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1. INTRODUCTION

Leibniz algebras are characterized as algebras whose the right multiplication operators are derivations,

it is a generalization of Lie algebra, while for a Leibniz algebra to be a Lie algebra it suffices to add the

condition that the operators of right and left multiplications alternate. Leibniz algebras have been introduced

by Loday in [23] as algebras satisfying the (right) Leibniz identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y].

During the last decades the theory of Leibniz algebras has been actively studied. Some (co)homology

and deformation properties; results on various types of decompositions; structure of solvable and nilpotent

Leibniz algebras; classifications of some classes of graded nilpotent Leibniz algebras were obtained in

numerous papers devoted to Leibniz algebras, see, for example, [4, 7, 8, 11–13, 15, 16, 18, 20, 22, 24] and

reference therein.

In fact, many results on Lie algebras have been extended to the Leibniz algebra case. For instance, an

analogue of Levi’s theorem for the case of Leibniz algebras asserts that Leibniz algebra is decomposed into

a semidirect sum of its solvable radical and a semisimple Lie subalgebra [7]. Therefore, the description

of finite-dimensional Leibniz algebras shifts to the study of solvable Leibniz algebras. Since the method

of the reconstruction of solvable Lie algebras from their nilpotent radicals (see [25]) was extended to the

Leibniz algebras [10], the main problem of the description of finite-dimensional Leibniz algebras consists

of the study of nilpotent Leibniz algebras. Numerous works are devoted to the description of solvable Lie

and Leibniz algebras with a given nilpotent radical (see [1, 5, 6, 9, 19, 26] and reference therein).

It is known that any Leibniz algebra law can be considered as a point of an affine algebraic variety

defined by the polynomial equations coming from the Leibniz identity for a given basis. This way provides

a description of the difficulties in classification problems referring to the classes of nilpotent and solvable

Leibniz algebras. The orbits under the base change action of the general linear group correspond to the

isomorphism classes of Leibniz algebras therefore, the classification problems (up to isomorphism) can be

reduced to the classification of these orbits. An affine algebraic variety is a union of a finite number of

1 The work was partially supported by Ministerio de Economı́a y Competitividad (Spain), grant MTM2016-79661-P (Euro-

pean FEDER support included, UE); RFBR 19-51-04002; FAPESP 18/12196-0, 18/12197-7, 18/15712-0.
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irreducible components and the Zariski open orbits provide interesting classes of Leibniz algebras to be

classified. The Leibniz algebras of this class are called rigid.

In the study of nilpotent Lie algebras a very useful tool is characteristic sequence, which a priori gives

the multiplication on one basis element. Recently, in the paper [2] it was considered a finite-dimensional

solvable Lie algebra rc whose nilpotent radical nc has the simplest structure with a given characteristic

sequence c = (n1, n2, . . . , nk, 1). Using Hochschild – Serre factorization theorem the authors established

that for the algebra rc low order cohomology groups with coefficient in itself are trivial.

In this paper we consider the family of nilpotent Leibniz algebras such that its corresponding Lie algebra

is nc. Further, solvable Leibniz algebras with such nilpotent radicals and (k+1)-dimensional complementary

subspaces to the nilpotent radicals are described. Namely, we prove that such solvable Leibniz algebra is

unique and centerless. For this Leibniz algebra the triviality of the first and the second cohomology groups

with coefficient in itself is established as well.

2. PRELIMINARIES

Throughout the paper, all vector spaces and algebras considered are finite-dimensional over the field

of complex numbers C. Moreover, in the table of multiplication of an algebra the omitted products are

assumed to be zero.

In this section we give necessary definitions and results on solvable Leibniz algebras and its construction

with a given nilpotent radical.

Definition 1. An algebra (L, [·, ·]) is called a Leibniz algebra if it satisfies the property

[x, [y, z]] = [[x, y], z]− [[x, z], y] for all x, y ∈ L,

which is called Leibniz identity.

The Leibniz identity is a generalization of the Jacobi identity since under the condition of anti-

symmetricity of the product ”[· , ·]” this identity changes to the Jacobi identity. In fact, Leibniz algebras is

characterized by the property that any right multiplication operator is a derivation.

For a Leibniz algebra L, a subspace generated by squares of its elements I = span {[x, x] : x ∈ L} is a

two-sided ideal, and the quotient GL = L/I is a Lie algebra called corresponding Lie algebra (sometimes

also called by liezation) of L.
For a given Leibniz algebra L we can define the following two-sided ideals

Annr(L) = {x ∈ L | [y, x] = 0, for all y ∈ L},
Center(L) = {x ∈ L | [x, y] = [y, x] = 0, for all y ∈ L}

called the right annihilator and the center of L, respectively.

Applying the Leibniz identity we obtain that for any two elements x, y of an algebra the elements

[x, x], [x, y] + [y, x] in Annr(L).
The notion of a derivation for Leibniz algebras is defined in a usual way and the set of all derivations of

L (denoted by DerL) forms a Lie algebra with respect to the commutator. Moreover, the operator of right

multiplication on an element x ∈ L (further denoted by Rx) is a derivation, which is called inner derivation.

Definition 2. A Leibniz algebra L is called complete if Center(L) = 0 and all derivations of L are inner.

For a Leibniz algebra L we define the lower central and the derived series as follows:

L1 = L, Lk+1 = [Lk, L], k ≥ 1, L[1] = L, L[s+1] = [L[s], L[s]], s ≥ 1,

respectively.

Definition 3. A Leibniz algebra L is called nilpotent (respectively, solvable), if there exists n ∈ N (m ∈ N)

such that Ln = 0 (respectively, L[m] = 0).

The maximal nilpotent ideal of a Leibniz algebra is said to be the nilpotent radical of the algebra.

Further we shall need the following result from [3]. It is an extension of the similar result for Lie algebras.
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Theorem 4. Let L be a finite-dimensional solvable Leibniz algebra over a field of characteristic zero. Then

L is solvable if and only if L2 is nilpotent algebra.

