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Abstract. Leibniz algebras appear as a generalization of Lie algebras. The 
classification of naturally graded p -filiform Lie algebras is known. Several au-
thors have studied the naturally graded p -filiform Leibniz algebras for any p
with p ≥ 0.
Gómez, Jiménez-Merchán and Reyes have investigated families of nilpotent Lie algebras with 
other types of non-natural gradation, a gradation with a large number of subspaces. The 
algebras with maximum number of subspaces in the gradation will be called maximum length 
algebras.
In this work we deal with the classification of filiform and 2-filiform Leibniz algebras of 
maximum length.
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1. Introduction

In the course of her work on the cohomology on nilpotent Lie algebras [16], M. 
Verge classified naturally graded filiform Lie algebras.

In [11] the authors introduce the notion of the “length” of a Lie algebra, 
and study families of nilpotent Lie algebras with a gradation with a large number 
of subspaces. This condition facilitates the study of some cohomological properties 
for such algebras (see [4, 11, 14]). For such a length of the gradation, the main 
interest are those algebras whose length is as large as possible.

The natural gradation of nilpotent Leibniz algebras, the subspaces of gra-
dation, and the existence of an appropriate homogeneous basis (needed to obtain 
the classification) are derived from the central descending sequence.

In a way, the gradations with n subspaces are the finite connected gradations 
with the greatest possible number of non-zero subspaces; they will be called 
maximum length gradations. The algebras with maximum length gradations will 
be called maximum length algebras.

∗ Partially supported by NUPV07/04 “Graduaciones de álgebras de Leibniz” 



An algebra L over a field F is called Leibniz algebra if it verifies the Leibniz
identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y]

for any elements x, y, z ∈ L and where [.,.] is a multiplication in L .

When in L the identitiy [x, x] = 0 holds, then the Leibniz identity coincides
with the Jacobi identity, thus we can say that Leibniz algebras are a generalization
of Lie algebras.

For a given algebra we define the sequence

L1 = L, Lk+1 = [Lk,L1], with k ≥ 1

An n-dimensional Leibniz algebra L is called zero-filiform if dim(Li) =
n + 1− i , 1 ≤ i ≤ n + 1.

An n-dimensional Leibniz algebra L is called filiform if dim(Li) = n − i ,
with 2 ≤ i ≤ n .

The natural gradation is defined as follows. For a Leibniz algebra L we
consider Li = Li/Li+1 . Then we put gr(L) ≈ L1⊕ · · ·⊕Lk . If L ≈ gr(L), we say
that L is a naturally graded Leibniz algebra.

Let x be a nilpotent element of set L \ L2 . For the nilpotent operator of
right multiplication Rx we define a decreasing sequence C(x) = (n1, . . . , nk) of the
dimensions of Jordan blocks of the operator Rx . In the former set of sequences
we consider lexicographic order.

The sequence C(L) = max{ C(x)x∈L\L2} is called the characteristic se-
quence of the algebra L .

A Leibniz algebra L is called p-filiform if C(L) = (n − p, 1, . . . , 1︸ ︷︷ ︸
p

), where

p ≥ 0. If p = 2, L is called quasi-filiform. If p = 1, L is filiform and if p = 0,
zero-filiform.

The set R(L) = {x ∈ L : [y, x] = 0, ∀y ∈ L} is said to be the right
annihilator of L .

Let L be a Z-graded Leibniz algebra, that is, L =
⊕

i∈Z Vi , where [Vi, Vj] ⊆
Vi+j for any i, j ∈ Z with a finite number of nonnull spaces Vi .

We will say that a nilpotent Leibniz algebra L admits the connected gra-
dation L = Vk1 ⊕ · · · ⊕ Vkt , if Vki

6= 0 for any i, (k1 6 i 6 kt).

The number len(
⊕

L) = kt − k1 + 1 is called the length of gradation. A
gradation is called of maximum length, if len(

⊕
L) = dimL.

We define the length of L by len(L) = max{len(
⊕

L) = kt − k1 +
1 such that
L = Vk1 ⊕ Vk2 ⊕ · · · ⊕ Vkt is a connected gradation} .

A Leibniz algebra L is called of maximum length if len(L) = dimL.

Example Let ZFn be the 0-filiform Leibniz algebra with dimension n [3]. This
algebra ZFn is an algebra of maximum length. In fact, taking Vi = 〈ei〉, (1 6 i 6
n), we obtain L = V1 ⊕ V2 ⊕ · · ·Vn , where [Vi, Vj] ⊆ Vi+j .

Note that ZFn is the unique Leibniz algebra for which the naturally gra-
dation coincides with the maximum gradation.



