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Abstract
In this paper we describe finite-dimensional complex Leibniz superalgebras whose even part
is the simple Leibniz algebra corresponding to sl2, i.e. its quotient algebra with respect to
the Leibniz kernel I is isomorphic to sl2. We classify these Leibniz superalgebras in several
cases with arbitrary dimensions in which the odd part is essentially a Leibniz irreducible
(sl2 � I )-module or a finite direct sum of them.
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1 Introduction

Since Loday’s introduction of Leibniz algebras in 1993, many results of the theory of Lie
algebras have been extended to Leibniz algebras. Nevertheless, a great deal of the results
have been devoted to (co)homological problems [11, 16–18] or to the classification prob-
lems of nilpotent part and its subclasses [2, 3, 6, 20–24]. This is in contrast with the
semisimple part of Leibniz algebras, which has been less studied. Hardly original consid-
eration belongs to Dzhumadil’daev and Abdykassymova [4, 9] who suggested a notion of
simple Leibniz algebra and studied its properties in characteristic p. However recently, in
[19] it is been described the class of simple Leibniz algebras corresponding to sl2, i.e.,
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whose quotient algebra with respect to the ideal I generated by squares (also called Leibniz
kernel) is isomorphic to the simple Lie algebra sl2.

On the other hand, in the last few years many authors have focused their study on the con-
struction of Leibniz superalgebras from different approaches, see for instance [7, 8, 12]. Let
us note that dealing with superalgebras is much more complicated than dealing with alge-
bras, remark for instance that a decomposition similar to the Levi-Malcev decomposition in
Lie algebras is not verified in the case of Leibniz superalgebras.

Thus, along the present work the study carried out for simple Leibniz algebras cor-
responding to sl2 is extended to Leibniz superalgebras. Therefore, we describe finite-
dimensional complex Leibniz superalgebras whose even part is the simple Leibniz algebra
corresponding to sl2. Recall that in order to obtain simple Lie superalgebras G0 ⊕ G1 it
makes perfect sense considering G0 a semisimple Lie algebra and G1 an irreducible G0-
module, see for instance Proposition 7.1 of [14]. This latter fact together with the description
of Leibniz algebras corresponding to sl2 developed in [19] lead us to consider Leibniz
superalgebras L0 ⊕ L1 with L0 either sl2 or sl2 � I, where I is the Leibniz kernel. For the
former we consider two cases; L1 an indecomposable bimodule or a finite sum of Leibniz
irreducible sl2-modules, and for the latter we consider also two cases; L1 with the structure
of either a Leibniz irreducible (sl2 � I )-module or a finite direct sum of them.

Throughout the present paper we will consider vector spaces and algebras over the field
of complex numbers C.

2 Basic Notions and Preliminaries Results

Note that the main difficulties dealing with Lie superalgebras, and so with Leibniz
superalgebras, can be summarized in the following points (see for instance [5]):

1. A one-dimensional subspace of a Lie/Leibniz superalgebra L is not necessarily a
Lie/Leibniz subsuperalgebra of L.

2. There is no analog to the Lie Theorem for solvable Lie superalgebras and neither for
Leibniz superalgebras.

3. A decomposition similar to the Levi-Malcev decomposition in Lie algebras is not ver-
ified in the case of Lie superalgebras and therefore neither in the case of Leibniz
superalgebras.

We suppose that the reader is familiarised with the basics of Leibniz algebras. How-
ever, let us recall briefly the concepts of representation, module and irreducible on Leibniz
algebras.

Definition 2.1 [10] Let L be a Leibniz algebra, M a vector space over the field K. Assume
we have two K-linear functions:

ρ, λ : L −→ gl(M)

Denote λ(x) and ρ(y) by λx and ρy for every x, y ∈ L. We say that M is a representation
of L if the following properties are satisfied:

(1) ρ[x,y] = ρyρx − ρxρy ,
(2) λ[x,y] = ρyλx − λxρy ,
(3) λ[x,y] = ρyλx + λxλy for every x, y ∈ L.



If M is a representation of L, then M becomes an L-module with the following [·, ·] :
M × L −→ M and [·, ·] : L × M −→ M with the products: [m, x] := ρx(m) and
[x, m] := λx(m) for every x ∈ L, m ∈ M . Conversely, for a given L-module M , we get
the representation ρ, λ : L −→ gl(M) with ρx := [·, x] and λx := [x, ·] for all x ∈ L.

Definition 2.2 [10] Let K be a field, L a Leibniz algebra over K, and V a vector space over
K. We say that the Leibniz representation ρ, λ : L −→ gl(V ) is irreducible (equivalently,
V is an irreducible L-module), if ρ and λ are irreducible. In other words, if U ⊆ V is an
invariant subspace of ρ and λ (∀x ∈ L, ρx(U) ⊆ U and λx(U) ⊆ U ), then U = {0} or
U = V .

Recall next some necessary basic definitions and notions regarding Leibniz superalge-
bras.

Definition 2.3 [1] A Z2-graded vector space L = L0 ⊕L1 is called a Leibniz superalgebra
if it is equipped with a product [−, −] which satisfies the following conditions:

[Lα, Lβ] ⊆ Lα+β f or all α, β ∈ Z2

[x, [y, z]] = [[x, y], z] − (−1)αβ[[x, z], y] − graded Leibniz identity

for all x ∈ L, y ∈ Lα , z ∈ Lβ, α, β ∈ Z2.

Note that if a Leibniz superalgebra L satisfies the identity [x, y] = −(−1)αβ[y, x] for
all x ∈ Lα , y ∈ Lβ , then L becomes a Lie superalgebra. Therefore Leibniz superalgebras
are a generalization of Lie superalgebras and many results and definitions of Lie superalge-
bras can be extended for Leibniz superalgebras. In the same way as for Lie superalgebras,
isomorphisms are assumed to be consistent with the Z2-graduation.

