On Filiform and 2-Filiform Leibniz Algebras of Maximum Length

J. M. Cabezas*, L. M. Camacho, and I. M. Rodríguez

Abstract

Leibniz algebras appear as a generalization of Lie algebras. The classification of naturally graded p-filiform Lie algebras is known. Several authors have studied the naturally graded p-filiform Leibniz algebras for any p with $p \geq 0$. Gómez, Jiménez-Merchán and Reyes have investigated families of nilpotent Lie algebras with other types of non-natural gradation, a gradation with a large number of subspaces. The algebras with maximum number of subspaces in the gradation will be called maximum length algebras. In this work we deal with the classification of filiform and 2 -filiform Leibniz algebras of maximum length. Mathematics Subject Classi ication 2000: 17A32, 17B30. Key Words and Phrases: Leibniz algebras, Naturally graded algebras.

1. Introduction

In the course of her work on the cohomology on nilpotent Lie algebras [16], M. Verge classified naturally graded filiform Lie algebras.

In [11] the authors introduce the notion of the "length" of a Lie algebra, and study families of nilpotent Lie algebras with a gradation with a large number of subspaces. This condition facilitates the study of some cohomological properties for such algebras (see [4, 11, 14]). For such a length of the gradation, the main interest are those algebras whose length is as large as possible.

The natural gradation of nilpotent Leibniz algebras, the subspaces of gradation, and the existence of an appropriate homogeneous basis (needed to obtain the classification) are derived from the central descending sequence.

In a way, the gradations with n subspaces are the finite connected gradations with the greatest possible number of non-zero subspaces; they will be called maximum length gradations. The algebras with maximum length gradations will be called maximum length algebras.

[^0]An algebra \mathcal{L} over a field F is called Leibniz algebra if it verifies the Leibniz identity:

$$
[x,[y, z]]=[[x, y], z]-[[x, z], y]
$$

for any elements $x, y, z \in \mathcal{L}$ and where [...] is a multiplication in \mathcal{L}.
When in \mathcal{L} the identitiy $[x, x]=0$ holds, then the Leibniz identity coincides with the Jacobi identity, thus we can say that Leibniz algebras are a generalization of Lie algebras.

For a given algebra we define the sequence

$$
\mathcal{L}^{1}=\mathcal{L}, \mathcal{L}^{k+1}=\left[\mathcal{L}^{k}, \mathcal{L}^{1}\right], \text { with } k \geq 1
$$

An n-dimensional Leibniz algebra \mathcal{L} is called zero-filiform if $\operatorname{dim}\left(\mathcal{L}^{i}\right)=$ $n+1-i, 1 \leq i \leq n+1$.

An n-dimensional Leibniz algebra \mathcal{L} is called filiform if $\operatorname{dim}\left(\mathcal{L}^{i}\right)=n-i$, with $2 \leq i \leq n$.

The natural gradation is defined as follows. For a Leibniz algebra \mathcal{L} we consider $\mathcal{L}_{i}=\mathcal{L}^{i} / \mathcal{L}^{i+1}$. Then we put $\operatorname{gr}(\mathcal{L}) \approx \mathcal{L}_{1} \oplus \cdots \oplus \mathcal{L}_{k}$. If $\mathcal{L} \approx \operatorname{gr}(\mathcal{L})$, we say that \mathcal{L} is a naturally graded Leibniz algebra.

Let x be a nilpotent element of set $\mathcal{L} \backslash \mathcal{L}^{2}$. For the nilpotent operator of right multiplication R_{x} we define a decreasing sequence $C(x)=\left(n_{1}, \ldots, n_{k}\right)$ of the dimensions of Jordan blocks of the operator R_{x}. In the former set of sequences we consider lexicographic order.

The sequence $C(\mathcal{L})=\max \left\{C(x)_{x \in \mathcal{L} \backslash \mathcal{L}^{2}}\right\}$ is called the characteristic sequence of the algebra \mathcal{L}.

A Leibniz algebra \mathcal{L} is called p-filiform if $C(L)=(n-p, \underbrace{1, \ldots, 1}_{p})$, where $p \geq 0$. If $p=2, \mathcal{L}$ is called quasi-filiform. If $p=1, \mathcal{L}$ is filiform and if $p=0$, zero-filiform.

The set $R(\mathcal{L})=\{x \in \mathcal{L}:[y, x]=0, \forall y \in \mathcal{L}\}$ is said to be the right annihilator of \mathcal{L}.

Let \mathcal{L} be a \mathbb{Z}-graded Leibniz algebra, that is, $\mathcal{L}=\bigoplus_{i \in \mathbb{Z}} V_{i}$, where $\left[V_{i}, V_{j}\right] \subseteq$ V_{i+j} for any $i, j \in \mathbb{Z}$ with a finite number of nonnull spaces V_{i}.

We will say that a nilpotent Leibniz algebra \mathcal{L} admits the connected gradation $\mathcal{L}=V_{k_{1}} \oplus \cdots \oplus V_{k_{t}}$, if $V_{k_{i}} \neq 0$ for any $i,\left(k_{1} \leqslant i \leqslant k_{t}\right)$.

The number $\operatorname{len}(\bigoplus \mathcal{L})=k_{t}-k_{1}+1$ is called the length of gradation. A gradation is called of maximum length, if $\operatorname{len}(\bigoplus \mathcal{L})=\operatorname{dim} \mathcal{L}$.

We define the length of \mathcal{L} by $\operatorname{len}(\mathcal{L})=\max \left\{\operatorname{len}(\bigoplus \mathcal{L})=k_{t}-k_{1}+\right.$ 1 such that
$\mathcal{L}=V_{k_{1}} \oplus V_{k_{2}} \oplus \cdots \oplus V_{k_{t}}$ is a connected gradation $\}$.
A Leibniz algebra \mathcal{L} is called of maximum length if $\operatorname{len}(\mathcal{L})=\operatorname{dim} \mathcal{L}$.

Example Let $Z F_{n}$ be the 0 -filiform Leibniz algebra with dimension n [3]. This algebra $Z F_{n}$ is an algebra of maximum length. In fact, taking $V_{i}=\left\langle e_{i}\right\rangle,(1 \leqslant i \leqslant$ n), we obtain $\mathcal{L}=V_{1} \oplus V_{2} \oplus \cdots V_{n}$, where $\left[V_{i}, V_{j}\right] \subseteq V_{i+j}$.

Note that $Z F_{n}$ is the unique Leibniz algebra for which the naturally gradation coincides with the maximum gradation.

The cases of 0-filiform and 1-filiform have already been studied [3]. Quasifiliform Lie algebras have the characteristic sequence ($n-2,1,1$). In Leibniz algebras there are two possibilities, $(n-2,1,1)$ (case 2-filiform) and $(n-2,2)$. The idea of length of an algebra is well known for Lie algebras and can be generalized to Leibniz algebras. In the case of Lie algebras some authors [8, 12] have considered on graded Lie algebras not only one natural gradation but a gradation with a large number of subspaces. Such a gradation facilitates the study of certain cohomological properties of these algebras.

The present work is devoted to the study of filiform and 2-filiform Leibniz algebras which admit a gradation by a maximum number of nonnull homogeneous spaces.

The following theorem is true.

Theorem 1.1. [12] Let \mathfrak{g} be a complex n-dimensional non split filiform Lie algebra of maximum length. Then, it is isomorphic to one of the following pairwise non isomorphic algebras
$L_{n}\left\{\left[X_{0}, X_{i}\right]=X_{i+1}, \quad 1 \leqslant i \leqslant n-2\right.$.
$R_{n} \begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1},} & 1 \leqslant i \leqslant n-2 \\ {\left[X_{1}, X_{j}\right]=X_{2+j},} & 2 \leqslant j \leqslant n-3 .\end{cases}$
$K_{n}(n \geq 8):$
$\begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1},} & 1 \leqslant i \leqslant n-2 \\ {\left[X_{i}, X_{2\lfloor(n-2) / 2\rfloor-1-i}\right]=(-1)^{i-1} X_{2\lfloor(n-2) / 2\rfloor},} & 1 \leqslant i \leqslant\left\lfloor\frac{n-4}{2}\right\rfloor \\ {\left[X_{i}, X_{2\lfloor(n-2) / 2\rfloor-i}=(-1)^{i-1}(\lfloor(n-2) / 2\rfloor-i) X_{2\lfloor(n-2) / 2\rfloor+1},\right.} & 1 \leqslant i \leqslant\left\lfloor\frac{n-4}{2}\right\rfloor \\ {\left[X_{i}, X_{n-2-i}\right]=\frac{1}{2}(-1)^{i}(i-1)(n-3-i) \alpha X_{n-1},} & 2 \leqslant i \leqslant \frac{n-3}{2}\end{cases}$
where $\alpha=0$, if n is even and $\alpha=1$ if n is odd.
$W_{n}(n \geq 7):$
$\begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1},} & 1 \leqslant i \leqslant n-2 \\ {\left[X_{i}, X_{j}\right]=\frac{6(i-1)!(j-1)!(j-i)}{(i+j)!} X_{i+j+1},} & \\ 1 \leqslant i \leqslant\left\lfloor\frac{n-3}{2}\right\rfloor, i \leqslant j \leqslant n-2-i .\end{cases}$
$Q_{n}(n \geq 7):$
$\begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1},} & 1 \leqslant i \leqslant n-2 \\ {\left[X_{i}, X_{n-2-i}\right]=(-1)^{i-1} X_{n-1},} & 1 \leqslant i \leqslant \frac{n-5}{2} .\end{cases}$
where n is odd.

