz̄ = 2pH z̄ + λHH z ,(3)

that proves the holomorphicity ofQwhen the mean curvature is constant (here the subscript
z̄ means partial derivative with respect to the complex vector field Z̄ := 1√

2
( ∂
∂u
+ i ∂
∂v

)).

Remark 2.1. Since Q is the (2, 0)-part of the complexification of the 2-form σ̃, it is easy
to show that tangent fields of curves where Im Q = 0 correspond with directions that
diagonalize σ̃. Thus, if Σ is a surface in M2

κ × R and γ ⊂ S is a differentiable curve, γ
satisfies ImQ = 0 if and only if

σ̃(γ′ , Jγ′) = 0,
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where J denotes the π/2 rotation in the tangent bundle of S. For short, we will refer these
curves as “ σ̃-curvature lines”.

Q-umbilic surfaces in product spaces

In this subsection we will describe briefly the surfaces in M2
κ×R for which the differential

Q vanishes identically. For short, we will denote these surfaces by Sκ ⊂ M2
κ ×R.

In [AbRo] it is proved that a complete CMC surface in M2
κ×R with vanishing differential

Q must be embedded and invariant under rotations (that is, invariant under a 1-parameter
subgroup of isometries acting trivially on the factor R). Furthermore, if 4H 2 + κ > 0 then
such a surface must be the rotationally invariant spheres of Hsiang and Hsiang [HsHs] and
Pedrosa and Ritoré [PeRi], whereas for 4H 2 + κ ≤ 0 (which in particular implies κ < 0)
there are three possibilities. More explicitly, they are:
(i) A convex graph over a slice M2

κ × {ξ0}, with rotational symmetry of elliptic type.
(ii) A surface of catenoidal type, also invariant under elliptic rotations.
(iii) An orbit under some 2-dimensional solvable group of Iso(M2

κ × R). In this case the
rotations are of parabolic type and the surfaces converge, as 4H 2 ↗ −κ, to vertical
cylinders over horocycles of M2

κ.

Notice that, in particular, when 4H 2 + κ > 0 the only CMC (non-minimal) surfaces with
vanishing Abresch-Rosenberg differential are the rotation spheres, as it happens in the
Euclidean setting with the Hopf differential. However, for 4H 2+ κ ≤ 0 the previous result
gives that there are no CMC spheres in M2

κ ×R.
Actually, the above classification is true even if we do not assume the completeness of

the surfaces, as it is stated in the following theorem (see the appendix for its proof).

Theorem 2.1. Any surface Σ in M2
κ ×R with vanishing Abresch-Rosenberg differential is

part of one of the complete rotationally invariant CMC surfaces described above.

3 A Hopf theorem for open surfaces with boundary

Throughout this section, S will denote a simply-connected compact surface in M2
κ × R

with piece-wise regular boundary . We will call the vertices of the surface the (finite) set of
non-regular boundary points.

Our aim in this section is to prove the following theorem.

Theorem 3.1. Let S be a simply-connected compact surface with boundary as above im-
mersed in M2

κ ×R.
Assume that the following conditions are satisfied:

(i) The surface is contained as an interior set in a differentiable surface S̃ without bound-
ary.

(ii) On S̃ we have |dH | ≤ h|Q|, where H is the mean curvature of the surface, Q its
Abresch-Rosenberg differential, and h is a continuous non-negative function.

(iii) The number of vertices in ∂S with angle< π is less than or equal to 3.
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(iv) The imaginary part of Q vanishes on ∂S \ V. This means that the regular pieces of
the boundary of ∂S are integral curves of the directions that maximize or minimize the
values of the real quadratic form σ̃ on the unit circle.

Then, the surface is part of one of the rotational surfaces Sκ described in the subsection of
Section 2.

The following result, due to Alencar, do Carmo and Tribuzy, will be crucial in the proof of
Theorem 3.1.

