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1. INTRODUCTION

Intensive investigations of Lie algebras lead to consideration of more general 
objects—Mal’cev algebras, binary Lie algebras, Lie superalgebras, Leibniz algebras, 
and others.

Leibniz algebras present a “noncommutative” (to be more precise, a “non-
antisymmetric”) analogue of Lie algebras [8], as algebras which satisfy the following 
Leibniz identity:

�x� �y� z�� = ��x� y�� z� − ��x� z�� y��

It should be noted that, if a Leibniz algebra satisfies the identity �x� x� = 0, 
then the Leibniz and the Jacobi identities coincide. Therefore, Leibniz algebras are 
a “non-antisymmetric” generalization of Lie algebras.

Many articles, including [2, 5, 6, 9], were devoted to the investigation of 
cohomological and structural properties of Leibniz algebras.

The well-known natural gradations of nilpotent Lie and Leibniz algebras are 
very helpful in investigations of properties of those algebras in the general case
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without restriction on the gradation. Indeed, we can always choose a homogeneous
basis and thus the gradation allows to obtain more explicit conditions for the
structural constants. Moreover, such gradation is useful for the investigation
of cohomologies for the algebras considered, because it induces corresponding
gradation of the group of cohomologies. A similar approach was considered in
[7, 10], and others.

Let L be an arbitrary n-dimensional Leibniz algebra, and let �e1� � � � � en� be
a basis of the algebra L� Then the table of multiplication on the algebra is defined
by the products of the basic elements, namely, as �ei� ej� =

∑n
k=1 �

k
ijek, where �kij

are the structural constants. Thus the problem of classification of algebras can be
reduced to the problem of finding a description of the structure constants up to a
nondegenerate basis transformation.

From the Leibniz identity, we have the following polynomial equalities for the
structural constants:

n∑
l=1

��ljk�
m
il − �lij�

m
lk + �lik�

m
lj	 = 0� 1 ≤ i� j� k� m ≤ n

But the straightforward description of structural constants is somewhat cumbersome
and, therefore, one has to apply different methods of investigation. In the present
article, we have used the classification methods based on the properties of operators
of right multiplications of basic elements of algebra.

Since the description of all nilpotent Leibniz algebras is an unsolvable task
(even in case of Lie algebras), we reduce our discussion to naturally graded case,
with some restriction on their characteristic sequences.

Recall that the classification of naturally graded p-filiform (0 ≤ p ≤ 2) Leibniz
algebras and naturally graded p-filiform Lie algebras have been obtained in works
[2–4]. In this article, we continue the study of complex finite dimensional nilpotent
Leibniz algebras. Namely, we classify the n-dimensional complex naturally graded
p-filiform (1 ≤ p ≤ n− 4) Leibniz algebras. Moreover, a splitting of the set of
naturally graded Leibniz algebras into the families of Lie and non-Lie Leibniz
algebras by means of characteristic sequence is proved.

Throughout the article, all spaces and algebras are considered over the field of
complex numbers. For convenience, we omit the products which are equal to zero.
Also we shall not consider the algebras which are the direct sum of algebras of less
dimensions (such algebras are called split algebras).

2. PLELIMINARIES

Definition 2.1 ([8]). A vector space L over a field F with a multiplication �−�−� 

L⊗ L → L is called a Leibniz algebra if it satisfies the identity

�x� �y� z�� = ��x� y�� z�− ��x� z�� y��

For the examples of Leibniz algebras we refer to articles [5, 8, 9]. ��x� y� z	
denotes the polynomial

��x� y� z	 = �x� �y� z��− ��x� y�� z�+ ��x� z�� y��

It is obvious that Leibniz algebras are determined by the identity ��x� y� z	 = 0�



Given an arbitrary Leibniz algebra L, we define the lower central series

L1 = L� Lk+1 = �Lk� L�� k ≥ 1�

Definition 2.2. An algebra L is called nilpotent if there exists s ∈ � such that
Ls = 0� The minimal such number s is called the index of nilpotency or nilindex.

For an element x of the Leibniz algebra L, we define the operator of right
multiplication Rx 
 L → L as Rx�y	 = �y� x�.

Let x be an element from the set L\L2 such that Rx is a nilpotent
operator. Denote by C�x	 = �n1� n2� � � � � nk	 the decreasing sequence which consists
of the dimensions of the Jordan blocks of the Rx. On the set of such
sequences, we consider the lexicographic order, i.e., C�x	 = �n1� n2� � � � � nk	 ≤ C�y	 =
�m1�m2� � � � � ms	 means that there exists i ∈ � such that nj = mj for any j < i and
ni < mi�

Definition 2.3. The sequence C�L	 = maxx∈L\L2 C�x	 is called the characteristic
sequence of the Leibniz algebra L.