Theorem 1.2. [3] An arbitrary n-dimensional naturally graded filiform com-
plex non Lie Leibniz algebra is isomorphic to the following not isomorphic algebras

$$
\begin{array}{rlr}
N G F 1: & {\left[e_{1}, e_{1}\right]=e_{3}, \quad\left[e_{i}, e_{1}\right]=e_{i+1},} & 2 \leqslant i \leqslant n-1 . \\
N G F 2: & {\left[e_{1}, e_{1}\right]=e_{3}, \quad\left[e_{i}, e_{1}\right]=e_{i+1},} & 3 \leqslant i \leqslant n-1 . \\
N G F 3: & \begin{cases}{\left[e_{i}, e_{1}\right]=-\left[e_{1}, e_{i}\right]=e_{i+1},} & 2 \leq i \leq n-1 \\
{\left[e_{i}, e_{n+1-i}\right]=-\left[e_{n+1-i}, e_{i}\right]=\alpha(-1)^{i+1} e_{n}} & 2 \leq i \leq n-1 .\end{cases}
\end{array}
$$

(the rest of the products are zero).

From [6] we know that an arbitrary 2 -filiform naturally graded non Lie Leibniz algebra is either split (i.e. $\mathcal{L}=Z F_{n-2} \oplus \mathbb{C}^{2}$ or $\mathcal{L}=N G F 1_{n-1} \oplus \mathbb{C}$ or $\mathcal{L}=N G F 2_{n-1} \oplus \mathbb{C}$ or $\left.\mathcal{L}=N G F 3_{n-1} \oplus \mathbb{C}\right)$ or isomorphic to one of the following algebras $(n \geq 6)$:

$$
\begin{aligned}
& \text { I : } \\
& \left\{\begin{array}{l}
{\left[e_{i}, e_{1}\right]=e_{i+1},} \\
{\left[e_{1}, e_{n-1}\right]=e_{n} .}
\end{array} \quad 1 \leqslant i \leqslant n-3\right.
\end{aligned} \begin{cases}{\left[e_{i}, e_{1}\right]=e_{i+1},} & 1 \leqslant i \leqslant n-3 \\
{\left[e_{1}, e_{n-1}\right]=e_{2}+e_{n}} \\
{\left[e_{i}, e_{n-1}\right]=e_{i+1}} & 2 \leqslant i \leqslant n-3\end{cases}
$$

2. Filiform Leibniz algebras of maximum length

Let \mathcal{L} be an n-dimensional filiform Leibniz algebra of maximum length.

$$
\mathcal{L}=V_{k_{1}} \oplus V_{k_{2}} \oplus \cdots \oplus V_{k_{n}}
$$

where $\left[V_{k_{i}}, V_{k_{j}}\right] \subseteq V_{k_{i}+k_{j}}$ and $V_{k_{i}}=\left\langle x_{i}\right\rangle$.
The results from [3] and [13] allow us to obtain the decomposition of all complex filiform Leibniz algebras into three disjoint classes.

Proposition 2.1. Let \mathcal{L} be an n-dimensional $(n>3)$ complex filiform Leibniz algebra and let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be an adapted basis. Then, \mathcal{L} is isomorphic to one
of the following algebras:

$$
\begin{aligned}
& F_{1}: \begin{cases}{\left[e_{1}, e_{1}\right]=e_{3},} \\
{\left[e_{i}, e_{1}\right]=e_{i+1},} & 2 \leq i \leq n-1 \\
{\left[e_{1}, e_{2}\right]=\alpha_{4} e_{4}+\alpha_{5} e_{5}+\cdots+\alpha_{n-1} e_{n-1}+\theta e_{n},} \\
{\left[e_{j}, e_{2}\right]=\alpha_{4} e_{j+2}+\alpha_{5} e_{j+3}+\cdots+\alpha_{n+2-j} e_{n},} & 3 \leq i \leq n\end{cases} \\
& F_{2}: \begin{cases}{\left[e_{1}, e_{1}\right]=e_{3},} \\
{\left[e_{i}, e_{1}\right]=e_{i+1},} \\
{\left[e_{1}, e_{2}\right]=\beta_{4} e_{4}+\beta_{5} e_{5}+\cdots+\beta_{n} e_{n},} & 3 \leq i \leq n-1 \\
{\left[e_{2}, e_{2}\right]=\gamma e_{n},} \\
{\left[e_{j}, e_{2}\right]=\beta_{4} e_{j+2}+\beta_{5} e_{j+3}+\cdots+\beta_{n+2-j} e_{n},} & 3 \leq i \leq n-1\end{cases} \\
& F_{3}: \begin{cases}{\left[e_{i}, e_{1}\right]=e_{i+1},} & 2 \leq i \leq n-1 \\
{\left[e_{1}, e_{i}\right]=-e_{i+1},} & 3 \leq i \leq n-1 \\
{\left[e_{1}, e_{1}\right]=\theta_{1} e_{n},} & \\
{\left[e_{1}, e_{2}\right]=-e_{3}+\theta_{2} e_{n},} & 2 \leq i \leq n-2, \\
{\left[e_{2}, e_{2}\right]=\theta_{3} e_{n},} & 2 \leq j \leq n-i \\
{\left[e_{i}, e_{j}\right]=-\left[e_{j}, e_{i}\right] \in \operatorname{lin}\left\langle e_{i+j+1}, e_{i+j+2}, \ldots, e_{n}\right\rangle,} & 2 \leq i \leq n-1 . \\
{\left[e_{i}, e_{n+1-i}\right]=-\left[e_{n+1-i}, e_{i}\right]=\alpha(-1)^{i+1} e_{n}} & 2 \leq i \leq n\end{cases}
\end{aligned}
$$

where omitted products are equal to zero, $\alpha \in\{0,1\}$ for even n and $\alpha=0$ for odd n.

Theorem 1.1 can be extended to the Leibniz algebras case, namely, the following theorem holds.

Theorem 2.2. Let \mathcal{L} be a n-dimensional non split filiform non Lie Leibniz algebra \mathcal{L} of maximum length, then there exists a basis $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ of \mathcal{L} such that its multiplication has the following form

$$
\left[y_{i}, y_{1}\right]=y_{i+1}, 2 \leqslant i \leqslant n-1
$$

(the rest of the products are equal to zero).
Proof. Let \mathcal{L} be an n-dimensional filiform Leibniz algebra of maximum length.

$$
\mathcal{L}=V_{k_{1}} \oplus V_{k_{2}} \oplus \cdots \oplus V_{k_{n}}
$$

where $\left[V_{k_{i}}, V_{k_{j}}\right] \subseteq V_{k_{i}+k_{j}}$ and $V_{k_{i}}=\left\langle x_{i}\right\rangle$
Let \mathcal{L} be isomorphic to one algebra of the family F_{1}.
Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a basis where $x_{i}=\sum_{k=1}^{n} \alpha_{k}^{i} e_{k} \Rightarrow \exists s \neq t: \alpha_{1}^{s} \neq 0 \neq \alpha_{2}^{t}$ $\Rightarrow \alpha_{1}^{s}=\alpha_{2}^{t}=1$. Thus,

$$
\left\{\begin{array}{l}
x_{s}=e_{1}+\sum_{k=2}^{n} \alpha_{k}^{s} e_{k} \\
x_{t}=\alpha_{1}^{t} e_{1}+e_{2}+\sum_{k=3}^{n} \alpha_{k}^{t} e_{k}
\end{array}\right.
$$

If we make the computation $\left[x_{s}, x_{s}\right]$, we obtain

$$
\begin{aligned}
& {\left[x_{s}, x_{s}\right]=\left(1+\alpha_{2}^{s}\right) e_{3}+\sum_{i \geq 4} A_{i} e_{i}} \\
& {\left[x_{t}, x_{t}\right]=\alpha_{1}^{t}\left(1+\alpha_{1}^{t}\right) e_{3}+\sum_{i \geq 4} B_{i} e_{i}}
\end{aligned}
$$

It is possible to consider two cases:

1. $1+\alpha_{2}^{s} \neq 0$.