Lemma 3.1 ([AdCT]). Let f a differentiable function defined on a complex domain U ⊂ C

and suppose that there exists a continuous real-valued non-negative function h such that
|fz̄| ≤ h(z)|f (z)| holds on U. Then either f ≡ 0 in U or it has isolated zeroes. Moreover, if
z0 is a zero of f, locally around z0 , there exists an integer k > 0 such that

f (z) = (z − z0)k g(z),(4)

where g is a continuous function with g(z0) �= 0.

As a consequence, if the Abresch-Rosenberg differential Q of a differentiable immersion
into M2

κ×R with mean curvature H satisfies |dH | ≤ h|Q| and does not vanish identically,
then its zeroes are isolated. Moreover, if z0 is a zero of Q and we writeQ = Qdz2 locally
around z0, then there exists an integer k > 0 such that

Q(z) = (z − z0)k g(z),(5)

where g is a continuous function with g(z0) �= 0.
To see that, use equation (3) to conclude from |dH | ≤ h|Q| that the functionQ(z) satisfies

the condition of Lemma 3.1.

In order to prove the theorem, let us first parametrize the surface S in a convenient way.
We can assume that S̃ is simply-connected and non-compact, and so we can parametrize

conformally the surface as ψ : Σ → M2
κ ×R, where Σ is either the complex plane or the

open unit disk, and ψ(Σ) = S̃. ThusΩ := ψ−1(S) is a compact planar domain bounded by
regular curves meeting at the vertices at the same angles as in S. We denote by

ψ0 = ψ|Ω : Ω → S ⊂ M2
κ ×R

the corresponding conformal parametrization for S.
On the other hand, by the Uniformization Theorem we can construct a biholomorphism

F : H+ → Int(Ω) = Ω \ ∂Ω,

where H+ = {z ∈ C : Im(z) > 0}, and F extends continuously to ∂H+ = R∪{∞} ⊂ C

with F(∂H+) = ∂Ω. We call V the set of points in ∂H+ applied into the vertices of ∂Ω.
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Moreover, the above map F extends conformally to any small neighbourhood of a point in
∂H+\V (see [Z], ChapterVII,Theor. 10.13).The following lemma deals with the behaviour
of the map F at the points in V.

Lemma 3.2. Let ξ0 ∈ V be a point mapped by F in a vertex of angle θ ∈]0, 2π[. Then for
ξ in a small neighbourhood of ξ0 we have

F ′(ξ) = (ξ − ξ0)
θ
π−1 G(ξ),(6)

where G(ξ) is an analytic function non-vanishing at ξ0.

Proof. Let U be a small semi disk centered at ξ0 in H+ = H+∪∂H+, and label W = F(U)
the corresponding neighbourhood of the vertex F(ξ0) in the planar domain Ω. Then W
is conformally equivalent to an angular sector Dθ of angle θ centered at the origin. Let
Φ : W → Dθ be the corresponding biholomorphism. Then Φ ◦ F is a continuous map from
the semi disk U into the angular sector Dθ which is conformal when restricted to interior
points and (Φ ◦ F)(ξ0) = 0. Thus it must be of the form

(Φ ◦ F)(ξ) = r(ξ − ξ0)θ/π,

for a suitable constant r > 0. Differentiating the above function we get equation (6) with

G(ξ) :=
(
π
rθ
Φ′(F(ξ))

)−1
, which is analytic and non-vanishing at ξ0.

Now consider the pull-back via F of theAbresch-Rosenberg differentialQ of the immersion
ψ, Q̂ = F∗(Q), which is a quadratic differential in H+.

To be more explicit, if Q is written in a conformal parameter z for the immersion ψ as
Q = Q(z)dz2 then the local expression of Q̂ in ξ := F−1(z) is

Q̂ = Q̂(ξ)dξ2, Q̂(ξ) = Q(F(ξ))F ′(ξ)2.(7)

By Lemma 3.1 we know that, ifQ does not vanish identically, its zeroes in Ω are isolated.
Since F is a biholomorphism from H+ to IntΩ, the same holds for the zeroes of Q̂ in
H+. Moreover, since F extends conformally to neighbourhoods of the points in ∂H+ \ V,
then Q̂ also extends to this set and its zeroes are also isolated. In addition, Lemma 3.1 and
equation (7) gives that in a neighbourhood of a zero ξ0 of Q̂ in H+∪ (∂H+ \V) there exists
an integer k > 0 such that