If we denote by Rx the right multiplication operator, i.e., Rx : L → L, then the graded
Leibniz identity can be expressed in the following form: R[x,y] = RyRx − (−1)αβRxRy

where x ∈ Lα, y ∈ Lβ.
We denote by R(L) the set of all right multiplication operators. It is not difficult to prove

that R(L) with the multiplication defined by:

< Ra, Rb >:= RaRb − (−1)αβRbRa

for Ra ∈ R(L)α , Rb ∈ R(L)β, becomes a Lie superalgebra.
For a Leibniz superalgebra L = L0 ⊕ L1 it is defined the set Ann(L), Ann(L) = {X ∈

L : [L, X] = 0} which will be called the right annihilator of L.
It is easy to see that Ann(L) is a two-sided ideal of L and [X, X] ∈ Ann(L) for any X ∈

L0, this notion is consistent with the right annihilator in Leibniz algebras. If we consider
I = ideal < [X, Y ] + (−1)αβ[Y, X] : X ∈ Lα, Y ∈ Lβ >, then I ⊆ Ann(L).

In order to provide an example of non-Lie Leibniz superalgebra, we can consider an
associative superalgebra, A = A0 ⊕ A1, and a linear mapping D : A → A satisfying the
condition:

D(a(Db)) = DaDb = D((Da)b)

for all a, b ∈ A and define a new multiplication over the underlying Z2-graded vector space,
<, >, by:

< a, b >D := a(Db) − (−1)αβD(b)a

for a ∈ Aα, b ∈ Aβ . Then A equipped with multiplication <,> becomes a Leibniz
superalgebra, which in general is not a Lie superalgebra.



Next we extend in a natural way the definition of simple Lie superalgebras to simple
Leibniz superalgebras. Recall that a Lie superalgebra L is called simple if its ideals (Z2-
graded ideals) are only {0} and L, verifying [L, L] �= 0, see for instance [13]. Likewise, we
can introduce the concept of simple Leibniz superalgebras.

Definition 2.4 A Leibniz superalgebra L is called simple if its ideals (Z2-graded ideals) are
only {0}, I , L and [L,L] �= I .

Note that this definition agrees with that of simple Lie superalgebra whenever I = 0.

3 Leibniz Superalgebras with Even Part Corresponding to sl2

Throughout the present paper we consider Leibniz superalgebras L0 ⊕ L1 with L0 either
sl2 or sl2 � I where I is the Leibniz kernel. L1, on the other hand, is essentially an
indecomposable bimodule, or a finite sum of Leibniz irreducible sl2-modules.

Regarding L1 as a Leibniz irreducible module of sl2, we can extend the study developed
in [10]. Thus,

Proposition 3.1 Let L0 ⊕ L1 be a Leibniz superalgebra. Setting V1 the underlying vector
space of L1, we have two linear functions ρ and λ:

ρ : L0 −→ gl(V1), defined by ρx := [·, x] and
λ : L0 −→ gl(V1), defined by λx := [x, ·]
which constitutes a Leibniz representation of L0 and therefore L1 has the structure of

L0-module.

Proof From Definition 2.5 in [10], the conditions for ρ and λ are the following:

(1) ρ[x,y] = ρyρx − ρxρy ,
(2) λ[x,y] = ρyλx − λxρy ,
(3) λ[x,y] = ρyλx + λxλy for every x, y ∈ L0.

Firstly, note that the graded Leibniz identity is nothing but the Leibiz identity provided at
least two of the three vectors considered belong to the even part of the Leibniz superalgebra.
Thus, on account of x, y ∈ L0, if we consider z ∈ V1 we have ρ[x,y](z) = [z, [x, y]]
verifying Leibniz identity, i.e. [z, [x, y]] = [[z, x], y] − [[z, y], x], but this last expression
is exactly (ρyρx − ρxρy)(z) and we obtain (1). Analogously (2) and (3) can be checked by
means of Leibniz identity.

Remark 3.1 Note that this result is an extension of the equivalent one for Lie superalgebras.
Any time we have a Lie superalgebra G0 ⊕ G1, on one hand we have G0 a Lie algebra
and on the other hand, we have a representation of G0 and therefore G1 has the structure of
G0-module.

4 L0 = sl2 � I, and L1 as Leibniz Irreducible (sl2 � I)-Module

Consider L0 = sl2 � I where I is the Leibniz kernel, and L1 has a structure of Leibniz
irreducible (sl2 � I )-module.



Proposition 4.1 Let L = L0 ⊕ L1 be a Leibniz superalgebra such that L0 is a simple
Leibniz algebra with dim(L0) ≥ 5 with Lie part sl2; and L1 has the structure of Leibniz
irreducible L0-module. Then, there exists a basis {e, h, f, x0, x1, . . . xm, y0, y1, . . . , yn} of
L in which the multiplication table is as follows:

[e, h] = 2e, [h, e] = −2e, [h, f ] = 2f, [f, h] = −2f, [e, f ] = h, [f, e] = −h,

[xk, h] = (m − 2k)xk, 0 ≤ k ≤ m,

[xk, f ] = xk+1, 0 ≤ k ≤ m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 ≤ k ≤ m,

[yj , h] = (n − 2j)yj , [h, yj ] = −δ(n − 2j)yj , 0 ≤ j ≤ n,

[yj , f ] = yj+1, [f, yj ] = −δyj+1, 0 ≤ j ≤ n − 1,

[yj , e] = −j (n + 1 − j)yj−1, [e, yj ] = δj (n + 1 − j)yj−1, 1 ≤ j ≤ n,

[yi, yj ] = αij e + βij h + γij f +
m∑

k=0

λk
ij xk, 0 ≤ i, j ≤ n,

with δ ∈ {0, 1} and the omitted products are zero.

Remark 4.1 Note that in particular {e, h, f, x0, x1, . . . xm} is a basis of L0 and
{y0, y1, . . . , yn} is a basis of L1, being m and n positive integers.