As in the Lie algebras case, it can be shown that the characteristic sequence is
an invariant isomorphism [3].

Definition 2.4. A Leibniz algebra L is called p-filiform if C�L	 = �n− p� 1� � � � � 1︸ ︷︷ ︸
p

	,

where p ≥ 0.

Note that the above definition agrees with the definition of p-filiform Lie
algebras when p > 0 [3]. Since in the case of Lie algebras there no singly-generated
algebra, the notion of 0-filiform algebra for Lie algebras has no sense.

Definition 2.5. The set ��L	 = �x ∈ L 
 �y� x� = 0 for all y ∈ L� is called the right
annihilator of the algebra L.

Definition 2.6. Given an n-dimensional p-filiform Leibniz algebra L, put Li =
Li/Li+1� 1 ≤ i ≤ n− p, and grL = L1 ⊕ L2 ⊕ · · · ⊕ Ln−p� Then �Li� Lj� ⊆ Li+j , and
we obtain the graded algebra grL. If grL and L are isomorphic, in notation grL � L,
we say that L is naturally graded.

For convenience we shall use the expression “graded algebra” instead of
“naturally graded algebra.”

We now present the list of the graded p-filiform (1 ≤ p ≤ n− 1) Lie
algebras [3].

��n� r1� r2� � � � � rp−1	
�rj odd� 1 ≤ j ≤ p− 1� 3 ≤ r1 < r2 < · · · < rp−1 ≤ n− p	{

�x0� xi� = xi+1 1 ≤ i ≤ n− p− 1

�xi� xrj−i� = �−1	i−1yj 1 ≤ i ≤ rj−1
2 � 1 ≤ j ≤ p− 1



��n� r1� r2� � � � � rp−1	

�rj odd� 1 ≤ j ≤ p− 1� 3 ≤ r1 < r2 < · · · < rp−1 ≤ n− p− 2, n− p odd)




�x0� xi� = xi+1 1 ≤ i ≤ n− p− 1

�xi� xrj−i� = �−1	i−1yj 1 ≤ i ≤ rj−1
2 � 1 ≤ j ≤ p− 1

�xi� xn−p−i� = �−1	i−1xn−p 1 ≤ i ≤ n− p− 1
2

��n� r1� r2� � � � � rp−2� n− p− 1	
�rj odd� 1 ≤ j ≤ p− 2� 3 ≤ r1 < r2 < · · · < rp−2 ≤ n− p− 3, n− p even)




�x0� xi� = xi+1 1 ≤ i ≤ n− p− 1

�xi� xrj−i� = �−1	i−1yj 1 ≤ i ≤ rj − 1

2
� 1 ≤ j ≤ p− 2

�xi� xn−p−1−i� = �−1	i−1�xn−p−1 + yp−1	 1 ≤ i ≤ n− p− 2
2

�xi� xn−p−i� = �−1	i−1 �n− p− 2i	
2

xn−p 1 ≤ i ≤ n− p− 2
2

�x1� yp−1� =
�p+ 2− n	

2
xn−p

��n� r1� r2� � � � � rp−2� n− p− 2	
�rj odd� 1 ≤ j ≤ p− 2� 3 ≤ r1 < r2 < · · · < rp−2 ≤ n− p− 4, n− p odd)




�x0� xi� = xi+1 1 ≤ i ≤ n− p− 1

�xi� xrj−i� = �−1	i−1yj 1 ≤ i ≤ rj − 1

2
� 1 ≤ j ≤ p− 2

�xi� xn−p−2−i� = �−1	i−1�xn−p−2 + yp−1	 1 ≤ i ≤ n− p− 3
2

�xi� xn−p−1−i� = �−1	i−1 �n− p− 1− 2i	
2

xn−p−1 1 ≤ i ≤ n− p− 3
2

�xi� xn−p−i� = �−1	i�i− 1	
�n− p− 1− i	

2
xn−p 2 ≤ i ≤ n− p− 1

2

�xi� yp−1� =
�p+ 3− n	

2
xn−p−2+i 1 ≤ i ≤ 2�

where laws of the algebras are expressed in the basis �x0� x1� � � � � xn−p� y1�

y2� � � � � yp−1�.
The following theorems present the classification of p-filiform (0 ≤ p ≤ 2)

Leibniz algebras.



Theorem 2.1 ([2]). Any n-dimensional zero-filiform Leibniz algebra is isomorphic to
the following algebra:

L0
n 
 �ei� e1� = ei+1� 1 ≤ i ≤ n− 1�

We recall that 1-filiform Lie algebras (respectively, 2-filiform Lie algebras)
are called filiform Lie algebras (respectively, quasi-filiform Lie algebras). In the
following theorem, we summarize the results of [2, 10].