Q̂(ξ) = (ξ − ξ0)kĝ(ξ),(8)

where ĝ is a continuous function with ĝ(ξ0) �= 0.
In the next lemma we study the behaviour of this quadratic differential at the points in V.
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Lemma 3.3. Let Q̂ be the quadratic form on H+ defined above and assume that Q̂ does
not vanish identically. Take ξ0 ∈ V corresponding to a vertex of angle θ in Ω, and write
Q̂ = Q̂(ξ)dξ2 locally around ξ0. Then,
(a) If θ > π, Q̂ extends continuously to ξ0 with Q̂(ξ0) = 0, and the decomposition in

equation (8) is also valid for a suitable integer k > 0.
(b) If θ < π, either Q̂ approaches infinite as ξ → ξ0 and (8) holds with k = −1, or

limξ→ξ0 Q̂ is finite and the situation is as in (a).

Proof. At the points in V, equations (6) and (7) shows that in case (a) Q̂ extends continuously
with Q̂(ξ0) = 0 whereas in case (b) the limit exists but it could be infinite.

Moreover, by equation (7) we have that

Q̂ξ̄ = (Qz̄ ◦ F) (F ′)2 F ′.

Now using equation (3) and the hypothesis, we obtain

|Qz̄(z)| ≤ g(z)|dH | ≤ g(z)G(z)|Q(z)| = h(z)|Q(z)|,
where h(z) = g(z)G(z). Thus

|Q̂ξ̄(ξ)| ≤ Qz̄(F(ξ))|F ′(ξ)|F ′(ξ)2 ≤ h(F(ξ))|Q(F(ξ))||F ′(ξ)|F ′(ξ)2

= ĥ(F(ξ))|Q̂(F(ξ))|,
where ĥ(F(ξ)) = h(F(ξ))|F ′(ξ)|. It follows that Q̂ is in the conditions of Lemma 3.1, and
this proves (a).

In case (b) if the limit of Q̂ when ξ → ξ0 is finite we can apply the previous argument to
obtain the same decomposition for a suitable integer k ≥ 0.

If the limit of Q̂ is infinite, then 1/Q̂ is also in the conditions of Lemma 3.1 and so there
exists an integer k ≤ 0 such that equation (8) holds. On the other hand, by equations (6)
and (7) we have

Q̂(ξ) = Q(F(ξ))G(ξ)2(ξ − ξ0)β ,

where β = 2( θ
π
− 1) ∈ (−2, 2). Since the function ĝ in (8) does not vanish around ξ0, the

function

(ξ − ξ0)k−β =
Q(F(ξ))G(ξ)2

ĝ(ξ)

must be bounded at this point, which implies that k ≥ β > −2, and so the only possibility
is k = −1.

Now consider the line field X (possibly with singularities) given by

ImQ̂ = 0.(9)
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Remark 3.1. The previous equation gives rise to two different line fields (possibly with
singularities), that are orthogonal at the non-singular points. On the other hand, by the
hypothesis (iv) in the theorem the curves in ∂H+ \ V satisfy equation (9). Thus, we choose
as X the line field which is orthogonal to these curves at the boundary.

It is then clear that X is a line field in H+ ∪ ∂H+ with singularities at the zeroes of Q̂ and
also at the points in V ⊂ ∂H+. Thus, as a consequence of Lemma 3.3, ifQ does not vanish
identically on S, then the singularities of X are isolated.

Observe also that the line field dF(X ) in Ω satisfies ImQ = 0, and so its integral curves
are σ̃-curvature lines of the immersion ψ (see Remark 2.1).

