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INTRODUCTION

There are many results related to the algebraic and geometric classification of low-dimensional algebras

in the varieties of Jordan, Lie, Leibniz and Zinbiel algebras; for algebraic classifications see, for example,

[1,9–12,15,17,22,26,29]; for geometric classifications and descriptions of degenerations see, for example,

[1,4,5,8,16–19,24,26,28–30,34]. Here we give the algebraic and geometric classification of dual mock-Lie

algebras of small dimensions.

A while ago, a new class of algebras emerged in the literature – the so-called mock-Lie algebras. These

are commutative algebras satisfying the Jacobi identity. These algebras are locally nilpotent, so there are

no nontrivial simple objects. Nevertheless, they seem to have an interesting structure theory which gives

rise to interesting questions. And, after all, it is always curios to play with a classical notion by modifying

it here and there and see what will happen – in this case, to replace in Lie algebras anti-commutativity by

commutativity.

In [23] (see also [40]) that a finite-dimensional mock-Lie algebra does not admit a finite-dimensional

faithful representation. This class of algebras appeared in the literature under different names, reflecting,

perhaps, the fact that it was considered from different viewpoints by different communities, sometimes

not aware of each other’s results. Apparently, for the first time these algebras appeared in [37], where

an example of infinite-dimensional solvable but not nilpotent mock-Lie algebra was given (reproduced

in [38, §4.1, Example 1]); further examples can be found in [38, §4.1, Example 2 and §5.4, Exercise 4]

and [36, §2.5]. In this and other Jordan-algebraic literature these algebras are called just “Jordan algebras

of nil index 3”. In [32] they are called “Lie-Jordan algebras” (superalgebras are also considered there), and,

finally, in the recent papers [7] and [3] the term “Jacobi–Jordan algebras” was used. The term “mock-Lie”
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comes from [14, §3.9], where the corresponding operad appears in the list of quadratic cyclic operads with

one generator. Despite that Getzler and Kapranov downplayed this class of algebras by (unjustly, in our

opinion) calling them “pathological” (basing on the fact that the mock-Lie operad is not Koszul), we prefer

to stick to the term “mock-Lie”. These algebras live a dual life: as members of a very particular class of

Jordan algebras, and as strange cousins of Lie algebras

An entertaining fact (though not related to what follows): algebras over the operad Koszul dual to the

mock-Lie operad can be characterized in three equivalent ways:

• anticommutative antiassociative algebras;

• anticommutative 2-Engel algebras;

• anticommutative alternative algebras.

Here by antiassociative algebras we mean, following [32] and [31], algebras satisfying the identity (xy)z =
−x(yz), and the 2-Engel identity is (xy)y = 0. Another entertaining fact (noted, for example, in [32]) is

that mock-Lie algebras can be produced from antiassociative algebras the same way as they are produced

from associative ones.

The algebraic classification of nilpotent algebras will be achieved by the calculation of central extensions

of algebras from the same variety which have a smaller dimension. Central extensions of algebras from

various varieties were studied, for example, in [2, 35, 39]. Skjelbred and Sund [35] used central extensions

of Lie algebras to classify nilpotent Lie algebras. Using the same method, all non-Lie central extensions of

all 4-dimensional Malcev algebras [21], all non-associative Jordan central extensions of all 3-dimensional

Jordan algebras, all anticommutative central extensions of all 3-dimensional anticommutative algebras,

all central extensions of 2-dimensional algebras, and some others were described. One can also look at

the classification of 3-dimensional nilpotent algebras [13], 4-dimensional nilpotent associative algebras

[12], 4-dimensional nilpotent Novikov algebras [26], 4-dimensional nilpotent bicommutative algebras, 4-

dimensional nilpotent commutative algebras in [13], 5-dimensional nilpotent restricted Lie agebras [10],

5-dimensional nilpotent Jordan algebras [20], 5-dimensional nilpotent anticommutative algebras [13], 6-

dimensional nilpotent Lie algebras [9, 11], 6-dimensional nilpotent Malcev algebras [22], 6-dimensional

nilpotent Tortkara algebras [15, 17], 6-dimensional nilpotent binary Lie algebras [1].

Degenerations of algebras is an interesting subject, which has been studied in various papers. In particu-

lar, there are many results concerning degenerations of algebras of small dimensions in a variety defined by

a set of identities. One of important problems in this direction is a description of so-called rigid algebras.

These algebras are of big interest, since the closures of their orbits under the action of the generalized linear

group form irreducible components of the variety under consideration (with respect to the Zariski topology).