Then, we denote

$$
y_{1}=x_{s}, y_{2}=\left[x_{s}, x_{s}\right], \ldots, y_{n-1}=\left[\ldots,\left[x_{s}, x_{s}\right], \ldots, x_{s}\right], y_{n}=x_{t}
$$

with $y_{i} \neq 0,1 \leq i \leq n-1$.
Using the table of multiplication from the family I, we obtain that $y_{1} \in V_{k_{s}}$, $y_{2} \in V_{2 k_{s}}, \ldots, y_{n-1} \in V_{(n-1) k_{s}}$.
Thus, $\mathcal{L}=V_{k_{t}} \oplus V_{k_{s}} \oplus V_{2 k_{s}} \oplus \cdots V_{(n-1) k_{s}}$. According to the definition of the gradation, we have the following embedding:

$$
\begin{aligned}
& {\left[V_{p k_{s}}, V_{k_{t}}\right] \subseteq V_{p k_{s}+k_{t}} \subseteq V_{m_{1} k_{s}}} \\
& {\left[V_{k_{t}}, V_{p k_{s}}\right] \subseteq V_{p k_{s}+k_{t}} \subseteq V_{m_{2} k_{s}}} \\
& {\left[V_{k_{t}}, V_{k_{t}}\right] \subseteq V_{2 k_{s}} \subseteq V_{m_{3} k_{s}} .}
\end{aligned}
$$

From $\left[V_{k_{i}}, V_{k_{j}}\right] \subseteq V_{k_{i}+k_{j}} \Rightarrow k_{t}=\delta k_{s}$ with $\delta \in\{-(n-2),-(n-3), \ldots,-1$, $0,1, \ldots, n-2\}$. We compute $\left[V_{k_{t}}, V_{k_{t}}\right],\left[V_{p k_{s}}, V_{k_{t}}\right],\left[V_{k_{t}}, V_{p k_{s}}\right]$.
1.1. If $\delta \in\{1, \ldots, n-2\} \Rightarrow V_{k_{t}}=V_{\delta k_{s}} \Rightarrow \operatorname{dim}\left(V_{\delta k_{s}}\right)=2$. That is contradiction, this case is not possible.
1.2. If $\delta \in\{-n+2,-n+3, \ldots, 1,0\}$, we have that

$$
\left[V_{p k_{s}}, V_{k_{t}}\right]=\left[V_{k_{t}}, V_{p k_{s}}\right]=\left[\left\langle y_{p}\right\rangle,\left\langle y_{n}\right\rangle\right] \subset V_{(p+\delta) k_{s}}=\left\langle y_{p+\delta}\right\rangle
$$

and $y_{p} \in \mathcal{L}^{p} \backslash \mathcal{L}^{p+1}, y_{n} \in \mathcal{L} \backslash \mathcal{L}^{2}, y_{p+\delta} \in \mathcal{L}^{p+\delta} \backslash \mathcal{L}^{p+\delta-1}$. Thus, $\left[y_{p}, y_{n}\right] \in$ $\mathcal{L}^{p+1} \backslash \mathcal{L}^{p+2}$ as $p+1>p+\delta$ we can conclude that $\left[V_{k_{t}}, V_{k_{t}}\right]=\left[V_{p k_{s}}, V_{k_{t}}\right]=$ $\left[V_{k_{t}}, V_{p k_{s}}\right]=0$. Then the Leibniz algebra of maximum length is split.
2. $\alpha_{2}^{s}=-1$.

Then,

$$
\begin{aligned}
& x_{s}=e_{1}-e_{2}+\alpha_{3}^{s} e_{3}+\cdots+\alpha_{n}^{s} e_{n}, \\
& x_{t}=\alpha_{1}^{t} e_{1}+e_{2}+\alpha_{3}^{t} e_{3}+\cdots+\alpha_{n}^{t} e_{n} .
\end{aligned}
$$

$x_{s}, x_{t} \in \mathcal{L} \backslash \mathcal{L}^{2}$.
Computing the following multiplication, we have that

$$
\begin{aligned}
& {\left[x_{s}, x_{s}\right]=\sum_{i \geq 4} A_{i} e_{i}} \\
& {\left[x_{t}, x_{t}\right]=\alpha_{1}^{t}\left(1+\alpha_{1}^{t}\right) e_{3}+\sum_{i \geq 4} B_{i} e_{i}} \\
& {\left[x_{s}, x_{t}\right]=\sum_{i \geq 4} C_{i} e_{i}} \\
& {\left[x_{t}, x_{s}\right]=\left(1+\alpha_{1}^{t}\right) e_{3}+\sum_{i \geq 4} D_{i} e_{i}}
\end{aligned}
$$

It is necessary to make out two cases:
2.1. $\alpha_{1}^{t} \neq 0$.

Note that $\alpha_{1}^{t} \neq-1$, if $\alpha_{1}^{t}=-1$ then x_{t} is not a generator of \mathcal{L}. Analogously to case 1 for x_{t}, a split Leibniz algebra is obtained.
2.2. $\alpha_{1}^{t}=0$.

We have

$$
\begin{aligned}
& x_{s}=e_{1}-e_{2}+\alpha_{3}^{s} e_{3}+\cdots+\alpha_{n}^{s} e_{n}, \\
& x_{t}=e_{2}+\alpha_{3}^{t} e_{3}+\cdots+\alpha_{n}^{t} e_{n} .
\end{aligned}
$$

Putting $y_{1}=x_{s}, y_{2}=x_{t}, y_{3}=\left[x_{t}, x_{s}\right], y_{4}=\left[\left[x_{t}, x_{s}\right], x_{s}\right], \ldots, y_{n}=$ $\left[\ldots\left[\left[x_{t}, x_{s}\right], x_{s}\right], \ldots, x_{s}\right]$ (multiplying by $x_{s} n-2$ times) and $y_{i} \neq 0,1 \leq$ $i \leq n, y_{1}, y_{2} \in \mathcal{L} \backslash \mathcal{L}^{2}, y_{i} \in \mathcal{L}^{i-1} \backslash \mathcal{L}^{i}$ with $3 \leq i \leq n$. We have the following multiplication:

$$
\left[y_{i}, y_{1}\right]=y_{i+1}, \quad 2 \leq i \leq n-1
$$

Thus, $y_{1} \in V_{k_{s}}, k_{s} \neq 0, y_{2} \in V_{k_{t}}, k_{t} \neq k_{s} \ldots, y_{n} \in V_{k_{t}+(n-2) k_{s}}$, so $\mathcal{L}=V_{k_{t}} \oplus V_{k_{s}} \oplus V_{k_{t}+k_{s}} \oplus V_{k_{t}+2 k_{s}} \oplus \cdots \oplus V_{k_{t}+(n-2) k_{s}}$.
Following a similar reasoning, $\left[V_{k_{i}}, V_{k_{j}}\right] \subseteq V_{k_{i}+k_{j}} \Rightarrow k_{t}=\delta k_{s}$ with $\delta \in\{-(n-4),-(n-5), \ldots,-1,0,2, \ldots, n-3\}$.
2.2.1. $\delta \in\{2, \ldots, n-3\}$.

$$
V_{k_{t}}=V_{\delta k_{s}}=\left[\ldots\left[\left[V_{k_{s}}, V_{k_{s}}\right], V_{k_{s}}\right], \ldots, V_{k_{s}}\right](\delta \text { times })
$$

and that contradicts $V_{k_{t}} \in \mathcal{L} \backslash \mathcal{L}^{2}$.
2.2.2. $\delta \in\{4-n, \ldots,-1\}$.

$$
\left[V_{k_{t}+p k_{s}}, V_{k_{t}}\right]=\left[V_{k_{t}+p k_{s}}, V_{\delta k_{s}}\right] \subset V_{k_{t}+\left(p+\delta k_{s}\right)}
$$

and we have that $V_{k_{t}+p k_{s}} \in \mathcal{L}^{p+1} \backslash \mathcal{L}^{p+2}, V_{\delta k_{s}} \in \mathcal{L}^{1} \backslash \mathcal{L}^{2}, V_{k_{t}+(p+\delta) k_{s}} \in$ $\mathcal{L}^{p+\delta+2}$ but $p+2 \geq p+\delta+2$, that is not possible.
2.2.3. $\delta=0, \quad V_{k_{t}}=V_{0} \Rightarrow V_{k_{t}+k_{s}}=\left\langle y_{3}\right\rangle=V_{k_{s}}=\left\langle y_{1}\right\rangle \Rightarrow \operatorname{dim}\left(V_{k_{s}}\right)=2$.