Theorem 2.2. Any nonsplit n-dimensional graded filiform Leibniz algebra is
isomorphic to one of the following pairwise non-isomorphic algebras:

L1
n =

{
�e1� e1� = e3�

�ei� e1� = ei+1� 2 ≤ i ≤ n− 1

L2
n =

{
�ei� e1� = −�e1� ei� = ei+1� 2 ≤ i ≤ n− 1
�ei� en+1−i� = −�en+1−i� ei� = ��−1	i+1en 2 ≤ i ≤ n− 1�

where � ∈ �0� 1� for even n and � = 0 for odd n�

Theorem 2.3 [4]. Any nonsplit n-dimensional (n ≥ 6) graded 2-filiform non-Lie
Leibniz algebra is isomorphic to one of the following pairwise non-isomorphic algebras:


�ei� e1� = ei+1� 1 ≤ i ≤ n− 3
�e1� en−1� = e2 + en�

�ei� en−1� = ei+1� 2 ≤ i ≤ n− 3

{
�ei� e1� = ei+1� 1 ≤ i ≤ n− 3
�e1� en−1� = en�

Remark 2.1. The description up to isomorphism of 5-dimensional 2-filiform
Leibniz algebras can be found in [1, 4].

3. NATURALLY GRADED p-FILIFORM LEIBNIZ ALGEBRAS

Let L be a graded p-filiform n-dimensional Leibniz algebra. Then there exists
a basis �e1� e2� � � � � en−p� f1� � � � � fp� such that e1 ∈ L2 and C�e1	 = �n− p� 1� � � � � 1︸ ︷︷ ︸

p−nimes

	�

By the definition of characteristic sequence the operator Re1
in the Jordan form has

one block Jn−p of size n− p and p blocks J1 (where J1 = �0�) of size one.
The possible forms for the operator Re1

are the following:




Jn−p 0 0 · · · 0
0 J1 0 · · · 0
���

���

0 0 0 · · · J1


 �




J1 0 0 · · · 0
0 Jn−p 0 · · · 0
���

���

0 0 0 · · · J1


 � � � � �




J1 0 0 · · · 0
0 J1 0 · · · 0
���

���

0 0 0 · · · Jn−p


 �

By a shift of the basic elements, it is easy to prove that all cases when the
Jordan block Jn−p is placed in a position from the first, are mutually isomorphic



cases. Thus, we can reduce the study to the following two possibilities of Jordan
form of the matrix Re1

:




Jn−p 0 0 · · · 0
0 J1 0 · · · 0
���

���

0 0 0 · · · J1


 �




J1 0 0 · · · 0
0 Jn−p 0 · · · 0
���

���

0 0 0 · · · J1


 �

Definition 3.1. A p-filiform Leibniz algebra L is called of the first type (type I) if
the operator Re1

has the form




Jn−p 0 0 · · · 0
0 J1 0 · · · 0
���

���

0 0 0 · · · J1




and of the second type (type II) in the other case.

It should be noted that a p-filiform Leibniz algebra of the first type is non-Lie
algebra. Indeed, if the Leibniz algebra is of the first type, then �e1� e1� = e2, which
contradicts the identity �x� x� = 0. It is easy to see that the algebras L0

n and L1
n are

Leibniz algebras of the first type.

3.1. Classification of Graded p-Filiform Leibniz Algebras of the Type I

Let L be a p-filiform Leibniz algebra of the first type. Then there exists a basis
�e1� � � � � en−p� f1� � � � � fp� (so called the adapted basis) such that

�ei� e1� = ei+1� 1 ≤ i ≤ n− p− 1�
�fj� e1� = 0� 1 ≤ j ≤ p�

From these products, we have

	e1
 ⊆ L1� 	e2
 ⊆ L2� � � � � 	en−p
 ⊆ Ln−p�

However, we do not have information about the elements �f1� f2� � � � � fp�.
Let us denote by r1� r2� � � � � rp, the position of the basic elements f1� f2� � � � � fp,

respectively, in natural gradation, i.e., fi ∈ Lri
for 1 ≤ i ≤ p. Without loss of

generality, one can suppose that 1 ≤ r1 ≤ r2 ≤ · · · ≤ rp ≤ n− p. It should be
noted that �e2� e3� � � � � en−p� ⊆ ��L	� For p-filiform Leibniz algebras, the following
theorem holds.

Theorem 3.1 ([4]). Let L be a graded p-filiform Leibniz algebra of the type I. Then
rs ≤ s for any s ∈ �1� 2� � � � � p�.

To prove the main result of this subsection, we need the next lemmas.



Lemma 3.1. An arbitrary p-filiform Leibniz algebra of the type I satisfying the
property ri = 1 for 1 ≤ i ≤ p is split.