Let us show now that X can be reflected over ∂H+ to a line field (with singularities)
in the whole sphere C. Indeed, let p ∈ ∂H+ be a non-singular point of X (in particular
p /∈ V) and α the integral curve of X passing through p . Then F(p ) is not a zero of Q
and therefore there are two orthogonal σ̃-curvature lines meeting at F(p ). As we saw above,
one of them is F ◦ α. By hypothesis (iv), the other one is precisely the regular component
of ∂Ω \ V containing F(p ). Since both directions must be orthogonal, the same holds for
their corresponding images under F (recall that F is conformal except at the points in V).
This means that α is orthogonal to ∂H+ and therefore it can be reflected across p to a
differentiable curve in the whole extended plane.

Thus, we have a well defined line field (with singularities) in C. We will still denote by
X that line field.

Proof of Theorem 3.1. We keep the notations introduced above. Reasoning by contradic-
tion, let us assume thatQ does not vanish identically on S, and so the same holds for Q̂.

Thus, X is a line field on the sphere C with isolated singularities. The Poincaré-Hopf
Theorem [Ho] states that

2 = χ(C) =
∑

Iξ0 (X ),

where Iξ0(X ) is the rotation index of X at the singularity ξ0 ∈ C.
As we know, the singularities of X occur at the points ξ0 ∈ H+ which are zeroes ofQ, at

their symmetric points ξ̄0 ∈ H− = {z ∈ C : Im(z) < 0}, and at the points in V ⊂ ∂H+ =
∂H−. Label by V0 ⊂ V the set of points corresponding to vertices with angle < π in S.

Let us compute the rotation index of X at a singularity ξ0. By the definition of X (see
equation (9)) we have that

Arg(Q̂)+ 2Arg(dξ) = Arg(Q̂)+ 2Arg(X ) = mπ,

where Q̂ = Q̂(ξ)dξ2 and m is an integer. Thus, the variation of the argument of X around
the singularity is

δArg(X ) = −1
2
δArg(Q̂).
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By taking into account the behaviour of Q̂ described in equation (8) and in Lemma 3.3, we
have that δArg(Q̂) = 2πk, where k is a positive integer if ξ0 ∈ H+ ∪H− ∪ (V \ V0), and
k ≥ −1 if ξ0 ∈ V0. Thus the rotation index Iξ0(X ) of X at ξ0 is

Iξ0(X ) =
δArg(X )

2π
=
−k

2
.

Then we have that Iξ0(X ) ≤ 0 for singularities in H+∪H−∪(V\V0), whereas Iξ0(X ) ≤ 1/2
for ξ0 ∈ V0. Thus we have

2 = χ(C) ≤ ∑
p∈V0

Iξ0 (X ) ≤ ∑
p∈V0

1

2
.

Now by the hypothesis (iii) in the theorem, the cardinality of V0 is at most 3 so

2 ≤ ∑
p∈V0

1

2
≤ 3

2
< 2,

which leads to a contradiction and proves that the Abresch-Rosenberg differential Q of S
vanishes identically. Theorem 2.1 completes the proof of the theorem. 2

4 Special cases

In some special cases, condition (iv) in Theorem 3.1 can be replaced by a more geometrical
one. Our aim in the following two lemmas is to give sufficient conditions for a curve γ ⊂ S
to be a solution of the equation that appears in condition (iv).

By definition, a horizontal curve on a surface S immersed in M2
κ ×R is a curve contained

in a horizontal slice M2
κ× {t0}, for some t0 ∈ R. On the other hand, a curve in S is said to

be vertical if it is an integral curve of the vector field T defined in Section 2.

Lemma 4.1. Let S be a surface in M2
κ × R and consider a differentiable curve γ ⊂ S.

Suppose that γ is either a horizontal or a vertical curvature line of S.
Then γ is a σ̃-curvature line of S.

Proof. Observe that if γ is horizontal then the height function h of S is constant along the
curve, and since T = ∇h then we have 〈T , γ′〉 = dh(γ′) = 0.

In case γ is vertical then γ′ = T and so 〈Jγ′, T 〉 = 0, where J denotes the rotation of
90º in the tangent bundle of S.

Thus in both situations we have

σ̃(γ′ , Jγ′) = 2Hσ(γ′, Jγ′)− κ〈T , γ′〉〈T , Jγ′〉 = 2Hσ(γ′, Jγ′) = 0,

where we have used that γ′ is a curvature line of the surface.
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Remark 4.1. Thanks to Joachimstahl’s theorem (see for example [Spi]), the condition on
γ to be a horizontal curvature line is equivalent to the fact that the surface intersect the
corresponding horizontal slice M2

κ × {t0} at a constant angle.