That is not possible.
Thus, we conclude that

$$
\left[V_{k_{s}}, V_{k_{s}}\right]=\left[V_{k_{t}}, V_{k_{t}}\right]=\left[V_{k_{t}+p k_{s}}, V_{k_{t}}\right]=0
$$

obtaining the algebra of the theorem.

Let \mathcal{L} be isomorphic to one algebra of the family F_{2}.
We consider a decomposition of the basis $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ into the basis $\left\{e_{1}, \ldots, e_{n}\right\}$. That is, $x_{m}=\sum_{i=1}^{n} \alpha_{i}^{m} e_{i}$. It is evident that there exists $s \in \mathbf{N}$ such that $\alpha_{1}^{s} \neq 0$. We can suppose that without loss of generality $\alpha_{1}^{s}=1$. Then $x_{s}=e_{1}+\alpha_{2}^{s} e_{2}+\cdots+\alpha_{n}^{s} e_{n}$ and $x_{s} \in \mathcal{L} \backslash \mathcal{L}^{2}$.

Consider the product: $\left[x_{s}, x_{s}\right]=e_{3}+\sum_{i \geq 4} e_{i}$. Furthermore, thinking as in case F_{1}, we obtain a split Leibniz algebra.

Let \mathcal{L} be isomorphic to one algebra of the family F_{3}.

We choose generators from the homogeneous basis $x_{s}=e_{1}+a_{2} e_{2}+\cdots+a_{n} e_{n}$ and $x_{t}=b_{1} e_{1}+e_{2}+b_{3} e_{3}+\cdots+b_{n} e_{n}$.

Consider the following products

$$
\begin{gathered}
{\left[x_{s}, x_{s}\right]=\left(\theta_{1}+a_{2} \theta_{2}+a_{2}^{2} \theta_{3}\right) e_{n},} \\
{\left[x_{t}, x_{t}\right]=\left(b_{1}^{2} \theta_{1}+b_{1} \theta_{2}+\theta_{3}\right) e_{n}} \\
{[\ldots[x_{t}, \underbrace{\left.\left.x_{s}\right], \ldots, x_{s}\right]}_{i-\text { times }}=\left(1-a_{2} b_{1}\right) e_{i+2}+(*) e_{i+3}+\cdots+(*) e_{n}, 1 \leq i \leq n-2,}
\end{gathered}
$$

where $1-a_{2} b_{1} \neq 0$.
We can choose $y_{1}=x_{s}, y_{2}=x_{t}, y_{i}=[\ldots[x_{t}, \underbrace{\left.\left.x_{s}\right], \ldots, x_{s}\right],}_{(i-2) \text {-times }} 3 \leq i \leq n$.
Therefore, $\left\langle y_{1}\right\rangle \subseteq V_{k_{s}},\left\langle y_{2}\right\rangle \subseteq V_{k_{t}},\left\langle y_{i}\right\rangle \subseteq V_{k_{t}+(i-2) k_{s}} 3 \leq i \leq n$ and $\left[y_{i}, y_{1}\right]=y_{i+1}, 2 \leq i \leq n-1$.

If we compute $\left[y_{1}, y_{1}\right]=\frac{\theta_{1}+a_{2} \theta_{2}+a_{2}^{2} \theta_{3}}{1-a_{2} b_{1}} y_{n}=\theta y_{n}$.

1. $\left[y_{1}, y_{1}\right] \neq 0$. We have that $\left[y_{1}, y_{1}\right] \in V_{k_{t}+(n-2) k_{s}}$. Moreover, $\left[V_{k_{s}}, V_{k_{s}}\right]=V_{2 k_{s}}=$ $V_{k_{t}+(n-2) k_{s}} \Rightarrow 2 k_{s}=k_{t}+(n-2) k_{s} \Rightarrow k_{t}=(4-n) k_{s}$. However, this is not possible because $V_{k_{t}+(n-3) k_{s}}=V_{k_{s}} \Rightarrow \operatorname{dim}\left(V_{k_{s}}\right)=2$, that is a contradiction.
2. $\left[y_{1}, y_{1}\right]=0$. We have that $\left[y_{2}, y_{2}\right]=\theta^{\prime} y_{n} \in V_{k_{t}+(n-2) k_{s}}$.
2.1. $\left[y_{2}, y_{2}\right] \neq 0 . y_{2} \in V_{k_{t}} \Rightarrow\left[y_{2}, y_{2}\right] \in V_{2 k_{t}}$ and $y_{n} \in V_{k_{t}+(n-2) k_{s}} \Rightarrow V_{k_{t}}=$ $(n-2) k_{s}$. Thus, we have the homogeneous spaces $V_{k_{s}}, V_{(n-2) k_{s}}, V_{(n-1) k_{s}}$, $V_{n k_{s}}, \ldots, V_{(2 n-4) k_{s}}$. Since that is a conneted gradation, $n=3$ and for $n=3$ the family F_{3} does not exist.
2.2. $\left[y_{2}, y_{2}\right]=0$, since $\left[y_{1}, y_{2}\right]=-y_{3}+\theta_{2}^{\prime} y_{n} \Rightarrow\left[y_{1}, y_{2}\right] \in V_{k_{t}+k_{s}}$ but $-y_{3}+$ $\theta_{2}^{\prime} y_{n} \in V_{k_{t}+k_{s}}+V_{k_{t}+(n-2) k_{s}} \Rightarrow \theta_{2}^{\prime}=0$ Using the Leibniz identity, the table of multiplication is:

$$
\begin{array}{ll}
{\left[y_{i}, y_{1}\right]=y_{i+1}} & 2 \leq i \leq n-1 \\
{\left[y_{1}, y_{i}\right]=-y_{i+1}} & 2 \leq i \leq n-1
\end{array}
$$

and we obtain a Lie algebra.

3. 2-filiform Leibniz algebras of maximum lenght

The notions 2 -filiform and quasi-filiform for Lie algebras coincide. The classification of quasifiliform Lie algebras of maximum length is described in [12]. From now on we will only consider non Lie Leibniz algebras.

Let \mathcal{L} be an n-dimensional 2 -filiform non Lie Leibniz algebra of maximum length, then

$$
\mathcal{L}=V_{k_{1}} \oplus V_{k_{2}} \oplus \cdots \oplus V_{k_{t}}, \text { where }\left[V_{k_{i}}, V_{k_{j}}\right] \subseteq V_{k_{i}+k_{j}} \text { and } V_{k_{i}}=\left\langle X_{i}\right\rangle .
$$

Proposition 3.1. [3, 6] Let \mathcal{L} be a 2-filiform non Lie Leibniz algebra, then from the classification of 2 -filiform naturally graded Leibniz algebras we have that \mathcal{L} belongs to one of the following families
$K F_{1}$:

$$
\begin{cases}{\left[e_{i}, e_{1}\right]=e_{i+1},} & 1 \leqslant i \leqslant n-3 \\ {\left[e_{i}, e_{n-1}\right]=\alpha_{i, i+2} e_{i+2}+\alpha_{i, i+3} e_{i+3}+\ldots+\alpha_{i, n-2} e_{n-2},} & 1 \leqslant i \leqslant n-4 \\ {\left[e_{i}, e_{n}\right]=\beta_{i, i+2} e_{i+2}+\beta_{i, i+3} e_{i+3}+\ldots+\beta_{i, n-2} e_{n-2},} & 1 \leqslant i \leqslant n-4 \\ {\left[e_{n-1}, e_{n-1}\right]=\beta_{3} e_{3}+\beta_{4} e_{4}+\ldots+\beta_{n-2} e_{n-2},} & \\ {\left[e_{n}, e_{n-1}\right]=\gamma_{3} e_{3}+\gamma_{4} e_{4}+\ldots+\gamma_{n-2} e_{n-2},} & \\ {\left[e_{n}, e_{n}\right]=\theta_{3} e_{3}+\theta_{4} e_{4}+\ldots+\theta_{n-2} e_{n-2},} & \\ {\left[e_{n-1}, e_{n}\right]=\lambda_{3} e_{3}+\lambda_{4} e_{4}+\ldots+\lambda_{n-2} e_{n-2}} & \end{cases}
$$