An analogue of Mubarakzjanov’s methods has been applied for solvable Leibniz algebras which shows

the importance of the consideration of nilpotent Leibniz algebras and its nil-independent derivations [10].

Definition 5. Let d1, d2, . . . , dn be derivations of a Leibniz algebra L. The derivations d1, d2, . . . , dn are

said to be nil-independent if α1d1 + α2d2 + . . .+ αndn is not nilpotent for any scalars α1, α2, . . . , αn ∈ C,

which are not all zero.

In the paper of [21] it is proved the following theorem.

Theorem 6. Let R = N ⊕Q be a solvable Lie algebra such that dimQ = dimN/N2 = k. Then R admits

a basis {e1, e2, . . . , en, x1, x2, . . . , xk} such that the table of multiplication in R has the following form:




[ei, ej ] =
n∑

t=k+1

γti,jet, 1 ≤ i, j ≤ n,

[ei, xi] = ei, 1 ≤ i ≤ k,

[ei, xj ] = αi,jei, k + 1 ≤ i ≤ n, 1 ≤ j ≤ k,

where αi,j is the number of entries of a generator basis element ej involved in forming non generator basis

element ei.

For a nilpotent Leibniz algebra L and x ∈ L \ L2 we consider the decreasing sequence C(x) =
(n1, n2, . . . , nk) with respect to the lexicographical order of the dimensions Jordan’s blocks of the oper-

ator Rx.

Definition 7. The sequenceC(L) = max
x∈L\L2

C(x) is called the characteristic sequence of the Leibniz algebra

L.

In the paper [2] it is considered the cohomological properties of a solvable Lie algebra whose nilpotent

radical has a given characteristic sequence (n1, n2, . . . , nk, 1) and complementary subspace to nilpotent

radical has dimension equal to k + 1.

For characteristic sequence (n1, n2, . . . , nk, 1) we consider the model nilpotent Lie algebra nc given by

its non-zero products:

[ei, e1] = −[e1, ei] = ei+1, 2 ≤ i ≤ n1,

[en1+...+nj+i, e1] = −[e1, en1+...+nj+i] = en1+...+nj+1+i, 2 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1.

Due to Theorem 6 a solvable Lie algebra with nilpotent radical nc and (k+1)-dimensional complementary

subspace to nc is unique. For our convenience we present its table of multiplication in the following way:

rc :





[ei, e1] = −[e1, ei] = ei+1, 2 ≤ i ≤ n1,

[en1+...+nj+i, e1] = −[e1, en1+...+nj+i] = en1+...+nj+1+i, 2 ≤ i ≤ nj+1,

[e1, x1] = −[x1, e1] = e1,

[ei, x1] = −[x1, ei] = (i− 2)ei, 3 ≤ i ≤ n1 + 1,

[en1+...+nj+i, x1] = −[x1, en1+...+nj+i] = (i− 2)en1+...+nj+i 2 ≤ i ≤ nj+1,

[ei, x2] = −[x2, ei] = ei, 2 ≤ i ≤ n1 + 1,

[en1+...+nj+i, xj+2] = −[xj+2, en1+...+nj+i] = en1+...+nj+i, 2 ≤ i ≤ nj+1.

where 1 ≤ j ≤ k − 1.
Here we present the main result of the paper [2].

Theorem 8. For any characteristic sequence (n1, . . . , nk, 1), the model nilpotent Lie algebra nc arises as

the nilpotent radical of a solvable Lie algebra rc such that

Ha(rc, rc) = 0, 0 ≤ a ≤ 3.
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2.1. Cohomology of Leibniz algebras.

We call a vector space M a module over a Leibniz algebra L if there are two bilinear maps:

[−,−] : L×M →M and [−,−] : M × L→M

satisfying the following three axioms

[m, [x, y]] = [[m, x], y]− [[m, y], x],

[x, [m, y]] = [[x,m], y]− [[x, y], m],

[x, [y,m]] = [[x, y], m]− [[x,m], y],

for any m ∈M , x, y ∈ L.

For a Leibniz algebra L and module M over L we consider the spaces

CL0(L,M) =M, CLn(L,M) = Hom(L⊗n,M), n > 0.

Let dn : CLn(L,M) → CLn+1(L,M) be an C-homomorphism defined by

(dnϕ)(x1, . . . , xn+1) := [x1, ϕ(x2, . . . , xn+1)] +

n+1∑

i=2

(−1)i[ϕ(x1, . . . , x̂i, . . . , xn+1), xi]

+
∑

1≤i<j≤n+1

(−1)j+1ϕ(x1, . . . , xi−1, [xi, xj ], xi+1, . . . , x̂j , . . . , xn+1),

where ϕ ∈ CLn(L,M) and xi ∈ L. The property dn+1 ◦ dn = 0 leads that the derivative operator d =
∑
i≥0

di

satisfies the property d ◦ d = 0. Therefore, the n-th cohomology group is well defined by

HLn(L,M) := ZLn(L,M)/BLn(L,M),

where the elements ZLn(L,M) := Ker dn+1 and BLn(L,M) := Im dn are called n-cocycles and n-

coboundaries, respectively.

In the case of n = 2 we give explicit expressions for elements ZL2(L, L) and BL2(L, L). Namely,

elements ψ ∈ BL2(L, L) and ϕ ∈ ZL2(L, L) are defined by:

(1) ψ(x, y) = [d(x), y] + [x, d(y)]− d([x, y]) for some linear map d ∈ Hom(L, L),

(2) [x, ϕ(y, z)]− [ϕ(x, y), z] + [ϕ(x, z), y] + ϕ(x, [y, z])− ϕ([x, y], z) + ϕ([x, z], y) = 0.

In terms of cohomology groups the notion of completeness of a Leibniz algebra L means that it is cen-

terless and HL1(L, L) = 0.

Definition 9. A Leibniz algebra L is called cohomologically rigid if HL2(L, L) = 0.