For example, rigid algebras in the varieties of all 4-dimensional Leibniz algebras [24], all 4-dimensional

nilpotent Novikov algebras [26], all 4-dimensional nilpotent bicommutative algebras, all 4-dimensional

nilpotent assosymmetric algebras, all 6-dimensional nilpotent binary Lie algebras [1], all 6-dimensional

nilpotent Tortkara algebras [16], and in some other varieties were classified. There are fewer works in

which the full information about degenerations was given for some variety of algebras. This problem was

solved for 2-dimensional pre-Lie algebras, for 2-dimensional terminal algebras, for 3-dimensional Novikov

algebras, for 3-dimensional Jordan algebras, for 3-dimensional Leibniz algebras, for 3-dimensional anti-

commutative algebras, for 3-dimensional nilpotent algebras in [13], for 4-dimensional Lie algebras in [8],

for 4-dimensional Zinbiel algebras, for 4-dimensional nilpotent Leibniz algebras, for 4-dimensional nilpo-

tent commutative algebras in [13], for 5-dimensional nilpotent Tortkara algebras in [17], for 5-dimensional

nilpotent anticommutative algebras in [13], for 6-dimensional nilpotent Lie algebras in [18, 34], for 6-

dimensional nilpotent Malcev algebras in [28], for 2-step nilpotent 7-dimensional Lie algebras [5], and for

all 2-dimensional algebras in [29].

1. THE ALGEBRAIC CLASSIFICATION OF DUAL MOCK-LIE ALGEBRAS

1.1. The algebraic classification of [nilpotent] dual mock-Lie algebras. Let A and V be a dual

mock-Lie algebra and a vector space and Z2
D
(A,V) denote the space of skew-symmetric bilinear maps

θ : A ×A −→ V satisfying θ(xy, z) = −θ(x, yz). For f ∈ Hom(A,V), we introduce δf ∈ Z2
D
(A,V)
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by the equality δf (x, y) = f(xy) and define B2 (A,V) = {δf | f ∈ Hom (A,V)}. One can easily

check that B2(A,V) is a linear subspace of Z2
D
(A,V). Let us define H2

D
(A,V) as the quotient space

Z2
D
(A,V)

/

B2 (A,V). The equivalence class of θ ∈ Z2
D
(A,V) in H2

D
(A,V) is denoted by [θ].

Suppose now that dimA = m < n and dimV = n − m. For any dual mock-Lie bilinear map θ :
A × A −→ V, one can define on the space Aθ := A ⊕ V the dual mock-Lie bilinear product [−,−]

Aθ

by the equality [x+ x′, y + y′]
Aθ

= xy + θ (x, y) for x, y ∈ A, x′, y′ ∈ V. The algebra Aθ is called an

(n −m)-dimensional central extension of A by V. It is also clear that Aθ is nilpotent if and only if so is

A. The algebra Aθ is dual mock-Lie if and only if A is dual mock-Lie and θ is dual mock-Lie.

For a dual mock-Lie bilinear form θ : A ×A −→ V, the space θ⊥ = {x ∈ A | θ (A, x) = 0} is called

the annihilator of θ. For a dual mock-Lie algebra A, the ideal Ann (A) = {x ∈ A | Ax = 0} is called the

annihilator of A. One has

Ann (Aθ) =
(

θ⊥ ∩Ann (A)
)

⊕V.

Any n-dimensional dual mock-Lie algebra with non-trivial annihilator can be represented in the form Aθ

for some m-dimensional dual mock-Lie algebra A, an (n − m)-dimensional vector space V and θ ∈
Z2
D
(A,V), where m < n (see [21, Lemma 5]). Moreover, there is a unique such representation with m =

n−dimAnn(A). Note also that the last mentioned equality is equivalent to the condition θ⊥∩Ann (A) = 0.

Let us pick some φ ∈ Aut (A), where Aut (A) is the automorphism group of A. For θ ∈ Z2
D
(A,V), let

us define (φθ) (x, y) = θ (φ (x) , φ (y)). Then we get an action of Aut (A) on Z2
D
(A,V) that induces an

action of the same group on H2
D
(A,V) .

Definition 1. Let A be an algebra and I be a subspace of Ann(A). If A = A0 ⊕ I then I is called an

annihilator component of A.

For a linear space U, the Grassmannian Gs (U) is the set of all k-dimensional linear subspaces of U. For

any s ≥ 1, the action of Aut (A) on H2
D
(A,C) induces an action of the same group on Gs (H

2
D
(A,C)).

Let us define

Ts (A) =

{

W ∈ Gs

(

H2
D
(A,C)

)

∣

∣

∣

∣

∩
[θ]∈W

θ⊥ ∩ Ann (A) = 0

}

.