where $\operatorname{gr}(\mathcal{L})=Z F_{n-2} \oplus \mathbb{C}^{2}, Z F_{n-2}=\left\langle e_{1}, e_{2}, \ldots, e_{n-2}\right\rangle, \mathbb{C}^{2}=\left\langle e_{n-1}, e_{n}\right\rangle$
$K F_{2}$:

$$
\begin{cases}{\left[e_{1}, e_{1}\right]=e_{3},} & \\ {\left[e_{i}, e_{1}\right]=e_{i+1},} & 2 \leqslant i \leqslant n-2 \\ {\left[e_{1}, e_{2}\right]=\alpha_{4} e_{4}+\alpha_{5} e_{5}+\ldots+\alpha_{n-2} e_{n-2}+\theta e_{n-1},} & \\ {\left[e_{i}, e_{2}\right]=\alpha_{4} e_{i+2}+\alpha_{5} e_{i+3}+\ldots+\alpha_{n+1-i} e_{n-1},} & 2 \leqslant i \leqslant n-3 \\ {\left[e_{1}, e_{n}\right]=\beta_{1,4} e_{4}+\beta_{1,5} e_{5}+\ldots+\beta_{1, n-1} e_{n-1},} & \\ {\left[e_{i}, e_{n}\right]=\beta_{i, i+2} e_{i+2}+\beta_{i, i+3} e_{i+3}+\ldots+\beta_{i, n-1} e_{n-1},} & 2 \leqslant i \leqslant n-3 \\ {\left[e_{n}, e_{n}\right]=\theta_{4} e_{4}+\theta_{5} e_{5}+\ldots+\theta_{n-1} e_{n-1},} & \\ {\left[e_{n}, e_{2}\right]=\lambda_{4} e_{4}+\lambda_{5} e_{5}+\ldots+\lambda_{n-1} e_{n-1},} & \\ {\left[e_{n}, e_{1}\right]=\mu_{4} e_{4}+\mu_{5} e_{5}+\ldots+\mu_{n-1} e_{n-1}} & \end{cases}
$$

where $\operatorname{gr}(\mathcal{L})=N G F 1_{n-1} \oplus \mathbb{C}, N G F 1_{n-1}=\left\langle e_{1}, e_{2}, \ldots, e_{n-1}\right\rangle, \mathbb{C}=\left\langle e_{n}\right\rangle$.
$K F_{3}$:

$$
\begin{cases}{\left[e_{1}, e_{1}\right]=e_{3},} & 3 \leqslant i \leqslant n-2 \\ {\left[e_{i}, e_{1}\right]=e_{i+1},} & \\ {\left[e_{1}, e_{2}\right]=\alpha_{4} e_{4}+\alpha_{5} e_{5}+\ldots+\alpha_{n-1} e_{n-1},} & \\ {\left[e_{2}, e_{2}\right]=\gamma e_{n-1}} & \\ {\left[e_{i}, e_{2}\right]=\alpha_{4} e_{i+2}+\alpha_{5} e_{i+3}+\ldots+\alpha_{n+1-i} e_{n-1},} & 3 \leqslant i \leqslant n-3 \\ {\left[e_{1}, e_{n}\right]=\beta_{1,4} e_{4}+\beta_{1,5} e_{5}+\ldots+\beta_{1, n-1} e_{n-1},} & \\ {\left[e_{i}, e_{n}\right]=\beta_{i, i+2} e_{i+2}+\beta_{i, i+3} e_{i+3}+\ldots+\beta_{i, n-1} e_{n-1}, \theta_{2}} & 2 \leqslant i \leqslant n-3 \\ {\left[e_{n}, e_{n}\right]=\theta_{4} e_{4}+\theta_{5} e_{5}+\ldots+\theta_{n-1} e_{n-1},} & \\ {\left[e_{n}, e_{2}\right]=\lambda_{4} e_{4}+\lambda_{5} e_{5}+\ldots+\lambda_{n-1} e_{n-1},} & \\ {\left[e_{n}, e_{1}\right]=\mu_{4} e_{4}+\mu_{5} e_{5}+\ldots+\mu_{n-1} e_{n-1}} & \end{cases}
$$

where $\operatorname{gr}(\mathcal{L})=N G F 2_{n-1} \oplus \mathbb{C}, N G F 2_{n-1}=\left\langle e_{1}, e_{2}, \ldots, e_{n-1}\right\rangle, \mathbb{C}=\left\langle e_{n}\right\rangle$.

$$
K F_{4}:
$$

$$
\begin{cases}{\left[e_{i}, e_{1}\right]=e_{i+1},} & 1 \leqslant i \leqslant n-3 \\ {\left[e_{1}, e_{n-1}\right]=e_{n}+\alpha_{3} e_{3}+\ldots+\alpha_{n-2} e_{n-2},} & \\ {\left[e_{n-1}, e_{n-1}\right]=\beta_{3} e_{3}+\beta_{4} e_{4}+\ldots+\beta_{n-2} e_{n-2},} & \\ {\left[e_{i}, e_{n-1}\right]=\beta_{i, i+2} e_{i+2}+\beta_{i, i+3} e_{i+3}+\ldots+\beta_{i, n-2} e_{n-2},} & 2 \leqslant i \leqslant n-4 \\ {\left[e_{n}, e_{n-1}\right]=\gamma_{4} e_{4}+\gamma_{5} e_{5}+\ldots+\gamma_{n-2} e_{n-2}} & \end{cases}
$$

$$
K F_{5}:
$$

$$
\begin{cases}{\left[e_{i}, e_{1}\right]=e_{i+1},} & 1 \leqslant i \leqslant n-3 \\ {\left[e_{1}, e_{n-1}\right]=e_{2}+e_{n}+\alpha_{3} e_{3}+\alpha_{4} e_{4}+\ldots+\alpha_{n-2} e_{n-2},} & \\ {\left[e_{i}, e_{n-1}\right]=e_{i+1}+\beta_{i, i+2} e_{i+2}+\beta_{i, i+3} e_{i+3}+\ldots+\beta_{i, n-2} e_{n-2},} & 2 \leqslant i \leqslant n-4 \\ {\left[e_{n-1}, e_{n-1}\right]=\beta_{3} e_{3}+\beta_{4} e_{4}+\ldots+\beta_{n-2} e_{n-2},} & \\ {\left[e_{n}, e_{n-1}\right]=\gamma_{4} e_{4}+\gamma_{5} e_{5}+\ldots+\gamma_{n-2} e_{n-2}} & \end{cases}
$$

$$
K F_{6}:
$$

$$
\begin{cases}{\left[e_{i}, e_{1}\right]=e_{i+1},} & 2 \leqslant i \leqslant n-2 \\ {\left[e_{1}, e_{i}\right]=-e_{i+1},} & 3 \leqslant i \leqslant n-2 \\ {\left[e_{1}, e_{1}\right]=\theta_{1} e_{n-1},} & \\ {\left[e_{1}, e_{2}\right]=-e_{3}+\theta_{2} e_{n-1},} & \\ {\left[e_{2}, e_{2}\right]=\theta_{3} e_{n-1}} & \\ {\left[e_{i}, e_{j}\right]=-\left[e_{j}, e_{i}\right] \in\left\{e_{i+j+1}, e_{i+j+2}, \ldots, e_{n-1}\right\},} & 2 \leqslant i \leqslant n-4, \\ & 2 \leqslant j \leqslant n-2-i \\ {\left[e_{1}, e_{n}\right]=\beta_{1,4} e_{4}+\beta_{1,5} e_{5}+\ldots+\beta_{1, n-1} e_{n-1},} & \\ {\left[e_{i}, e_{n}\right]=\beta_{i, i+2} e_{i+2}+\beta_{i, i+3} e_{i+3}+\ldots+\beta_{i, n-1} e_{n-1},} & 2 \leqslant i \leqslant n-3 \\ {\left[e_{n}, e_{1}\right]=\beta_{1,4} e_{4}+\beta_{1,5} e_{5}+\ldots+\beta_{1, n-1} e_{n-1},} & \\ {\left[e_{n}, e_{i}\right]=\beta_{i, i+2} e_{i+2}+\beta_{i, i+3} e_{i+3}+\ldots+\beta_{i, n-1} e_{n-1},} & 2 \leqslant i \leqslant n-3 \\ {\left[e_{n}, e_{n}\right]=\theta_{4} e_{4}+\theta_{5} e_{5}+\ldots+\theta_{n-1} e_{n-1}} & \end{cases}
$$

where $\operatorname{gr}(\mathcal{L})=N G F 3_{n-1} \oplus \mathbb{C}, N G F 3_{n-1}=\left\langle e_{1}, e_{2}, \ldots, e_{n-1}\right\rangle$,
$\mathbb{C}=\left\langle e_{n}\right\rangle$, i.e., $N G F 3_{n-1}$ is obtained from naturally graded filiform Lie algebras.