The cases of 0-filiform and 1-filiform have already been studied [3]. Quasifil-
iform Lie algebras have the characteristic sequence (n−2, 1, 1). In Leibniz algebras
there are two possibilities, (n − 2, 1, 1) (case 2-filiform) and (n − 2, 2). The idea
of length of an algebra is well known for Lie algebras and can be generalized to
Leibniz algebras. In the case of Lie algebras some authors [8, 12] have consid-
ered on graded Lie algebras not only one natural gradation but a gradation with
a large number of subspaces. Such a gradation facilitates the study of certain
cohomological properties of these algebras.

The present work is devoted to the study of filiform and 2-filiform Leibniz
algebras which admit a gradation by a maximum number of nonnull homogeneous
spaces.

The following theorem is true.

Theorem 1.1. [12] Let g be a complex n-dimensional non split filiform Lie
algebra of maximum length. Then, it is isomorphic to one of the following pairwise
non isomorphic algebras

Ln

{
[X0, Xi] = Xi+1, 1 6 i 6 n− 2.

Rn

{
[X0, Xi] = Xi+1, 1 6 i 6 n− 2
[X1, Xj] = X2+j, 2 6 j 6 n− 3.

Kn(n ≥ 8) :
[X0, Xi] = Xi+1, 1 6 i 6 n− 2[
Xi, X2b(n−2)/2c−1−i

]
= (−1)i−1X2b(n−2)/2c, 1 6 i 6 bn−4

2
c[

Xi, X2b(n−2)/2c−i

]
= (−1)i−1(b(n− 2)/2c − i)X2b(n−2)/2c+1, 1 6 i 6 bn−4

2
c

[Xi, Xn−2−i] = 1
2
(−1)i(i− 1)(n− 3− i)αXn−1, 2 6 i 6 n−3

2

where α = 0, if n is even and α = 1 if n is odd.

Wn(n ≥ 7) : [X0, Xi] = Xi+1, 1 6 i 6 n− 2

[Xi, Xj] =
6(i− 1)!(j − 1)!(j − i)

(i + j)!
Xi+j+1, 1 6 i 6 bn−3

2
c, i 6 j 6 n− 2− i.

Qn(n ≥ 7) :{
[X0, Xi] = Xi+1, 1 6 i 6 n− 2
[Xi, Xn−2−i] = (−1)i−1Xn−1, 1 6 i 6 n−5

2
.

where n is odd.

Theorem 1.2. [3] An arbitrary n-dimensional naturally graded filiform com-



plex non Lie Leibniz algebra is isomorphic to the following not isomorphic algebras

NGF1 : [e1, e1] = e3, [ei, e1] = ei+1, 2 6 i 6 n− 1.

NGF2 : [e1, e1] = e3, [ei, e1] = ei+1, 3 6 i 6 n− 1.

NGF3 :

{
[ei, e1] = −[e1, ei] = ei+1, 2 ≤ i ≤ n− 1

[ei, en+1−i] = −[en+1−i, ei] = α(−1)i+1en 2 ≤ i ≤ n− 1.

(the rest of the products are zero).

From [6] we know that an arbitrary 2-filiform naturally graded non Lie
Leibniz algebra is either split (i.e. L = ZFn−2 ⊕ C2 or L = NGF1n−1 ⊕ C or
L = NGF2n−1 ⊕ C or L = NGF3n−1 ⊕ C) or isomorphic to one of the following
algebras (n ≥ 6):

I : II :{
[ei, e1] = ei+1, 1 6 i 6 n− 3
[e1, en−1] = en.


[ei, e1] = ei+1, 1 6 i 6 n− 3
[e1, en−1] = e2 + en

[ei, en−1] = ei+1 2 6 i 6 n− 3.

2. Filiform Leibniz algebras of maximum length

Let L be an n-dimensional filiform Leibniz algebra of maximum length.

L = Vk1 ⊕ Vk2 ⊕ · · · ⊕ Vkn

where [Vki
, Vkj

] ⊆ Vki+kj
and Vki

= 〈xi〉 .
The results from [3] and [13] allow us to obtain the decomposition of all

complex filiform Leibniz algebras into three disjoint classes.

Proposition 2.1. Let L be an n-dimensional (n > 3) complex filiform Leibniz
algebra and let {e1, e2, . . . , en} be an adapted basis. Then, L is isomorphic to one



of the following algebras:

F1 :


[e1, e1] = e3,
[ei, e1] = ei+1, 2 ≤ i ≤ n− 1
[e1, e2] = α4e4 + α5e5 + · · ·+ αn−1en−1 + θen,
[ej, e2] = α4ej+2 + α5ej+3 + · · ·+ αn+2−jen, 3 ≤ i ≤ n

F2 :


[e1, e1] = e3,
[ei, e1] = ei+1, 3 ≤ i ≤ n− 1
[e1, e2] = β4e4 + β5e5 + · · ·+ βnen,
[e2, e2] = γen,
[ej, e2] = β4ej+2 + β5ej+3 + · · ·+ βn+2−jen, 3 ≤ i ≤ n− 1