Proof From [19] we can deduce the multiplication table for L0, i.e. sl2 � I . Secondly, with
respect to L1 being an irreducible (sl2 � I )-module, from Theorem 3.4 of [10] we obtain
that the representation λ, ρ : sl2 � I −→ gl(V1) verifies in particular that λ |I= ρ |I= 0
and then L1 is in fact an irreducible sl2-module. The condition λ |I= ρ |I= 0 leads,
in terms of multiplication table, to [xi, yj ] = [yj , xi] = 0 for all i, j . Finally, from
[10] we can assert that given V1 = span{y0, y1, . . . , yn} an (n + 1)-dimensional com-
plex vector space and λ, ρ : sl2 −→ gl(V1) the irreducible representations of sl2, then
either ρ + λ = 0 or λ = 0. We can traduce this fact into the multiplication table as
follows:

[yj , h] = (n − 2j)yj , [h, yj ] = −δ(n − 2j)yj , 0 ≤ j ≤ n,

[yj , f ] = yj+1, [f, yj ] = −δyj+1, 0 ≤ j ≤ n − 1,

[yj , e] = −j (n + 1 − j)yj−1, [e, yj ] = δj (n + 1 − j)yj−1, 1 ≤ j ≤ n,

with δ ∈ {0, 1}. Note that δ = 1 is exactly the case ρ + λ = 0 where multiplica-
tion between elements of sl2 and V is skew-symmetric and V is in fact an irreducible
Lie-module. The structure of a Lie irreducible sl2-module is a well-known one and coin-
cides with the above multiplication table provided δ = 1. Recall that Lie algebras (resp.
superalgebras) are particular cases of Leibniz algebras (resp. superalgebras). If δ = 0, on
the other hand, is the case λ = 0, and this is the only one non-Lie Leibniz irreducible
module/representation.



Theorem 4.1 Let L be under the conditions of Proposition 4.1, then L is isomor-
phic to one of the two non-isomorphic Leibniz superalgebras, expressed in the basis
{e, h, f, x0, x1, . . . xm, y0, y1, . . . , yn} as follows:
L1 :
[e, h] = 2e, [h, e] = −2e, [h, f ] = 2f, [f, h] = −2f, [e, f ] = h, [f, e] = −h,

[xk, h] = (m − 2k)xk, 0 ≤ k ≤ m, [yj , h] = (n − 2j)yj , 0 ≤ j ≤ n,

[xk, f ] = xk+1, 0 ≤ k ≤ m − 1, [yj , f ] = yj+1, 0 ≤ j ≤ n − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 ≤ k ≤ m, [yj , e] = −j (n + 1 − j)yj−1, 1 ≤ j ≤ n,

L2 :
[e, h] = 2e, [h, e] = −2e, [h, f ] = 2f, [f, h] = −2f, [e, f ] = h, [f, e] = −h,

[xk, h] = (m − 2k)xk, 0 ≤ k ≤ m,

[xk, f ] = xk+1, 0 ≤ k ≤ m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 ≤ k ≤ m,

[yj , h] = (n − 2j)yj , [h, yj ] = −(n − 2j)yj , 0 ≤ j ≤ n,

[yj , f ] = yj+1, [f, yj ] = −yj+1, 0 ≤ j ≤ n − 1,

[yj , e] = −j (n + 1 − j)yj−1, [e, yj ] = j (n + 1 − j)yj−1, 1 ≤ j ≤ n,

where the omitted products, in both superalgebras, are equal to zero.

Proof Let L be under the conditions of Proposition 4.1. Thus, assume

[yi, yj ] = αij e + βij h + γij f +
m∑

k=0

λk
ij xk, 0 ≤ i, j ≤ n.

By the graded Leibniz identity [x0, [yi, yj ]] = [[x0, yi], yj ] + [[x0, yj ], yi] and thanks
to the fact that the representation verifies the condition λ |I= ρ |I= 0 one derives
βijmx0 +γij x1 = 0, being then βij = γij = 0 for all i, j . Next, the graded Leibniz identity
[x1, [yi, yj ]] = [[x1, yi], yj ] + [[x1, yj ], yi] leads to −mαij x0 = 0, and thus αij = 0 for
all i, j . Hence then, we can suppose without loss of generality that

[yi, yj ] =
m∑

k=0

λk
ij xk, 0 ≤ i, j ≤ n.

Using now the following graded Leibniz identity [yi, [yj , h]] = [[yi, yj ], h] −
[[yi, h], yj ] we have [yi, (n − 2j)yj ] = [[yi, yj ], h] − [(n − 2i)yi, yj ], that is (n − 2j +
n − 2i)[yi, yj ] =

m∑
k=0

λk
ij (m − 2k)xk and then we obtain

(2n − 2j − 2i)(

m∑
k=0

λk
ij xk) =

m∑
k=0

λk
ij (m − 2k)xk . (4.1)

Next, we will distinguish several cases depending on m and n.

Case 1. m odd and n arbitrary.

In this case from the above equation we deduce λk
ij = 0 for all k on account of its

coefficients on both sides of the equation, on the left-hand side the coeffients are always
even numbers in contrast with the coefficients on the other side, odd ones. Consequently
[yi, yj ] = 0 for all i, j obtaining then L1 or L2 depending on the value of δ.



Case 2. m even and n odd.

In this case, from Eq. 4.1 we get that instead of having all λk
ij zeroes, there is one potential

λk
ij that remains, exactly the one with k = m−2n+2i+2j

2 if possible. Thus we have [yi, yj ] =
λk

ij xk with k as above. If δ = 0, from the identity [yi, [h, yj ]] = [[yi, h], yj ] − [[yi, yj ], h]
we have 0 = [(n − 2i)yi, yj ] − [λk

ij xk, h] = (n − 2i)λk
ij xk − (m − 2k)λk

ij xk . As (n − 2i) −
(m − 2k) �= 0 then λk

ij = 0 for all i, j , obtaining then L1.
On the other hand, if δ = 1 from the graded Leibniz identity [h, [yi, yi]] = 2[[h, yi], yi]

we get 0 = 2(2i − n)[yi, yi] and since (2i − n) �= 0 then [yi, yi] = 0 with 0 ≤ i ≤ n.
Now the identity [f, [yi, yi]] = 2[[f, yi], yi] leads to 0 = −2[yi+1, yi], thus [yi+1, yi] =
0 with 0 ≤ i ≤ n − 1. Repeating this last process but for [yi+1, yi] = 0, we obtain
[f, [yi+1, yi]] = [[f, yi+1], yi] + [[f, yi], yi+1], that is 0 = −[yi+2, yi] − [yi+1, yi+1] and
since the last summand vanishes, remains [yi+2, yi] = 0 with 0 ≤ i ≤ n − 2. By repeating
this process we finally have for all i, [yi+p, yi] = 0 with 0 ≤ p ≤ n − i. Moreover, on
account of the graded Leibniz identity [h, [yi, yj ]] = [[h, yi], yj ] + [[h, yj ], yi] we have
(2i − n)[yi, yj ] = (n − 2j)[yj , yi], which allows us to assert that [yi, yi+p] = 0 for all i

and p as above. Therefore, [yi, yj ] = 0 for all i, j , obtaining then L2.

