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Abstract
In general, the study of gradations has always represented a cornerstone in the study 
of non-associative algebras. In particular, natural gradation can be considered to be 
the first and most relevant gradation of nilpotent Leibniz (resp. Lie) algebras. In fact, 
many families of relevant solvable Leibniz (resp. Lie) algebras have been obtained 
by extensions of naturally graded algebras, i.e., solvable algebras with a well-
structured nilradical. Thus, the aim of this work is introducing the concept of natural 
gradation for Lie and Leibniz superalgebras. Moreover, after having defined 
naturally graded Lie and Leibniz superalgebras, we characterize natural gradations 
on a very important class of each of them, that is, those with maximal supernilindex.
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1 Introduction

In general, the study of graded algebras has always played a fundamental role into
Lie theory (see for instance [10,15]). Recently, the importance of naturally graded Lie
and Leibniz algebras has been increased by means of the use of them as nilradical
of relevant families of solvable ones (see [1,5,13,28]). Therefore, it remains as an
immediate and future work and the use of the results of the present paper to obtain
important families of solvable Lie and Leibniz superalgebras by extensions of non-
nilpotent outer derivations. Recall that filiform Lie algebras were firstly introduced
in [34] and the generalization for Lie superalgebras has already been obtained (see
[8]) and, in the same way as occurs for Lie algebras, filiform Lie superalgebras have
maximal supernilindex. On the other hand, the notion of Leibniz superalgebras as a
generalization of Leibniz algebras was firstly introduced in [2], and general graded
Leibniz algebras were considered before in work [29], though. Since Leibniz algebras
are a generalization of Lie algebras [30], consequently many of the features of Leibniz
superalgebras are generalization of Lie superalgebras [3,11,12,19]. Likewise, the study
of nilpotent Leibniz algebras [2,6,7] can be very useful to study nilpotent Leibniz
superalgebras.

Thus, we begin the present work introducing the concept of naturally graded for
Lie and Leibniz superalgebras. Secondly we tackle the problem of determining which
filiform Lie superalgebras are naturally graded obtaining a complete classification
(up to isomorphism) for total dimension less or equal to 7 as well as some other
classifications. Finally, we characterize naturally graded Leibniz superalgebras with
maximal supernilindex. Note that the techniques used for Leibniz superalgebras are
totally different from the ones used for Lie superalgebras and involve a huge amount
of computation.

Throughout the present paper we will consider vector spaces and algebras over the
field of complex numbers C.

2 Preliminary Results

2.1 Preliminary Results for Lie Superalgebras

A vector space V is said to be Z2-graded if it admits a decomposition in direct sum,
V = V0̄ ⊕ V1̄, where 0̄, 1̄ ∈ Z2. An element X ∈ V is called homogeneous of degree
ī if it is an element of Vī , ī ∈ Z2. In particular, the elements of V0̄ (resp. V1̄) are also
called even (resp. odd). A Lie superalgebra (see [14,32]) is a Z2-graded vector space
g = g0̄ ⊕ g1̄, with an even bilinear commutation operation (or “supercommutation”)
[·, ·], which satisfies the conditions

1. [X , Y ] = −(−1)ī j̄ [Y , X ],
2. (−1)k̄ī [X , [Y , Z ]] + (−1)ī j̄ [Y , [Z , X ]] + (−1) j̄ k̄[Z , [X , Y ]] = 0 (super Jacobi

identity)

for all X ∈ gī, Y ∈ g j̄, Z ∈ gk̄ with ī, j̄, k̄ ∈ Z2. 



Thus, g0̄ is an ordinary Lie algebra, and g1̄ is a module over g0̄; the Lie superal-
gebra structure also contains the symmetric pairing S2g1̄ −→ g0̄. Hereafter, any time
we write [Xi , X j ] or [Xi , Y j ] with Xi even and Y j odd elements, and the products
[X j , Xi ], [Y j , Xi ] are assumed to be obtained by the skew-symmetric property as it
is usual in Lie theory. Also, for simplicity the symmetric products [Yi , Y j ] = [Y j , Yi ]
are denoted by (Yi , Y j ). Note that when we deal with Leibniz superalgebras we do not
have skew-symmetric nor symmetric property and each single bracket product must
be specified.

In general, the descending central sequence of a Lie superalgebra g = g0̄ ⊕ g1̄
is defined in the same way as for Lie algebras: C0(g) := g, Ck+1(g) := [Ck(g), g]
for all k ≥ 0. Consequently, if Ck(g) = {0} for some k, then the Lie superalgebra is
called nilpotent. Nevertheless, there are also defined two other descending sequences
called Ck(g0̄) and Ck(g1̄) which will be important in our study. They are defined by
C0(gī ) := gī , Ck+1(gī ) := [g0̄, Ck(gī )], k ≥ 0, ī ∈ Z2.

If g = g0̄⊕g1̄ is a nilpotent Lie superalgebra, then g has supernilindex or s-nilindex
(p, q) if satisfies

(C p−1(g0̄)) �= 0, (Cq−1(g1̄)) �= 0, C p(g0̄) = Cq(g1̄) = 0.

Note that a module A = A0̄ ⊕ A1̄ of the Lie superalgebra g is an even bilinear map
g × A → A satisfying

X(Ya) − (−1)ī j̄ Y (Xa) = [X , Y ]a

for all X ∈ gī , Y ∈ g j̄ , ī, j̄ ∈ Z2, and a ∈ A.
Lie superalgebra cohomology is defined in the followingwell-knownway ( see, e.g.,

[14,33] ): theZ2-gradedvector space ofq-dimensional cocyclesof theLie superalgebra
g = g0̄ ⊕ g1̄ with coefficients in the g-module A = A0̄ ⊕ A1̄ is given by

Cq(g; A) :=
⊕

q0+q1=q

Hom
(∧q0g0̄ ⊗ Sq1g1̄, A

)

The above space is Z2-graded as Cq(g; A) = Cq
0 (g; A) ⊕ Cq

1 (g; A) being

Cq
p(g; A) :=

⊕

q0 + q1 = q
q1 + r ≡ p mod 2

Hom
(∧q0g0̄ ⊗ Sq1g1̄, Ar

)

Thus we have the cohomology groups

Hq
p (g; A) := Zq

p(g; A)/Bq
p(g; A)

where, in particular, the elements of Zq
0 (g; A) and Zq

1 (g; A) are called even q-cocycles
and odd q-cocycles, respectively. We denote the variety of nilpotent Lie superalgebras
g = g0̄ ⊕ g1̄ with dim(g0̄) = n + 1 and dim(g1̄) = m with the notation N n+1,m , in



complete analogy to Lie algebras (see [23,24]). Then, any nilpotent Lie superalgebra
g = g0̄ ⊕ g1̄ ∈ N n+1,m with s-nilindex (n,m) is called filiform [16].

We denote byFn+1,m the subset ofN n+1,m consisting of all the filiform Lie super-
algebras. Likewise, it can be seen that any filiform Lie superalgebra can be always
expressed in a suitable basis or so-called adapted basis. Therefore, if g = g0̄ ⊕ g1̄ ∈
Fn+1,m , then there exists an adapted basis of g, namely {X0, X1, . . . , Xn, Y1, . . . ,Ym},
with {X0, X1, . . . , Xn} a basis of g0̄ and {Y1, . . . ,Ym} a basis of g1̄, such that

[X0, Xi ] = Xi+1, 1 ≤ i ≤ n − 1, [X0, Xn] = 0
[X0, Y j ] = Y j+1, 1 ≤ j ≤ m − 1, [X0, Ym] = 0

From this result it can be observed that the simplest filiform Lie superalgebra or
so-called themodel filiform Lie superalgebra, denoted by Ln,m , will be defined by the
only nonzero bracket products

Ln,m :
{ [X0, Xi ] = Xi+1, 1 ≤ i ≤ n − 1

[X0, Y j ] = Y j+1, 1 ≤ j ≤ m − 1

Ln,m will be the most important filiform Lie superalgebra, in complete analogy to
Lie algebras, since all the other filiform Lie superalgebras can be obtained from it by
deformations. These infinitesimal deformations will be given by the even 2-cocycles,
Z2
0(L

n,m, Ln,m), which can be decomposed in the way

Z2
0(L

n,m , Ln,m) = Z2(Ln,m , Ln,m) ∩ Hom(g0̄ ∧ g0̄, g0̄)︸ ︷︷ ︸
A

⊕ Z2(Ln,m , Ln,m) ∩ Hom(g0̄ ∧ g1̄, g1̄)︸ ︷︷ ︸
B

⊕

Z2(Ln,m , Ln,m) ∩ Hom(S2g1̄, g0̄)︸ ︷︷ ︸
C

= A ⊕ B ⊕ C

0̄ 1̄where g0̄ = Ln,m and g1̄ = Ln,m . The component C has been determined in [8,17], and 
components A, B have been determined in [26] and [25], respectively. Moreover, using 
these deformations it has been obtained a complete classification (up to isomorphism) 
of complex filiform Lie superalgebras of dimension less or equal to 7 (for more details 
see [31]). The main result used for this classification is the fact that every filiform 
Lie superalgebra can be obtained by Ln,m + � with � an infinitesimal deformation 
verifying � ◦ �(x, y, z) = �(�(x, y), z) + �(�(z, x), y) + �(�(y, z), x) = 0.