Lemma 4.2. Let S1 and S2 be two surfaces in M2
κ × R with normal vectors η1 and η2

respectively and the same mean curvature H . Let γ ⊂ S1 ∩ S2 be a differentiable curve.
Suppose that S1 and S2 intersect along γ at a constant angle. Assume also that
1. If both surfaces are tangent at γ, then η1 = η2 on γ.
2. If the intersection between the surfaces is not tangent, then their respective angle functions

satisfy 〈η1, ξ〉 = −〈η2, ξ〉.
Then γ is a σ̃-curvature line for S1 if and only if it is a σ̃-curvature line for S2.

Proof. Let σ̃j (X , Y) = 2Hσj (X , Y) − κ〈X , ξ〉〈Y, ξ〉 the Abresch-Rosenberg 2-form on Sj ,
j = 1, 2. Denote also by J 1 and J 2 the π/2 rotation in the tangent bundle of S1 and S2

respectively.
In the first case we have that J 1γ

′ = J 2γ
′ and so σ̃1(γ′ , J 1γ

′) = σ̃2(γ′ , J 2γ
′) which gives

the conclusion.

Suppose now that we are in case 2, and write

η1 = α1J 2γ
′ + βη2,

η2 = α2J 1γ
′ + βη1,

where α1 = 〈η2, J 1γ
′〉/〈γ′, γ′〉, α2 = 〈η1, J 2γ

′〉/〈γ′, γ′〉 and β = 〈η1, η2〉. By hypothesis,
β is constant and so by differentiation we obtain

0 = 〈∇γ′η1, η2〉+ 〈η1,∇γ′η2〉,
where ∇ is the Levi-Civita connection in M2

κ × R. Let us compute the first term in the
expression of σ̃2(γ′ , J 2γ

′).

σ2(γ′, J 2γ
′) = −〈∇γ′η2, J 2γ

′〉 = −1
α1
〈∇γ′η2, η1〉

=
1
α1
〈∇γ′η1, η2〉 = −α2

α1
σ1(γ′ , J 1γ

′).

Denote by T j the tangent projection of ξ to Sj , T j = ξ − 〈ξ, ηj 〉ηj , j = 1, 2, and observe
that

〈J 1γ
′, ξ〉 = 〈J 1γ

′ , T 1〉 = 1

α2
〈η2, T 1〉 = 1

α2

(〈η2, ξ〉 − 〈η1, ξ〉〈η1, η2〉
)
,

and analogously

〈J 2γ
′, ξ〉 = 1

α1

(〈η1, ξ〉+ 〈η2, ξ〉〈η1, η2〉
)
.

Now using that by hypothesis 〈η2, ξ〉 = −〈η1, ξ〉 we infer that

〈J 2γ
′, ξ〉 = −α2

α1
〈J 1γ

′, ξ〉,
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and therefore

σ̃2(γ′ , J 2γ
′) =

−α2

α1
σ̃1(γ′, J 1γ

′),

which proves the lemma.

As a result of the previous lemmas we have the following consequence of Theorem 3.1.

Corollary 4.1. Let Sbe an immersed disk-type CMC surface in M2
κ×R satisfying conditions

(i), (ii) and (iii) in Theorem 3.1. Suppose also that the every regular component γ of ∂S is
of one of the following types:
1. γ is a horizontal or a vertical curvature line of S.
2. γ is a tangent intersection of S with a rotationalsurface Sκ with the same mean curvature

vector.
3. γ is a transverse intersection at a constant angle of S with a rotational surface Sκ with

the same mean curvature and whose angle function is opposite to the angle function of
S along γ.

Then, S is part of one of the rotational surfaces described in the subsection of Section 2.

Remark 4.2. The particular case when ∂S is a horizontal curvature line without singular
points was also treated in [CaLi].