Note that Ts (A) is stable under the action of Aut (A).
Let us fix a basis e1, . . . , es of V, and θ ∈ Z2

D
(A,V). Then there are unique θi ∈ Z2

D
(A,C) (1 ≤ i ≤ s)

such that θ (x, y) =
s
∑

i=1

θi (x, y) ei for all x, y ∈ A. Note that θ⊥ = θ⊥1 ∩ θ⊥2 · · · ∩ θ⊥s in this case. If

θ⊥ ∩ Ann (A) = 0, then by [21, Lemma 13] the algebra Aθ has a nontrivial annihilator component if

and only if [θ1] , [θ2] , . . . , [θs] are linearly dependent in H2
D
(A,C). Thus, if θ⊥ ∩ Ann (A) = 0 and the

annihilator component of Aθ is trivial, then 〈[θ1] , . . . , [θs]〉 is an element of Ts (A). Now, if ϑ ∈ Z2
D
(A,V)

is such that ϑ⊥ ∩Ann (A) = 0 and the annihilator component of Aϑ is trivial, then by [21, Lemma 17] one

has Aϑ
∼= Aθ if and only if 〈[θ1] , [θ2] , . . . , [θs]〉 , 〈[ϑ1] , [ϑ2] , . . . , [ϑs]〉 ∈ Ts (A) belong to the same orbit

under the action of Aut (A), where ϑ (x, y) =
s
∑

i=1

ϑi (x, y) ei.

Hence, there is a one-to-one correspondence between the set of Aut (A)-orbits on Ts (A) and the set of

isomorphism classes of central extensions of A by V with s-dimensional annihilator and trivial annihilator

component. Consequently to construct all n-dimensional central extensions with s-dimensional annihilator

and trivial annihilator component of a given (n − s)-dimensional algebra A one has to describe Ts(A),
Aut(A) and the action of Aut(A) on Ts(A) and then for each orbit under the action of Aut(A) on Ts(A)
pick a representative and construct the algebra corresponding to it.

We will use the following auxiliary notation during the construction of central extensions. Let A be an

dual mock-Lie algebra with the basis e1, e2, . . . , en. ∆ij : A×A −→ C denotes the dual mock-Lie bilinear

form defined by the equalities ∆ij (ei, ej) = −∆ij (ej , ei) = 1 and ∆ij (el, em) = 0 for {l, m} 6= {i, j}. In

this case ∆ij with 1 ≤ i < j ≤ n form a basis of the space of dual mock-Lie bilinear forms on A. We also

denote by

D
i
j the jth i-dimensional dual mock-Lie algebra
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1.2. The algebraic classification of low dimensional dual mock-Lie algebras. Thanks to [27], we have

the classification of all 6-dimensional nilpotent anticommutative algebras and choosing only dual mock-Lie

algebras from the list of algebras presented in [27] we have the classification of all low dimensional dual

mock-Lie algebras. By the straightforward verification, it follows that only M01, M03, M04, M23, M24, and

M26 satisfy antiassociativity low. We thus have the following table.

D
6
01 : e1e2 = e3

D
6
02 : e1e2 = e5 e3e4 = e5

D
6
03 : e1e2 = e4 e1e3 = e5

D
6
04 : e1e3 = e5 e2e4 = e6

D
6
05 : e1e2 = e5 e1e3 = e6 e3e4 = e5

D
6
06 : e1e2 = e4 e1e3 = e5 e2e3 = e6

1.3. The algebraic classification of 7-dimensional dual mock-Lie algebras. Thanks to [5] we have the

classification of all indecomposible 7-dimensional 2-step nilpotent dual mock-Lie algebras.

D
7
07 : e1e2 = e7 e3e4 = e7 e5e6 = e7

D
7
08 : e1e2 = e6 e1e4 = e7 e3e5 = e7

D
7
09 : e1e2 = e6 e1e5 = e7 e3e4 = e6 e2e3 = e7

D
7
10 : e1e2 = e5 e2e3 = e6 e2e4 = e7

D
7
11 : e1e2 = e5 e2e3 = e6 e3e4 = e7

D
7
12 : e1e2 = e5 e2e3 = e6 e2e4 = e7 e3e4 = e5

D
7
13 : e1e2 = e5 e1e3 = e6 e2e4 = e7 e3e4 = e5

The key tool in the classification of dual mock-Lie algebras will be the following obvious Lemma.

Lemma 2. If the i-dimensional algebra D
i
j does not have nontrivial dual mock-Lie central extension, then

for every k ∈ N the (i + k)-dimensional algebra D
i+k
j does not have nontrivial dual mock-Lie central

extensions.

Hence, for find non-2-step nilpotent 7-dimensional dual mock-Lie algebras we need to calculate all non-

split 2-dimensional central extensions of all 5-dimensional dual mock-Lie algebras and all non-split 1-

dimensional central extensions of all 6-dimensional dual mock-Lie algebras. By some easy calculation, we

have the cohomology spaces of these algebras.