Remark 10. For a centerless Lie algebra G it is known that H2(G,G) = HL2(G,G) (see Corollary 2

of [14]).
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3. MAIN PART

Let us consider the following family of nilpotent Leibniz algebras L(αi, βj) with 1 ≤ i ≤ k+1, 1 ≤ j ≤
k with a given table of multiplications:





[ei, e1] = ei+1, 2 ≤ i ≤ n1,

[e1, ei] = −ei+1, 3 ≤ i ≤ n1,

[en1+...+nj+i, e1] = en1+...+nj+1+i, 2 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1,

[e1, en1+...+nj+i] = −en1+...+nj+1+i, 3 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1,

[e1, e1] = α1h,

[e2, e2] = α2h,

[en1+...+ni+2, en1+...+ni+2] = αi+2h, 1 ≤ i ≤ k − 1.

[e1, e2] = −e3 + β1h,

[e1, en1+...+ni+2] = −en1+...+ni+3 + βi+1h, 1 ≤ i ≤ k − 1,

where n1 ≥ n2 ≥ . . . nk ≥ 1 and at least one of the parameters αi, βj is non-zero.

One can assume that α1 6= 0. Indeed, if α1 = 0, then taking the following change of the basis

e′1 = A1e1 + A2e2 +

k−1∑

i=1

Bien1+...+ni+2, e′2 = e2, e′i+1 = [e′i, e
′
1], 2 ≤ i ≤ n1, h′ = h,

e′n1+...+nj+2 = en1+...+nj+2, e′n1+...+nj+1+i = [e′n1+...+nj+i, e
′
1], 2 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1,

we have

[e′1, e
′
1] = (A2

2α2 +
k−1∑

i=1

B2
i αi+2 + A1A2β1 + A1

k−1∑

i=1

B2
i αi+2βi+1)h

′.

Taking into account that at least one of the parameters αi, βj is non-zero, we always can chose values

A1, A2, Bi such that

A2
2α2 +

k−1∑

i=1

B2
i αi+2 + A1A2β1 + A1

k−1∑

i=1

B2
i αi+2βi+1 6= 0.

Therefore, we can conclude that parameter α1 is non-zero. Now, scaling the basis element h we can

assume that α1 = 1, i.e., [e1, e1] = h.

Thus, we consider the family of nilpotent Leibniz algebras L(αi, βi) with 1 ≤ i ≤ k :





[ei, e1] = ei+1, 2 ≤ i ≤ n1,

[e1, ei] = −ei+1, 3 ≤ i ≤ n1,

[en1+...+nj+i, e1] = en1+...+nj+1+i, 2 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1,

[e1, en1+...+nj+i] = −en1+...+nj+1+i, 3 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1,

[e1, e1] = h,

[e2, e2] = α1h,

[en1+...+ni+2, en1+...+ni+2] = αi+1h, 1 ≤ i ≤ k − 1.

[e1, e2] = −e3 + β1h,

[e1, en1+...+ni+2] = −en1+...+ni+3 + βi+1h, 1 ≤ i ≤ k − 1,

where n1 ≥ n2 ≥ . . . nk ≥ 1.
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3.1. Particular case.

In order to avoid routine calculations which involve many indexes we limit ourselves to the family

L(α1, α2, β1, β2) with the following table of multiplications:




[ei, e1] = ei+1, 2 ≤ i ≤ n1,

[e1, ei] = −ei+1, 3 ≤ i ≤ n1,

[fi, e1] = fi+1, 1 ≤ i ≤ n2 − 1,

[e1, fi] = −fi+1, 2 ≤ i ≤ n2 − 1,

[e1, e1] = h, [e2, e2] = α2h, [f1, f1] = α3h,

[e1, e2] = −e3 + β1h, [e1, f1] = −f2 + β2h.

Proposition 11. Any derivation of the algebra L(α1, α2, β1, β2) has the following matrix form:

D =

(
A B
C D

)
, where

A =

n1+1∑

j=1

λje1,j +

n1+1∑

i=2

((i− 2)λ1 + γ2)ei,i +

n1∑

i=2

n1+1∑

j=i+1

γj−i+2ei,j , C =

n2∑

i=1

n1+1∑

j=i+1

θj−i+1ei,j,

B =

n2∑

j=1

µje1,j +

2∑

i=1

ciei,n2+1 + (λ2α1)e3,n2+1 +

n2∑

i=2

n2∑

j=i−1

δj−i+2ei,j ,

D =

n2∑

i=1

((i− 1)λ1 + ν1)ei,i + c3e1,n2+1 +

n2∑

i=2

n2∑

j=i+1

νj−i+1ei,j + (µ1α2)e2,n2+1 +men2+1,n2+1

m = (2λ1 + λ2β1 + µ1β2), A ∈ Mn1+1,n1+1, B ∈ Mn1+1,n2+1, C ∈ Mn2+1,n1+1, D ∈ Mn2+1,n2+1 and

matrix units ei,j and with the restrictions:




α1θ2 + α2δ1 = 0,

−2λ2α1 + λ1β1 + λ2β
2
1 + µ1β1β2 − γ2β1 − δ1β2 = 0,

−2µ1α2 + λ1β2 + λ2β1β2 + µ1β
2
2 − θ2β1 − ν1β2 = 0,

α1(2λ1 + λ2β1 + µ1β2 − 2γ2) = 0,

α2(2λ1 + λ2β1 + µ1β2 − 2ν1) = 0.

Moreover, if n1 > n2, then θj = 0 with 2 ≤ j ≤ n1 − n2 + 1.

Proof. The proof is carried out by straightforward checking the derivation property and using the table of

multiplications of the algebras L(α1, α2, β1, β2). �

Lemma 12. Let d be a derivation of the algebra L(α1, α2, β1, β2). Then we have that coefficient d(h)|h is

ǫ1 + ǫ2, where ǫk ∈ {ν1, λ1, γ2}.
Proof. Let us consider the following cases:

(1) α2 6= 0. In this case, by applying the derivation conditions we have 2λ1 + λ2β1 + µ1β2 − 2ν1 = 0
then d(h) = 2ν1h.