Case 3. m even and n even.

Analogously as the precent case we deduce from Eq. 4.1 that [yi, yj ] = λij xk with k =
m−2n+2i+2j

2 if possible. If δ = 0, using the identity [yi, [h, yj ]] = [[yi, h], yj ]−[[yi, yj ], h]
we have [(n−2i)−(m−2k)]λij = 0. Replacing k by its value it is obtained (−n+2j)λij =
0, and therefore λij = 0 provided j �= n

2 . Only remain [yi, y n
2
] = λi n

2
xk with k = m−n

2 + i.
By the graded Leibniz identity we have [y0, [y n

2
, f ]] = [[y0, y n

2
], f ] − [[y0, f ], y n

2
] =

[λ0 n
2
xk, f ] − [y1, y n

2
] = (λ0 n

2
− λ1 n

2
)xk+1 since [y0, [y n

2
, f ]] = 0 we have λ0 n

2
= λ1 n

2
.

Repeating this process for i with 1 ≤ i ≤ n − 1, [yi, [y n
2
, f ]], leads to

λi n
2

= λ(i+1) n
2
, 0 ≤ i ≤ n − 1

for simplicity we will call it by λ and now from the equality

λxk = [y0, y n
2
] = [y0, [y n

2 −1, f ]] = [[y0, y n
2 −1], f ] − [[y0, f ], y n

2 −1] = 0

we get λ = 0, obtaining then L1.
On the other hand, if δ = 1 by means of the following graded Leibniz identities we

obtain the restrictions as follow:

0 = [h, [yi, yi]] = 2[[h, yi], yi] =⇒ [yi, yi] = 0, i �= n
2 ,

0 = [h, [yi, y n
2
]] = [[h, yi], y n

2
] + [[h, y n

2
], yi] =⇒ [yi, y n

2
] = 0, i �= n

2 ,

0 = [f, [yi, yi]] = 2[[f, yi], yi] =⇒ [yi+1, yi]= 0, 0 ≤ i ≤ n − 1,

0 = [e, [yi, yi]] = 2[[e, yi], yi] =⇒ [yi−1, yi] = 0, 1 ≤ i ≤ n,

0 = [f, [yi, yn]] = [[f, yi], yn] + [[f, yn], yi] =⇒ [yi+1, yn]= 0, 0 ≤ i ≤ n −1,

0 = [e, [yi, y0]] = [[e, yi], y0] + [[e, y0], yi] =⇒ [yi−1, y0] = 0, 1 ≤ i ≤ n,

[yi, [f, yi+1]] = [[yi, f ], yi+1] − [[yi, yi+1], f ] =⇒ −[yi, yi+2] = [yi+1, yi+1],
0 ≤ i ≤ n − 2,

0 = [f, [yi, yi+1]] = [[f, yi], yi+1] + [[f, yi+1], yi] =⇒ −[yi+2, yi] = [yi+1, yi+1],
0 ≤ i ≤ n − 2,



0 = [f, [yi, yj ]] = [[f, yi], yj ] + [[f, yj ], yi] =⇒ −[yi+1, yj ] = [yj+1, yi],
0 ≤ i, j ≤ n − 1,

0 = [e, [yi, yj ]] = [[e, yi], yj ] + [[e, yj ], yi] =⇒ −ai[yi−1, yj ] = aj [yj−1, yi],
ai = i(n + 1 − i) �= 0 �= aj ,

1 ≤ i, j ≤ n.

It can be seen that the set of all of these restrictions combined leads to [yi, yj ] = 0 except
for those verifying i + j = n. More concretely, we can suppose

[y n
2
, y n

2
] = λxm

2
,

[yi, yn−i] = biλxm
2
, with bi �= 0, 1 ≤ i ≤ n, i �= n

2 .

Finally one derives λ = 0 from the equality

0 = [y0, [yn, f ]] = [[y0, yn], f ] − [[y0, f ], yn] = [b0λxm
2
, f ] − [y1, yn] = b0λxm

2 +1

obtaining then L2.
This completes the proof on account of L1 and L2 are clearly non-isomorphic.

5 L0 = sl2, and L1 as an Indecomposable Leibniz sl2-Bimodule

Next, we consider the case of L0 = sl2 and L1 has the structure of an indecomposable
Leibniz sl2-bimodule.

Proposition 5.1 Let L = L0 ⊕ L1 = sl2 ⊕ (V ⊕ W) be a Leibniz superalgebra with
V and W simple sl2-modules and such that L1 = V ⊕ W is an indecomposable Leibniz
sl2-bimodule. Then, L admits a basis {e, h, f, v0, v1, . . . vn, w0, w1, . . . , wn−2} in which
the multiplication table is one of the two non-isomorphic that follow:

(1) :

[e, h] = 2e, [h, e] = −2e, [h, f ] = 2f, [f, h] = −2f, [e, f ] = h, [f, e] = −h,

[vj , h] = (n − 2j)vj , 0 ≤ j ≤ n, [h, vj ] = −(n − 2j)vj − 2jwj−1,

[vj , f ] = vj+1, 0 ≤ j ≤ n − 1, [f, vj ] = −vj+1 + wj ,

[vj , e] = −j (n + 1 − j)vj−1, 1 ≤ j ≤ n, [e, vj ] = j (n + 1 − j)vj−1 + j (j − 1)wj−2,