Theorem 3.2. Let \mathcal{L} be a 2-filiform non-Lie Leibniz algebra of maximum length. Then \mathcal{L} is isomorphic to the following algebra

$$
M: \begin{cases}{\left[y_{i}, y_{1}\right]} & =y_{i+1}, \quad 1 \leqslant i \leqslant n-3 \\ {\left[y_{1}, y_{n-1}\right]} & =y_{n}\end{cases}
$$

Proof. Let \mathcal{L} be a 2 -filiform Leibniz algebra. From Proposition 3.1 we have that \mathcal{L} is isomorphic to $K F_{1}, K F_{2}, K F_{3}, K F_{4}, K F_{5}$, or $K F_{6}$.

First, we consider the case where \mathcal{L} belongs to the family $K F_{1}$.

In this case \mathcal{L} is a three generated algebra. Let x_{s}, x_{t}, x_{r} be the generators of \mathcal{L}. Since \mathcal{L} has also basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, then we have

$$
\begin{aligned}
& x_{s}=a_{1} e_{1}+a_{2} e_{2}+\ldots+a_{n-1} e_{n-1}+a_{n} e_{n} \\
& x_{t}=b_{1} e_{1}+b_{2} e_{2}+\ldots+b_{n-1} e_{n-1}+b_{n} e_{n} \\
& x_{r}=c_{1} e_{1}+c_{2} e_{2}+\ldots+c_{n-1} e_{n-1}+c_{n} e_{n}
\end{aligned}
$$

where $\left|\begin{array}{lll}a_{1} & a_{n-1} & a_{n} \\ b_{1} & b_{n-1} & b_{n} \\ c_{1} & c_{n-1} & c_{n}\end{array}\right| \neq 0$. Without loss of generality we can assume that $a_{1}=$ $b_{n-1}=c_{n}=1$.

Consider the products

$$
\begin{aligned}
& {\left[x_{s}, x_{s}\right]=\left[e_{1}+a_{2} e_{2}+\ldots+a_{n-1} e_{n-1}+a_{n} e_{n}, e_{1}+a_{2} e_{2}+\ldots+a_{n-1} e_{n-1}+a_{n} e_{n}\right]=} \\
& \quad=e_{2}+(*) e_{3}+\ldots+(*) e_{n-2}, \\
& {\left[\left[x_{s}, x_{s}\right], x_{s}\right]=\left[e_{2}+(*) e_{3}+\ldots+(*) e_{n-2}, e_{1}+a_{2} e_{2}+\ldots+a_{n-1} e_{n-1}+a_{n} e_{n}\right]=} \\
& \quad=e_{3}+(*) e_{4}+\ldots+(*) e_{n-2}, \\
& \vdots \\
& \underbrace{\left[\ldots\left[x_{s}, x_{s}\right], \ldots, x_{s}\right.}_{n-2 \text {-times }}]=e_{n-2}
\end{aligned}
$$

where the asterisks $\left({ }^{*}\right)$ denote the correspondent coefficient in the product. If we denote

$$
y_{1}=x_{s}, y_{2}=\left[x_{s}, x_{s}\right], \ldots, y_{n-2}=\left[\ldots\left[x_{s}, x_{s}\right], \ldots, x_{s}\right], y_{n-1}=x_{t}, y_{n}=x_{r}
$$

then we have that

$$
V_{k_{s}}=\left\langle y_{1}\right\rangle, V_{2 k_{s}}=\left\langle y_{2}\right\rangle, \ldots, V_{(n-2) k_{s}}=\left\langle y_{n-2}\right\rangle, V_{k_{t}}=\left\langle y_{n-1}\right\rangle, V_{k_{r}}=\left\langle y_{n}\right\rangle
$$

1. $\left[V_{k_{t}}, V_{k_{s}}\right]=V_{\lambda k_{s}}$ or $\left[V_{k_{r}}, V_{k_{s}}\right]=V_{\mu k_{s}}$, with $1 \leqslant \lambda, \mu \leqslant n-2$.

We can suppose that $\left[V_{k_{t}}, V_{k_{s}}\right] \subseteq V_{\lambda k_{s}}$. However, it is evident that this is only possible in the case where $\lambda=1$ and $k_{t}=0$. Then, from decomposition of gradation and nilpotency of \mathcal{L}, we obtain that $\left[y_{n-1}, \mathcal{L}\right]=\left[\mathcal{L}, y_{n-1}\right]=0$, i.e., \mathcal{L} is split.
2. $\left[V_{k_{t}}, V_{k_{s}}\right] \neq V_{\lambda k_{s}}$ and $\left[V_{k_{r}}, V_{k_{s}}\right] \neq V_{\mu k_{s}}, 1 \leqslant \lambda, \mu \leqslant n-2$.

Then, the condition $\left[V_{k_{i}}, V_{k_{j}}\right] \subseteq V_{k_{i}+k_{j}}$ implies that

$$
\begin{aligned}
& k_{t}=(n-1) k_{s}, k_{r}=n k_{s} \text { and } \\
& \mathcal{L}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n-1} \oplus V_{n} \text { such that } V_{i}=\left\langle y_{i}\right\rangle, 1 \leqslant i \leqslant n .
\end{aligned}
$$

Thus, the product has the following form

$$
\begin{aligned}
& {\left[y_{i}, y_{1}\right]=y_{i+1}, 1 \leqslant i \leqslant n-3,} \\
& {\left[y_{n-1}, \mathcal{L}\right]=\left[\mathcal{L}, y_{n-1}\right]=\left[y_{n}, \mathcal{L}\right]=\left[\mathcal{L}, y_{n}\right]=0}
\end{aligned}
$$

That is, in this case \mathcal{L} is split.

In case \mathcal{L} belongs to $K F_{2}$ we have three generators x_{s}, x_{t}, x_{r} again and we can express them with respect to the basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of \mathcal{L}. Analogously, $\left|\begin{array}{lll}a_{1} & a_{2} & a_{n} \\ b_{1} & b_{2} & b_{n} \\ c_{1} & c_{2} & c_{n}\end{array}\right| \neq 0$.

Now, without loss of generality we can assume that $a_{1}=b_{2}=c_{n}=1$. So, the products are

$$
\begin{aligned}
& {\left[x_{s}, x_{s}\right]=\left[e_{1}+a_{2} e_{2}+\ldots+a_{n-1} e_{n-1}+a_{n} e_{n}, e_{1}+a_{2} e_{2}+\ldots+a_{n-1} e_{n-1}+a_{n} e_{n}\right]=} \\
& \quad=\left(1+a_{2}\right) e_{3}+(*) e_{4}+\ldots+(*) e_{n-1}, \\
& {\left[\left[x_{s}, x_{s}\right], x_{s}\right]=\left[\left(1+a_{2}\right) e_{3}+(*) e_{4}+\ldots+(*) e_{n-1}, e_{1}+a_{2} e_{2}+\ldots+a_{n-1} e_{n-1}+a_{n} e_{n}\right]=} \\
& \quad=\left(1+a_{2}\right) e_{4}+(*) e_{5}+\ldots+(*) e_{n-1}, \\
& \quad \vdots \\
& \quad \underbrace{\ldots\left[x_{s}, x_{s}\right], \ldots, x_{s}}_{n-2-\text { times }}]=\left(1+a_{2}\right) e_{n-1} \\
& \quad \begin{aligned}
{\left[x_{s}, x_{t}\right] } & =\left[e_{1}+a_{2} e_{2}+\ldots+a_{n-1} e_{n-1}+a_{n} e_{n}, b_{1} e_{1}+e_{2}+\ldots+b_{n-1} e_{n-1}+b_{n} e_{n}\right]= \\
\quad & =b_{1}\left(1+a_{2}\right) e_{3}+(*) e_{4}+\ldots+(*) e_{n-1} .
\end{aligned}
\end{aligned}
$$

1. $a_{2} \neq-1$

We denote

$$
y_{1}=x_{s}, y_{2}=\left[x_{s}, x_{s}\right], \ldots, y_{n-2}=\left[\ldots\left[x_{s}, x_{s}\right], \ldots, x_{s}\right], y_{n-1}=x_{t}, y_{n}=x_{r}
$$

It is easy to see that $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is a basis and we put

$$
\begin{aligned}
& V_{k_{s}}=\left\langle y_{1}\right\rangle, V_{2 k_{s}}=\left\langle y_{2}\right\rangle, \ldots, V_{(n-2) k_{s}}=\left\langle y_{n-2}\right\rangle, \\
& V_{k_{t}}=\left\langle y_{n-1}\right\rangle, V_{k_{r}}=\left\langle y_{n}\right\rangle
\end{aligned}
$$

Using similar arguments to the case where \mathcal{L} is in $K F_{1}$, we obtain that \mathcal{L} is split.
2. $a_{2}=-1$.