D
5 Multiplication table H2

D
(D5)

D
5
01 e1e2 = e3 〈[∆14], [∆15], [∆24], [∆25], [∆45]〉

D
5
02 e1e2 = e5 e3e4 = e5 〈[∆13], [∆14], [∆23], [∆24]〉

D
5
03 e1e2 = e4 e1e3 = e5 〈[∆23]〉

D
6 Multiplication table H2

D
(D6)

D
6
04 e1e3 = e5 e2e4 = e6 〈[∆12], [∆14], [∆23], [∆34]〉

D
6
05 e1e2 = e5 e1e3 = e6 e3e4 = e5 〈[∆14], [∆23], [∆24]〉

D
6
06 e1e2 = e4 e1e3 = e5 e2e3 = e6 〈[∆16]− [∆25] + [∆34]〉

Analizing the cohomology spaces of these algebras, we should conclude that only the algebra D
6
06 has a

non-split dual mock-Lie central extension. Now, we have a new 7-dimensional dual mock-Lie algebra

D
7
14 : e1e2 = e4 e1e3 = e5 e1e6 = e7 e2e3 = e6 e2e5 = −e7 e3e4 = e7.

1.4. The algebraic classification of 8-dimensional dual mock-Lie algebras. It is easy to see that the

algebra D
7
14 has no non-trivial dual-mock-Lie central extentions. Hence, we will consider the cohomology

space only for the following algebras.
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D
7 Multiplication table H2

D
(D7)

D
7
06 e1e2 = e4 e1e3 = e5 e2e3 = e6 〈[∆16]− [∆25] + [∆34], [∆17], [∆27], [∆37]〉

D
7
07 e1e2 = e7 e3e4 = e7 e5e6 = e7

〈

[∆13], [∆14], [∆15], [∆16], [∆23], [∆24],
[∆25], [∆26], [∆35], [∆36], [∆45], [∆46]

〉

D
7
08 e1e2 = e6 e1e4 = e7 e3e5 = e7 〈[∆13], [∆14], [∆15], [∆23], [∆24], [∆25], [∆34], [∆45]〉

D
7
09 e1e2 = e6 e1e5 = e7 e3e4 = e6 e2e3 = e7 〈[∆13], [∆14], [∆24], [∆25], [∆35], [∆45]〉

D
7
10 e1e2 = e5 e2e3 = e6 e2e4 = e7 〈[∆13], [∆14], [∆34]〉

D
7
11 e1e2 = e5 e2e3 = e6 e3e4 = e7 〈[∆13], [∆14], [∆24]〉

D
7
12 e1e2 = e5 e2e3 = e6 e2e4 = e7 e3e4 = e5 〈[∆13], [∆14]〉

D
7
13 e1e2 = e5 e1e3 = e6 e2e4 = e7 e3e4 = e5 〈[∆14], [∆23]〉

From here, only the algebra D7
06 maybe have a non-trivial dual mock-Lie central extension. We will find it.

The automorphism group Aut(D7
06) consists of invertible matrices of the form

ϕ =



















a b c 0 0 0 0
d e f 0 0 0 0
g h k 0 0 0 0
l m n ae− db af − dc bf − ec p

q r s ah− gb ak − gc bk − hc i

j t u dh− ge dk − gf ek − hf v

w x y 0 0 0 z



















.

Let us the notations

∇1 := [∆16]− [∆25] + [∆34], ∇2 := [∆17], ∇3 := [∆27], ∇4 := [∆37].

Take θ =
∑4

i=1 αi∇i ∈ H2
D
(D7

06,C). If ϕ ∈ Aut(D7
06), then

ϕT



















0 0 0 0 0 α1 α2

0 0 0 0 −α1 0 α3

0 0 0 α1 0 0 α4

0 0 −α1 0 0 0 0
0 α1 0 0 0 0 0

−α1 0 0 0 0 0 0
−α2 −α3 −α4 0 0 0 0



















ϕ =



















0 β∗
1 β∗

2 0 0 α∗
1 α∗

2

−β∗
1 0 β∗

3 0 −α∗
1 0 α∗

3

−β∗
2 −β∗

3 0 α∗
1 0 0 α∗

4

0 0 −α∗
1 0 0 0 0

0 α∗
1 0 0 0 0 0

−α∗
1 0 0 0 0 0 0

−α∗
2 −α∗

3 −α∗
4 0 0 0 0



















α∗

1 = −(ceg − bfg − cdh+ afh+ bdk − aek)α1,

α∗

2 = (−di+ gp+ av)α1 + azα2 + dzα3 + gzα4,

α∗

3 = (−ei+ hp+ bv)α1 + bzα2 + ezα3 + hzα4,

α∗

4 = (−fi+ kp+ cv)α1 + czα2 + fzα3 + kzα4.

Hence, φ〈θ〉 = 〈θ∗〉, where θ∗ =
∑4

i=1 α
∗
i∇i. We are interesting in elements with α1 6= 0 and

(α2, α3, α4) 6= (0, 0, 0). Without loss of generality, we can suppose that α4 6= 0. So, by choosing the

following non-zero elements d = h = a = e = k = 1 and

v = 1−
α2

α4
, i = 1 +

α3

α4
, z =

α1

α4
, c = −1 +

1

α1

we get the representative 〈∇1 + ∇4〉. Now we have the new 8-dimensional dual mock-Lie algebra D
8
36

constructed from D
7
06:

D
8
36 : e1e2 = e4 e1e3 = e5 e2e3 = e6 e1e6 = e8 e2e5 = −e8 e3e4 = e8 e3e7 = e8.