Proof. Let L be an algebra which satisfy the conditions of the lemma. Then fi ∈ L1

for 1 ≤ i ≤ p and

L1 = 	e1� f1� � � � � fp
� L2 = 	e2
� � � � � Ln−p = 	en−p


Introduce the notations

�e1� fi� = �ie2� �fj� fi� = i�je2 1 ≤ i� j ≤ p�

Now, consider the equations

��fj� fi�� e1� = �fj� �fj� e1��+ ��fj� e1�� fi� = 0�

Since ��fj� fi�� e1� = i�je3, we have i�j = 0.
Let us suppose that �i0 �= 0 for some i0 ∈ �1� � � � � p� (otherwise, evidently,

we get split algebra). Taking the transformation of basis

e′i = ei� 1 ≤ i ≤ n− p� f ′
1 =

1
�i0

fi0�

f ′
j = �i0fj − �jfi0� 2 ≤ j ≤ p� j �= i0�

f ′
i0
= �i0f1 − �1fi0�

we can assume that �e1� f1� = e2� �e1� fi� = 0� 2 ≤ i ≤ p. Applying the Leibniz
identity, it is not difficult to see that

�ei� f1� = ei+1� 2 ≤ i ≤ n− p− 1
�ei� fj� = 0� 2 ≤ i ≤ n− p− 1� 2 ≤ j ≤ p�

Hence L = �e1� e2� � � � � en−p� f1�⊕ �f2�⊕ · · · ⊕ �fp�, i.e. we obtain a split algebra. �

Lemma 3.2. Let for n-dimensional graded p-filiform Leibniz algebra L �n− p ≥ 4	
of the type I, the condition

1 = r1 = · · · = rk < rk+1� 1 ≤ k ≤ p− 1

holds. Then

L1 = 	e1� f1� f2 � � � � fk
� L2 = 	e2� fk+1� fk+2 � � � � fp
�
L3 = 	e3
� � � � � Ln−p = 	en−p
�

Proof. Let L be an algebra of the type I, which satisfies the condition of the lemma.
Then fi ∈ L1 for 1 ≤ i ≤ k and

L1 = 	e1� f1� � � � � fk
� L2 ⊃ 	e2
� � � � � Ln−p ⊃ 	en−p
�



Introduce the notations

�e1� fj� = �je2 +
p−k∑
s=1

j�sfk+s� 1 ≤ j ≤ k�

From the equalities ��ei� fj�� e1� = �ei+1� fj�, we get �ei� fj� = �jei+1 for 2 ≤ i ≤ n−
p− 1, 1 ≤ j ≤ k. Since n− p ≥ 4, by equalities ��fi� fj�� e1� = 0, we can conclude
�fi� fj� = �1ijfk+1 + · · · + �

p−k
ij fp for 1 ≤ i� j ≤ k

We may assume that �fi� f1� = 0 for 1 ≤ i ≤ k� Indeed, otherwise, if we
consider the element Ae1 + Bf1 with sufficiently large value of A and B �= 0 fixed,
then rank�RAe1+Bf1

	 > n− p� Therefore, C�Ae1 + Bf1	 would be larger than �n−
p� 1� � � � � 1	, i.e., we get a contradiction. Applying similar arguments, we obtain
�fi� fj� = 0 for 1 ≤ i� j ≤ k .

Thus, we have the following products:




�ei� e1� = ei+1 1 ≤ i ≤ n− p− 1

�e1� fj� = �je2 +
p−k∑
s=1

j�sfk+s 1 ≤ j ≤ k

�ei� fj� = �jei+1 2 ≤ i ≤ n− p− 1� 1 ≤ j ≤ k

�en−p� fj� = �fj� e1� = 0 1 ≤ j ≤ p

�fi� fj� = 0 1 ≤ i� j ≤ k�

(*)

Since �fi� fj� = �fi� e1� = 0 for 1 ≤ i� j ≤ k, one can assume L2 =
	�e1� e1�� �e1� fi�
, i.e., dim�L2	 ≤ k+ 1.

Let us suppose fk+1� fk+2� � � � � fk+s lie in L2 for 1 ≤ s ≤ p− k� Then applying
similar arguments as for �fi� f1�, we obtain �fk+i� fj� = 0 for 1 ≤ i ≤ s, 1 ≤ j ≤ k.
Now using (*) we conclude L3 =< e3 > and k+ s = p�

Thus,

L1 = 	e1� f1� f2 � � � � fk
� L2 = 	e2� fk+1� fk+2 � � � � fp
�
L3 = 	e3
� � � � � Ln−p = 	en−p
�

�

The following theorem presents the classification of graded nonsplit p-filiform
Leibniz algebras �n− p ≥ 4	 of the type I.