2.2 Preliminary Results for Leibniz Superalgebras

Many results and definitions of the above section can be extended for Leibniz super-
algebras.

Definition 2.1 [2]. A Z2-graded vector space L = L 0̄ ⊕ L ̄1 is called a Leibniz super-
algebra if it is equipped with a product [·, ·] which satisfies the condition

[x, [y, z]] = [[x, y], z] − (−1)ī
 j̄[[x, z], y] (super Leibniz identity)



for all x ∈ L , y ∈ Lī , z ∈ L j̄ , ī, j̄ ∈ Z2.

Note that if a Leibniz superalgebra L satisfies the identity [x, y] = −(−1)ī j̄ [y, x]
for x ∈ Lī , y ∈ L j̄ , then the super Leibniz identity becomes the super Jacobi identity.
Therefore Leibniz superalgebras are a generalization of Lie superalgebras. In the same
way as for Lie superalgebras, isomorphisms are assumed to be consistent with the Z2-
graduation.

If we denote by Rx the right multiplication operator, i.e., Rx : L → L given
as Rx (y) := [y, x] for y ∈ L , then the super Leibniz identity can be expressed as
R[x,y] = Ry Rx − (−1)ī j̄ Rx Ry where x ∈ Lī , y ∈ L j̄ .

We denote by R(L) the set of all right multiplication operators. It is not difficult to
prove that R(L) with the multiplication

< Ra, Rb >:= Ra Rb − (−1)ī j̄ RbRa (2.1)

for Ra ∈ R(L)ī , Rb ∈ R(L) j̄ , becomes a Lie superalgebra.
Note that the concepts of descending central sequence, the variety of Leibniz super-

algebras and Engel’s theorem are natural extensions from Lie theory.
Let V = V0̄ ⊕ V1̄ be the underlying vector space of L , L = L 0̄ ⊕ L 1̄ ∈ Leibn,m ,

being Leibn,m the variety of Leibniz superalgebras, and let G(V ) be the group of
the invertible linear mappings of the form f = f0̄ + f1̄, such that f0̄ ∈ GL(n,C)

and f1̄ ∈ GL(m,C) (then G(V ) = GL(n,C) ⊕ GL(m,C)). The action of G(V ) on
Leibn,m induces an action on the Leibniz superalgebras variety: two laws λ1, λ2 are
isomorphic if there exists a linear mapping f = f0̄ + f1̄ ∈ G(V ), such that

λ2(x, y) = f −1
ī+ j̄

(λ1( fī (x), f j̄ (y))), for anyx ∈ Vī , y ∈ Vj̄ .

The description of the variety of any class of algebras or superalgebras is a difficult
problem. Different papers (for example, [4,9,20,21]) are concerning the applications
of algebraic groups theory to the description of the variety of Lie/Leibniz algebras.

Definition 2.2 For a Leibniz superalgebra L = L 0̄⊕L 1̄ we define the right annihilator
of L as the set Ann(L) := {x ∈ L : [L, x] = 0}.

It is easy to see that Ann(L) is a two-sided ideal of L and [x, x] ∈ Ann(L) for
any x ∈ L 0̄. This notion is nice and compatible with the right annihilator in Leibniz

algebras. If we consider the ideal generated as I := ideal < [x, y] + (−1)ī j̄ [y, x] :
x ∈ Lī , y ∈ L j̄ >, then I ⊂ Ann(L).

Let L = L 0̄ ⊕ L 1̄ be a nilpotent Leibniz superalgebra with dim L 0̄ = n and
dim L 1̄ = m. From Equation (2.1) we have that R(L) is a Lie superalgebra, and in
particular R(L 0̄) is a Lie algebra. As L 1̄ has L 0̄-module structure we can consider
R(L 0̄) as a subset of GL(V1̄) , where V1̄ is the underlying vector space of L 1̄. So, we
have a Lie algebra formed by nilpotent endomorphisms of V1̄. Applying the Engel’s
theorem [22] we have the existence of a sequence of subspaces of V1̄, V0 ⊂ V1 ⊂
V2 ⊂ · · · ⊂ Vm = V1̄,with R(L 0̄)(Vi+1) ⊂ Vī .Then, it can be defined the descending



sequences Ck(L 0̄) and Ck(L 1̄) and the supernilindex in the same way as for Lie
superalgebras.

Similar to the case of null-filiform Leibniz algebras, it is easy to check that a
Leibniz superalgebra is null-filiform if and only if it is single generated. Moreover, a
null-filiform superalgebra has maximal supernilindex (see [27]).

3 Naturally Graded Lie and Leibniz Superalgebras

In terms of algebras, recall that for nilpotent Lie and Leibniz algebras g, the descending
central sequence defines a filtration over the algebra and therefore there is associated
a graded Lie (resp. Leibniz) algebra structure that we denote as

grg :=
∑

Ci−1(g)/Ci (g)

If g, grg are isomorphic, then g is said to be naturally graded. In particular, there are
only two non-isomorphic naturally graded filiform Lie algebras called Ln and Qn ,
whose laws can be expressed in an adapted basis {X0, X1, . . . , Xn} by the following
nonzero bracket products (for more details it can be consulted [20,34])

Ln : { [X0, Xi ] = Xi+1, 1 ≤ i ≤ n − 1 Qn :
{ [X0, Xi ] = Xi+1, 1 ≤ i ≤ n − 1

[Xi , Xn−i ] = (−1)i Xn, 1 ≤ i ≤ n − 1

Note that both algebras are (n + 1)-dimensional, although Qn only appears in the
cases n odd and n ≥ 5.

Analogously, for superalgebra structures, i.e., nilpotent Lie and Leibniz superal-
gebras g = g0̄ ⊕ g1̄, can be considered the descending sequences Ck(gī ) := gī ,
Ck+1(gī ) := [g0̄, Ck(gī )], with k ≥ 0, ī ∈ Z2.
It can be seen that these sequences define a filtration over g0̄ and g1̄, respectively.
Thus, we have on the one hand a structure of graded Lie (resp. Leibniz) algebra

grg0̄ =
∑

Ci−1(g0̄)/Ci (g0̄)

and on the other hand a structure of graded g0̄-module

grg1̄ =
∑

Ci−1(g1̄)/Ci (g1̄)

If we denote gi
0̄

:= Ci−1(g0̄)/Ci (g0̄) and gi
1̄

:= Ci−1(g1̄)/Ci (g1̄), then it is verified
that

[gi
0̄
, g

j
0̄
] ⊂ g

i+ j
0̄

and [gi
0̄
, g

j
1̄
] ⊂ g

i+ j
1̄

0̄ 1̄ 0̄ 1̄

Definition 3.1 Given a nilpotent Lie (resp. Leibniz) superalgebra g = g0̄ ⊕g1̄, consider 
gi = gi ⊕ gi , with gi = Ci−1(g0̄ )/Ci (g0̄ ) and gi = Ci−1(g1̄)/Ci (g1̄). Thus, g is said
to be naturally graded if the following conditions hold:



1. gr(g) = ∑
i∈N gi is a graded Lie (resp. Leibniz) superalgebra ([gi , g j ] ⊂ gi+ j ),

2. g, gr(g) are isomorphic.

Note that when dealing with Lie superalgebras the usual bracket products [ , ] are
skew-symmetric and the products deriving from the symmetric pairing S2g1̄ −→ g0̄
and denoted by ( , ) are symmetric.

Remark 3.1 Condition 1 is in fact required in the above definition. Note that in contrast
with Lie or Leibniz algebras, gr(g) could not be Z2-graded. Indeed, if we consider
the nilpotent Leibniz superalgebra (which is also a Lie superalgebra) expressed in the
adapted basis {X1, X2, X3, X4, Y1} as

{ [X2, X1] = X3, [X3, X1] = X4, [Y1, Y1] = X4
[X1, X2] = −X3, [X1, X3] = −X4

we have g1 = g1
0̄

⊕ g1
1̄

= (C0(g0̄)/C1(g0̄)) ⊕ (C0(g1̄)/C1(g1̄)) =< X1, X2 > ⊕ <

Y1 > Analogously, L2 =< X3 > and g3 =< X4 >. Nevertheless, as (Y1, Y1) = X4
then it is not verified that [g1, g1] ⊂ g2 and consequently it is not graded.