Thanks to [4] we have the list of all 8-dimensional 2-step nilpotent indecomposible Lie algebras:
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D
8
15 : e1e2 = e4 e3e2 = e5 e6e7 = e8

D
8
16 : e1e2 = e5 e3e4 = e5 e6e7 = e8

D
8
17 : e1e2 = e7 e3e4 = e8 e5e6 = e7 + e8

D
8
18 : e1e2 = e7 e4e5 = e7 e1e3 = e8 e4e6 = e8

D
8
19 : e1e2 = e7 e4e5 = e7 e3e4 = e8 e5e6 = e8

D
8
20 : e1e2 = e7 e3e4 = e7 e5e6 = e7 e4e5 = e8

D
8
21 : e1e2 = e7 e3e4 = e7 e5e6 = e7 e2e3 = e8 e4e5 = e8

D
8
22 : e1e2 = e6 e4e5 = e6 e2e3 = e7 e1e3 = e8

D
8
23 : e1e2 = e6 e4e5 = e6 e2e3 = e7 e3e4 = e8

D
8
24 : e1e2 = e6 e2e3 = e7 e4e5 = e7 e3e4 = e8

D
8
25 : e1e2 = e6 e2e3 = e7 e4e5 = e7 e3e4 = e8 e5e1 = e8

D
8
26 : e1e2 = e6 e1e3 = e7 e1e4 = e8 e2e5 = e7

D
8
27 : e1e2 = e6 e1e3 = e7 e1e4 = e8 e2e3 = e8 e4e5 = e7

D
8
28 : e1e2 = e6 e1e3 = e7 e1e5 = e8 e2e4 = e8 e3e4 = e6

D
8
29 : e1e2 = e6 e1e3 = e7 e2e3 = e8 e1e4 = e8 e2e5 = e7

D
8
30 : e1e2 = e6 e1e3 = e7 e2e3 = e8 e1e4 = e8 e2e5 = e7 e4e5 = e6

D
8
31 : e1e2 = e6 e2e3 = e7 e3e4 = e7 e4e5 = e8

D
8
32 : e1e2 = e6 e2e3 = e7 e3e4 = e8 e4e5 = e7 e5e1 = e7

D
8
33 : e1e2 = e5 e2e3 = e6 e3e4 = e7 e4e1 = e8

D
8
34 : e1e2 = e5 e1e3 = e6 e2e3 = e7 e1e4 = e8

D
8
35 : e1e2 = e5 e1e3 = e6 e2e4 = e6 e2e3 = e7 e1e4 = e8

1.5. The algebraic classification of 9-dimensional dual mock-Lie algebras. The description of 2-step

nilpotent Lie algebras is not finished now. There is only some particular classification of these algebras [33].

Here, we give the classification of all complex 9-dimensional non-Lie dual mock-Lie algebras. Analyzing

the dimension of cohomology spaces of i-dimensional 2-step nilpotent Lie algebras (i = 3, 4, 5, 6, 7), we

conclude that only D
7
06 maybe give some non-trivial (9− i)-dimensional dual mock-Lie cenrtal extensions.

Hence, we will calculate 2-dimensional dual mock-Lie central extensions of D7
06 and 1-dimensional dual

mock-Lie extensions of 8-dimensional 2-step nilpotent Lie algebras.

1.5.1. 2-dimensional dual mock-Lie central extensions of 7-dimensional 2-step nilpotent Lie algebras.

Here we are considering 2-dimensional dual mock-Lie central extensions of D7
06. Consider the vector space

generated by the following two cocycles

θ1 = α1∇1 + α2∇2 + α3∇3 + α4∇4

θ2 = β2∇2 + β3∇3 + β4∇4.

It is easy to see, that we can suppose that α1β2 6= 0. Then by choosing the following nonzero elements

a = −
β3

α1
, b = −

β4

β2
, c =

1

β2
, d =

β2

α1
, h = 1, i =

α3

α1
, p = −

α4

α1
, v = −

α2

α1
, z = 1,

we have the representative 〈∇1,∇4〉 which gives the following 9-dimensional algebra:

D
9
37 : e1e2 = e4 e1e3 = e5 e2e3 = e6 e1e6 = e8 e2e5 = −e8 e3e4 = e8 e3e7 = −e9.

1.5.2. 1-dimensional dual mock-Lie central extensions of 8-dimensional 2-step nilpotent Lie algebras. By

Lemma 2 and [4, Theorem 3.8, 3.9], we have the following dual mock-Lie algebras have nontrivial dual

mock-Lie extensions.