Theorem 3.2. Any n-dimensional graded nonsplit p-filiform Leibniz algebra �n− p ≥
4	 of the type I is isomorphic to one of the following non-isomorphic algebras:

p is even

{
�ei� e1� = ei+1� 1 ≤ i ≤ n− p− 1
�e1� fj� = f p

2+j� 1 ≤ j ≤ p

2






�ei� e1� = ei+1� 1 ≤ i ≤ n− p− 1
�e1� f1� = e2 + f p

2+1�

�ei� f1� = ei+1� 2 ≤ i ≤ n− p− 1

�e1� fj� = f p
2+j� 2 ≤ j ≤ p

2

p is odd



�ei� e1� = ei+1� 1 ≤ i ≤ n− p− 1

�e1� fj� = f� p
2 �+1+j� 1 ≤ j ≤

⌊
p

2

⌋
�ei� f� p

2 �+1� = ei+1� 1 ≤ i ≤ n− p− 1�

Proof. Due to Lemmas 3.1 and 3.2, we have

L1 = 	e1� f1� f2 � � � � fk
� L2 = 	e2� fk+1� fk+2 � � � � fp


and 


�ei� e1� = ei+1 1 ≤ i ≤ n− p− 1

�e1� fj� = �je2 +
p−k∑
s=1

j�sfk+s 1 ≤ j ≤ k

�ei� fj� = �jei+1 2 ≤ i ≤ n− p− 1� 1 ≤ j ≤ k

�en−p� fj� = �fj� e1� = 0 1 ≤ j ≤ p

�fi� fj� = 0 1 ≤ i� j ≤ k�

�fk+i� fj� = 0 1 ≤ i ≤ s ≤ p− k� 1 ≤ j ≤ k�

(**)

Consider the case when p is even. If k > p

2 , then putting f ′
k = a1f1 + a2f2 + · · · +

akfk for appropriate values of a1� a2� � � � � ak, we obtain �e1� f
′
k� = 0, but is lead that

algebra L is split. In case k < p

2 , it is clearly that algebra L is also split. Thus, we
have k = p

2 �
If j�1 = 0 for 1 ≤ j ≤ p

2 , then f p
2+1 � L2, that is a contradiction to the

condition L2 =< e2� f p
2+1� f p

2+2 � � � � fp > � Hence, j0�1
�= 0 for some j0 ∈ �1� � � � � p

2 �.

Making the change f ′
1 = fj0 , f

′
j0
= f1, and f ′

p
2+1 =

∑ p
2
s=1 j0�s

f p
2+s, we obtain

�e1� f
′
1� = �′1e2 +

p
2∑

s=1

′
1�sf p

2+s = �′1e2 + f ′
p
2+1�

where �′1 = �j0� 
′
1�s = j0�s

.
Taking the transformation of the basis

e′i = ei� 1 ≤ i ≤ n− p� f ′
j = fj − j�1f1� 2 ≤ j ≤ p

2
�

we may assume j�1 = 0 for 2 ≤ j ≤ p

2 �



It should be noted that j�2 = 0 for all 1 ≤ j ≤ p

2 implies f p
2+2 � L2, article

is a contradiction to the condition that is a contradiction to the condition L2 =<
e2� f p

2+1� f p
2+2 � � � � fp > �

Let t�2 �= 0 for some t ∈ �1� 2� � � � � p

2 �� Then using similar argumentations as in
case j0�1

�= 0, we obtain j�2 = 0, 3 ≤ j ≤ p

2 . Continuing as above, we obtain j�s =
0� s + 1 ≤ j ≤ p

2 , and j�j = 1 1 ≤ j ≤ p

2 �
Below we summarize obtained products

�ei� e1� = ei+1 1 ≤ i ≤ n− p− 1
�e1� fj� = �je2 + f p

2+j 1 ≤ j ≤ p

2

�ei� fj� = �jei+1 2 ≤ i ≤ n− p− 1� 1 ≤ j ≤ p

2 �

Note that in Leibniz algebra L the elements of the form �x� x�� �x� y�+ �y� x� lie
in ��L	 and ��L	 is ideal of the algebra. Therefore basic elements ei �2 ≤ i ≤ n− p	
and fj � p2 + 1 ≤ j ≤ p	 lie in right annihilator. Taking into account the condition
n− p ≥ 4, we conclude that �fi� fj� = 0, 1 ≤ i� j ≤ p�

Consider now the possible cases. If �j = 0 for all for some j ∈ �1� 2� � � � � p

2 �,
then we get the first algebra of list in the theorem.