5 Appendix

In this section we will prove the Theorem 2.1 concerning the classification of the (not
necessarily complete or CMC) surfaces with vanishing Abresh-Rosenberg differential Qdz2.
We start by fixing some notation.

Fundamental equations for surfaces in product spaces

Let ψ : Σ → M2
κ × R be a conformal immersion with mean curvature H and height

function h. Let z be a conformal parameter on the surface for which the induced metric on
Σ is written as ds2 = λ|dz|2.

Let η be the unit normal vector field to the immersion and define u := 〈ξ, η〉. Notice
that u2 ≤ 1. Finally, let p (z)dz2, p := −〈ηz ,ψz〉, be the classical Hopf differential of the
immersion.

Then the fundamental equations of the immersion take the form (see [FerMi]):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.1) p z̄ =
λ

2
(H z + κuhz )

(C.2) hzz̄ =
uλH

2
(C.3) uz = −Hhz − 2p

λ
hz̄

(C.4)
4|hz|2
λ

= 1− u2

(10)

We call the set {λ, u, H , p , h} the fundamental data of the surface.
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Remark 5.1. (C.1), (C.2), (C.3) and (C.4) are the integrability conditions for the funda-
mental data of a conformal immersion in M2

κ × R. Indeed, it can be shown that if Σ is a
simply connected surface and {λ, u, H , p , h} : Σ → R+ × [−1, 1] ×R × C × R satisfy
such conditions, there exists a unique immersed surface with the given fundamental data.
For a proof and further details, see Theorem 2.3 in [FerMi].

Remark 5.2 ([GMM]). A CMC surface in M2
κ × R is rotationally invariant if and only

there exists a conformal parameter w such that the fundamental data {λ, u, H , p , h} depend
only on the real part of w. Moreover, the profile curve is given by Im(w) = const.

Proof of Theorem 2.1

Let ϕ : Σ →M2
κ×R be a surface with vanishing Abresch-Rosenberg differential and with

fundamental data {λ, u, H , p , h} in a conformal parameter z on Σ.
Since Q ≡ 0, by [FerMi, Prop. 2.5] the mean curvature H of the surface must be constant.

Also by equation (2) we obtain that

2Hp = κh2
z .(11)

Therefore, if H = 0 the height function h is constant and so the surface is contained
in a horizontal slice M2

κ × {t0}, that corresponds with the example (i) in the previous
classification. Thus we can assume without loss of generality that H is not zero.

Introducing (11) in (C.3) and using (C.4) we get

uz = −Hhz

(
1+

κ

4H 2
(1− u2)

)
.(12)

Suppose first that u is constant. Then uz ≡ 0 and so u2 = 1+ 4H 2/κ, which in particular
gives that 4H 2 + κ ≤ 0 (recall that u2 ≤ 1). Equation (C.2) takes now the form

hzz̄ =
2Hu

1− u2
|hz |2

(notice that u2 �= 1 since the surface is not minimal). If u = 0 then h is harmonic, and by
(C.4) the metric is flat. Thus we have a piece of a right cylinder over a horocycle, which
corresponds to the limit case in (iii).

Suppose now that u is non-zero and define the new parameter

s := Exp
(−2Hu

1− u2
h(z)
)

.

From the above equation it is straightforward to check that s is harmonic with respect to z,
and therefore there exists a local conformal parameter w such that Re(w) = s. Let us call
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Σ′ ⊂ Σ to an open domain where w is defined. With respect to this parameter we have
h(w) = h(s) = 1−u2

2Hu
log(1/s), and so the conformal factor of the metric is

λ =
4|hw|2
1− u2

=
−κ

4H 2 s2
.

This means that all the fundamental data {λ, u, H , p , h} are well defined for w ∈ R+×R ⊇
Σ′ and divergent curves on R+ ×R have infinite length with respect to λ|dw|2, and hence
this metric is complete on R+ ×R. Thus, the surface can be extended (see Remark 5.1) to
a complete CMC surface with vanishing Abresch-Rosenberg differential.

Finally assume that u is non-constant. Using (12) and (C.2), and after some computations
we have

uzz̄ =
−2u

1− u2
|uz|2.