4 Naturally Graded Filiform Lie Superalgebras

Among all the nilpotent Lie superalgebras, the filiform ones (those with maximal
supernilindex) constitute one of the most important types due to its properties and
applications. Thanks to both the theorem of adapted basis and the definition itself of
filiform Lie superalgebras it can be seen that if g = g0̄ ⊕ g1̄ is a filiform Lie superal-
gebra, then its graded superalgebra associated gr(g) = ∑

i∈N gi with [gi , g j ] ⊂ gi+ j ,
is exactly

< X0, X1, Y1 >︸ ︷︷ ︸ ⊕ < X2, Y2 >︸ ︷︷ ︸ ⊕ < X3, Y3 >︸ ︷︷ ︸ ⊕ · · ·
g1 g2 g3

where for simplicity g1 = g1
0̄

⊕ g1
1̄

=< X0, X1 > ⊕ < Y1 > has been replaced by
< X0, X1, Y1 > as there cannot be any possible confusion between even elements,
called Xi , and odd ones, called Y j . Similarly, the same replacement has been applied
to every gi . The last terms of gr(g) depend on three possibilities:

1. If n < m, then

· · · ⊕ < Xn, Yn >︸ ︷︷ ︸ ⊕ < Yn+1 >︸ ︷︷ ︸ ⊕ · · · ⊕ < Ym >︸ ︷︷ ︸
gn gn+1 gm

2. If n = m, then

· · · ⊕ < Xn−1, Yn−1 >︸ ︷︷ ︸ ⊕ < Xn, Yn >︸ ︷︷ ︸
gn−1 gn



3. If n > m, then

· · · ⊕ < Xm, Ym >︸ ︷︷ ︸ ⊕ < Xm+1 >︸ ︷︷ ︸ ⊕ · · · ⊕ < Xn >︸ ︷︷ ︸
gm gm+1 gn

Remark 4.1 It can be seen that the even elements of gr(g), that is
∑

gi
0̄
, constitute a

naturally graded filiform Lie algebra. Furthermore, the definition of naturally graded
Lie superalgebras is a generalization of the one of naturally graded Lie algebras. Thus,
if g = g0̄ ⊕ g1̄ is a naturally graded Lie superalgebra, then g0̄ is a naturally graded
Lie algebra. Indeed, gi

0̄
is equal to Ci−1(g0̄)/Ci (g0̄). Recall that the latter is used in

the definition of naturally graded Lie algebras.

Thanks to this remark we can divide our study into two cases: either g0̄ = Ln or
g0̄ = Qn . Nevertheless, before doing that we are going to obtain all the naturally
graded filiform Lie superalgebras for low dimensions. We can accomplish such classi-
fication due to the results of [31]. The main result used in [31] is that any filiform Lie
superalgebra is a linear deformation of the corresponding model filiform Lie superal-
gebra. Thus, it can be expressed by Ln,m +� with Ln,m the law of the model filiform
Lie superalgebra and � a linear (infinitesimal) deformation which is integrable that
is verifying � ◦ � = 0. On the other hand, recall that an infinitesimal deformation of
Ln,m will be an element of the following space

Z2
0(L

n,m , Ln,m) = Z2(Ln,m , Ln,m) ∩ Hom(g0 ∧ g0, g0) ⊕ Z2(Ln,m , Ln,m) ∩ Hom(g0 ∧ g1, g1) ⊕
Z2(Ln,m , Ln,m) ∩ Hom(S2g1, g0) = A ⊕ B ⊕ C

where g0 = Ln,m
0 and g1 = Ln,m

1 . Recall also that all the infinitesimal deformations
belonging to C are always integrable in the aforementioned sense, for instance the
infinitesimal deformations ϕi, j which are determined from the symmetric product
ϕi, j (Yi , Yi ) = X j . Thus, in particular the law Ln,m +ϕi, j constitutes always a filiform
Lie superalgebra.

Theorem 4.1 Let g = g0̄ ⊕ g1̄ be a non-degenerated filiform Lie superalgebra with
dim(g0̄) = n+ 1 and dim(g1̄) = m. If dim(g) ≤ 7 and g is naturally graded, then the
law of g will be isomorphic to one law of the following list.

List of laws

Pair of dimensions n = 2, m = 1. There is only one naturally graded filiform Lie
superalgebra whose law can be expressed in an adapted basis by

L2,1 + ϕ1,2 : { [X0, X1] = X2, (Y1, Y1) = X2

Pair of dimensions n = 2, m = 2. There is only one naturally graded filiform Lie
superalgebra whose law can be expressed in an adapted basis as

L2,2 + ϕ1,2 :
{ [X0, X1] = X2, (Y1, Y1) = X2

[X0, Y1] = Y2,



Pair of dimensions n = 2, m = 3. There is only one naturally graded filiform Lie
superalgebra whose law can be expressed in an adapted basis by

L2,3 + ϕ1,2 :
{ [X0, X1] = X2, (Y1, Y1) = X2

[X0, Yi ] = Yi+1, 1 ≤ i ≤ 2

Pair of dimensions n = 2, m = 4. There is only one naturally graded filiform Lie
superalgebra whose law can be expressed in an adapted basis by

L2,4 + ϕ1,2 :
{ [X0, X1] = X2, [X0, Yi ] = Yi+1, 1 ≤ i ≤ 3

(Y1, Y1) = X2

Pair of dimensions n = 3, m = 2. There are two non-isomorphic naturally graded
filiform Lie superalgebras whose laws can be expressed in an adapted basis by

L3,2 + ϕ1,2 : L3,2 + �2
1,1 + ϕ1,2 :

{ [X0, Xi ] = Xi+1, 1 ≤ i ≤ 2 (Y1, Y1) = X2

[X0, Y1] = Y2 (Y1, Y2) = 1
2 X3

⎧
⎨

⎩

[X0, Xi ] = Xi+1, 1 ≤ i ≤ 2 (Y1, Y1) = X2

[X0, Y1] = Y2 (Y1, Y2) = 1
2 X3

[X1, Y1] = Y2

Pair of dimensions n = 4, m = 2. There is only one naturally graded filiform Lie
superalgebra whose law can be expressed in an adapted basis by

L4,2 + ϕ2,4 :
⎧
⎨

⎩

[X0, Xi ] = Xi+1, 1 ≤ i ≤ 3 (Y1, Y2) = X3
[X0, Y1] = Y2 (Y2, Y2) = X4
(Y1, Y1) = 2X2

Pair of dimensions m = 3, n = 3. There are two non-isomorphic naturally graded
filiform Lie superalgebras whose laws can be expressed in an adapted basis as

L3,3 + ϕ1,2 : L3,3 + �2
1,1 + ϕ1,2 :

{ [X0, Xi ] = Xi+1, 1 ≤ i ≤ 2 (Y1, Y1) = X2

[X0, Y j ] = Y j+1, 1 ≤ j ≤ 2 (Y1, Y2) = 1
2 X3

⎧
⎪⎪⎨

⎪⎪⎩

[X0, Xi ] = Xi+1, 1 ≤ i ≤ 2 (Y1, Y1) = X2

[X0, Y j ] = Y j+1, 1 ≤ j ≤ 2 (Y1, Y2) = 1
2 X3

[X1, Y1] = Y2
[X1, Y2] = Y3

Proof In [31], Theorem 8.1 (Classification’s theorem) pages 80–81 is obtained the
classification up to isomorphism of all the non-degenerated filiform Lie superalgebras
with total dimension less or equal to 7. From this list we checkwhich ones are naturally
graded obtaining then the result of the statement of this theorem. ��
Remark 4.2 There is no any naturally graded filiform Lie superalgebra for the cases
n = 3,m = 1; n = 4,m = 1 and n = 5,m = 1. Note also that all the naturally graded
filiform Lie superalgebras of the aforementioned theorem derive from the naturally
graded filiform Lie algebra Ln . There is no one deriving from Qn .

Next, we start with dim(g0̄) = 3 = n + 1.



4.1 n = 2 andm Arbitrary

Throughout this subsection we are going to study naturally graded filiform Lie super-
algebras g = g0̄⊕g1̄ with dim(g0̄) = n+1 = 3 andm ≥ 5 since the cases 1 ≤ m ≤ 4
have already been studied.