[wk, h] = (n − 2 − 2k)wk, 0 ≤ k ≤ n − 2,

[wk, f ] = wk+1, 0 ≤ k ≤ n − 3,

[wk, e] = −k(n − 1 − k)wk−1, 1 ≤ k ≤ n − 2,

[vi, vj ] = αij e + βij h + γij f, 0 ≤ i, j ≤ n,

[vi, wj ] = α′
ij e + β′

ij h + γ ′
ij f, 0 ≤ i ≤ n, 0 ≤ j ≤ n − 2,

[wj , vi ] = α′′
ij e + β′′

ij h + γ ′′
ij f, 0 ≤ i ≤ n, 0 ≤ j ≤ n − 2,

[wi, wj ] = α′′′
ij e + β′′′

ij h + γ ′′′
ij f, 0 ≤ i, j ≤ n − 2,



(2) :

[e, h] = 2e, [h, e] = −2e, [h, f ] = 2f, [f, h] = −2f, [e, f ] = h, [f, e] = −h,

[vj , h] = (n − 2j)vj , 0 ≤ j ≤ n,

[vj , f ] = vj+1, 0 ≤ j ≤ n − 1,

[vj , e] = −j (n + 1 − j)vj−1, 1 ≤ j ≤ n,

[wk, h] = (n − 2 − 2k)wk, 0 ≤ k ≤ n − 2, [h, wk] = 2(n − 1 − k)vk+1 − (n − 2 − 2k)wk,

[wk, f ] = wk+1, 0 ≤ k ≤ n − 2, [f, wk] = vk+2 − wk+1,

[wk, e] = −k(n − 1 − k)wk−1, 0 ≤ k ≤ n − 2, [e, wk] = (n − 1 − k)((n − k)vk + kwk−1),

[vi , vj ] = αij e + βij h + γij f, 0 ≤ i, j ≤ n,

[vi , wj ] = α′
ij e + β′

ij h + γ ′
ij f, 0 ≤ i ≤ n, 0 ≤ j ≤ n − 2,

[wj , vi ] = α′′
ij e + β′′

ij h + γ ′′
ij f, 0 ≤ i ≤ n, 0 ≤ j ≤ n − 2,

[wi, wj ] = α′′′
ij e + β′′′

ij h + γ ′′′
ij f, 0 ≤ i, j ≤ n − 2,

where the omitted products are equal to zero.

Proof The statement of the above proposition is a consequence of three facts. Firstly, from
Proposition 3.1 any time we have a Leibniz superalgebra, the odd part has even-part mod-
ule structure. Hence, from [15] we can deduce all the products [sl2, V ], [sl2, W ], [V, sl2]
and [W, sl2] assuming that wj = 0 if j /∈ {0, 1, . . . n − 2}. Finally since the underlying
vector space of any Leibniz superalgebra is in fact a Z2-graded vector space we deduce the
remaining products [V, V ], [V,W ], [W, V ] and [W, W ].

Theorem 5.1 Let L be under the conditions of Proposition 5.1, then L is isomorphic to one
of the two non-isomorhic Leisbniz superalgebras expressed in the basis {e, h, f, v0, v1, . . .

vn, w0, w1, . . . , wn−2} by the following multiplication tables respectively:

M1 :

[e, h] = 2e, [h, e] = −2e, [h, f ] = 2f, [f, h] = −2f, [e, f ] = h, [f, e] = −h,

[vj , h] = (n − 2j)vj , 0 ≤ j ≤ n, [h, vj ] = −(n − 2j)vj − 2jwj−1,

[vj , f ] = vj+1, 0 ≤ j ≤ n − 1, [f, vj ] = −vj+1 + wj ,

[vj , e] = −j (n + 1 − j)vj−1, 1 ≤ j ≤ n, [e, vj ] = j (n + 1 − j)vj−1 + j (j − 1)wj−2,

[wk, h] = (n − 2 − 2k)wk, 0 ≤ k ≤ n − 2,

[wk, f ] = wk+1, 0 ≤ k ≤ n − 3,

[wk, e] = −k(n − 1 − k)wk−1, 1 ≤ k ≤ n − 2,

M2 :

[e, h] = 2e, [h, e] = −2e, [h, f ] = 2f, [f, h] = −2f, [e, f ] = h, [f, e] = −h,

[vj , h] = (n − 2j)vj , 0 ≤ j ≤ n,

[vj , f ] = vj+1, 0 ≤ j ≤ n − 1,

[vj , e] = −j (n + 1 − j)vj−1, 1 ≤ j ≤ n,

[wk, h] = (n − 2 − 2k)wk, 0 ≤ k ≤ n − 2, [h, wk] = 2(n − 1 − k)vk+1 − (n − 2 − 2k)wk,

[wk, f ] = wk+1, 0 ≤ k ≤ n − 2, [f, wk] = vk+2 − wk+1,

[wk, e] = −k(n − 1 − k)wk−1, 0 ≤ k ≤ n − 2, [e, wk] = (n − 1 − k)((n − k)vk + kwk−1),

where the omitted products are equal to zero.

Proof Next, we only present in details the case of M1, which derives from the family (1)

of Proposition 5.1. Analogously it could be obtained the Leibniz superalgebra M2 from the
family (2) of Proposition 5.1.



Thus, to prove the statement of the theorem we need to show that all the products
involving only V and W vanish. Next we are goning to prove that [W,W ] = 0, that is,
α′′′

ij = β′′′
ij = γ ′′′

ij = 0 for all i, j such that 0 ≤ i, j ≤ n − 2.
By means of the graded Leibniz identity that follows: [e, [wi,wj ]] = [[e, wi], wj ] +

[[e, wj ], wi], we obtain that 2β′′′
ij e + γ ′′′

ij h which is the result of the left-hand side of the
equation, equals zero, result of the other side of the equation. Therefore, β′′′

ij = γ ′′′
ij = 0 for

all i, j . Finally, the graded Leibniz identity [h, [wi,wj ]] = [[h, wi], wj ] + [[h, wj ], wi]
leads to −2α′′′

ij e = 0 and then α′′′
ij = 0 for all i, j .

Application of the Leibniz superidentity constraint in the following cases we get the
results given in the table.