D
8 H2

D
(D8)

D
8
06 〈[∆16]− [∆25] + [∆34], [∆17], [∆18], [∆27], [∆28], [∆37], [∆38], [∆78]〉

D
8
15 〈[∆13], [∆16], [∆17], [∆26], [∆27], [∆36], [∆37]〉

D
8
16 〈[∆13], [∆14], [∆16], [∆17], [∆23], [∆24], [∆26], [∆27], [∆36], [∆37], [∆46], [∆47]〉
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D
8
17 〈[∆13], [∆14], [∆15], [∆16], [∆23], [∆24], [∆25], [∆26], [∆35], [∆36], [∆45], [∆46]〉

D
8
18 〈[∆14], [∆15], [∆16], [∆23], [∆24], [∆25], [∆26], [∆34], [∆35], [∆36], [∆56]〉

D
8
19 〈[∆13], [∆14], [∆15], [∆16], [∆23], [∆24], [∆25], [∆26], [∆35], [∆36], [∆46]〉

D
8
20 〈[∆13], [∆14], [∆15], [∆16], [∆23], [∆24], [∆25], [∆13], [∆26], [∆35], [∆36], [∆46]〉

D
8
21 〈[∆13], [∆14], [∆15], [∆16], [∆24], [∆25], [∆26], [∆35], [∆36], [∆46]〉

D
8
22 〈[∆14], [∆15], [∆24], [∆25], [∆34], [∆35]〉

D
8
23 〈[∆13], [∆14], [∆15], [∆24], [∆25], [∆35]〉

D
8
24 〈[∆13], [∆14], [∆15], [∆24], [∆25], [∆35]〉

D
8
25 〈[∆13], [∆14], [∆24], [∆25], [∆35]〉

D
8
26 〈[∆15], [∆23], [∆24], [∆34], [∆35], [∆45]〉

D
8
27 〈[∆15], [∆24], [∆15], [∆34], [∆35]〉

D
8
28 〈[∆14], [∆23], [∆25], [∆35], [∆45]〉

D
8
29 〈[∆15], [∆24], [∆34], [∆35], [∆45]〉

D
8
30 〈[∆15], [∆24], [∆34], [∆35]〉

D
8
31 〈[∆13], [∆14], [∆15], [∆24], [∆25], [∆35]〉

D
8
32 〈[∆13], [∆14], [∆24], [∆25], [∆35]〉

D
8
33 〈[∆13], [∆24]〉

D
8
34 〈[∆15], [∆24], [∆25], [∆34], [∆35], [∆45]〉

D
8
35 〈[∆34]〉

From here, only the algebra D
8
06 maybe have a non-trivial dual mock-Lie central extension. We will find

it. The automorphism group Aut(D8
06) consists of invertible matrices of the form

ϕ =























a b c 0 0 0 0 0
d e f 0 0 0 0 0
g h k 0 0 0 0 0
l m n ae− db af − dc bf − ec p1 p2
q r s ah− gb ak − gc bk − hc i1 i2
j t u dh− ge dk − gf ek − hf v1 v2
w1 x1 y1 0 0 0 z1 z2
w2 x2 y2 0 0 0 z3 z4























.

Let us use the notations

∇1 := [∆16]− [∆25] + [∆34], ∇2 := [∆17], ∇3 := [∆18],

∇4 := [∆27], ∇5 := [∆28], ∇6 := [∆37], ∇7 := [∆38], ∇8 := [∆78].

Take θ =
∑8

i=1 αi∇i ∈ H2
D
(D8

06,C). If ϕ ∈ Aut(D8
06), then

ϕT























0 0 0 0 0 α1 α2 α3

0 0 0 0 −α1 0 α4 α5

0 0 0 α1 0 0 α6 α7

0 0 −α1 0 0 0 0 0
0 α1 0 0 0 0 0 0

−α1 0 0 0 0 0 0 0
−α2 −α4 −α6 0 0 0 0 α8

−α3 −α5 −α7 0 0 0 −α8 0























ϕ =























0 β∗
1 β∗

2 0 0 α∗
1 α∗

2 α∗
3

−β∗
1 0 β∗

3 0 −α∗
1 0 α∗

4 α∗
5

−β∗
2 −β∗

3 0 α∗
1 0 0 α∗

6 α7∗
0 0 −α∗

1 0 0 0 0 0
0 α∗

1 0 0 0 0 0 0
−α∗

1 0 0 0 0 0 0 0
−α∗

2 −α∗
4 −α∗

6 0 0 0 0 α∗
8

−α∗
3 −α∗

5 −α∗
7 0 0 0 −α∗

8 0























,
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where

α∗

1 = −(ceg − bfg − cdh+ afh+ bdk − aek)α1,

α∗

2 = (−di1 + gp1 + av1)α1 + (aα2 + dα4 + gα6 − w2α8)z1 + (aα3 + dα5 + gα7 + w1α8)z3,