Theorem 4.2 Let g = g0̄ ⊕ g1̄ be a non-degenerated filiform Lie superalgebra with
dim(g0̄) = 3 and dim(g1̄) = m with m ≥ 5. If g is naturally graded, then the law of
g is isomorphic to

L2,m + ϕ1,2 :
{ [X0, X1] = X2 (Y1, Y1) = X2

[X0, Yi ] = Yi+1, 1 ≤ i ≤ m − 1

Proof It can be seen that g0̄ = L2 since dim(g0̄) = 3 and g0̄ is a naturally graded
filiform Lie algebra. Therefore gr(g) is exactly

< X0, X1, Y1 >︸ ︷︷ ︸ ⊕ < X2, Y2 >︸ ︷︷ ︸ ⊕ < Y3 >︸ ︷︷ ︸ ⊕ · · · ⊕ < Ym >︸ ︷︷ ︸
g1 g2 g3 gm

Thus, the bracket products can be considered to be

⎧
⎨

⎩

[X0, X1] = X2, [X1, Yi ] = b1i Yi+1, 1 ≤ i ≤ m − 1
[X0, Yi ] = Yi+1, 1 ≤ i ≤ m − 1, [X2, Yi ] = b2i Yi+2, 1 ≤ i ≤ m − 2
(Y1, Y1) = c11X2

with c11 �= 0 in order not to have a degenerated Lie superalgebra, that is, a Lie algebra.
Bymeans of a simple change of scale it can be seen that there is no loss of generality in
considering c11 = 1. It can be seen that (Y1, Y1) = X2 corresponds to the cocycle ϕ1,2.
Additionally, the remaining structure constants b1i , b2i indeed will be determined by
the cocycles �2

1,1, �
3
2,1, respectively (more details can be consulted [25]), given as

�2
1,1 : [X1, Y j ] = Y j+1, 1 ≤ j ≤ m − 1 �3

2,1 :
{ [X1, Y j ] = −( j − 1)Y j+1, 2 ≤ j ≤ m − 1

[X2, Y j ] = Y j+2, 1 ≤ j ≤ m − 2

These cocycles, or so-called infinitesimal deformations, are the only one “naturally
graded,” that is, of weight 0. Recall that the weight of �s

k,1 is s − k − 1.
Next, we apply the method of classification used in [31]: every filiform Lie super-

algebra can be expressed by Ln,m + �, with Ln,m the law of the model filiform Lie
superalgebra and � a linear (infinitesimal) deformation that verifies � ◦ � = 0,
being � ◦ �(x, y, z) = �(�(x, y), z) + �(�(z, x), y) + �(�(y, z), x). Thus, we
can consider

L2,m + � :
⎧
⎨

⎩

[X0, X1] = X2, [X1, Y j ] = [a − b( j − 1)]Y j+1, 2 ≤ i ≤ m − 1
[X0, Yi ] = Yi+1, 1 ≤ i ≤ m − 1, [X2, Y j ] = bY j+2, 1 ≤ i ≤ m − 2
[X1, Y1] = aY2, (Y1, Y1) = X2



where � = ϕ1,2 + a�2
1,1 + b�3

2,1. From the condition � ◦ �(X1, X2, Y1) = 0 it is
obtained that b = 0. Then applying the isomorphism, or so-called change of basis,
defined by X ′

0 = X0, X ′
1 = X1 −aX0, X ′

2 = X2 and Y ′
j = Y j for any j ∈ N, it can be

seen that there is no loss of generality in supposing a = 0. Consequently, it remains
only L2,m + ϕ1,2. ��

4.2 n = 3 andm = 4

In this case we have the following results:

Theorem 4.3 Let g = g0̄ ⊕ g1̄ be a non-degenerated filiform Lie superalgebra with
dim(g0̄) = dim(g1̄) = 4. If g is naturally graded, then the law of g is isomorphic to
one of the following lists of pairwise non-isomorphic laws

L3,4 + ϕ1,2 :
⎧
⎪⎪⎨

⎪⎪⎩

[X0, Xi ] = Xi+1
[X0, Y j ] = Y j+1
(Y1, Y1) = X2

(Y1, Y2) = 1
2 X3

L3,4 + ϕ1,2 + �4
3,1 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[X0, Xi ] = Xi+1 (Y1, Y1) = X2

[X0, Y j ] = Y j+1 (Y1, Y2) = 1
2 X3

[X1, Y3] = Y4
[X2, Y2] = −Y4
[X3, Y1] = Y4

L3,4 + ϕ1,2 + �2
1,1 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[X0, Xi ] = Xi+1
[X0, Y j ] = Y j+1
[X1, Y j ] = Y j+1
(Y1, Y1) = X2

(Y1, Y2) = 1
2 X3

with 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3.

Proof We consider naturally graded filiform Lie superalgebras g = g0̄ ⊕ g1̄ with
dim(g0̄) = 4 and dim(g1̄) = 4. Therefore g0̄ = L3 and gr(g) is

< X0, X1, Y1 >︸ ︷︷ ︸ ⊕ < X2, Y2 >︸ ︷︷ ︸ ⊕ < X3, Y3 >︸ ︷︷ ︸ ⊕ < Y4 >︸ ︷︷ ︸
g1 g2 g3 g4

Thus, the bracket products can be considered to be

⎧
⎪⎪⎨

⎪⎪⎩

[X0, Xi ] = Xi+1, i = 1, 2
[X0, Yi ] = Yi+1, 1 ≤ i ≤ 3
[X1, Yi ] = b1i Yi+1, 1 ≤ i ≤ 3
[X2, Yi ] = b2i Yi+2, 1 ≤ i ≤ 2

[X3, Y1] = b31Y4,
(Y1, Y1) = c11X2
(Y1, Y2) = c12X3

In a similar way to the previous case the structure constants can be considered to be
determined by the cocycles�2

1,1, �
3
2,1,�

4
3,1 and ϕ1,2 (see [8,25]). In general,�2

1,1 and

�3
2,1 have already been described in the above case, and �4

3,1 and ϕ1,2 are as follows

�4
3,1 :

⎧
⎨

⎩

[X1, Y3] = Y4
[X2, Y2] = −Y4
[X3, Y1] = Y4

ϕ1,2 :
{

(Y1, Y1) = X2

(Y1, Y2) = 1
2 X3



Thus, in order not to have a degenerated case, that is, a Lie algebra, the coefficient of
ϕ1,2 must be different from zero and then, it can be easily seen that there is no loss of
generality in considering this coefficient equals 1. Therefore we can consider

L3,4 + � :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[X0, X1] = X2,

[X0, X2] = X3,

[X0, Yi ] = Yi+1, 1 ≤ i ≤ 3,
[X1, Y1] = a1Y2,
[X1, Y2] = (a1 − a2)Y3,
[X1, Y3] = (a1 − 2a2 + a3)Y4,

[X2, Y1] = a2Y3
[X2, Y2] = (a2 − a3)Y4
[X3, Y1] = a3Y4
(Y1, Y1) = X2

(Y1, Y2) = 1
2 X3

being� = ϕ1,2+a1�2
1,1+a2�3

2,1+a3�4
3,1. From the condition�◦�(Y1, Y1, Y1) = 0

we obtain a2 = 0, and on account of � ◦ �(X1, X2, Y1) = 0 we conclude a1a3 = 0.

• If a1 = 0 we distinguish two cases: a3 = 0 or a3 �= 0.

– In the case of a3 = 0 we obtain L3,4 + ϕ1,2.
– If a3 �= 0 without loss of generality we can consider a3 = 1 (by means of a
simple change of scale) obtaining L3,4 + ϕ1,2 + �4

3,1.

• If a1 �= 0 then a3 = 0. Therefore, applying the isomorphism (change of scale)
defined by X ′

0 = a1X0, X ′
1 = X1, X ′

2 = a1X2, X ′
3 = (a1)2X3, Y ′

1 = √
a1Y1,

Y ′
2 = a1

√
a1Y2 and Y ′

3 = (a1)2
√
a1Y3, it can be seen that there is no loss of

generality in supposing a1 = 1, and we obtain L3,4 + ϕ1,2 + �2
1,1.

��

4.3 n = 3 andm ≥ 5

Throughout this subsection we are going to study naturally graded filiform Lie super-
algebras g = g0̄⊕g1̄ with dim(g0̄) = n+1 = 4 andm ≥ 5 since the cases 1 ≤ m ≤ 4
have already been studied.

Theorem 4.4 Let g = g0̄ ⊕ g1̄ be a non-degenerated filiform Lie superalgebra with
dim(g0̄) = 4 and dim(g1̄) = m with m ≥ 5. If g is naturally graded then the law of g
is isomorphic to one of the two non-isomorphic laws:

L3,m + ϕ1,2 :

⎧
⎪⎪⎨

⎪⎪⎩

[X0, Xi ] = Xi+1

[X0, Y j ] = Y j+1

(Y1, Y1) = X2

(Y1, Y2) = 1
2 X3

L3,m + ϕ1,2 + �2
1,1 :

⎧
⎨

⎩

[X0, Xi ] = Xi+1 (Y1, Y1) = X2

[X0, Y j ] = Y j+1 (Y1, Y2) = 1
2 X3

[X1, Y j ] = Y j+1

with 1 ≤ i ≤ 2, 1 ≤ j ≤ m − 1.