Consider the products

$$
\begin{aligned}
& {\left[x_{t}, x_{t}\right]=\left[b_{1} e_{1}+e_{2}+\ldots+b_{n-1} e_{n-1}+b_{n} e_{n}, b_{1} e_{1}+e_{2}+\ldots+b_{n-1} e_{n-1}+b_{n} e_{n}\right]=} \\
& \quad=b_{1}\left(1+b_{1}\right) e_{3}+(*) e_{4}+\ldots+(*) e_{n-1} . \\
& {\left[\left[x_{t}, x_{t}\right], x_{t}\right]=\left[b_{1}\left(1+b_{1}\right) e_{3}+(*) e_{4}+\ldots+(*) e_{n-1}, b_{1} e_{1}+e_{2}+\ldots+b_{n-1} e_{n-1}+b_{n} e_{n}\right]} \\
& \quad=b_{1}^{2}\left(1+b_{1}\right) e_{4}+(*) e_{5}+\ldots+(*) e_{n-1} . \\
& \quad \vdots \\
& \underbrace{\left[\ldots\left[x_{t}, x_{t}\right], \ldots, x_{t}\right.}_{n-2-\text { times }}]=b_{1}^{n-3}\left(1+b_{1}\right) e_{n-1}
\end{aligned}
$$

Note that we can suppose that $\operatorname{rank}\left(\begin{array}{cc}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right)=2$.
In the case $a_{1}=b_{2}=1$ and $a_{2}=-1 \Rightarrow b_{1} \neq-1$.
2.1. $b_{1} \neq 0$. Then, taking into account case 1 for x_{t} and x_{s}, we obtain a contradiction if \mathcal{L} is non split.
2.2. $b_{1}=0$. Then, we write

$$
\begin{aligned}
& x_{s}=e_{1}-e_{2}+\ldots+a_{n-1} e_{n-1}+a_{n} e_{n} \\
& x_{t}=e_{2}+\ldots+b_{n-1} e_{n-1}+b_{n} e_{n} \\
& x_{r}=c_{1} e_{1}+c_{2} e_{2}+\ldots+c_{n-1} e_{n-1}+c_{n} e_{n}
\end{aligned}
$$

Let us consider the products

$$
\begin{aligned}
& {\left[x_{t}, x_{s}\right]=\left[e_{2}+\ldots+b_{n-1} e_{n-1}+b_{n} e_{n}, e_{1}-e_{2}+\ldots+a_{n-1} e_{n-1}+a_{n} e_{n}\right]=} \\
& \quad=e_{3}+(*) e_{4}+\ldots+(*) e_{n-1} \\
& {\left[\left[x_{t}, x_{s}\right], x_{s}\right]=\left[e_{3}+(*) e_{4}+\ldots+(*) e_{n-1}, e_{1}-e_{2}+\ldots+a_{n-1} e_{n-1}+a_{n} e_{n}\right]} \\
& =e_{4}+(*) e_{5}+\ldots+(*) e_{n-1}, \\
& \quad \vdots \\
& {\left[\ldots\left[x_{t}, x_{s}\right], \ldots, x_{s}\right]=e_{n-1}}
\end{aligned}
$$

In this case we denote $y_{1}=x_{s}, y_{2}=x_{t}, y_{3}=\left[x_{t}, x_{s}\right], \ldots, y_{n-1}=$ $\left[\ldots\left[x_{t}, x_{s}\right], \ldots, x_{s}\right], y_{n}=x_{r}$, and so we put

$$
V_{k_{s}}=\left\langle y_{1}\right\rangle, V_{k_{t}}=\left\langle y_{2}\right\rangle, V_{k_{t}+k_{s}}=\left\langle y_{3}\right\rangle, \ldots, V_{k_{t}+(n-3) k_{s}}=\left\langle y_{n-1}\right\rangle, V_{k_{r}}=\left\langle y_{n}\right\rangle
$$

with $\left[y_{i}, y_{1}\right]=y_{i+1}, 2 \leqslant i \leqslant n-2$.
2.2.1. $\left[V_{k_{r}}, V_{k_{s}}\right] \neq 0$ or $\left[V_{k_{s}}, V_{k_{r}}\right] \neq 0$.

Then $V_{k_{r}+k_{s}}=V_{k_{t}+\lambda k_{s}}, 0 \leqslant \lambda \leqslant n-3$ and so we have $k_{r}=$ $(\lambda-1) k_{s}+k_{t}$. That is a contradiction because x_{t} is a generator.
2.2.2. $\left[V_{k_{r}}, V_{k_{s}}\right]=\left[V_{k_{s}}, V_{k_{r}}\right]=0$.

In this case we have $\left[y_{1}, y_{n}\right]=\left[y_{n}, y_{1}\right]=0$ and using the multiplication in the family $K F_{2}$, we obtain $\left[\mathcal{L}, y_{n}\right]=\left[y_{n}, \mathcal{L}\right]=0$, i.e., \mathcal{L} is split.

Let \mathcal{L} be isomorphic to one algebra of the family $K F_{3}$.
We have that x_{s}, x_{t}, x_{r} are the generators of \mathcal{L}. Without loss of generality we suppose that $a_{1}=b_{2}=c_{n}=1$.

Now we denote

$$
y_{1}=x_{s}, y_{2}=\left[x_{s}, x_{s}\right], \ldots, y_{n-2}=\left[\ldots\left[x_{s}, x_{s}\right], \ldots, x_{s}\right], y_{n-1}=x_{t}, y_{n}=x_{r}
$$

Evidently $y_{1}, y_{2}, \ldots, y_{n}$ form a basis and we have that

$$
V_{k_{s}}=\left\langle y_{1}\right\rangle, V_{2 k_{s}}=\left\langle y_{2}\right\rangle, \ldots, V_{(n-2) k_{s}}=\left\langle y_{n-2}\right\rangle, V_{k_{t}}=\left\langle y_{n-1}\right\rangle, V_{k_{r}}=\left\langle y_{n}\right\rangle
$$

1. $\left[V_{k_{r}}, V_{k_{s}}\right] \neq 0$ or $\left[V_{k_{s}}, V_{k_{r}}\right] \neq 0$.

We can suppose that $\left[V_{k_{r}}, V_{k_{s}}\right] \neq 0$. Then $V_{k_{r}+k_{s}}=V_{\lambda k_{s}}, 1 \leqslant \lambda \leqslant n-2$. So $k_{r}=(\lambda-1) k_{s}+k_{t}$ or $k_{r}+k_{s}=k_{t}$. But that is a contradiction because x_{r} and x_{t} are generators.
2. $\left[V_{k_{r}}, V_{k_{s}}\right]=\left[V_{k_{s}}, V_{k_{r}}\right]=0$.

That is, $\left[y_{1}, y_{n}\right]=\left[y_{n}, y_{1}\right]=0$, it is easy to see that $\left[\mathcal{L}, y_{n}\right]=\left[y_{n}, \mathcal{L}\right]=0$, i.e. \mathcal{L} is split.

Let \mathcal{L} be isomorphic to one algebra of the family $K F_{4}$.
Note that \mathcal{L} is a two generated algebra whose generators are x_{s}, x_{t}. Without loss of generality we can assume that $a_{1}=b_{n-1}=1$ with $a_{1} b_{n-1} \neq 1$.

Let us reconsider the products $\left[x_{s}, x_{s}\right], \ldots\left[\ldots\left[x_{s}, x_{s}\right], \ldots, x_{s}\right]$ and

$$
\left[x_{s}, x_{t}\right]=b_{1} e_{2}+e_{n}+(*) e_{3}+\ldots+(*) e_{n-2}
$$

By denoting $y_{1}=x_{s}, y_{2}=\left[x_{s}, x_{s}\right], \ldots, y_{n-2}=\left[\ldots\left[x_{s}, x_{s}\right], \ldots, x_{s}\right], y_{n-1}=x_{t}$, $y_{n}=\left[x_{s}, x_{t}\right]$, we can write $V_{k_{s}}=\left\langle y_{1}\right\rangle, V_{2 k_{s}}=\left\langle y_{2}\right\rangle, \ldots, V_{(n-2) k_{s}}=\left\langle y_{n-2}\right\rangle$, $V_{k_{t}}=\left\langle y_{n-1}\right\rangle, V_{k_{s}+k_{t}}=\left\langle y_{n}\right\rangle$. Since $\left[V_{k_{s}+k_{t}}, V_{k_{s}}\right] \subseteq V_{2 k_{s}+k_{t}}$, then we can consider the cases below:

1. $\left[V_{k_{s}+k_{t}}, V_{k_{s}}\right]=V_{\lambda k_{s}}$.