Define s := arctanh(u). By the above equation szz̄ = 0 and therefore there exists a local
conformal parameter defined on an open set Σ′ ⊂ Σ with Re(w) = s. With respect to this
new parameter we have that u = tanh(s), and so, in view of equation (12), we conclude that
h(w) depends only on s, and h′(s) = −4H (1− u2)/(4H 2+ κ(1− u2)). Thus we have

λ =
4|hw|2
1− u2

=
16H 2(1− u2)

(4H 2 + κ(1− u2))2
.

We now distinguish two cases. First, assume that 4H 2 + κ ≤ 0. In this case we reason as
before. Indeed, observe that all the fundamental data are well-defined for w taking values in
I ×R, where I = (tanh−1(−u0), tanh−1(u0)) � R, u0 =

√
1+ 4H 2/κ, and so the surface

can be extended to a larger domain (see Remark 5.1). The above equation shows that the
extended metric has the property that divergent curves in I × R have infinite length, and
hence is complete, which proves the lemma in case 4H 2 + κ ≤ 0.

To conclude suppose that 4H 2 + κ > 0 and let us see that in this case the surface can
be extended to a compact (and therefore complete) CMC surface. Notice first that all the
fundamental data are well-defined for all the values w ∈ C and they depend only on the
real part of the parameter w, which means that the surface is rotational and the profile curve
is given by Im(w) = const. (see Remark 5.2). Moreover, all the fundamental data can be
extended to s = ±∞, and u(±∞) = ±1, which means that the tangent plane at the limit
points is horizontal (recall that, by definition, u is the cosine of the angle between the normal
map and the vertical direction).

Finally observe that the transformation s �→ −s induces the following symmetries in the
fundamental data of the surface:

{λ, u, H , p , h} �→ {λ,−u, H , p ,−h},

this gives that the profile curve is symmetric with respect to a horizontal slice, and therefore
the two end points of the surface lie in the same vertical line, which is precisely the rotation
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axis of the surface. As a consequence, the profile curve can be reflected over that axis giving 
rise to a compact surface of revolution with vanishingAbresch-Rosenberg differential, which 
concludes the proof 2

References

[AbRo] Abresch U., Rosenberg H.: A Hopf differential for constant mean curvature surfaces in S2 ×R

and H2 × R. Acta Math. 193 (2004), 141–174
[AdCT] Alencar H., do Carmo M. P., Tribuzy R.: A theorem of Hopf and the Cauchy-Riemann in-

equality. Commun. Analysis Geometry 15 (2007), 283–298
[CaLi] de Cavalcante M. P., de Lira J. H.: Examples and structure of CMC surfaces in some Rie-

mannian and Lorentzian homogeneus spaces. Michigan Math. J. 55 (2007), 163–181
[Ch] Choe J.: Sufficient conditions for constant mean curvature surfaces to be round. Math. Ann.

323 (2002), 143–156
[FerMi] Fernández I., Mira P.:A characterization of constant mean curvature surfaces in homogeneous

3-manifolds; to appear in Differential Geometry Appl.
[GMM] Gálvez J. A., Martínez A., Mira P.: The Bonnet problem for surfaces in homogeneous

3-manifolds. Preprint
[Ho] Hopf H.: Differential Geometry in the Large. Lecture Notes in Mathematics 1.000. Springer-

Verlag 1983
[HsHs] Hsiang W.-Y., Hsiang W.-T.: On the uniqueness of isoperimetric solutions and imbedded soap

bubbles in noncompact symmetric spaces I. Invent. Math. 98 (1989), 39–58
[PeRi] Pedrosa R., Ritoré M.: Isoperimetric domains in the Riemannian product of a circle with

a simply connected space form and applications to free boundary problems. Indiana Univ. 
Math. J. 48 (1999), 1357–1394

[Spi] Spivak M.: A comprehensive introduction to Differential Geometry III. Publish or Perish,
Berkeley 1979

[Zy] Zygmund A.: Trigonometric series, Second Edition, vol. I. Cambridge University Press 
1959
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