Proof Let g = g0̄⊕g1̄ be a naturally graded filiform Lie superalgebra with dim(g0̄) =
4 and dim(g1̄) = m ≥ 5. Therefore, g0̄ = L4 and gr(g) is
< X0, X1, Y1 >︸ ︷︷ ︸ ⊕ < X2, Y2 >︸ ︷︷ ︸ ⊕ < X3, Y3 >︸ ︷︷ ︸ ⊕ < Y4 >︸ ︷︷ ︸ ⊕ · · · ⊕ < Ym >︸ ︷︷ ︸

g1 g2 g3 g4 gm



So the bracket products are

[X0, X1] = X2, [X2, Yi ] = b2i Yi+2, 1 ≤ i ≤ m − 2
[X0, X2] = X3, [X3, Yi ] = b3i Yi+3, 1 ≤ i ≤ m − 3
[X0, Yi ] = Yi+1, 1 ≤ i ≤ m − 1, (Y1, Y1) = c11X2
[X1, Yi ] = b1i Yi+1, 1 ≤ i ≤ m − 1, (Y1, Y2) = c12X3

As in the above case and in order not to have any degenerated case the coefficient
of ϕ1,2 must be different from zero and then, it can be easily seen that there is no
loss of generality in considering this coefficient equal to 1. Therefore we can consider
L3,m + �, with � = ϕ1,2 + a1�2

1,1 + a2�3
2,1 + a3�4

3,1, and we have the following
products:

L3,m + � :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[X0, X1] = X2
[X0, X2] = X3
[X0, Yi ] = Yi+1, 1 ≤ i ≤ m − 1
[X1, Y1] = a1Y2,
[X1, Yi ] = (

a1 − (i − 1)a2 + (i−1)(i−2)
2 a3

)
Yi+1, 2 ≤ i ≤ m − 1

[X2, Yi ] = (
a2 − (i − 1)a3

)
Yi+2, 1 ≤ i ≤ m − 2

[X3, Yi ] = a3Yi+3, 1 ≤ i ≤ m − 3
(Y1, Y1) = X2

(Y1, Y2) = 1
2 X3

The condition � ◦ �(Y1, Y1, Y1) = 0 leads to a2 = 0, and then, from the condition
� ◦ �(X1, X3, Y1) = 0 it is obtained that a3 = 0. So if a1 = 0 we have L3,m + ϕ1,2.
Otherwise we have L3,4 + ϕ1,2 + �2

1,1 after applying a simple change of scale. ��

4.4 n andm Arbitrary with n > 2m

Theorem 4.5 There is not any non-degenerated naturally graded filiform Lie super-
algebra g = g0̄ ⊕ g1̄ with the condition n > 2m, being dim(g0̄) = n + 1 and
dim(g1̄) = m.

Proof This result derives from the fact that there is not any cocycle ϕk,s naturally
graded, that is, of weight equals 0 since we have always max{ n−2m−1

2 , n − 2m} ≤
weight(ϕk,s) (see [8], Proposition 6.4). ��
Remark 4.3 We have as particular cases of the above theorem m = 1, n ≥ 3; m =
2, n ≥ 5 and m = 3, n ≥ 7. Consequently, and in order to study all the possibilities
for m ≤ 3, it only remains to consider the cases 4 ≤ n ≤ 6 and m = 3.

4.5 n = 4 andm = 3

Theorem 4.6 Let g = g0̄ ⊕ g1̄ be a non-degenerated filiform Lie superalgebra with
dim(g0̄) = 5 and dim(g1̄) = 3. If g is naturally graded, then the law of g is isomorphic
to one of the following non-isomorphic laws:



L4,3 + ϕ2,4 :
{ [X0, Xi ] = Xi+1 (Y1, Y3) = −X4

[X0, Y j ] = Y j+1 (Y2, Y2) = X4

L4,3 + ϕ2,4 + �2
1,1 + 2�3

2,1 :
⎧
⎪⎪⎨

⎪⎪⎩

[X0, Xi ] = Xi+1, [X2, Y1] = Y3
[X0, Y j ] = Y j+1, (Y1, Y3) = −X4
[X1, Y1] = Y2 (Y2, Y2) = X4
[X1, Y2] = −Y3

L4,3 + ϕ1,2 + tϕ2,4 :
⎧
⎨

⎩

[X0, Xi ] = Xi+1, (Y1, Y2) = 1
2 X3

[X0, Y j ] = Y j+1, (Y1, Y3) = ( 12 − t)X4
(Y1, Y1) = X2, (Y2, Y2) = t X4

L4,3 + 4ϕ1,2 + ϕ2,4 + �2
1,1 :

⎧
⎪⎪⎨

⎪⎪⎩

[X0, Xi ] = Xi+1, (Y1, Y1) = 4X2
[X0, Y j ] = Y j+1, (Y1, Y2) = 2X3
[X1, Y1] = Y2, (Y1, Y3) = X4
[X1, Y2] = Y3, (Y2, Y2) = X4

with 1 ≤ i ≤ 3, 1 ≤ j ≤ 2 and t ∈ C a parameter.

Proof Let g = g0̄⊕g1̄ be a naturally graded filiform Lie superalgebra with dim(g0̄) =
5 and dim(g1̄) = 3. Therefore, g0̄ = L4 and gr(g) is

< X0, X1, Y1 >︸ ︷︷ ︸ ⊕ < X2, Y2 >︸ ︷︷ ︸ ⊕ < X3, Y3 >︸ ︷︷ ︸ ⊕ < X4 >︸ ︷︷ ︸
g1 g2 g3 g4

In an analogous way to previous cases, we can consider L4,3 + �, with � =
cϕ1,2 + dϕ2,4 + a1�2

1,1 + a2�3
2,1, and we have the following products:

L3,4 + � :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[X0, Xi ] = Xi+1, 1 ≤ i ≤ 3,
[X0, Yi ] = Yi+1, 1 ≤ i ≤ 2,
[X1, Y1] = a1Y2,
[X1, Y2] = (a1 − a2)Y3,
[X2, Y1] = a2Y3

(Y1, Y1) = cX2
(Y1, Y2) = c

2 X3
(Y1, Y3) = ( c2 − d)X4
(Y2, Y2) = dX4

where at least c or d is nonzero. The condition�◦�(Y1, Y1, Y1) = 0 gives us a2c = 0,
and since � ◦ �(X1, Y1, Y2) = 0, we have a1d + (a2 − a1)(

c
2 − d) = 0.

• If c = 0 then d �= 0, and from a1d + (a2 − a1)(
c
2 − d) = 0 we have a2 = 2a1.

– For a1 = 0 is a2 = 0 and d �= 0, so using a change of scale d = 1 and we
obtain L4,3 + ϕ2,4.

– For a1 �= 0 again d �= 0, and with a similar change of scale a1 = d = 1 and
a2 = 2, obtaining L4,3 + ϕ2,4 + �2

1,1 + 2�3
2,1.

• In the case of c �= 0 then necessarily a2 = 0 and from a1d+ (a2 −a1)(
c
2 −d) = 0

is 4a1d = a1c.

– For a1 = 0 by means of the change of scale c = 1, d = t, being t a parameter,
we obtain L4,3 + ϕ1,2 + tϕ2, 4.

– For a1 �= 0 is d �= 0 and with the change of scale a1 = d = 1, a2 = 0 and
c = 4 we obtain L4,3 + 4ϕ1,2 + ϕ2,4 + �2

1,1. ��



4.6 n = 5 andm = 3

Theorem 4.7 Let g = g0̄ ⊕ g1̄ be a non-degenerated filiform Lie superalgebra with
dim(g0̄) = 6 and dim(g1̄) = 3. If g is naturally graded, then the law of g will be
isomorphic to the following law

L5,3 + ϕ2,4 :

⎧
⎪⎪⎨

⎪⎪⎩

[X0, Xi ] = Xi+1, 1 ≤ i ≤ 4,
[X0, Yi ] = Yi+1, 1 ≤ i ≤ 2,
(Y1, Y1) = 3X2,

(Y1, Y2) = 3
2 X3,

(Y1, Y3) = 1
2 X4

(Y2, Y2) = X4

(Y2, Y3) = 1
2 X5

Proof Let g = g0̄⊕g1̄ be a naturally graded filiform Lie superalgebra with dim(g0) =
6 and dim(g1) = 3. Then gr(g) is

< X0, X1, Y1 >︸ ︷︷ ︸ ⊕ < X2, Y2 >︸ ︷︷ ︸ ⊕ < X3, Y3 >︸ ︷︷ ︸ ⊕ < X4 >︸ ︷︷ ︸ ⊕ < X5 >︸ ︷︷ ︸
g1 g2 g3 g4 g5

In this case we have to distinguish two separate sub-cases: g0̄ = L5 or g0̄ = Q5,
the two possible naturally graded filiform Lie algebras for this dimension.

• If g0̄ = L5, and as in previous cases we get L5,3 +�, with � = cϕ2,4 +a1�2
1,1 +

a2�3
2,1, being ϕ2,4 = 3ϕ1,2 + ϕ2,4 and c �= 0. So we have

L5,3 + � :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[X0, Xi ] = Xi+1, 1 ≤ i ≤ 4,
[X0, Yi ] = Yi+1, 1 ≤ i ≤ 2,
[X1, Y1] = a1Y2,
[X1, Y2] = (a1 − a2)Y3,
[X2, Y1] = a2Y3,

(Y1, Y1) = 3cX2

(Y1, Y2) = 3
2cX3

(Y1, Y3) = c
2 X4

(Y2, Y2) = cX4
(Y2, Y3) = c

2 X5

The condition�◦�(X1, Y1, Y2) = 0 gives us a1 = 0. Since�◦�(Y1, Y1, Y1) = 0
we have a2 = 0. With a change of scale we can consider c = 1 and we obtain
L5,3 + ϕ2,4.