Let us suppose that �t �= 0, for some t ∈ �1� 2� � � � � p

2 �� Then, if necessary,
applying the following change of basis:

f ′
1 =

1
�t
ft� f ′

p
2+1 =

1
�t
f p

2+t�

f ′
j = �tfj − �jft� f ′

p
2+j

= �tf p
2+j − �jf p

2+t 2 ≤ j ≤ p

2 � j �= t�

f ′
t = �tf1 − �1ft� f ′

p
2+t

= �tf p
2+1 − �1f p

2+t�

we can assume �1 = 1 and �j = 0, 2 ≤ j ≤ p

2 � Thus, we get the second algebra of the
list in the theorem.

Let us suppose now that p is odd. Since dim�L2	 ≤ k+ 1� then k ≥ � p

2 � + 1�
In case when k > � p

2 � + 1 by the similar way as in case of p even, we obtain a split
algebra. Hence k = � p

2 � + 1.
If in (**) �j = 0 for 1 ≤ j ≤ � p

2 � + 1, then algebra L is split.
If �j �= 0 for some j ∈ �1� � � � � � p

2 � + 1�, then putting f ′
� p
2 �+1 = a1f1 + a2f2 +

· · · + a� p
2 �+1f� p

2 �+1 we can choose the parameters a1� a2� � � � � a� p
2 �+1 such that

�e1� f
′
� p
2 �+1� = e2� In a similar way as to the case of p even, we obtain

�ei� e1� = ei+1 1 ≤ i ≤ n− p− 1

�e1� fj� = �je2 + f� p
2 �+1+j 1 ≤ j ≤ � p

2 �
�ei� fj� = �jei+1 2 ≤ i ≤ n− p− 1� 1 ≤ j ≤ � p

2 �
�ei� f� p

2 �+1� = ei+1 1 ≤ i ≤ n− p− 1

Due to the change of basis

f ′
j = fj − �jf� p

2 �+1� 1 ≤ j ≤ �p
2
��



we can assume that �j = 0 for 1 ≤ j ≤ � p

2 �, which leads to the getting of the third
algebra of the list of the theorem. �

3.2. Classification of Graded p-Filiform Leibniz Algebras of the Type II

Let L be an n-dimensional naturally graded p-filiform Leibniz algebra of type
II, and let �e1� � � � � en−p, f1� � � � � fp� be an adapted basis, i.e., we have the products

�e1� e1� = 0�
�ei� e1� = ei+1� 2 ≤ i ≤ n− p− 1�
�en−p� e1� = f1�

�fj� e1� = 0� 1 ≤ j ≤ p�

Obviously,

L1 ⊇ 	e1� e2
� L2 ⊇ 	e3
� � � � � Ln−p−1 ⊇ 	en−p
� Ln−p ⊇ 	f1
�

Here e2 ∈ Lr1
, (i.e., r1 = 1) and fj ∈ Lrj

� 2 ≤ j ≤ p� Without loss of generality, one
can assume 1 = r1 ≤ r2 ≤ r3 ≤ · · · ≤ rp�

Lemma 3.3. Let L be a complex n-dimensional graded p-filiform Leibniz algebra
(n− p ≥ 3) of the type II with the property ri = 1� 1 ≤ i ≤ p� Then L is a Lie algebra.

Proof. Let an algebra L satisfy to the conditions of the lemma. Then

L1 = 	e1� e2� f2� � � � � fp
� L2 = 	e3
� � � � � Ln−p−1 = 	en−p
� Ln−p = 	f1
�

Similar to the case of type I, we can obtain �fi� fj� = 0, 1 ≤ i� j ≤ p.
Let us introduce the notations



�e1� e2� = �e3�

�e2� e2� = �e3�

�e1� fj� = je3� 2 ≤ j ≤ p�

�e2� fj� = �je3� 2 ≤ j ≤ p�

�fj� e2� = �je3� 2 ≤ j ≤ p�

From the Leibniz identity, namely,

��e1� ei� e1	 = ��e1� fj� e1	 = ��ei� fj� e1	

= ��e1� fi� e2	 = ��e1� e2� e2	 = ��e1� e1� e2	 = 0�

we can derive,

�e1� ei� = �ei+1� 2 ≤ i ≤ n− p− 1� j = 0� 1 ≤ j ≤ p�

�ei� fj� = �jei+1� �en−p� fj� = �jf1� 2 ≤ i ≤ n− p− 1� 2 ≤ j ≤ p�

−��j = ��j� 2 ≤ j ≤ p� �� = 0� �2 + � = 0�



If � = −1, then � = 0, �i = −�i, and L is a Lie algebra. If � = 0� then putting e′2 =
e2 − �e1 we can suppose � = 0� For the element y1 = Ae1 + e2 with sufficiently large
value A and appropriate transformation of basis we obtain that operator Ry1

in
the Jordan form has in the first position the block Jn−p, i.e., the assumption � = 0
contradicts the conditions of the lemma. �

Lemma 3.4. For n-dimensional graded p-filiform Leibniz algebra L �n− p ≥ 4	 of
the type II, the condition assume

1 = r1 = · · · = rk < rk+1� 1 ≤ k ≤ p− 1�

Then in the algebra L, we have products


�e1� e1� = 0�
�ei� e1� = ei+1� 2 ≤ i ≤ n− p− 1�
�en−p� e1� = f1�

�fj� e1� = 0� 1 ≤ j ≤ p�

�e1� ei� = �ei+1� 2 ≤ i ≤ n− p− 1�
�e1� en−p� = �f1�

�e1� f1� = 0�
�e2� e2� = �e3�

(***)

where ���+ 1	 = 0 and �� = 0�

Proof. Let algebra L satisfy the conditions of the lemma. Then, we have e2� fi ∈ L1,
1 ≤ i ≤ k, and

L1 = 	e1� e2� f2� � � � � fk
� Li ⊇ 	ei+1
� 2 ≤ i ≤ n− p− 1� Ln−p ⊇ 	f1
�

Without loss of generality, one can assume that �e1� e2� = �e3 + fk+1 (because, if
�e1� e2� = �e3 + �∗	fk+1 + �∗	fk+2 + · · · + �∗	fp, then we can put f ′

k+1 = �∗	fk+1 +
�∗	fk+2 + · · · + �∗	fp).

If  �= 0, then for the element e′1 = Ae1 + Be2, we have

�e′1� e
′
1� = ABfk+1 + B2�e2� e2��

�e′2� e
′
1� = Ae3 + B�e2� e2��

�e′3� e
′
1� = Ae4 + B�e3� e2��

���

�e′n−p� e
′
1� = Af1 + B�en−p� e2��

�f ′
1� e

′
1� = 0�

���

�f ′
k� e

′
1� = B�fk� e2��



Choosing A sufficiently large and B �= 0 fixed, we can conclude that the operator
Re′1 has rank at least n− p, i.e., we have a contradiction with the condition C�L	 =
�n− p� 1� � � � � 1	� Therefore,  = 0�

Repeating the above argument for the elements Ae1 + Bfi� Be1 + Afi, for 2 ≤
i ≤ k, and Be1 + Ae2, we obtain

�e1� fj� = 0� 1 ≤ j ≤ k� �fi� fj� = 0� 1 ≤ i� j ≤ k� �e2� e2� = �e3�

for some ��

From the equalities

�e1� �ei� e1�� = ��e1� ei�� e1� for 2 ≤ i ≤ n− p� �e1� �e1� e2�� = −��e1� e2�� e1��

we obtain

�e1� ei� = �ei+1� 2 ≤ i ≤ n− p− 1�
�e1� en−p� = �f1�

�e1� f1� = 0�

where ���+ 1	 = 0�
The equality �� = 0 follows from 0 = �e1� �e2� e2�� = ��e1� e3� = ��e4 (in case

of n− p = 3 here instead e4 will be f1). �

In the following theorem, we clarify situation in the case of type II.

Theorem 3.3. Let L be a complex n-dimensional graded p-filiform Leibniz algebra of
type II with n− p ≥ 3. Then L is a Lie algebra.

Proof. Due to Lemmas 3.3 and 3.4, we should consider the possible cases for � in
(***). Let us suppose that � = −1� Then � = 0� The following expression may be
proved in much the similar way as in Lemma 3.4:

�fj� e2� = �j−1e3 +
j−1∑
s=1

�s�jfk+s� 2 ≤ j ≤ k�

Further, we apply the analogous argument as in Lemma 3.4 for the element Ae1 +
Be2 to obtain that �ij = 0, 1 ≤ i < j ≤ k�

Summarizing,

�ei� e1� = ei+1� 2 ≤ i ≤ n− p− 1�
�en−p� e1� = f1�

�e1� ei� = −ei+1� 2 ≤ i ≤ n− p− 1�
�e1� en−p� = −f1�

�fj� e2� = �j−1e3 2 ≤ j ≤ k�



Now, using the equality �fj� �ei� e1�� = ��fj� ei�� e1� with 2 ≤ j ≤ k and 2 ≤ i ≤ n−
p− 1, we obtain

�fj� ei� = �j−1ei+1� 2 ≤ j ≤ k� 2 ≤ i ≤ n− p− 1�
�fj� en−p� = �j−1f1� 2 ≤ j ≤ k�

�fj� f1� = 0� 2 ≤ j ≤ k�

Introduce the notation �e2� f2� = �1e3 + �1�2fk+1� Then from ��ei� e1�� f2� =
��ei� f2�� e1� with 2 ≤ i ≤ n− p− 1, one gets