Leibniz superidentity Constraint

{v0, v0, wj }, 0 ≤ j ≤ n − 2 β′
0 j = γ ′

0 j = 0 [v0, wj ] = α′
0 j e

{v0, v0, v0} β0 0 = γ0 0 = 0 [v0, v0] = α0 0e

{v0, wj , v0}, 0 ≤ j ≤ n − 2 β′′
0 j = γ ′′

0 j = 0 [wj , v0] = α′′
0 j e

{v0, v0, vj }, 1 ≤ j ≤ n β0 j = γ0 j = 0, α0 0 = 0 [v0, vj ] = α0 j e, [v0, v0] = 0
{v0, vj , v0}, 1 ≤ j ≤ n βj 0 = γj 0 = 0 [vj , v0] = αj 0e

{h, v0, wj }, 0 ≤ j ≤ n − 2 α′
0 j = 0 [v0, wj ] = 0

{h,wj , v0}, 0 ≤ j ≤ n − 2 α′′
0 j = 0 [wj , v0] = 0

{e, v0, wj }, 2 ≤ j ≤ n αj 0 = 0, 1 ≤ j ≤ n − 1 [vj , v0] = 0, 1 ≤ j ≤ n − 1
{h, v0, vj }, 2 ≤ j ≤ n α0 j = 0, 1 ≤ j ≤ n − 1 [v0, vj ] = 0, 1 ≤ j ≤ n − 1
{v0, vn, h} α0 n = 0 [v0, vn] = 0
{vn, v0, h} αn 0 = 0 [vn, v0] = 0

It can be summed up as [v0, vj ] = [vj , v0] = 0 with 0 ≤ j ≤ n and [v0, wk] =
[wk, v0] = 0 with 0 ≤ k ≤ n − 2.

Firstly, we are going to prove that [vi, vj ] = 0 for 1 ≤ i, j ≤ n, [vi, wk] = 0 for
1 ≤ i ≤ n and 0 ≤ k ≤ n − 2, using the induction method on i.

Fixed j and k (0 ≤ j ≤ n, 0 ≤ k ≤ n − 2), we suppose that [vi−1, vj ] = 0 and
[vi−1, wk] = 0. Consider the following Leibniz superidentities:

[vi−1, [f, vj ]] − [[vi−1, f ], vj ] + [[vi−1, vj ], f ] = 0,

[vi−1, [f, wk]] − [[vi−1, f ], wk] + [[vi−1, wk], f ] = 0

we get [vi, vj ] = [vi, wk] = 0.
Then, only rest to prove that [wk, vi] = 0 with 1 ≤ i ≤ n and 0 ≤ k ≤ n−2. Analogously

to before, we prove it using the induction method on i (0 ≤ i ≤ n). Recall that [wk, v0] = 0
with 0 ≤ k ≤ n − 2. Fix k (0 ≤ k ≤ n − 2). We suppose that [wk, vi−1] = 0. Taking

[wk, [f, vi−1]] − [[wk, f ], vi−1] + [[wk, vi−1], f ] = 0

we get [wk, vi] = 0.



Thus, we obtain the Leibniz superalgebra of the statement of the theorem.

6 L0 = sl2, and L1 =
k⊕

i=1

Ji with Each Ji a Leibniz Irreducible sl2-Module

Next, we consider L0 = sl2 and L1 with structure of a finite direct sum of Leibniz
irreducible sl2-modules.

Proposition 6.1 Let L = L0 ⊕ L1 = sl2 ⊕ J be a Leibniz superalgebra with J a finite
direct sum of Leibniz irreducible sl2-modules, i.e. J = ⊕k

i=1 Ji with Ji a Leibniz irre-
ducible sl2-module. Then, L admits a basis {e, h, f, vi

0, v
i
1, . . . v

i
ni

; 1 ≤ i ≤ k} with respect
to which the multiplication table is as follows:

[e, h] = 2e, [h, e] = −2e, [h, f ] = 2f, [f, h] = −2f, [e, f ] = h, [f, e] = −h,

[vi
j , h] = (ni − 2j)vi

j , 0 ≤ j ≤ ni, 1 ≤ i ≤ k,

[vi
j , f ] = vi

j+1, 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ k,

[vi
j , e] = −j (ni + 1 − j)vi

j−1, 1 ≤ j ≤ ni, 1 ≤ i ≤ k,

[h, vi
j ] = −δi(ni − 2j)vi

j , 0 ≤ j ≤ ni, 1 ≤ i ≤ k,

[f, vi
j ] = −δiv

i
j+1, 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ k,

[e, vi
j ] = δij (ni + 1 − j)vi

j−1, 1 ≤ j ≤ ni, 1 ≤ i ≤ k,

[vi
m, vl

j ] = αil
mj e + βil

mjh + γ il
mjf, 0 ≤ m ≤ ni, 0 ≤ j ≤ nl, 1 ≤ i, l ≤ k,

where δi ∈ {0, 1}, 1 ≤ i ≤ k and the omitted products are equal to zero.

Proof From [10] we deduce that given Vi = span{vi
0, v

i
1, . . . , v

i
ni

} a (ni + 1)-dimensional
complex vector space and λ, ρ : sl2 −→ gl(Vi) an irreducible representation of sl2, then
either ρ + λ = 0, or λ = 0. We can traduce this fact into the multiplication table as follows
for each value of i:

[vi
j , h] = (ni − 2j)vi

j , [h, vi
j ] = −δi(ni − 2j)vi

j , 0 ≤ j ≤ ni,

[vi
j , f ] = vi

j+1, [f, vi
j ] = −δiv

i
j+1, 0 ≤ j ≤ ni − 1,

[vi
j , e] = −j (ni + 1 − j)vi

j−1, [e, vi
j ] = δij (ni + 1 − j)vi

j−1, 1 ≤ j ≤ ni

with δi ∈ {0, 1}. Note that δi = 1 is exactly the case ρ + λ = 0 where multiplication
between elements of sl2 and Vi is skew-symmetric and Vi is in fact an irreducible Lie sl2-
module. If δi = 0, on the other hand, is the case λ = 0, and this case corresponds with the
non-Lie Leibniz irreducible sl2-module. Finally since the underlying vector space of any
Leibniz superalgebra is in fact a Z2-graded vector space we deduce the expression of the
remaining products.