(2) α2 = 0 and α1 6= 0. Similar to the above case we have d(h) = 2γ2h.
(3) α2 = 0 and α1 = 0. We consider the following:

(a) β2 6= 0. Making the following change of basis: e′1 = e1, e
′
i = β2ei − β1fi−1, 2 ≤ i ≤ n2 + 1,

ei = β2ei, n2 + 2 ≤ i ≤ n1 + 1 and f ′
i = fi, 1 ≤ i ≤ n2, we can suppose β ′

1 = 0 and by

restrictions we have that µ1β2 = ν1 − λ1. Hence, d(h) = (λ1 + ν1)h.
(b) β2 = β1 = 0. Then d(h) = 2λ1h.
(c) β2 = 0, β1 6= 0. By restrictions we have that λ2β1 = γ2 − λ1. Therefore, d(h) = (λ1 + γ2)h.

�
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Lemma 13. The number of nil-independent derivations of the algebra L(α1, α2, β1, β2) is equal to 4.

Proof. We are going to prove that the matrix D is a nilpotent matrix if and only if λ1 = γ2 = ν1 = δ1θ2 = 0.
By Lemma 12, we have that d(h) = (a1λ1 + a2γ2 + α3ν1)h.

According Proposition 11 we have

D =

(
A B
C D

)
=

(
A1 + A2 B

C D1 +D2

)
, where

A1 = diag{λ1, γ2, λ1 + γ2, . . . , (n1 − 1)λ1 + γ2},
D1 = diag{ν1, λ1 + ν1, 2λ1 + ν1, . . . , (n2 − 1)λ1 + ν1, a1λ1 + a2γ2 + α3ν1}

are diagonal matrices, A2, D2, C are strictly upper triangular matrices and the matrix B is upper triangular

matrix with non-zero diagonal under the main diagonal such that A ∈ Mn1+1,n1+1, B ∈ Mn1+1,n2+1,
C ∈Mn2+1,n1+1 and D ∈Mn2+1,n2+1.

Note that matrices A1A2, A
2
2, D1D2, D

2
1 are nilpotent, the matrices C(A1 + A2) and (D1 + D2)C

have the same type pattern as C (that is if any entry of C is 0, the entry of C(A1 + A2) and the entry of

(D1 +D2)C at the same position is zero, as well). Likewise, the matrix (A1 + A2)B and B(D1 +D2) has

the same pattern as B.

It is easy to see that BC = K1 + K2 with diagonal matrix K1 = diag{0, δ1θ2, δ1θ2, . . . , δ1θ2︸ ︷︷ ︸
n2

, 0, . . . , 0}

and strictly upper triangular matrix K2. Similarly, CB = Z1 + Z2 with diagonal matrix Z1 =
diag{δ1θ2, δ1θ2, . . . , δ1θ2, 0} and strictly upper triangular matrix Z2.

According to the above arguments we have the following formula:

D
2 =

(
Ã1 + Ã2 B̃

C̃ D̃1 + D̃2

)
,

where Ã2, D̃2− nilpotent matrices and the matrices B̃ and C̃ are the same type as B and C, respectively

and Ã1 and D̃1 are the following diagonal matrices:

Ã1 = diag{λ21, γ22 + δ1θ2, (λ1 + γ2)
2 + δ1θ2, . . . , ((n2 − 2)λ1 + γ2)

2 + δ1θ2,
((n2 − 1)λ1 + γ2)

2, . . . , ((n1 − 1)λ1 + γ2)
2},

D̃1 = diag{ν21 + δ1θ2, (λ1 + ν1)
2 + δ1θ2, (2λ1 + ν1)

2 + δ1θ2, . . . ,
. . . , ((n2 − 1)λ1 + ν1)

2 + δ1θ2, (a1λ1 + a2γ2 + α3ν1)
2}.

To continue iteration we conclude that in the main diagonal of the matrix Dk will be equal to zero if and

only if λ1 = γ2 = ν1 = δ1θ2 = 0. Thus, the nilpotency of the matrix D implies λ1 = γ2 = ν1 = δ1θ2 = 0.

Let us assume now that λ1 = γ2 = ν1 = δ1θ2 = 0. Then we obtain that matrices Ã1 + Ã2, D̃1 + D̃2, C̃
are strictly upper triangular and the matrix B̃ is upper triangular. Therefore, the matrix D2 is nilpotent and

hence, D is nilpotent. �

Let R be a solvable Leibniz algebra whose nilpotent radical is the algebras from L(α1, α2, β1, β2). We

denote by Q the complementary subspace to a nilpotent radical of R. Due to work [10] we have that

dimension of Q is bounded by number of nil-independent derivations of L(α1, α2, β1, β2).
Let us introduce denotations

d1 ∈ DerL(α1, α2, β1, β2) with λ1 6= 0, γ2 = ν1 = δ1θ2 = 0,

d2 ∈ DerL(α1, α2, β1, β2) with γ2 6= 0, λ1 = ν1 = δ1θ2 = 0,

d3 ∈ DerL(α1, α2, β1, β2) with ν1 6= 0, λ1 = γ2 = δ1θ2 = 0,

d4 ∈ DerL(α1, α2, β1, β2) with δ1θ2 6= 0, λ1 = γ2 = ν1 = 0.

Proposition 14. dimQ ≤ 3.
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Proof. Due to Lemma 13 we have that the number of nil-independent derivations of L(α1, α2, β1, β2) is

equal to 4 and they are depends on parameters λ1, γ2, ν1, θ2, δ1. Let us assume that dimQ = 4, that is,

Q = {x1, x2, x3, x4}. Then

Rxi |L(α1,α2,β1,β2)
= di, i = 1, . . . , 4.

By scaling of the basis elements xi, 1 ≤ i ≤ 4 one can assume that λ1 = 1 in d1, γ2 = 1 in d2, ν1 = 1 in

d3, respectively.