F3 :



[ei, e1] = ei+1, 2 ≤ i ≤ n− 1

[e1, ei] = −ei+1, 3 ≤ i ≤ n− 1

[e1, e1] = θ1en,

[e1, e2] = −e3 + θ2en,

[e2, e2] = θ3en,

[ei, ej] = −[ej, ei] ∈ lin〈ei+j+1, ei+j+2, . . . , en〉, 2 ≤ i ≤ n− 2,

2 ≤ j ≤ n− i

[ei, en+1−i] = −[en+1−i, ei] = α(−1)i+1en 2 ≤ i ≤ n− 1.

where omitted products are equal to zero, α ∈ {0, 1} for even n and α = 0 for odd
n.

Theorem 1.1 can be extended to the Leibniz algebras case, namely, the
following theorem holds.

Theorem 2.2. Let L be a n-dimensional non split filiform non Lie Leibniz
algebra L of maximum length, then there exists a basis {y1, y2, . . . , yn} of L such
that its multiplication has the following form

[yi, y1] = yi+1, 2 6 i 6 n− 1

(the rest of the products are equal to zero).

Proof. Let L be an n-dimensional filiform Leibniz algebra of maximum length.

L = Vk1 ⊕ Vk2 ⊕ · · · ⊕ Vkn

where [Vki
, Vkj

] ⊆ Vki+kj
and Vki

= 〈xi〉
Let L be isomorphic to one algebra of the family F1 .

Let {x1, x2, . . . , xn} be a basis where xi =
n∑

k=1

αi
kek ⇒ ∃s 6= t : αs

1 6= 0 6= αt
2

⇒ αs
1 = αt

2 = 1. Thus, 
xs = e1 +

n∑
k=2

αs
kek

xt = αt
1e1 + e2 +

n∑
k=3

αt
kek



If we make the computation [xs, xs], we obtain

[xs, xs] = (1 + αs
2)e3 +

∑
i≥4

Aiei

[xt, xt] = αt
1(1 + αt

1)e3 +
∑
i≥4

Biei

It is possible to consider two cases:

1. 1 + αs
2 6= 0.

Then, we denote

y1 = xs, y2 = [xs, xs], . . . , yn−1 = [. . . , [xs, xs], . . . , xs], yn = xt

with yi 6= 0, 1 ≤ i ≤ n− 1.

Using the table of multiplication from the family I , we obtain that y1 ∈ Vks ,
y2 ∈ V2ks , . . . , yn−1 ∈ V(n−1)ks .

Thus, L = Vkt ⊕ Vks ⊕ V2ks ⊕ · · ·V(n−1)ks . According to the definition of the
gradation, we have the following embedding:

[Vpks , Vkt ] ⊆ Vpks+kt ⊆ Vm1ks ,
[Vkt , Vpks ] ⊆ Vpks+kt ⊆ Vm2ks ,
[Vkt , Vkt ] ⊆ V2ks ⊆ Vm3ks .

From [Vki
, Vkj

] ⊆ Vki+kj
⇒ kt = δks with δ ∈ {−(n− 2),−(n− 3), . . . ,−1,

0, 1, . . . , n− 2} . We compute [Vkt , Vkt ], [Vpks , Vkt ], [Vkt , Vpks ] .

1.1. If δ ∈ {1, . . . , n − 2} ⇒ Vkt = Vδks ⇒ dim(Vδks) = 2. That is
contradiction, this case is not possible.

1.2. If δ ∈ {−n + 2,−n + 3, . . . , 1, 0}, we have that

[Vpks , Vkt ] = [Vkt , Vpks ] = [〈yp〉, 〈yn〉] ⊂ V(p+δ)ks = 〈yp+δ〉
and yp ∈ Lp\Lp+1, yn ∈ L\L2, yp+δ ∈ Lp+δ\Lp+δ−1. Thus, [yp, yn] ∈
Lp+1\Lp+2 as p+1 > p+δ we can conclude that [Vkt , Vkt ] = [Vpks , Vkt ] =
[Vkt , Vpks ] = 0. Then the Leibniz algebra of maximum length is split.

2. αs
2 = −1.

Then,
xs = e1 − e2 + αs

3e3 + · · ·+ αs
nen,

xt = αt
1e1 + e2 + αt

3e3 + · · ·+ αt
nen.

xs, xt ∈ L\L2.

Computing the following multiplication, we have that

[xs, xs] =
∑
i≥4

Aiei

[xt, xt] = αt
1(1 + αt

1)e3 +
∑
i≥4

Biei

[xs, xt] =
∑
i≥4

Ciei

[xt, xs] = (1 + αt
1)e3 +

∑
i≥4

Diei



It is necessary to make out two cases:

2.1. αt
1 6= 0.