Theorem 6.1 Let L be under the conditions of Proposition 6.1, then L is isomor-
phic to one of the following Leibniz superalgebras expressed with respect to the basis
{e, h, f, vi

0, v
i
1, . . . v

i
ni

; 1 ≤ i ≤ k} by the following multiplication table:

[e, h] = 2e, [h, e] = −2e, [h, f ] = 2f, [f, h] = −2f, [e, f ] = h, [f, e] = −h,

[vi
j , h] = (ni − 2j)vi

j , 0 ≤ j ≤ ni, 1 ≤ i ≤ k,

[vi
j , f ] = vi

j+1, 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ k,

[vi
j , e] = −j (ni + 1 − j)vi

j−1, 1 ≤ j ≤ ni, 1 ≤ i ≤ k,

[h, vi
j ] = −δi(ni − 2j)vi

j , 0 ≤ j ≤ ni, 1 ≤ i ≤ k,

[f, vi
j ] = −δiv

i
j+1, 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ k,

[e, vi
j ] = δij (ni + 1 − j)vi

j−1, 1 ≤ j ≤ ni, 1 ≤ i ≤ k,

where δi ∈ {0, 1}, 1 ≤ i ≤ k and the omitted products are equal to zero.

Remark 6.1 Note that the superalgebra from the statement of the theorem, with δi = 1
for all i is the only one that is a Lie superalgebra, the remaining ones are non-Lie Leibniz
superalgebras.

Proof Note that the proof is equivalent to the proof when k = 2, since in order to show that
the products

[vi
m, vl

j ] = αil
mj e + βil

mjh + γ il
mjf

vanish we only have to distinguish two cases i = l (both vectors in the same subspace Vi ,
being Vi a sl2-module) or i �= l (each vector in a different subspace, Vi and Vl respectively).
Therefore without loss of generality we can suposse k = 2.

Therefore, let {e, h, f, v1
0, v1

1, . . . v1
n1

, v2
0, v2

1, . . . v2
n2

} be a basis of L. In order to prove
the theorem, we distinguish three cases: a) δ1 = δ2 = 1; b) δ1 = 1, δ2 = 0 (or δ1 =
0, δ2 = 1) and c) δ1 = δ2 = 0. In all these cases, the used tools are based on Leibniz
superidentity and the induction method. Next, we only present in details the first case and
analogously (using the same techniques) it could be obtained the other two cases.

Case a: δ1 = δ2 = 1. Using Leibniz superidentity, we have the following constraints:

Leibniz superidentity Constraint

{v1
0, h, v1

j }, 0 ≤ j ≤ n1,

⎧⎪⎨
⎪⎩

α11
0 j = 0, j �= n1−1,

β11
0 j = 0, j �= n1,

γ 11
0 j = 0,

⎧⎪⎨
⎪⎩

[v1
0, v1

j ]= 0, 0 ≤ j ≤ n1−2,

[v1
0, v1

n1−1] = α11
0 n1−1e,

[v1
0, v1

n1
] = β11

0 n1
h,

{v1
0, v1

0, v1
n1

}, β11
0 n1

= 0, [v1
0, v1

n1
] = 0,

{v1
0, e, v1

n1
}, α11

0 n1
= 0, [v1

0, v1
n1−1] = 0,

{v1
0, v1

0, v2
j }, 0 ≤ j ≤ n2, β12

0 j = γ 12
0 j = 0, [v1

0, v2
j ] = α12

0 j e,

{v1
0, v1

i , v
1
j }, 0 ≤ i,

j ≤ n1, i �= 0, β11
i j = γ 11

i j = 0, [v1
i , v

1
j ] = α11

i j e,

{v1
0, v1

1, v2
j }, 0 ≤ j ≤ n2, β12

1 j = α12
0 j , γ 12

1 j = 0,



{v1
0, v1

2, v2
j }, 0 ≤ j ≤ n2, β12

2 j = 0, γ 12
2 j

= 2(n1 − 1)α12
0 j ,

{v1
0, v1

i , v
2
j }, 3 ≤ i ≤ n1,

0 ≤ j ≤ n2,
β12

i j = γ 12
i j = α12

0 j = 0,

{v1
0, v2

i , v
1
j }, 1 ≤ i ≤ n1,

0 ≤ j ≤ n2,
β21

i j = γ 21
i j = 0,

{v1
0, v2

i , v
2
j }, 0 ≤ i, j ≤ n2, β22

i j = γ 22
i j = 0.

We summarize all these considerations in the following table:

[v1
0, v1

i ] = [v1
0, v2

j ] = 0, 0 ≤ i ≤ n1, 0 ≤ j ≤ n2,

[v1
i , v

nk

j ] = α
1nk

i j e, 1 ≤ i ≤ n1, 0 ≤ j ≤ nk, 1 ≤ k ≤ 2,

[v2
i , v

nk

j ] = α
2nk

i j e, 0 ≤ i ≤ n2, 0 ≤ j ≤ nk, 1 ≤ k ≤ 2.

For finish this proof, we should proceed by induction on i. We have that [v1
0, v1

i ] =
[v1

0, v2
j ] = 0, 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2. We fix j, 0 ≤ j ≤ nl and 1 ≤ l ≤ 2, and we

supose that [v1
i−1, v

l
j ] = 0. Then by Leibniz superidentity on the following triple elements

{v1
i−1, f, vl

j } permits to get [v1
i , v

l
j ] = 0 for 1 ≤ i ≤ n1 and 0 ≤ j ≤ nl, 1 ≤ l ≤ 2.

Finally, from Leibniz superidentity on {v1
1, v2

i , v
l
j } with 0 ≤ i ≤ n2, 0 ≤ j ≤ nl and

1 ≤ l ≤ 2 we obtain [v2
i , v

l
j ] = 0.

7 L0 = sl2 � I, and L1 =
k⊕

i=1

Ji with Each Ji a Leibniz Irreducible

(sl2 � I)-Module

Now we consider L0 = sl2 � I where I is the Leibniz kernel and L1 with structure of a
finite direct sum of Leibniz irreducible (sl2 � I )-modules. It can be seen that following the
spirit of Propositions 4.1 and 6.1 we get the next result.