Let us assume that θ2 6= 0 (recall that this case is impossible when n1 > n2). Thanks to Theorem 4 we

have R2 ⊆ L(α1, α2, β1, β2). Applying this embedding in the following equalities:

(∗)f2 = [f1, [x2, x4]] = [[f1, x2], x4]− [[f1, x4], x2] = −e2 + L(αi, βj)
2

we get a contradiction with the assumption that θ2 6= 0. Thus, we obtain dimQ ≤ 3. �

The following theorem describes solvable Leibniz algebras with nilpotent radical L(α1, α2, β1, β2) and

maximal possible dimension of Q.

Theorem 15. Solvable Leibniz algebra with nilpotent radicalL(α1, α2, β1, β2) and three-dimensional com-

plementary subspace is isomorphic to the algebra:

R :





[e1, e1] = h, [ei, e1] = −[e1, ei] = ei+1, 2 ≤ i ≤ n1,

[h, x1] = 2h, [fi, e1] = −[e1, fi] = fi+1, 1 ≤ i ≤ n2 − 1,

[e1, x1] = −[x1, e1] = e1, [ei, x1] = −[x1, ei] = (i− 2)ei, 3 ≤ i ≤ n1 + 1,

[fi, x1] = −[x1, fi] = (i− 1)fi, 2 ≤ i ≤ n2,

[ei, x2] = −[x2, ei] = ei, 2 ≤ i ≤ n1 + 1,

[fi, x3] = −[x3, fi] = fi, 1 ≤ i ≤ n2.

Proof. Let R = L(α1, α2, β1, β2)⊕Q with {e1, e2, . . . , en1+1, f1 . . . , fn2
, x1, x2, x3} such that

Rxi |L(α1,α2,β1,β2)
= di, i = 1, 2, 3.

Due to Proposition 11 we have the products [L(α1, α2, β1, β2), xj], 1 ≤ j ≤ 3.
From the table of multiplications of the algebra L(α1, α2, β1, β2) we derive that

ei 6∈ Annr(R) with 1 ≤ i ≤ n1, fj 6∈ Annr(R) with 1 ≤ j ≤ n2 − 1.

Taking into account that for any x, y ∈ R we have [x, y] + [y, x] ∈ Annr(R) we conclude that

[x1, ei] + [ei, x1] = (∗)en1+1 + (∗)fn2
+ (∗)h, 1 ≤ i ≤ n1,

[x1, fi] + [fi, x1] = (∗)en1+1 + (∗)fn2
+ (∗)h, 1 ≤ i ≤ n2 − 1.

Consider
[x1, en1+1] = [x1, [en1

, e1]] = [[x1, en1
], e1]− [[x1, e1], en1

] =

= [−[en1
, x1], e1]− [−[e1, x1], en1

] = −(n1 − 1)en1+1,

[x1, fn2
] = [x1, [fn2−1, e1]] = [[x1, fn2−1], e1]− [[x1, e1], fn2−1] =

= [−[fn2−1, x1], e1]− [−[e1, x1], fn2−1] =

−
n1+1∑

k=n2+2

θk−n2+1,1ek − (n2 − 1)fn2
.

This imply that en1+1, fn2
/∈ Annr(R)

We claim that span〈ei, fj |1 ≤ i ≤ n1 + 1, 1 ≤ j ≤ n2〉 ∩Annr(R) = {0}. Indeed, let

z = a1e1 + a2e2 + . . .+ an1+1en1+1 + b1f1 + . . .+ bn2
fn2

+ c1x1 + c2x2 + c3x3 ∈ Annr(R).

Then considering the products

0 = [x1, z] = [x2, z] = [x3, z] = [e1, z] = [e2, z] = [f1, z]

we derive z = 0.
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Thus, we obtain Annr(R) = 〈h〉 and

[xj , ei] = −[ei, xj ] + (∗)h, 1 ≤ i ≤ n1 + 1, 1 ≤ j ≤ 3,

[xj , fi] = −[fi, xj] + (∗)h, 1 ≤ i ≤ n2, 1 ≤ j ≤ 3,

[xi, xj ] = −[xj , xi] + (∗)h, 1 ≤ i, j ≤ 3.

It is easy to see that the quotient algebra R/Annr(R) is a particular case of the Lie algebra rc. Namely,

the quotient Lie algebra has nilpotent radical nc with characteristic sequence (n1, n2, 1) and its table of

multiplication has the following form:





[ei, e1] = −[e1, ei] = ei+1, 2 ≤ i ≤ n1,

[fi, e1] = −[e1, fi] = fi+1, 1 ≤ i ≤ n2 − 1,

[e1, x1] = −[x1, e1] = e1,

[ei, x1] = −[x1, ei] = (i− 2)ei, 3 ≤ i ≤ n1 + 1,

[fi, x1] = −[x1, fi] = (i− 1)fi, 2 ≤ i ≤ n2,

[ei, x2] = −[x2, ei] = ei, 2 ≤ i ≤ n1 + 1,

[fi, x3] = −[x3, fi] = fi, 1 ≤ i ≤ n2.

If we now rise up to the initial algebra R, then we get the following table of multiplications (we omit the

bracket of the family L(α1, α2, β1, β2)):

[e1, xj ] = δ1je1 + ajh, [xj , e1] = −δ1je1 + ãjh, 1 ≤ j ≤ 3

[e2, xj ] = δ2je2 + bjh, [xj , e2] = −δ2je2 + b̃jh, 1 ≤ j ≤ 3

[e3, xj ] = (1− δ3,j)e3 + cjh, 1 ≤ j ≤ 3

[ei, x1] = (i− 2)ei, 4 ≤ i ≤ n1 + 1,

[ei, x2] = ei, 4 ≤ i ≤ n1 + 1,

[f1, xj ] = λf1 + djh, [xj , f1] = −λf1 + d̃1h,

[f2, xj ] = (1− δ2j)f2 + gjh,

[fi, x1] = (i− 1)fi, 3 ≤ i ≤ n2,

[fi, x3] = fi, 3 ≤ i ≤ n2,

[h, xj ] = mjh, 1 ≤ j ≤ 3

[xi, xj ] = ϕi,jh, 1 ≤ i, j ≤ 3.

with δij the Kronecker symbol, λ = 0 if j = 1, 2 and λ = 1 if j = 3.
The Leibniz identity on the following triples imposes further constraints on the above family.