Note that αt
1 6= −1, if αt

1 = −1 then xt is not a generator of L .
Analogously to case 1 for xt , a split Leibniz algebra is obtained.

2.2. αt
1 = 0.

We have
xs = e1 − e2 + αs

3e3 + · · ·+ αs
nen,

xt = e2 + αt
3e3 + · · ·+ αt

nen.

Putting y1 = xs, y2 = xt, y3 = [xt, xs], y4 = [[xt, xs], xs], . . . , yn =
[. . . [[xt, xs], xs], . . . , xs] (multiplying by xs n−2 times) and yi 6= 0, 1 ≤
i ≤ n , y1, y2 ∈ L\L2, yi ∈ Li−1\Li with 3 ≤ i ≤ n . We have the
following multiplication:

[yi, y1] = yi+1, 2 ≤ i ≤ n− 1

Thus, y1 ∈ Vks , ks 6= 0, y2 ∈ Vkt , kt 6= ks . . . , yn ∈ Vkt+(n−2)ks , so
L = Vkt ⊕ Vks ⊕ Vkt+ks ⊕ Vkt+2ks ⊕ · · · ⊕ Vkt+(n−2)ks .

Following a similar reasoning, [Vki
, Vkj

] ⊆ Vki+kj
⇒ kt = δks with

δ ∈ {−(n− 4),−(n− 5), . . . ,−1, 0, 2, . . . , n− 3} .

2.2.1. δ ∈ {2, . . . , n− 3} .

Vkt = Vδks = [. . . [[Vks , Vks ], Vks ], . . . , Vks ] (δ times )

and that contradicts Vkt ∈ L\L2 .

2.2.2. δ ∈ {4− n, . . . ,−1} .

[Vkt+pks , Vkt ] = [Vkt+pks , Vδks ] ⊂ Vkt+(p+δks)

and we have that Vkt+pks ∈ Lp+1\Lp+2, Vδks ∈ L1\L2, Vkt+(p+δ)ks ∈
Lp+δ+2 but p + 2 ≥ p + δ + 2, that is not possible.

2.2.3. δ = 0, Vkt = V0 ⇒ Vkt+ks = 〈y3〉 = Vks = 〈y1〉 ⇒ dim(Vks) = 2.
That is not possible.

Thus, we conclude that

[Vks , Vks ] = [Vkt , Vkt ] = [Vkt+pks , Vkt ] = 0

obtaining the algebra of the theorem.

Let L be isomorphic to one algebra of the family F2 .

We consider a decomposition of the basis {x1, x2, . . . , xn} into the basis

{e1, . . . , en} . That is, xm =
n∑

i=1

αm
i ei. It is evident that there exists s ∈ N such

that αs
1 6= 0. We can suppose that without loss of generality αs

1 = 1. Then
xs = e1 + αs

2e2 + · · ·+ αs
nen and xs ∈ L\L2 .



Consider the product: [xs, xs] = e3 +
∑
i≥4

ei . Furthermore, thinking as in

case F1 , we obtain a split Leibniz algebra.

Let L be isomorphic to one algebra of the family F3 .

We choose generators from the homogeneous basis xs = e1+a2e2+· · ·+anen

and xt = b1e1 + e2 + b3e3 + · · ·+ bnen.

Consider the following products

[xs, xs] = (θ1 + a2θ2 + a2
2θ3)en,

[xt, xt] = (b2
1θ1 + b1θ2 + θ3)en,

[. . . [xt, xs], . . . , xs]︸ ︷︷ ︸
i−times

= (1− a2b1)ei+2 + (∗)ei+3 + · · ·+ (∗)en, 1 ≤ i ≤ n− 2,

where 1− a2b1 6= 0.

We can choose y1 = xs, y2 = xt, yi = [. . . [xt, xs], . . . , xs]︸ ︷︷ ︸
(i−2)−times

, 3 ≤ i ≤ n.

Therefore, 〈y1〉 ⊆ Vks , 〈y2〉 ⊆ Vkt , 〈yi〉 ⊆ Vkt+(i−2)ks 3 ≤ i ≤ n and
[yi, y1] = yi+1, 2 ≤ i ≤ n− 1.

If we compute [y1, y1] =
θ1+a2θ2+a2

2θ3

1−a2b1
yn = θyn.

1. [y1, y1] 6= 0. We have that [y1, y1] ∈ Vkt+(n−2)ks . Moreover, [Vks , Vks ] = V2ks =
Vkt+(n−2)ks ⇒ 2ks = kt + (n − 2)ks ⇒ kt = (4 − n)ks. However, this is not
possible because Vkt+(n−3)ks = Vks ⇒ dim(Vks) = 2, that is a contradiction.

2. [y1, y1] = 0. We have that [y2, y2] = θ′yn ∈ Vkt+(n−2)ks .