�ei� f2� = �1ei+1� 3 ≤ i ≤ n− p− 1�
�en−p� f2� = �1f1�

�f1� f2� = 0�

Condition �1 = −�1 follows from �e1� �f2� e2�� = −��e1� e2�� f2��
If we apply for the element Ae1 + Be2 + Cf2 with sufficiently large value of

A and B�C �= 0 fixed, by the above argument, we obtain a contradiction with the
condition �1�2 �= 0� Thus, �1�2 = 0�

Repeating in a similar way, we can suppose that

�e2� fj� = �j−1e3� 3 ≤ j ≤ k

and by using the Leibniz identity we get that �j−1 = −�j−1 for 3 ≤ j ≤ k. It is easy
to obtain (by the Leibniz identity) the following products:

�ei� fj� = −�j−1ei+1� 2 ≤ i ≤ n− p− 1� 2 ≤ j ≤ k�

�en−p� fj� = −�j−1f1� 2 ≤ j ≤ k�

�f1� fj� = 0� 2 ≤ j ≤ k�

Summarizing all products, we conclude that L2 = 	e3
 and

�e1� ei� = −�ei� e1�� 1 ≤ i ≤ n− p�

�e2� ei� = −�ei� e2�� 1 ≤ i ≤ n− p�

�e1� fj� = �fj� e1� = 0� 1 ≤ j ≤ p�

�ei� fj� = −�fj� ei�� 1 ≤ i ≤ n− p� 1 ≤ j ≤ k�

From the chain of equalities

�ei� ej� = �ei� �ej−1� e1�� = ��ei� ej−1�� e1�− ��ei� e1�� ej−1�

= −�e1� �ei� ej−1��+ ��e1� ei�� ej−1� = −���e1� ei�� ej−1�− ��e1� ej−1�� ei�	

+ ��e1� ei�� ej−1� = ��e1� ej−1�� ei� = −�ej� ei��

we deduce �ei� ej� = −�ej� ei�, 1 ≤ i� j ≤ n− p.
Since �erk+1� fj� = −�j−1erk+2 (2 ≤ j ≤ k), then we may suppose that fk+1 =

�erk+1� e2�+ �erk+1�



Consider now the chain of equalities

�fk+1� e1� = ��erk+1� e2�+ �erk+1� e1� = ��erk+1� e2�� e1�+ ��erk+1� e1�

= ��erk+1� e1�� e2�− �erk+1� �e1� e2��+ ��erk+2� e1� = −��e1� erk+1�� e2�

+ ��e1� e2�� erk+1�− ��e1� erk+1� = −�e1� fk+1��

Similarly, one can prove �fk+1� e2� = −�e2� fk+1�.
The equations

�fk+1� fi� = ��erk+1� e2�+ �erk+1� fi� = ��erk+1� e2�� fi�+ ��erk+1� fi�

= ��erk+1� fi�� e2�− �erk+1� �fi� e2��+ ��erk+2� fi�

= −��fi� erk+1�� e2�+ ��fi� e2�� erk+1�− ��fi� erk+1� = −�fi� fk+1�

give �fk+1� fi� = −�fi� fk+1��

If fk+j ∈ Lrk+j
for 1 ≤ j ≤ p− k, then we can suppose fk+j = �erk+j

� e2�+∑
t∈Lrk+j−1

at�ft� e2�+ bjerk+j+1 for some at� bj ∈ �� Using induction on j, we obtain

�fk+j� e1� = −�e1� fk+j�� 1 ≤ j ≤ p− k�

�fk+j� e2� = −�e2� fk+j�� 1 ≤ j ≤ p− k�

�fk+j� fi� = −�fi� fk+j�� 1 ≤ j ≤ p− k� 1 ≤ i ≤ k�

Thus, we prove �x� y� = −�y� x� for every x ∈ L, y ∈ L1. Using the above methods,
we obtain that �x� y� = −�y� x� for any x� y ∈ L, i.e., L is a Lie algebra.

Let us suppose � = 0. Then from (***), we have �e1� ej� = 0 for 2 ≤ j ≤ n− p,
�e1� f1� = 0, and �e2� e2� = �e3. If we make the change e′2 = e2 − �e1, we can assume
� = 0.

Applying the above argument for the element Ae1 + e2 with sufficiently large
value of A, we obtain a contradiction with the supposition � = 0� �

The last theorem completes the classification of naturally graded p-filiform
Leibniz algebras in an each dimension. In particular, the classification of naturally
graded p-filiform non-Lie Leibniz algebras n− p ≥ 4 is present in the list of
Theorem 3.2. Moreover, it should be noted that despite complement of the set of
Lie algebras in the set of Leibniz algebras forms a Zariski open set (it is well-known
that an open set in Zariski topology is big set), the list of naturally graded p-filiform
non-Lie Leibniz algebras n− p ≥ 4 is simpler than in Lie algebras case.
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