Leibniz identity Constraint

{e1, e1, x1}, ⇒ m1 = 2,
{e1, e1, xi}, 2 ≤ i ≤ 3 ⇒ mi = 0,
{e2, e2, x1}, ⇒ α1 = 0,
{f1, f1, x1}, ⇒ α2 = 0,

Leibniz identity Constraint

{e1, e2, x1}, ⇒ β1 = 0,
{e1, f1, x1}, ⇒ β2 = 0,
{e2, e1, xi}, 1 ≤ i ≤ 3 ⇒ ci = 0,
{f1, e1, xi}, 1 ≤ i ≤ 3 ⇒ gi = 0.

At that time, the following change of basis

e′1 = e1 − a1h, e′2 = e2 −
b1
2
h, f ′

1 = f1 −
d1
2
h, x′i = xi −

ϕi,1

2
h, 1 ≤ i ≤ 3

allows to assume that a1 = b1 = d1 = ϕi,1 = 0 for 1 ≤ i ≤ 3.
We again apply the Leibniz identity and we have the following:
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Leibniz identity Constraint

{xi, e1, x1}, 1 ≤ i ≤ 3 ⇒ ãi = 0, 1 ≤ i ≤ 3,

{xi, e2, x1}, 1 ≤ i ≤ 3 ⇒ b̃i = 0, 1 ≤ i ≤ 3,
{f1, xi, x1}, 2 ≤ i ≤ 3 ⇒ di = 0, 2 ≤ i ≤ 3,

{xi, f1, x1}, 2 ≤ i ≤ 3 ⇒ d̃i = 0, 1 ≤ i ≤ 3,
{e1, xi, x1}, 2 ≤ i ≤ 3 ⇒ ai = 0, 2 ≤ i ≤ 3,
{e2, xi, x1}, 2 ≤ i ≤ 3 ⇒ bi = 0, 2 ≤ i ≤ 3,
{xi, xj , x1}, 1 ≤ i ≤ 3, 2 ≤ j ≤ 3 ⇒ ϕi,j = 0, 1 ≤ i ≤ 3, 2 ≤ j ≤ 3.

Finally, if we consider the equalities [xj , ei] = [xj , [ei−1, e1]] with 3 ≤ i ≤ n1 + 1 and [xj , fi] =
[xj , [fi−1, e1]] with 2 ≤ i ≤ n2, 1 ≤ j ≤ 3 we obtain the algebra of the theorem statement.

�

The next result establish the completeness of the algebra R.

Theorem 16. The solvable Leibniz algebra R is complete.

Proof. Centerless of the algebra R is immediately follows from the table of multiplications in Theorem 15.

Note that 〈h〉 forms an ideal of R.

The quotient algebra R/〈h〉 is the algebra rc, which is complete due to Theorem 8. Applying this result

in the following equalities by modulo of an ideal 〈h〉:

d(e1) = d([e1, x1]) = [d(e1), x1] + [e1, d(x1)] 6≡ 0 ⇒ d(e1) ≡ Rαe1(e1) = αh, α ∈ C,
0 = d([e2, x1]) = [d(e2), x1] + [e2, d(x1)] ≡ [d(e2), x1] ⇒ d(e2) ≡ 0,

d(ei+1) = d([ei, e1]) = [d(ei), e1] + [ei, d(e1)] ≡ 0 ⇒ d(ei+1) ≡ 0, 2 ≤ i ≤ n1,
0 = d([f1, x1]) = [d(f1), x1] + [f1, d(x1)] ≡ [d(f1), x1] ⇒ d(f1) ≡ 0,

d(fi+1) = d([fi, e1]) = [d(fi), e1] + [fi, d(e1)] ≡ 0 ⇒ d(fi+1) ≡ 0, 1 ≤ i ≤ n2 − 1,
0 = d([xi, x1]) = [d(xi), x1] + [xi, d(x1)] ≡ [d(xi), x1] ⇒ d(xi) ≡ 0, 1 ≤ i ≤ 3.

and in the chain of equalities

2[d(e1), e1] + 2[e1, d(e1)] = 2d([e1, e1]) = 2d(h) = d([h, x1]) = [d(h), x1] + [h, d(x1)]
⇒ d(h) = Rβx1

(h) = 2βh, β ∈ C

we conclude that any derivation of R is inner.

�

Now we prove the triviality of the second group of cohomology for the algebra R with coefficient itself

(that is HL2(R,R) = 0). Since J := 〈h〉 is an ideal of R and quotient algebra R/J is the Lie algebra rc,

we get a decomposition R = rc ⊕ J as the direct sum of the vector spaces (here we identify the space of

the quotient space rc and its preimage under the natural homomorphism). Hence, for any x, y ∈ R and

ϕ(x, y) ∈ ZL2(R,R) one has

[x, y] = [x, y]rc + [x, y]J , ϕ(x, y) = ϕ(x, y)rc + ϕ(x, y)J ,

with [x, y]rc ∈ rc, [x, y]J ∈ J and ϕ(x, y)rc ∈ rc, ϕ(x, y)J ∈ J .