Proposition 7.1 Let L = L0 ⊕ L1 = (sl2 � I ) ⊕ J be a Leibniz superalgebra with J

a finite direct sum of Leibniz irreducible L0-modules, i.e. J = ⊕k
i=1 Ji with Ji a Leibniz

irreducible (sl2 � I )-module. Then, L admits a basis {e, h, f, x0, x1, . . . xm, vi
0, v

i
1, . . . v

i
ni

;
1 ≤ i ≤ k} with respect to which the multiplication table is as follows:

[e, h] = 2e, [h, e] = −2e, [h, f ] = 2f, [f, h] = −2f, [e, f ] = h, [f, e] = −h,

[xt , h] = (m − 2t)xt , 0 ≤ t ≤ m,

[xt , f ] = xt+1, 0 ≤ t ≤ m − 1,

[xt , e] = −t (m + 1 − t)xt−1, 1 ≤ t ≤ m,

[vi
j , h] = (ni − 2j)vi

j , 0 ≤ j ≤ ni, 1 ≤ i ≤ k,

[vi
j , f ] = vi

j+1, 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ k,



[vi
j , e] = −j (ni + 1 − j)vi

j−1, 1 ≤ j ≤ ni, 1 ≤ i ≤ k,

[h, vi
j ] = −δi(ni − 2j)vi

j , 0 ≤ j ≤ ni, 1 ≤ i ≤ k,

[f, vi
j ] = −δiv

i
j+1, 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ k,

[e, vi
j ] = δij (ni + 1 − j)vi

j−1, 1 ≤ j ≤ ni, 1 ≤ i ≤ k,

[vi
p, vl

j ] = αil
pj e + βil

pj h + γ il
pj f +

m∑
t=0

λilt
pj xt , 0 ≤ p ≤ ni, 0 ≤ j ≤ nl, 1 ≤ i, l ≤ k,

where δi ∈ {0, 1}, 1 ≤ i ≤ k and the omitted products are equal to zero.

Theorem 7.1 Let L be under the conditions of Proposition 7.1, with m an odd positive
integer and all of the ni with the same parity (simultaneously either odd positive integers or
even ones), then L is isomorphic to one of the following Leibniz superalgebras expressed
with respect to the basis {e, h, f, x0, x1, . . . xm, vi

0, v
i
1, . . . v

i
ni

; 1 ≤ i ≤ k} by the following
multiplication table:

[e, h] = 2e, [h, e] = −2e, [h, f ] = 2f, [f, h] = −2f, [e, f ] = h, [f, e] = −h,

[xt , h] = (m − 2t)xt , 0 ≤ t ≤ m,

[xt , f ] = xt+1, 0 ≤ t ≤ m − 1,

[xt , e] = −t (m + 1 − t)xt−1, 1 ≤ t ≤ m,

[vi
j , h] = (ni − 2j)vi

j , 0 ≤ j ≤ ni, 1 ≤ i ≤ k,

[vi
j , f ] = vi

j+1, 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ k,

[vi
j , e] = −j (ni + 1 − j)vi

j−1, 1 ≤ j ≤ ni, 1 ≤ i ≤ k,

[h, vi
j ] = −δi(ni − 2j)vi

j , 0 ≤ j ≤ ni, 1 ≤ i ≤ k,

[f, vi
j ] = −δiv

i
j+1, 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ k,

[e, vi
j ] = δij (ni + 1 − j)vi

j−1, 1 ≤ j ≤ ni, 1 ≤ i ≤ k,

where δi ∈ {0, 1}, 1 ≤ i ≤ k and the omitted products are equal to zero.

Proof Notice that the proof is equivalent to the proof when k = 2, since while checking
that the products

[vi
p, vl

j ] = αil
pj e + βil

pj h + γ il
pj f +

m∑
t=0

λilt
pj xt

vanish we only have to distinguish two cases i = l or i �= l. Consequently, without loss of
generality we can suppose k = 2. Moreover the case i = l was already seen throughout the
proof of Theorem 4.1, then only rest to study de case i �= l, i.e., i = 1 and l = 2. Thus,
suppose

[v1
i , v

2
j ] = α12

ij e + β12
ij h + γ 12

ij f +
m∑

t=0

λ12t
ij xt , 0 ≤ i ≤ n1, 0 ≤ j ≤ n2.

By the graded Leibniz identity [x0, [v1
i , v

2
j ]] = [[x0, v

1
i ], v2

j ]+[[x0, v
2
j ], v1

i ] it is obtained

β12
ij mx0 + γ 12

ij x1 = 0, being then β12
ij = γ 12

ij = 0 for all i, j . Next, the graded Leibniz



identity [x1, [v1
i , v

2
j ]] = [[x1, v

1
i ], v2

j ] + [[x1, v
2
j ], v1

i ] leads to −mα12
ij x0 = 0, and thus

α12
ij = 0 for all i, j . Hence then, we can suppose without loss of generality that

[v1
i , v

2
j ] =

m∑
t=0

λ12t
ij xt , 0 ≤ i ≤ n1, 0 ≤ j ≤ n2.

Using now the following graded Leibniz identity [v1
i , [v2

j , h]] = [[v1
i , v

2
j ], h] −

[[v1
i , h], v2

j ] we have [v1
i , (n2 − 2j)v2

j ] = [[v1
i , v

2
j ], h] − [(n1 − 2i)v1

i , v
2
j ], that is

(n2 − 2j + n1 − 2i)[v1
i , v

2
j ] =

m∑
t=0

λ12t
ij (m − 2t)xt and then we obtain

(n2 − 2j + n1 − 2i)(

m∑
t=0

λ12t
ij xt ) =

m∑
t=0

λ12t
ij (m − 2t)xt . (7.1)

Since m is odd and n1 and n2 are both at the same time either even or odd integers, then
from the above equation we deduce λ12t

ij = 0 for all t on account of its coefficients on
both sides of the equation, on the left-hand side the coeffients are always even numbers in
contrast with the coefficients on the other side, odd ones. Thus, [v1

i , v
2
j ] = 0 for all i, j .

Analgously it can be shown that [v2
j , v

1
i ] = 0 for all i, j , obtaining then the (non-Lie)

Leibniz superalgebras of the statement of the theorem.
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