2.1. [y2, y2] 6= 0. y2 ∈ Vkt ⇒ [y2, y2] ∈ V2kt and yn ∈ Vkt+(n−2)ks ⇒ Vkt =
(n−2)ks . Thus, we have the homogeneous spaces Vks , V(n−2)ks , V(n−1)ks ,
Vnks , . . . , V(2n−4)ks . Since that is a conneted gradation, n = 3 and for
n = 3 the family F3 does not exist.

2.2. [y2, y2] = 0, since [y1, y2] = −y3 + θ′2yn ⇒ [y1, y2] ∈ Vkt+ks but −y3 +
θ′2yn ∈ Vkt+ks + Vkt+(n−2)ks ⇒ θ′2 = 0 Using the Leibniz identity , the
table of multiplication is:

[yi, y1] = yi+1 2 ≤ i ≤ n− 1
[y1, yi] = −yi+1 2 ≤ i ≤ n− 1

and we obtain a Lie algebra. �

3. 2-filiform Leibniz algebras of maximum lenght

The notions 2-filiform and quasi-filiform for Lie algebras coincide. The classifica-
tion of quasifiliform Lie algebras of maximum length is described in [12]. From
now on we will only consider non Lie Leibniz algebras.

Let L be an n-dimensional 2-filiform non Lie Leibniz algebra of maximum
length, then

L = Vk1 ⊕ Vk2 ⊕ · · · ⊕ Vkt , where [Vki
, Vkj

] ⊆ Vki+kj
and Vki

= 〈Xi〉 .



Proposition 3.1. [3, 6] Let L be a 2-filiform non Lie Leibniz algebra, then
from the classification of 2-filiform naturally graded Leibniz algebras we have that
L belongs to one of the following families

KF1 :

[ei, e1] = ei+1, 1 6 i 6 n− 3
[ei, en−1] = αi,i+2ei+2 + αi,i+3ei+3 + . . . + αi,n−2en−2, 1 6 i 6 n− 4
[ei, en] = βi,i+2ei+2 + βi,i+3ei+3 + . . . + βi,n−2en−2, 1 6 i 6 n− 4
[en−1, en−1] = β3e3 + β4e4 + . . . + βn−2en−2,
[en, en−1] = γ3e3 + γ4e4 + . . . + γn−2en−2,
[en, en] = θ3e3 + θ4e4 + . . . + θn−2en−2,
[en−1, en] = λ3e3 + λ4e4 + . . . + λn−2en−2

where gr(L) = ZFn−2 ⊕ C2, ZFn−2 = 〈e1, e2, . . . , en−2〉, C2 = 〈en−1, en〉

KF2 :

[e1, e1] = e3,
[ei, e1] = ei+1, 2 6 i 6 n− 2
[e1, e2] = α4e4 + α5e5 + . . . + αn−2en−2 + θen−1,
[ei, e2] = α4ei+2 + α5ei+3 + . . . + αn+1−ien−1, 2 6 i 6 n− 3
[e1, en] = β1,4e4 + β1,5e5 + . . . + β1,n−1en−1,
[ei, en] = βi,i+2ei+2 + βi,i+3ei+3 + . . . + βi,n−1en−1, 2 6 i 6 n− 3
[en, en] = θ4e4 + θ5e5 + . . . + θn−1en−1,
[en, e2] = λ4e4 + λ5e5 + . . . + λn−1en−1,
[en, e1] = µ4e4 + µ5e5 + . . . + µn−1en−1

where gr(L) = NGF1n−1 ⊕ C, NGF1n−1 = 〈e1, e2, . . . , en−1〉, C = 〈en〉.

KF3 :

[e1, e1] = e3,
[ei, e1] = ei+1, 3 6 i 6 n− 2
[e1, e2] = α4e4 + α5e5 + . . . + αn−1en−1,
[e2, e2] = γen−1

[ei, e2] = α4ei+2 + α5ei+3 + . . . + αn+1−ien−1, 3 6 i 6 n− 3
[e1, en] = β1,4e4 + β1,5e5 + . . . + β1,n−1en−1,
[ei, en] = βi,i+2ei+2 + βi,i+3ei+3 + . . . + βi,n−1en−1, 2 6 i 6 n− 3
[en, en] = θ4e4 + θ5e5 + . . . + θn−1en−1,
[en, e2] = λ4e4 + λ5e5 + . . . + λn−1en−1,
[en, e1] = µ4e4 + µ5e5 + . . . + µn−1en−1

where gr(L) = NGF2n−1 ⊕ C, NGF2n−1 = 〈e1, e2, . . . , en−1〉, C = 〈en〉.