For an arbitrary elements x, y, z ∈ rc and ϕ ∈ ZL2(R,R) using (1) we consider the chain of equalities:

0 = [x, ϕ(y, z)]− [ϕ(x, y), z] + [ϕ(x, z), y] + ϕ(x, [y, z])− ϕ([x, y], z) + ϕ([x, z], y) =
= [x, ϕ(y, z)rc ]rc − [ϕ(x, y)rc, z]rc + [ϕ(x, z)rc , y]rc + ϕ(x, [y, z]rc)rc − ϕ([x, y]rc, z)rc+
+ϕ([x, z]rc , y)rc + [x, ϕ(y, z)rc]J + [x, ϕ(y, z)J ]J − [ϕ(x, y)rc, z]J − [ϕ(x, y)J , z]J+
+[ϕ(x, z)rc , y]J + [ϕ(x, z)J , y]J + ϕ(x, [y, z]rc)J + ϕ(x, [y, z]J)rc + ϕ(x, [y, z]J)J−
−ϕ([x, y]rc , z)J − ϕ([x, y]J , z)rc − ϕ([x, y]J , z)J + ϕ([x, z]rc , y)J + ϕ([x, z]J , y)rc+
+ϕ([x, z]J , y)J .
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From this we obtain

(3)





[x, ϕ(y, z)rc ]rc − [ϕ(x, y)rc, z]rc + [ϕ(x, z)rc , y]rc+

ϕ(x, [y, z]rc)rc − ϕ([x, y]rc, z)rc + ϕ([x, z]rc , y)rc+

ϕ(x, [y, z]J)rc − ϕ([x, y]J , z)rc + ϕ([x, z]J , y)rc = 0,

(4)





[ϕ(x, z)rc , y]J + [x, ϕ(y, z)J ]J + [x, ϕ(y, z)rc]J + [ϕ(x, z)J , y]J+

ϕ(x, [y, z]rc)J − [ϕ(x, y)rc, z]J − [ϕ(x, y)J , z]J + ϕ(x, [y, z]J)J−
ϕ([x, y]rc, z)J − ϕ([x, y]J , z)J + ϕ([x, z]rc , y)J + ϕ([x, z]J , y)J = 0.

Note that the first six terms of the equality (3) define a Leibniz 2-cocycle for the quotient Lie algebra rc.

Therefore, Leibniz 2-cocycles of the Lie algebra rc with its trivial extensions on domains J⊗R,R⊗J, J⊗J
are included into ZL2(R,R) (the same is true for 2-coboundaries of the algebra rc). Moreover, the last three

terms in (3) appear only for the triples {e1, e1, a}, {e1, a, e1}, {a, e1, e1} with a ∈ rc.

Proposition 17. The following 2-cochains together with a basis of ZL2(rc, rc):

ϕ1(e1, e1) = h, ϕ2(x1, e1) = ϕ2(e1, x1) = h, ϕ3(x1, x1) = h, ϕ4(x3, x1) = h,

{ϕ5(f1, x1) = −2h, ϕ5(f1, x3) = −ϕ11(x3, f1) = h,

{
ϕ6(x2, e2) = −ϕ6(e2, x2) = h,
ϕ6(e2, x1) = h,

{
ϕ7(f1, x3) = −ϕ7(x3, f1) = h,
ϕ7(f1, x1) = (−2)h,





ϕ8(e1, e1) =
1
2
x3,

ϕ8(h, x1) = x3,
ϕ8(h, fi) = −ϕ8(fi, h) =

1
2
fi,

1 ≤ i ≤ n2,





ϕ9(e1, e1) =
1
2
x2,

ϕ9(h, x1) = x2,
ϕ9(h, ei) = −ϕ9(ei, h) =

1
2
ei,

2 ≤ i ≤ n1 + 1,



ϕ10(h, h) = −h,
ϕ10(h, x1) = x1,
ϕ10(e1, e1) =

1
2
x1,

ϕ10(h, e1) = −ϕ10(e1, h) =
1
2
e1,

ϕ10(h, ei) = −ϕ10(ei, h) =
i−2
2
ei,

ϕ10(h, fj) = −ϕ10(fj , h) =
i−1
2
fj,

3 ≤ i ≤ n1 + 1, 2 ≤ j ≤ n2,





ϕ11(e1, e1) = e1,
ϕ11(e1, h) = −ϕ11(h, e1) = h,
ϕ11(h, x1) = ϕ11(x1, h) = e1,
ϕ11(h, ei) = −ϕ11(ei, h) = ei+1,
ϕ11(h, fj) = −ϕ11(fj, h) = fj+1,
2 ≤ i ≤ n1, 1 ≤ j ≤ n2 − 1,





ϕ12
j (e1, e1) = ej,

ϕ12
j (e1, h) = −ϕ12

j (h, e1) = ej+1,
ϕ12
j (x1, h) = (j − 2)ej,

ϕ12
j (h, x1) = −(j − 4)ej ,

ϕ12
j (x2, h) = −ϕ12

j (h, x2) = ej ,
2 ≤ j ≤ n1 + 1,





ϕ13
j (e1, e1) = fj ,

ϕ13
j (e1, h) = −ϕ13

j (h, e1) = fj+1,
ϕ13
j (x1, h) = (j − 1)fj,

ϕ13
j (h, x1) = (3− j)fj ,

ϕ13
j (x3, h) = −ϕ13

j (h, x3) = fj ,
1 ≤ j ≤ n2,




ϕ14
j (e1, ej) = −ϕ14

j (ej, e1) = h,
ϕ14
j (x1, ej+1) = (j − 1)h,

ϕ14
j (ej+1, x1) = (3− j)h,

ϕ14
j (x2, ej+1) = −ϕ14

j (ej+1, x2) = h,
3 ≤ j ≤ n1,





ϕ15
j (e1, fj) = −ϕ15

j (fj , e1) = h,
ϕ15
j (x1, fj+1) = ϕ15

j (fj+1, x1) = jh,
ϕ15
j (x3, fj+1) = −ϕ15

j (fj+1, x3) = h,
1 ≤ j ≤ n2 − 1,

form a basis of spaces ZL2(R,R) and BL2(R,R).

Proof. The proof of this proposition is carried out by straightforward calculations of (1) and (2) by using

result of Theorem 8. In fact, due to Remark 10 and centerlessness of the Lie algebra rc we conclude that
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H2(rc, rc) = HL2(rc, rc), that is, ZL2(rc, rc) = BL2(rc, rc). Taking into account that ZL2(rc, rc) is isomor-

phically embedded into ZL2(R,R) (respectively, BL2(rc, rc) is isomorphically embedded into BL2(R,R))
we need to find a basis of complementary subspaces to ZL2(rc, rc) (respectively, to BL2(rc, rc)).