α∗

3 = (−di2 + gp2 + av2)α1 + (aα2 + dα4 + gα6 − w2α8)z2 + (aα3 + dα5 + gα7 + w1α8)z4

α∗

4 = (−ei1 + hp1 + bv1)α1 + (bα2 + eα4 + hα6 − x2α8)z1 + (bα3 + eα5 + hα7 + x1α8)z3,

α∗

5 = (ei2 + hp2 + bv2)α1 + (bα2 + eα4 + hα6 − x2α8)z2 + (bα3 + eα5 + hα7 + x1α8)z4,

α∗

6 = (−fi1 + kp1 + cv1)α1 + (cα2 + fα4 + kα6 − y1α8)z1 + (cα3 + fα5 + kα7 + y1α8)z3,

α∗

7 = (−fi2 + kp2 + cv2)α1 + (cα2 + fα4 + kα6 − y1α8)z2 + (cα3 + fα5 + kα7 + y1α8)z4,

α∗

8 = (−z2z3 + z1z4)α8.

Hence, φ〈θ〉 = 〈θ∗〉, where θ∗ =
∑8

i=1 α
∗
i∇i. Here, we have the following situations:

(1) α1, α8 6= 0, then by choosing the following nonzero elements

c = 1, e = 1, h = 1, k = 1, g = −
1

α1
, z1 =

1

α8
, z2 = 2, z4 = 1,

y1 =
−α3 + α5

α8

, x2 =
−α2 − α3 + α4 + α5

α8

, p1 = −
α2 + α3 − α5 + α6

α1α8

,

p2 = −
2α2 + 2α3 − α5 + 2α6 + α7

α1

, w1 = −
α5

α1α8

, w2 =
α2 + α3 − α5

α1α8

,

we have the representative 〈∇1+∇8〉. Now we have the new 9-dimensional dual mock-Lie algebra:

D
9
38 : e1e2 = e4, e1e3 = e5, e2e3 = e6, e1e6 = e9, e2e5 = −e9, e3e4 = e9, e7e8 = e9.

(2) α1 6= 0, α8 = 0, then by choosing the following nonzero elements

a =
1

α1
, e = 1, k = 1, v1 = −

α2

α1
, v2 = −

α3

α1
, p1 = −

α6

α1
, p2 = −

α7

α1
, i1 =

α4

α1
, i2 =

α5

α1
,

we have the representative 〈∇1〉 and it is a split algebra.

(3) if α1, α8 = 0, then we can suppose that α7 6= 0 and by choosing the following nonzero elements

a = 1, e = 1, k = 1, f = 1, z1 = 1, z4 = 1, g = −
α2

α6
, h = −

α4

α6
, k = −

α4

α6
,

then we have a representative from 〈∇2,∇4,∇6〉, which gives a split algebra.

Summarizing, we have the following theorem

Theorem 3. Let D be a complex 9-dimensional indecomposible non-Lie dual mock-Lie algebra, then D is

isomorphic to D
9
37 or D9

38.

2. DEGENERATIONS OF DUAL MOCK-LIE ALGEBRAS

2.1. Degenerations of algebras. Given an n-dimensional vector space V, the set Hom(V ⊗ V,V) ∼=
V

∗⊗V
∗⊗V is a vector space of dimension n3. This space has a structure of the affine variety Cn3

. Indeed,

let us fix a basis e1, . . . , en of V. Then any µ ∈ Hom(V ⊗V,V) is determined by n3 structure constants

cki,j ∈ C such that µ(ei ⊗ ej) =
∑n

k=1 c
k
i,jek. A subset of Hom(V ⊗ V,V) is Zariski-closed if it can be

defined by a set of polynomial equations in the variables cki,j (1 ≤ i, j, k ≤ n).

Let T be a set of polynomial identities. All algebra structures on V satisfying polynomial identities from

T form a Zariski-closed subset of the variety Hom(V⊗V,V). We denote this subset by L(T ). The general

linear group GL(V) acts on L(T ) by conjugation:

(g ∗ µ)(x⊗ y) = gµ(g−1x⊗ g−1y)
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for x, y ∈ V, µ ∈ L(T ) ⊂ Hom(V⊗V,V) and g ∈ GL(V). Thus, L(T ) is decomposed intoGL(V)-orbits

that correspond to the isomorphism classes of algebras. Let O(µ) denote the GL(V)-orbit of µ ∈ L(T ) and

O(µ) its Zariski closure.

Let A and B be two n-dimensional algebras satisfying identities from T and µ, λ ∈ L(T ) represent A

and B respectively. We say that A degenerates to B and write A → B if λ ∈ O(µ). Note that in this case

we have O(λ) ⊂ O(µ). Hence, the definition of a degeneration does not depend on the choice of µ and λ.