• If g0̄ = Q5 we have to add the brackets [X1, X4] = −X5 and [X2, X3] = X5.
Indeed, these brackets stem from cocycles of [26]. All the above reasoning is also
valid, but from the condition � ◦�(X1, Y2, Y2) = 0 we obtain that [X1, X4] = 0,
which is clearly a contradiction. Thus, there is not any non-degenerated filiform
Lie superalgebra deriving from the Lie algebra Q5.

��

4.7 n = 6 andm = 3

Theorem 4.8 Let g = g0̄ ⊕ g1̄ be a non-degenerated filiform Lie superalgebra with
dim(g0̄) = 7 and dim(g1̄) = 3. If g is naturally graded, then the law of g is isomorphic
to the following law



L6,3 + ϕ3,6 :

⎧
⎪⎪⎨

⎪⎪⎩

[X0, Xi ] = Xi+1, 1 ≤ i ≤ 5,
[X0, Yi ] = Yi+1, 1 ≤ i ≤ 2,
(Y1, Y1) = 6X2,

(Y1, Y2) = 3X3,

(Y1, Y3) = X4
(Y2, Y2) = 2X4
(Y2, Y3) = X5
(Y3, Y3) = X6

Proof Let g = g0̄⊕g1̄ be a naturally graded filiform Lie superalgebra with dim(g0̄) =
5 and dim(g1̄) = 3. Therefore g0̄ = L6 and gr(g) is

< X0, X1, Y1 >︸ ︷︷ ︸ ⊕ < X2, Y2 >︸ ︷︷ ︸ ⊕ < X3, Y3 >︸ ︷︷ ︸ ⊕ < X4 >︸ ︷︷ ︸ ⊕ < X5 >︸ ︷︷ ︸ ⊕ < X6 >︸ ︷︷ ︸
g1 g2 g3 g4 g5 g6

As in previous cases, since the products we get L6,3 +�, with � = cϕ3,6 +a1�2
1,1 +

a2�3
2,1, where ϕ3,6 = 6ϕ1,2 + 2ϕ2,4 + ϕ3,6, and we have these products:

L6,3 + � :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[X0, Xi ] = Xi+1, 1 ≤ i ≤ 5,
[X0, Yi ] = Yi+1, 1 ≤ i ≤ 2,
[X1, Y1] = a1Y2,
[X1, Y2] = (a1 − a2)Y3,
[X2, Y1] = a2Y3,
(Y1, Y1) = 6cX2,

(Y1, Y2) = 3cX3
(Y1, Y3) = cX4
(Y2, Y2) = 2cX4
(Y2, Y3) = cX5
(Y3, Y3) = cX6

with c nonzero to avoid the trivial case. The condition � ◦ �(Y1, Y1, Y1) = 0 gives
us a2 = 0, and since � ◦ �(X1, Y1, Y2) = 0 we have a1 = 0. By using a change of
scale c = 1 we obtain L6,3 + ϕ3,6. ��

5 Naturally Graded (Non-Lie) Leibniz Superalgebras with Maximal
Supernilindex

Throughout this section we are going to study the Leibniz superalgebras with 
supernilindex (n, m) because of the fact that in this case the even part L 0̄ is a null-
filiform Leibniz algebra and the odd part L ̄1 has structure of filiform L 0̄ −module. 
Consequently, it seems to be the first case to consider the “naturally graded” structure. 
Note that all these Leibniz superalgebras with supernilindex (n, m) are non-Lie ones 
and contain in particular the only type of Leibniz superalgebra single generated or so-
called null-filiform Leibniz superalgebras (for more details see [27]). It is not difficult 
to see that these last superalgebras, in the case of non-degenerated, are not naturally 
graded.

Next, we are going to recall the general expression of the Leibniz superalgebras 
with supernilindex (n, m) (see [18]).

Theorem 5.1 If L = L 0̄ ⊕ L ̄1 is a Leibniz superalgebra of supernilindex (n, m), then 
there exists an adapted basis of L, namely {X1, X2, . . . ,  Xn, Y1, Y2, . . . , Ym }, with 
{X1, X2, . . . ,  Xn} a basis of L 0̄ and {Y1, Y2, . . . , Ym } a basis of L ̄1, such that



[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1, [Xn, X1] = 0
[Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1, [Ym, X1] = 0

Moreover, [Y j , Xk] = 0 for 1 ≤ j ≤ m and 2 ≤ k ≤ n, and the omitted products of
L 0̄ =< X1, X2, . . . , Xn > vanish.

Thus, it can be seen that if L = L 0̄ ⊕ L 1̄ is a Leibniz superalgebra of s-
nilindex (n,m), then its graded superalgebra associated gr(L) = ∑

i∈N Li , satisfying
[Li , L j ] ⊂ Li+ j , is exactly:

< X1, Y1 >︸ ︷︷ ︸ ⊕ < X2, Y2 >︸ ︷︷ ︸ ⊕ < X3, Y3 >︸ ︷︷ ︸ ⊕ · · ·
L1 L2 L3

where for simplicity L1 = L1
0̄

⊕ L1
1̄

=< X1 > ⊕ < Y1 > has been replaced by
< X1, Y1 > as there cannot be any possible confusion between even elements, called
Xi , and odd ones, called Y j . Analogously, the same replacement has been applied to
every Li . The last terms of gr(L) depend on three possibilities:

1. If n < m, then

· · · ⊕ < Xn, Yn >︸ ︷︷ ︸ ⊕ < Yn+1 >︸ ︷︷ ︸ ⊕ · · · ⊕ < Ym >︸ ︷︷ ︸
Ln Ln+1 Lm

2. If n = m, then

· · · ⊕ < Xn−1, Yn−1 >︸ ︷︷ ︸ ⊕ < Xn, Yn >︸ ︷︷ ︸
Ln−1 Ln

3. If n > m, then
· · · ⊕ < Xm−1, Ym >︸ ︷︷ ︸ ⊕ < Xm >︸ ︷︷ ︸ ⊕ · · · ⊕ < Xn >︸ ︷︷ ︸

Lm Lm+1 Ln

Remark 5.1 It can be seen that the even elements of gr(L), that is
∑

i∈N Li
0̄
, constitute

a naturally graded null-filiform Leibniz algebra. That is,

NFn : [Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1,

Furthermore, the definition of naturally graded Leibniz superalgebras is a general-
ization of naturally graded Leibniz algebras. Thus, if L = L 0̄ ⊕ L 1̄ is a naturally
graded Leibniz superalgebra, then L 0̄ is a naturally graded Leibniz algebra. Indeed,
Li
0̄
is equivalent to Ci−1(L 0̄)/Ci (L 0̄). Recall that the latter is used in the definition of

naturally graded Leibniz algebras.

5.1 Low Dimensions

Next we are going to obtain all the naturally graded Leibniz superalgebras with
supernilindex (n,m) for low dimensions of either the even part or the odd part. We
can accomplish such classification due to the results of [18].



Theorem 5.2 Let L = L 0̄ ⊕ L 1̄ be a non-degenerated naturally graded Leibniz super-
algebra with s-nilindex (n,m), then the law of L is isomorphic to a law of the following
list where the omitted products are equal to zero.

List of laws.

Pair of dimensions n = 2, m = 2. There is a one-parametric family of naturally
graded Leibniz superalgebras of s-nilindex (2, 2) whose law can be expressed in an
adapted basis {X1, X2, Y1, Y2} as

μα
1 =

{ [X1, X1] = X2, [X1, Y1] = αY2, α ∈ C

[Y1, X1] = Y2, [Y1, Y1] = X2

Pair of dimensions n arbitrary with n ≥ 3, m = 2. The only sub-case in which there
are naturally graded superalgebras is exactly n = 3. In this case there exist two non-
isomorphic naturally graded Leibniz superalgebras of s-nilindex (3, 2) whose laws
can be expressed in an adapted basis {X1, X2, X3, Y1, Y2} by:

μ2 =

⎧
⎪⎪⎨

⎪⎪⎩

[Xi , X1] = Xi+1, 1 ≤ i ≤ 2
[Y1, X1] = Y2
[Y1, Y1] = X2

[Y2, Y1] = X3

μ3 =
⎧
⎨

⎩

[Xi , X1] = Xi+1, 1 ≤ i ≤ 2, [Y1, X1] = Y2
[X1, Y1] = −Y2, [Y1, Y2] = X3

[Y1, Y1] = X2,

Pair of dimensions n = 2, m = 3. There are two non-isomorphic naturally graded
Leibniz superalgebras of s-nilindex (2, 3) whose laws can be expressed in an adapted
basis {X1, X2, Y1, Y2, Y3} by:

μ1 =

⎧
⎪⎪⎨

⎪⎪⎩

[X1, X1] = X2,

[Y1, X1] = Y2
[Y2, X1] = Y3
[Y1, Y1] = X2

μ3 =
⎧
⎨

⎩

[X1, X1] = X2, [Y1, X1] = Y2
[X1, Y1] = −Y2, [Y2, X1] = Y3
[X1, Y2] = −Y3, [Y1, Y1] = X2

Pair of dimensions n = 3, m = 3. There are two non-isomorphic naturally graded
Leibniz superalgebras of s-nilindex (3, 3) whose laws can be expressed in an adapted
basis {X1, X2, X3, Y1, Y2, Y3} by:

μ1 =

⎧
⎪⎪⎨

⎪⎪⎩

[Xi , X1] = Xi+1, 1 ≤ i ≤ 2
[Y j , X1] = Y j+1, 1 ≤ j ≤ 2
[Y1, Y2] = X3
[Y2, Y1] = −X3

μ8 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[Xi , X1] = Xi+1, 1 ≤ i ≤ 2
[Y j , X1] = Y j+1, 1 ≤ j ≤ 2
[X1, Y2] = −Y3
[Y1, Y1] = X2
[Y1, Y2] = X3

Pair of dimensions n = 4, m  = 3. There are two non-isomorphic naturally graded 
Leibniz superalgebras of s-nilindex (4, 3) whose laws can be expressed in an adapted 
basis {X1, X2, X3, X4, Y1, Y2, Y3} by:



μ9 =

⎧
⎪⎪⎨

⎪⎪⎩

[Xi , X1] = Xi+1, 1 ≤ i ≤ 3, [Y1, Y3] = X4

[Y j , X1] = Y j+1, 1 ≤ j ≤ 2, [Y2, Y2] = −X4

[X1, Y1] = −Y2, [Y3, Y1] = X4

[X1, Y2] = −Y3

μ12 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[Xi , X1] = Xi+1, 1 ≤ i ≤ 3
[Y j , X1] = Y j+1, 1 ≤ j ≤ 2
[Y1, Y1] = X2

[Y2, Y1] = X3

[Y3, Y1] = X4

Pair of dimensions n arbitrary with n ≥ 5, m = 3. There is not any naturally graded
Leibniz superalgebra of s-nilindex (n, 3).
Pair of dimensions n = 2, m arbitrarywithm ≥ 4. There are twonon-isomorphic nat-
urally graded Leibniz superalgebras of s-nilindex (2,m) whose laws can be expressed
in an adapted basis {X1, X2, Y1, Y2, Y3, Y4, · · · , Ym} by

μm−1 =
⎧
⎨

⎩

[X1, X1] = X2

[Yi , X1] = Yi+1, 1 ≤ i ≤ m − 1
[Y1, Y1] = X2

μm+1 =

⎧
⎪⎪⎨

⎪⎪⎩

[X1, X1] = X2

[X1, Y j ] = −Y j+1, 2 ≤ j ≤ m − 1
[Yi , X1] = Yi+1, 1 ≤ i ≤ m − 1
[Y1, Y1] = X2

5.2 Cases n ≥ 3 andm ≥ 4

Throughout this sub-section we deal with the problem of determining the structure of
the aforementioned naturally graded Leibniz superalgebras for the remaining dimen-
sions. Notice that the naturally graded Leibniz superalgebra with maximal s-nilindex
named NGn,m appears in every pair of arbitrary dimensions n and m.

NGn,m :
⎧
⎨

⎩

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1
[Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1
[Yi , Y1] = Xi+1, 1 ≤ i ≤ min{n − 1,m}

with the vectors {X1, X2, . . . , Xn, Y1, Y2, . . . ,Ym} as adapted basis. Also, we have
the following result.

Theorem 5.3 Let L = L 0̄ ⊕ L 1̄ be a non-degenerated naturally graded Leibniz super-
algebras with s-nilindex (n,m) and adapted basis {X1, X2, . . . , Xn, Y1, Y2, . . . ,Ym}.
Then the law of L will be isomorphic either to the law named NGn,m or to a law
belonging to the following families of laws. The precise expression of these last fami-
lies of laws depends on two possibilities, that is:

1. If n ≤ m,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1,
[Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1,
[X1, Y j ] = −Y j+1, 1 ≤ j ≤ m − 1,
[Y1, Y1] = γ1X2,

[Yi , Y1] = γi Xi+1, 3 ≤ i ≤ n − 1,

[Yi , Y j ] =
j−1∑

s=0

(−1)s
(
j − 1
s

)
γi+s Xi+ j , 1 ≤ i ≤ n − 2, 2 ≤ j ≤ n − i − 1.



withγ2 = 0andγ2 j = (−1) j
j−2∑

s=0

(−1)s
(
j − 1
s

)
γ j+s+1, for 2 ≤ j ≤ �n − 1

2
�.

2. If n > m,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1,
[Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1,
[X1, Y j ] = −Y j+1, 1 ≤ j ≤ m − 1,
[Y1, Y1] = γ1X2,

[Yi , Y1] = γi Xi+1, 3 ≤ i ≤ m,

[Yi , Y j ] =
min{ j−1,m−i}∑

s=0

(−1)s
(

j − 1
s

)
γi+s Xi+ j , 2 ≤ j ≤ m, 1 ≤ i ≤ min{m, n − j}.

with γ2 = 0 and

γ2 j = (−1) j
j−2∑

s=0

(−1)s
(

j − 1
s

)
γ j+s+1, 2 ≤ j ≤ �m

2
� γi =

m−i∑

s=1

(−1)s+1
(
m
s

)
γi+s .

� � denotes the whole part of the number.
Proof An adequate use ofMathematica software has been truly helpful to accomplish
the proof of this theorem. It has been a very useful tool to both complete all the
calculations involved in many particular pair of dimensions and deduce the process
to follow in arbitrary dimensions. Next, we will distinguish two cases. We only prove
case 1 in details and omit case 2 completely in order not to repeat the same ideas.
Case 1: n ≤ m. We consider the adapted basis {X1, X2, . . . , Xn, Y1, Y2, . . . ,Ym} and
the gradation

< X1, Y1 > ⊕ < X2, Y2 > ⊕ · · · < Xn, Yn > ⊕ < Yn+1 > ⊕ < Yn+2 > ⊕ · · · ⊕ < Ym >

Using their properties

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1, [Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1,
[X1, Y j ] = α j Y j+1, 1 ≤ j ≤ m − 1, [Xi , Y j ] = βi j Yi+ j , 2 ≤ i ≤ n, 1 ≤ j ≤ m − i
[Yi , Y j ] = γi j Xi+ j , 1 ≤ i ≤ m, 1 ≤ j ≤ n − i .

We have that [X1, Y1] + [Y1, X1] ∈ Ann(L), then (α1 + 1)Y2 ∈ Ann(L).

Case 1.1. 1+ α1 �= 0, then Y2 ∈ Ann(L). Taking into account that [Y2, X1] = Y3,
it is easy to prove that Y3 ∈ Ann(L). Analogously, Y4, Y5, . . . ,Ym ∈ Ann(L). Thus,
we have

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1, [Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1,
[X1, Y1] = β1Y2, [Xi , Y1] = βi Yi+1, 2 ≤ i ≤ n,

[Yi , Y1] = γi Xi+1, 1 ≤ i ≤ n − 1.

We make the super Leibniz identity on the triples {Yi , Y1, X1}, and we obtain
γi = γ1 = γ with 1 ≤ i ≤ n − 1. If γ = 0, then the superalgebra is degenerated;

= 1√
γ
Y1 allows us to consider γ = 1.thus, γ �= 0 and making Y1

′



Now, from the super Leibniz identity on the triples {Xi , Y1, Y1} for 1 ≤ i ≤ n − 2
we get βi = 0. From {Xn−2, Y1, X1} and {Xn−1, Y1, X1} we obtain βn−1 = 0 and
βn = 0, respectively.

Thus, we obtain the naturally graded Leibniz superalgebra NGn,m .
Case 1.2. 1 + α1 = 0. We can distinguish two cases:
(a) 1 + αi = 0 for 2 ≤ i ≤ m − 1. We have:

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1, [Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1,
[X1, Y j ] = −Y j+1, 1 ≤ j ≤ m − 1, [Xi , Y j ] = βi j Yi+ j , 2 ≤ i ≤ n, 1 ≤ j ≤ m − i
[Yi , Y j ] = γi j Xi+ j , 1 ≤ i ≤ m, 1 ≤ j ≤ n − i .

The super Leibniz identity on the following triples imposes further constraints on
the above family.

Super Leibniz identity Constraint

{X1, X1, Y j , }, 1 ≤ j ≤ m − 2 ⇒ β2 j = 0
{X1, Xi , Y j }, 3 ≤ i ≤ n, 1 ≤ j ≤ m − i − 1 ⇒ βi j = 0 and

[Xi , Ym−i ] = βi m−i Ym = βi Ym , 3 ≤ i ≤ n
{Xi , X1, Ym−i−1, }, 2 ≤ i ≤ n − 1 ⇒ β3 = 0 and βi+1 = (−1)i+1β3 = 0
{Yi , X1, Y j−1}, 1 ≤ i ≤ n − 2, 2 ≤ j ≤ n − i ⇒ γi j = γi j−1 − γi+1 j−1

Thus, we prove by the induction method that:

γi 1 = γi , 1 ≤ i ≤ n − 1, γi j =
j−1∑

k=0

(−1)k
(

j − 1
k

)
γi+k , 1 ≤ i ≤ n − 2, 2 ≤ j ≤ n − i

Applying the above relations, we can write

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1, [Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1
[X1, Y j ] = −Y j+1, 1 ≤ j ≤ m − 1, [Yi , Y1] = γi Xi+1, 1 ≤ i ≤ n − 1

[Yi , Y j ] =
j−1∑

k=0

(−1)k
(

j − 1
k

)
γi+k Xi+ j , 1 ≤ i ≤ n − 2, 2 ≤ j ≤ n − i

For instance, the superLeibniz identity on the triples [X1, [Y1, Y1]] and [X1, [Y j , Y j ]]
gives, respectively, γ2 = 0 and

γ2 j = (−1) j
j−2∑

s=0

(−1)s
(
j − 1
s

)
γ j+s+1, 2 ≤ j ≤ �n − 1

2
�.