Further, we consider the equalities (d2ϕ)(x, y, z) = 0 for the following cases:

x, y, z ∈ J, x ∈ rc, y, z ∈ J, x, z ∈ J, y ∈ rc, x, y ∈ J, z ∈ rc,
x, y ∈ rc, z ∈ J, x, z ∈ rc, y ∈ J x ∈ J, y, z ∈ rc,

from where we get the relations similar to the equations (3) and (4). In addition, calculations of (3) for

the triples {e1, e1, a}, {e1, a, e1}, {a, e1, e1} with a ∈ rc and (4) for x, y, z ∈ rc give us some additional

relations for complementary subspace to ZL2(rc, rc).
Finally, combining all restrictions on 2-cocycles and identifying the basis of complementary subspace to

ZL2(rc, rc) in ZL2(R,R) we get the required basis of ZL2(R,R).
Applying the same arguments for 2-coboundaries we complete the proof of theorem. �

Remark 18. In the above proposition we simplified the calculations using the results for the quotient

Lie algebra rc. In fact, we exclude calculation of equalities (4) for the triples x, y, z ∈ rc except

{e1, e1, a}, {e1, a, e1}, {a, e1, e1} with a ∈ rc. Thus, instead of (dim rc)
3 triples we calculated just 3 dim rc

triples in (4).

As a consequence of Proposition 17 we get the following main result.

Theorem 19. The solvable Leibniz algebra R is a cohomologically rigid algebra.

4. GENERAL CASE

In this section we present results similar to obtained in particular case for solvable Leibniz algebras with

nilpotent radical L(αi, βi), 1 ≤ i ≤ k and (k + 1)-dimensional complementary subspace.

Taking into account that the general case is analogous to a special case we omit routine calculations using

indexes ni and induction in the proofs of results below, we just give short sketch their proofs.

The sketch consists of the following steps:

(1) Firstly, we compute the space Der(L(αi, βi)) with 1 ≤ i ≤ k. Further, we indicate (k + 1)-pieces

nil-independent derivations, which are depends on only non-zero parameters in the diagonal of the

general matrix form of derivations.

(2) Secondly, we construct the solvable Leibniz algebra R = L(αi, βi) ⊕ Q with Q = 〈x1, . . . , xk+1〉
such that Rxs |L(αi,βi)

= ds, where ds, 1 ≤ s ≤ k + 1 are the nil-independent derivations indicated

in the first step. Next, applying the Leibniz identity, the appropriate basis transformations and the

mathematical induction we obtain the statement of Theorem 20.

(3) In order to prove the completeness of the solvable Leibniz algebra R (the first assertion of Theorem

21) we just need to verify the table of multiplications of R obtained in the second step and using

the fact that any derivation of the quotient Lie algebra rc = R/〈h〉 is inner together with arguments

applied in the proof of the particular case (see Theorem 16) allow us to prove the completeness of

the algebra R.

(4) Finally, in the study of the second cohomology group of the algebra R we also use the triviality of

the second group of cohomologies for the quotient algebra rc, that is, we use the equality Z2(rc, rc) =
B2(rc, rc). By arguments applied in before Proposition 17 and due to Remark 10 we conclude

Z2(rc, rc) = ZL2(rc, rc) ⊆ ZL2(R,R), B2(rc, rc) = BL2(rc, rc) ⊆ BL2(R,R)

we only need to compute the dimensions of complementary subspaces to ZL2(rc, rc) (respectively,

to BL2(rc, rc)) in ZL2(R,R) (respectively, in BL2(R,R)). Thus, the proof of triviality of the sec-

ond cohomology group for the algebra R with coefficient itself is completed by computations of

dimensions of the mentioned complementary subspaces.
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Theorem 20. Solvable Leibniz algebra with nilpotent radicalL(αi, βi), 1 ≤ i ≤ k and (k+1)-dimensional

complementary subspace is isomorphic to the algebra:

R :





[e1, e1] = h, [h, x1] = 2h,

[ei, e1] = −[e1, ei] = ei+1, 2 ≤ i ≤ n1,

[en1+...+nj+i, e1] = −[e1, en1+...+nj+i] = en1+...+nj+1+i, 2 ≤ i ≤ nj+1,

[e1, x1] = −[x1, e1] = e1,

[ei, x1] = −[x1, ei] = (i− 2)ei, 3 ≤ i ≤ n1 + 1,

[en1+...+nj+i, x1] = −[x1, en1+...+nj+i] = (i− 2)en1+...+nj+i 2 ≤ i ≤ nj+1,

[ei, x2] = −[x2, ei] = ei, 2 ≤ i ≤ n1 + 1,

[en1+...+nj+i, xj+2] = −[xj+2, en1+...+nj+i] = en1+...+nj+i, 2 ≤ i ≤ nj+1.

where 1 ≤ j ≤ k − 1.

Theorem 21. The solvable Leibniz algebra R is complete and its second group of cohomologies in coeffi-

cient itself is trivial.

From the results of the paper [4] we obtain rigidity of the algebra R.

Corollary 22. The solvable Leibniz algebra R is rigid.

Remark 23. Note that the structure of the rigid algebra R depends on the given decreasing sequence

(n1, n2, . . . , nk). Set p(n) the number of such sequences, that is, p(x) is the number of integer solutions

of the equation n1 + n2 + . . . + nk = n with n1 ≥ n2 ≥ . . . ≥ nk ≥ 0. The asymptotic value of p(n),

given in [17] by the expression p(n) ≈ 1
4n

√
3
eπ
√

2n/3, (where a(n) ≈ b(n) means that lim
n→∞

a(n)
b(n)

= 1) get the

existence of at least p(n) irreducible components of the variety of Leibniz algebras of dimension n+ k+3.
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