If A 6∼= B, then the assertion A → B is called a proper degeneration. We write A 6→ B if λ 6∈ O(µ).
Let A be represented by µ ∈ L(T ). Then A is rigid in L(T ) if O(µ) is an open subset of L(T ). Recall

that a subset of a variety is called irreducible if it cannot be represented as a union of two non-trivial closed

subsets. A maximal irreducible closed subset of a variety is called an irreducible component. It is well

known that any affine variety can be represented as a finite union of its irreducible components in a unique

way. The algebra A is rigid in L(T ) if and only if O(µ) is an irreducible component of L(T ).
In the present work we use the methods applied to Lie algebras in [8, 18, 19, 34]. First of all, if A → B

and A 6∼= B, then dimDer(A) < dimDer(B), where Der(A) is the Lie algebra of derivations of A. We

will compute the dimensions of algebras of derivations and will check the assertion A → B only for such

A and B that dimDer(A) < dimDer(B). Secondly, if A → C and C → B then A → B. If there is no

C such that A → C and C → B are proper degenerations, then the assertion A → B is called a primary

degeneration. It is easy to see that any algebra degenerates to the algebra with zero multiplication. From

now on we use this fact without mentioning it.

To prove primary degenerations, we will construct families of matrices parametrized by t. Namely, let

A and B be two algebras represented by the structures µ and λ from L(T ) respectively. Let e1, . . . , en be

a basis of V and cki,j (1 ≤ i, j, k ≤ n) be the structure constants of λ in this basis. If there exist a
j
i (t) ∈ C

(1 ≤ i, j ≤ n, t ∈ C∗) such that Et
i =

∑n

j=1 a
j
i (t)ej (1 ≤ i ≤ n) form a basis of V for any t ∈ C∗, and the

structure constants cki,j(t) of µ in the basis Et
1, . . . , E

t
n satisfy lim

t→0
cki,j(t) = cki,j , then A → B. In this case

Et
1, . . . , E

t
n is called a parametric basis for A → B.

If the number of orbits under the action of GL(V) on L(T ) is finite, then the graph of primary degener-

ations gives the whole picture. In particular, the description of rigid algebras and irreducible components

can be easily obtained.

2.2. The geometric classification of dual mock-Lie algebras.

2.2.1. Degenerations of 7-dimensional dual mock-Lie algebras.

Theorem 4. The variety of complex 7-dimensional dual mock-Lie algebras has three irreducible component

defined by rigid algebras D
7
09,D

7
13 and D

7
14. The complete graph of degenerations in the given variety

presented below

30 29 28 27 26 25 24 22 21 20 15 0

D
7

09

D
7

13 D
7

14

D
7

11

D
7

08

D
7

12

D
7

04

D
7

10

D
7

05

D
7

06

D
7

07

D
7

03

D
7

02

D
7

01 C
7
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Proof. Thanks to [5] we have all degenerations in the variety of all 7-dimensional 2-step nilpotent Lie

algebras. By some easy calculation, we have that the dimension of the algebra of derivation of the algebra

D is 21. Hence, it can not degenerates to D
7
08,D

7
09,D

7
11,D

7
13.

The degeneration D
7
14 → D

7
12 is obtained by the following parametric basis

Et
1 = te4 Et

2 = t2e2 − e3 Et
3 = te3 + te5 + t3e6

Et
4 = e1 + e2 + t2e4 − e5 Et

5 = te7 Et
6 = t3e6 Et

7 = e5 + e6.

The degeneration D
7
14 → D

7
07 is obtained by the following parametric basis

Et
1 = te1 Et

2 = e6 Et
3 = e2 Et

4 = −te5
Et

5 = te3 Et
6 = e4 Et

7 = te7

�

Remark 5. Note that, the graph of primary degenerations of 7-dimensional 2-step nilpotent Lie algebras

from [5] is not correct. We gave the corrected graph of degenerations of 7-dimensional 2-step nilpotent Lie

algebras from [5].

2.2.2. The geometric classification of 8-dimensional dual mock-Lie algebras. Thanks to [4] we have that

the variety of 8-dimensional 2-step nilpotent Lie algebras has three rigid algebras: D8
17,D

8
30 and D

8
33. It is

easy to see, that the algebra D8
36 is satisfying the following invariant conditions A4A5 = 0 and A1A4 ⊆ A8,

but the cited algebras are not satisfy it. It is follow that there are no degenerations D8
36 → D

8
17,D

8
30,D

8
33.

The degeneration D
8
36 → D

8
14 is obtained by the following parametric basis

Et
1 = e1 Et

2 = e2 Et
3 = e3 Et

4 = e4 Et
5 = e5 Et

6 = e6 Et
7 = e8 Et

8 = te7.

Hence, we have the following theorem

Theorem 6. The variety of complex 8-dimensional dual mock-Lie algebras has four irreducible component

defined by rigid algebras D8
17,D

8
30,D

8
33 and D

8
36.
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