We obtain the family of naturally graded Leibniz superalgebras with maximal s-
nilindex of the theorem statement.

(b) There exists k such that 1 + αi = 0 for 2 ≤ i ≤ k − 2, and 1 + αk−1 �= 0. We
have

[X1, Yk−1] + [Yk−1, X1] = (1 + αk−1)Yk ∈ Ann(L).



Then Yk ∈ Ann(L) and Yk+1, Yk+2, . . . ,Ym ∈ Ann(L). Hence, we can consider

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1, [Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1,
[X1, Y j ] = −Y j+1, 1 ≤ j ≤ k − 2, [X1, Yk−1] = αYk , 1 + α �= 0
[Xi , Y j ] = βi j Yi+ j , 1 ≤ j ≤ k − 1, 2 ≤ i ≤ min{n,m − j}
[Yi , Y j ] = γi j Xi+ j , 1 ≤ j ≤ k − 1, 1 ≤ i ≤ n − k + 1.

Consider the super Leibniz identity on the triple {Yi , X1, Y j } with 2 ≤ j ≤ k − 1
and 1 ≤ i ≤ n − j . We get

γi j = γi j−1 − γi+1 j−1.

For j = k,wehave that γi k−1 = γ1 k−1. If we rename γi 1 := γi with 1 ≤ i ≤ n−1,
it is easy to prove by induction method on j, that

γi j =
j−1∑

s=0

(−1)s
(
j − 1
s

)
γi+s, 2 ≤ j ≤ k − 1, 1 ≤ i ≤ n − j (5.1)

Thus, we have that

[Yi , Y1] = γi Xi+1, 1 ≤ i ≤ n − 1

[Yi , Y j ] =
j−1∑

s=0

(−1)s
(
j − 1
s

)
γi+s Xi+ j , 2 ≤ j ≤ k − 1, 1 ≤ i ≤ n − j

From the super Leibniz identity on the triple {X1, Y1, Y1} we get γ2 = 0.
Using the induction method together with super Leibniz identity on the triple

{Xi , X1, Y j }, we prove that

βi j =
⎧
⎨

⎩

0, 3 ≤ i + j ≤ k − 1

(−1) j−k+1
((

i − 2
j − k + i

)
+

(
i − 1

j − k + i

)
α

)
, k ≤ i + j ≤ m

with 2 ≤ i ≤ min{n,m − j}.
(1) m ≥ n + 3. If we make the super Leibniz identity on the triples {Xn, X1, Y1}
and {Xn, X1, Y2} we get α = −k − 2

n
and α = −k − 3

n
, respectively. But that is a

contradiction, then there is not any superalgebra.
(2) m = n + 2.

On the other hand, recall that γ j = 0, for k − 2 ≤ j ≤ n − 1, and by Equation
(5.1) we have that γk j = 0. Accordingly γ j+1 k−1 = 0 for 1 ≤ j ≤ n − k, that is,

k−2∑

s=0

(−1)s
(
k − 2
s

)
γ j+1+s = 0, 1 ≤ j ≤ n − k



Super Leibniz identity Constraint

{Xn , X1, Y1, } ⇒ α = − k − 2

n
.

{Yi , Y1, Yn+1−i } ⇒
⎧
⎨

⎩

γiβi+1 n+1−i = 0,
βi+1 n+1−i �= 0,
i ≥ n + 2 − k

⇒ γi = 0, n + 2 − k ≤ i ≤ n − 1.

{Yi , Y1, Y1} ⇒
⎧
⎨

⎩

γiβi+1 1 = 0,
βi+1 1 �= 0,
k − 2 ≤ i ≤ n

⇒ γi = 0, k − 2 ≤ i ≤ n − 1.

{X1, Yk−1, Y j } ⇒ αγk j − γ j+1 k−1 = 0, 1 ≤ j ≤ n − k.

Then we have a system of (n − k) linear equations and (n − k) variables admitting
one unique solution γi = 0, 2 ≤ i ≤ n − k + 1.

Only rest to prove that γ1 = 0. For this, it is sufficient to consider the super Leibniz
identity on the triple {Y1, Y1, Yk−1}.We conclude that the superalgebra is degenerated.
(3) m = n + 1. From the super Leibniz identity on {Yi , Y1, Y1} we get γiβi+1 1 = 0.
If k − 2 ≤ i ≤ n then βi+1 1 �= 0. Thus γi = 0 for k − 2 ≤ i ≤ n − 1.

Analogously, from {Yk−3, Y1, Y3}, {X1, Y1, Y j } we conclude that γk−3 = 0, and
γ2 j + γ j+1 = 0, respectively. On the other hand, remember that γ j = 0 with k − 2 ≤
j ≤ n − 1, which implies that

j−2∑

s=1

(−1)s
(
j − 1
s

)
γ2+s + ((−1) j−1 + 1)γ j+1 = 0, 4 ≤ j ≤ k − 3

Then we have a system of (k − 6) linear equations and (k − 6) variables admitting
one unique solution γi = 0 with 3 ≤ i ≤ k − 4.

Only rest to prove that γ1 = 0. For this, it is sufficient to consider the super Leibniz
identity on the triples {Y1, Y1, Yk−1} if k is odd and {Y1, Y1, Yk−2} if k is even. We
conclude then that the superalgebra is degenerated.

Case 2. n > m. We consider the adapted basis {X1, X2, . . . , Xn, Y1, Y2, . . . ,Ym}
and the gradation

< X1, Y1 > ⊕ < X2, Y2 > ⊕ · · · < Xm , Ym > ⊕ < Xm+1 > ⊕ < Xm+2 > ⊕ · · ·⊕ < Xn >

By using the adapted basis and the properties of natural gradation

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1, [Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1
[X1, Y j ] = α j Y j+1, 1 ≤ j ≤ m − 1, [Xi , Y j ] = βi j Yi+ j , 1 ≤ j ≤ m − 2, 2 ≤ i ≤ m − j
[Yi , Y j ] = γi j Xi+ j , 1 ≤ i ≤ m, 1 ≤ j ≤ min{n − i, m}

Case 2.1. If 1 + α1 �= 0, then Y2, Y3, . . . ,Ym ∈ Ann(L). We have

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1, [Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1
[X1, Y1] = αY2, [Xi , Y1] = βi Yi+1, 2 ≤ i ≤ m − 1
[Yi , Y1] = γi Xi+1, 1 ≤ i ≤ m



Similar to the previous cases, using the super Leibniz identity, we get the superal-
gebra NGn,m .

Case 2.2. 1 + α1 = 0. We distinguish the following two cases:
(a) 1 + αi = 0 for all i, 2 ≤ i ≤ m − 1. We have:

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1, [Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1
[X1, Y j ] = −Y j+1, 1 ≤ j ≤ m − 1, [Xi , Y j ] = βi j Yi+ j , 1 ≤ j ≤ m − 2, 2 ≤ i ≤ m
[Yi , Y j ] = γi j Xi+ j , 1 ≤ i ≤ m, 1 ≤ j ≤ min{m, n − i}

We obtain the family of naturally graded Leibniz superalgebras with maximal s-
nilindex of the theorem statement.

(b) There exists k, with 2 ≤ k ≤ m − 1, such that 1 + αi = 0 for 2 ≤ i ≤ k − 2
and 1 + αk−1 �= 0. We have

[X1, Yk−1] + [Yk−1, X1] = (1 + αk−1)Yk ∈ Ann(L).

Then Yk ∈ Ann(L) and Yk+1, Yk+2, . . . ,Ym ∈ Ann(L). Thus,

[Xi , X1] = Xi+1, 1 ≤ i ≤ n − 1, [Y j , X1] = Y j+1, 1 ≤ j ≤ m − 1
[X1, Y j ] = −Y j+1, 1 ≤ j ≤ k − 2, [X1, Yk−1] = αYk , 1 + α �= 0
[Xi , Y j ] = βi j Yi+ j , 1 ≤ j ≤ k − 1, 2 ≤ i ≤ m − j
[Yi , Y j ] = γi j Xi+ j , 1 ≤ j ≤ k − 1, 1 ≤ i ≤ min{m, n − j}

By using the same techniques as in the case 1, we conclude that the obtained
superalgebra is degenerated. ��
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