KF4 :
[ei, e1] = ei+1, 1 6 i 6 n− 3
[e1, en−1] = en + α3e3 + . . . + αn−2en−2,
[en−1, en−1] = β3e3 + β4e4 + . . . + βn−2en−2,
[ei, en−1] = βi,i+2ei+2 + βi,i+3ei+3 + . . . + βi,n−2en−2, 2 6 i 6 n− 4
[en, en−1] = γ4e4 + γ5e5 + . . . + γn−2en−2



KF5 :
[ei, e1] = ei+1, 1 6 i 6 n− 3
[e1, en−1] = e2 + en + α3e3 + α4e4 + . . . + αn−2en−2,
[ei, en−1] =ei+1+βi,i+2ei+2+βi,i+3ei+3+ . . . +βi,n−2en−2, 2 6 i 6 n− 4
[en−1, en−1] = β3e3 + β4e4 + . . . + βn−2en−2,
[en, en−1] = γ4e4 + γ5e5 + . . . + γn−2en−2

KF6 :

[ei, e1] = ei+1, 2 6 i 6 n− 2
[e1, ei] = −ei+1, 3 6 i 6 n− 2
[e1, e1] = θ1en−1,
[e1, e2] = −e3 + θ2en−1,
[e2, e2] = θ3en−1

[ei, ej] =− [ej, ei] ∈ {ei+j+1, ei+j+2, . . . , en−1}, 2 6 i 6 n− 4,
2 6 j 6 n− 2− i

[e1, en] = β1,4e4 + β1,5e5 + . . . + β1,n−1en−1,
[ei, en] = βi,i+2ei+2 + βi,i+3ei+3 + . . . + βi,n−1en−1, 2 6 i 6 n− 3
[en, e1] = β1,4e4 + β1,5e5 + . . . + β1,n−1en−1,
[en, ei] = βi,i+2ei+2 + βi,i+3ei+3 + . . . + βi,n−1en−1, 2 6 i 6 n− 3
[en, en] = θ4e4 + θ5e5 + . . . + θn−1en−1

where gr(L) = NGF3n−1 ⊕ C, NGF3n−1 = 〈e1, e2, . . . , en−1〉,
C = 〈en〉, i.e., NGF3n−1 is obtained from naturally graded filiform Lie algebras.

Theorem 3.2. Let L be a 2-filiform non-Lie Leibniz algebra of maximum
length. Then L is isomorphic to the following algebra

M :

{
[yi, y1] = yi+1, 1 6 i 6 n− 3
[y1, yn−1] = yn

Proof. Let L be a 2-filiform Leibniz algebra. From Proposition 3.1 we have that
L is isomorphic to KF1, KF2, KF3, KF4, KF5, or KF6.

First, we consider the case where L belongs to the family KF1 .

In this case L is a three generated algebra. Let xs, xt, xr be the generators
of L . Since L has also basis {e1, e2, . . . , en} , then we have

xs=a1e1 + a2e2 + . . . + an−1en−1 + anen

xt=b1e1 + b2e2 + . . . + bn−1en−1 + bnen

xr=c1e1 + c2e2 + . . . + cn−1en−1 + cnen

where

∣∣∣∣∣∣
a1 an−1 an

b1 bn−1 bn

c1 cn−1 cn

∣∣∣∣∣∣ 6= 0. Without loss of generality we can assume that a1 =

bn−1 = cn = 1.



Consider the products

[xs, xs] =[e1 + a2e2+ . . . +an−1en−1 + anen, e1 + a2e2+ . . . +an−1en−1 + anen]=
= e2 + (∗)e3 + . . . + (∗)en−2,

[[xs, xs], xs] = [e2 + (∗)e3 + . . . + (∗)en−2, e1 + a2e2 + . . . + an−1en−1 + anen] =
= e3 + (∗)e4 + . . . + (∗)en−2,

...
[. . . [xs, xs], . . . , xs︸ ︷︷ ︸

n−2−times

] = en−2

where the asterisks (*) denote the correspondent coefficient in the product. If we
denote

y1 = xs, y2 = [xs, xs], . . . , yn−2 = [. . . [xs, xs], . . . , xs], yn−1 = xt, yn = xr

then we have that

Vks = 〈y1〉, V2ks = 〈y2〉, . . . , V(n−2)ks = 〈yn−2〉, Vkt = 〈yn−1〉, Vkr = 〈yn〉

1. [Vkt , Vks ] = Vλks or [Vkr , Vks ] = Vµks , with 1 6 λ, µ 6 n− 2.

We can suppose that [Vkt , Vks ] ⊆ Vλks . However, it is evident that this is
only possible in the case where λ = 1 and kt = 0. Then, from decomposition
of gradation and nilpotency of L , we obtain that [yn−1,L] = [L, yn−1] = 0,
i.e., L is split.

2. [Vkt , Vks ] 6= Vλks and [Vkr , Vks ] 6= Vµks , 1 6 λ, µ 6 n− 2.

Then, the condition [Vki
, Vkj

] ⊆ Vki+kj
implies that

kt = (n− 1)ks, kr = nks and
L = V1 ⊕ V2 ⊕ · · · ⊕ Vn−1 ⊕ Vn such that Vi = 〈yi〉, 1 6 i 6 n.