Then $\left[V_{k_{s}+k_{t}}, V_{k_{s}}\right]=V_{2 k_{s}+k_{t}}=V_{\lambda k_{s}}$ where $1 \leqslant \lambda \leqslant n-2$ and we obtain that $k_{t}=(\lambda-2) k_{s}$, but it is contradiction for $\lambda \neq 1$. Therefore we have the decomposition:

$$
\mathcal{L}=V_{-1} \oplus V_{0} \oplus V_{1} \oplus \cdots \oplus V_{n-2}
$$

where $V_{-1}=\left\langle y_{n-1}\right\rangle, V_{0}=\left\langle y_{n}\right\rangle, V_{i}=\left\langle y_{i}\right\rangle, 1 \leqslant i \leqslant n-2$.
Checking all the bracket products with the restriction $b_{1} a_{n-1} \neq 1$ and applying the restriction from the nilpotency, we obtain the algebra M.
2. $\left[V_{k_{s}+k_{t}}, V_{k_{s}}\right] \neq V_{\lambda k_{s}}, 1 \leqslant \lambda \leqslant n-2$.

Then from condition $\left[V_{k_{i}}, V_{k_{j}}\right] \subseteq V_{k_{i}+k_{j}}$, we have that $k_{t}=(n-1) k_{s}$ so, $\mathcal{L}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n-1} \oplus V_{n}$ where $V_{i}=\left\langle y_{i}\right\rangle, 1 \leqslant i \leqslant n$. It is not difficult to see that we obtain the algebra M.

If \mathcal{L} belongs to the family $K F_{5}$, we use similar arguments to the above cases.

Consider the products:

$$
\begin{aligned}
& {\left[\ldots\left[x_{s}, x_{s}\right], \ldots, x_{s}\right]=\left(1+a_{n-1}\right)^{n-3} e_{n-2}} \\
& {\left[\ldots\left[x_{t}, x_{t}\right], \ldots, x_{t}\right]=b_{1}\left(1+b_{1}\right)^{n-3} e_{n-2}} \\
& {\left[x_{s}, x_{t}\right]=\left(1+b_{1}\right) e_{2}+e_{n}+(*) e_{3}+\ldots+(*) e_{n-2},} \\
& {\left[x_{t}, x_{s}\right]=b_{1}\left(1+a_{n-1}\right) e_{2}+b_{1} a_{n-1} e_{n}+(*) e_{3}+\ldots+(*) e_{n-2} .}
\end{aligned}
$$

1. $a_{n-1} \neq-1$

Then we put $y_{1}=x_{s}, y_{2}=\left[x_{s}, x_{s}\right], \ldots, y_{n-2}=\left[\ldots\left[x_{s}, x_{s}\right], \ldots, x_{s}\right], y_{n-1}=$ $x_{t}, y_{n}=\left[x_{s}, x_{t}\right]$
It is evident that $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent. Therefore we can take it as a basis of \mathcal{L} and we obtain

$$
V_{k_{s}}=\left\langle y_{1}\right\rangle, V_{2 k_{s}}=\left\langle y_{2}\right\rangle, \ldots, V_{(n-2) k_{s}}=\left\langle y_{n-2}\right\rangle, V_{k_{t}}=\left\langle y_{n-1}\right\rangle, V_{k_{s}+k_{t}}=\left\langle y_{n}\right\rangle
$$

Checking all the products we get again the algebra M.
2. $a_{n-1}=-1$

Since $1-a_{n-1} b_{1} \neq 0$, then $b_{1} \neq-1$
2.1. $b_{1} \neq 0$.

Making the change $x_{s}^{\prime}=\frac{x_{t}}{b_{1}}, x_{t}^{\prime}=-x_{s}$ we have case 1 .
2.2. $b_{1}=0$ In a similar way we can denote

$$
\begin{aligned}
& y_{1}=x_{t}, y_{2}=x_{s}, y_{3}=\left[x_{s}, x_{t}\right], \ldots \\
& y_{n-1}=\left[\ldots\left[x_{s}, x_{t}\right], \ldots, x_{t}\right], y_{n}=\left[x_{s}, x_{s}\right]
\end{aligned}
$$

In this case we do not obtain any new algebra with maximum length.
Let \mathcal{L} be isomorphic to one algebra of the family $K F_{6}$.
Then x_{s}, x_{t}, x_{r} are generators of \mathcal{L}. In a similar way we study the different possibilities for the gradation, and we obtain a Lie algebra.

References

[1] Ayupov, Sh. A., and B. A. Omirov, On Leibniz algebras, Algebra and Operator Theory, Kluwer Academic Publishers, Tashkent, 1998, 1-13.
[2] Ayupov, Sh. A., and B. A. Omirov, On a Description of Irreducible Component in the set of nilpotent Leibniz Algebras containing the Algebra of maximal nilindex, and classification of graded filiform Leibniz algebras, Computer Algebra in Scientific Computing CASC, Springer, 2000, 21-34.
[3] Ayupov, Sh. A., and B. A. Omirov, On some class of nilpotent Leibniz algebras, Siberian Mathematical Journal 42 (2001), 15-24.
[4] Cabezas, J. M., J. R. Gómez, and A. Jiménez-Merchán, Family of pfiliform Lie algebras, Algebra and Operator Theory, Kluwer Academic Publishers, Tashkent, 1998, 93-102.
[5] Cabezas, J. M., and E. Pastor, Naturally graded p-filiform Lie algebras in arbitrary finite dimension, J. of Lie Theory 15 (2005), 379-391.
[6] Camacho, L. M., J. R. Gómez, A. J. González, and B. A. Omirov, Naturally graded 2-filiform Leibniz algebras, submitted to Manuscripta Mathematica, (2007).
[7] -, Naturally graded p-filiform Leibniz algebras, submitted to Journal of Pure and Applied Algebra, (2007).
[8] Camacho, L. M., J. R. Gómez, and R. M. Navarro, Algebra of derivations of Lie algebras, Linear Algebra and its Applications 332-334 (2001), 371380.
[9] Gómez, J. R., and A. Jiménez-Merchán, Naturally Graded Quasi-Filiform Lie Algebras, Journal of Algebra 256 (2002), 211-228.
[10] Gómez, J. R., A. Jiménez-Merchán, and Y. Khakimdjanov, Low-dimensional filiform Lie Algebras, Journal of Pure and Applied Algebra 130, (1998), 133-158.
[11] Gómez, J. R., A. Jiménez-Merchán, and J. Reyes, Filiform Lie algebras of maximum length, Extracta Mathematicae 16(3) (2001), 405-421.
[12] -, Quasi-filiform Lie algebras of maximum length, Linear Algebra and Applications 335 (2001), 119-135.
[13] Gómez, J. R., and B. A. Omirov, On classification of complex filiform Leibniz algebras, arxiv:math.RA/0612735v1.
[14] Goze, M., and You. B. Hakimjanov (Khakimdjanov), "Nilpotent Lie algebras," Kluwer Academics Publishers, 1996.
[15] Loday, L., and T. Pirashvili, Leibniz representations of Leibniz algebras, Journal of Algebra 181 (1996), 414-425.
[16] Vergne, M., Cohomologie des algèbres de Lie nilpotentes. Application'a l'étude de la varieté des algèbres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970), 81-116.
J. M. Cabezas

Dpto. de Matemática Aplicada
Universidad del País Vasco
C/ Nieves Cano 12
01006 Vitoria Álava, Spain
jm.cabezas@ehu.esw
L. M. Camacho

Dpto. Matemática Aplicada I
Universidad de Sevilla
Avda. Reina Mercedes s/n
41012 Sevilla, Spain
lcamacho@us.es
I. Rodríguez

Dpto. de Matemáticas
Universidad de Huelva
Ctra. de Palos de la Frontera s/n
21071 Rábida. Huelva, Spain
rodgar@uhu.es

[^0]: *Partially supported by NUPV07/04 "Graduaciones de álgebras de Leibniz"