Thus, the product has the following form

[yi, y1] = yi+1, 1 6 i 6 n− 3,
[yn−1,L] = [L, yn−1] = [yn,L] = [L, yn] = 0

That is, in this case L is split.

In case L belongs to KF2 we have three generators xs, xt, xr again and
we can express them with respect to the basis {e1, e2, . . . , en} of L . Analogously,∣∣∣∣∣∣

a1 a2 an

b1 b2 bn

c1 c2 cn

∣∣∣∣∣∣ 6= 0.



Now, without loss of generality we can assume that a1 = b2 = cn = 1. So,
the products are

[xs, xs] = [e1 + a2e2 + . . . + an−1en−1 + anen, e1 + a2e2 + . . . + an−1en−1 + anen] =
= (1 + a2)e3 + (∗)e4 + . . . + (∗)en−1,

[[xs, xs], xs] =[(1+a2)e3+(∗)e4+ . . . +(∗)en−1, e1+a2e2+ . . . +an−1en−1+anen]=
= (1 + a2)e4 + (∗)e5 + . . . + (∗)en−1,

...
[. . . [xs, xs], . . . , xs︸ ︷︷ ︸

n−2−times

] = (1 + a2)en−1

[xs, xt] = [e1 + a2e2+ . . . +an−1en−1 + anen, b1e1 + e2+ . . . +bn−1en−1 + bnen]=
= b1(1 + a2)e3 + (∗)e4 + . . . + (∗)en−1.

1. a2 6= −1
We denote

y1 = xs, y2 = [xs, xs], . . . , yn−2 = [. . . [xs, xs], . . . , xs], yn−1 = xt, yn = xr

It is easy to see that {y1, y2, . . . , yn} is a basis and we put

Vks = 〈y1〉, V2ks = 〈y2〉, . . . , V(n−2)ks = 〈yn−2〉,
Vkt = 〈yn−1〉, Vkr = 〈yn〉

Using similar arguments to the case where L is in KF1 , we obtain that L
is split.

2. a2 = −1.

Consider the products

[xt, xt] = [b1e1 + e2 + . . . + bn−1en−1 + bnen, b1e1 + e2 + . . . + bn−1en−1 + bnen] =
= b1(1 + b1)e3 + (∗)e4 + . . . + (∗)en−1.

[[xt, xt], xt] =[b1(1+b1)e3+(∗)e4+ . . . +(∗)en−1, b1e1+e2+ . . . +bn−1en−1+bnen]
= b2

1(1 + b1)e4 + (∗)e5 + . . . + (∗)en−1.
...

[. . . [xt, xt], . . . , xt︸ ︷︷ ︸
n−2−times

] = bn−3
1 (1 + b1)en−1

Note that we can suppose that rank

(
a1 a2

b1 b2

)
= 2.

In the case a1 = b2 = 1 and a2 = −1 ⇒ b1 6= −1.

2.1. b1 6= 0. Then, taking into account case 1 for xt and xs, we obtain a
contradiction if L is non split.

2.2. b1 = 0. Then, we write

xs=e1 − e2 + . . . + an−1en−1 + anen

xt=e2 + . . . + bn−1en−1 + bnen

xr=c1e1 + c2e2 + . . . + cn−1en−1 + cnen



Let us consider the products

[xt, xs] = [e2 + . . . + bn−1en−1 + bnen, e1 − e2 + . . . + an−1en−1 + anen] =
= e3 + (∗)e4 + . . . + (∗)en−1,

[[xt, xs], xs] =[e3+(∗)e4+ . . . +(∗)en−1, e1 − e2+ . . . +an−1en−1 + anen]
= e4 + (∗)e5 + . . . + (∗)en−1,

...
[. . . [xt, xs], . . . , xs] = en−1

In this case we denote y1 = xs, y2 = xt, y3 = [xt, xs], . . . , yn−1 =
[. . . [xt, xs], . . . , xs], yn = xr , and so we put

Vks=〈y1〉, Vkt=〈y2〉, Vkt+ks=〈y3〉, . . . , Vkt+(n−3)ks=〈yn−1〉, Vkr=〈yn〉

with [yi, y1] = yi+1, 2 6 i 6 n− 2.

2.2.1. [Vkr , Vks ] 6= 0 or [Vks , Vkr ] 6= 0.
Then Vkr+ks = Vkt+λks , 0 6 λ 6 n − 3 and so we have kr =
(λ− 1)ks + kt . That is a contradiction because xt is a generator.

2.2.2. [Vkr , Vks ] = [Vks , Vkr ] = 0.
In this case we have [y1, yn] = [yn, y1] = 0 and using the multipli-
cation in the family KF2, we obtain [L, yn] = [yn,L] = 0, i.e., L
is split.

Let L be isomorphic to one algebra of the family KF3 .

We have that xs, xt, xr are the generators of L . Without loss of generality
we suppose that a1 = b2 = cn = 1.

Now we denote

y1 = xs, y2 = [xs, xs], . . . , yn−2 = [. . . [xs, xs], . . . , xs], yn−1 = xt, yn = xr

Evidently y1, y2, . . . , yn form a basis and we have that

Vks = 〈y1〉, V2ks = 〈y2〉, . . . , V(n−2)ks = 〈yn−2〉, Vkt = 〈yn−1〉, Vkr = 〈yn〉

1. [Vkr , Vks ] 6= 0 or [Vks , Vkr ] 6= 0.

We can suppose that [Vkr , Vks ] 6= 0. Then Vkr+ks = Vλks , 1 6 λ 6 n− 2. So
kr = (λ− 1)ks + kt or kr + ks = kt . But that is a contradiction because xr

and xt are generators.

2. [Vkr , Vks ] = [Vks , Vkr ] = 0.

That is, [y1, yn] = [yn, y1] = 0, it is easy to see that [L, yn] = [yn,L] = 0, i.e.
L is split.



Let L be isomorphic to one algebra of the family KF4 .

Note that L is a two generated algebra whose generators are xs , xt .
Without loss of generality we can assume that a1 = bn−1 = 1 with a1bn−1 6= 1.

Let us reconsider the products [xs, xs], . . . [. . . [xs, xs], . . . , xs] and

[xs, xt] = b1e2 + en + (∗)e3 + . . . + (∗)en−2

By denoting y1 = xs, y2 = [xs, xs], . . . , yn−2 = [. . . [xs, xs], . . . , xs], yn−1 = xt,
yn = [xs, xt] , we can write Vks = 〈y1〉, V2ks = 〈y2〉, . . . , V(n−2)ks = 〈yn−2〉,
Vkt = 〈yn−1〉, Vks+kt = 〈yn〉 . Since [Vks+kt , Vks ] ⊆ V2ks+kt , then we can consider
the cases below:

1. [Vks+kt , Vks ] = Vλks .
Then [Vks+kt , Vks ] = V2ks+kt = Vλks where 1 6 λ 6 n− 2 and we obtain that
kt = (λ − 2)ks , but it is contradiction for λ 6= 1. Therefore we have the
decomposition:

L = V−1 ⊕ V0 ⊕ V1 ⊕ · · · ⊕ Vn−2

where V−1 = 〈yn−1〉, V0 = 〈yn〉, Vi = 〈yi〉, 1 6 i 6 n− 2.

Checking all the bracket products with the restriction b1an−1 6= 1 and
applying the restriction from the nilpotency, we obtain the algebra M .

2. [Vks+kt , Vks ] 6= Vλks , 1 6 λ 6 n− 2.

Then from condition [Vki
, Vkj

] ⊆ Vki+kj
, we have that kt = (n − 1)ks so,

L = V1 ⊕ V2 ⊕ · · · ⊕ Vn−1 ⊕ Vn where Vi = 〈yi〉, 1 6 i 6 n . It is not difficult
to see that we obtain the algebra M .

If L belongs to the family KF5 , we use similar arguments to the above
cases.

Consider the products:

[. . . [xs, xs], . . . , xs] = (1 + an−1)
n−3en−2

[. . . [xt, xt], . . . , xt] = b1(1 + b1)
n−3en−2

[xs, xt] = (1 + b1)e2 + en + (∗)e3 + . . . + (∗)en−2,

[xt, xs] = b1(1 + an−1)e2 + b1an−1en + (∗)e3 + . . . + (∗)en−2.

1. an−1 6= −1
Then we put y1 = xs, y2 = [xs, xs], . . . , yn−2 = [. . . [xs, xs], . . . , xs], yn−1 =
xt, yn = [xs, xt]

It is evident that y1, y2, . . . , yn are linearly independent. Therefore we can
take it as a basis of L and we obtain

Vks = 〈y1〉, V2ks = 〈y2〉, . . . , V(n−2)ks = 〈yn−2〉, Vkt = 〈yn−1〉, Vks+kt = 〈yn〉

Checking all the products we get again the algebra M .



2. an−1 = −1
Since 1− an−1b1 6= 0, then b1 6= −1

2.1. b1 6= 0.
Making the change x′s = xt

b1
, x′t = −xs we have case 1.

2.2. b1 = 0 In a similar way we can denote

y1 = xt, y2 = xs, y3 = [xs, xt], . . . ,
yn−1 = [. . . [xs, xt], . . . , xt], yn = [xs, xs]

In this case we do not obtain any new algebra with maximum length.

Let L be isomorphic to one algebra of the family KF6 .

Then xs, xt, xr are generators of L . In a similar way we study the different
possibilities for the gradation, and we obtain a Lie algebra. �
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