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ABSTRACT

Keywords: Naturally graded nilpotent p-filiform Leibniz algebras are studied
Lie algebra for p>n — 4, where n is the dimension of the algebra. Using linear
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1. Introduction and preliminaries

In [11], Loday introduces the definition of Leibniz algebra as a vector space over a field with a
multiplication [—, —] which satisfies the Leibniz identity,

x . 2]l = [[x y]. z] — [[x, z], y].

It should be noted that if a Leibniz algebra satisfies the identity [x, x] = O, the Leibniz and the

Jacobi identities coincide. Therefore, Leibniz algebras are a “non-antisymmetric” generalization of Lie
algebras.
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The natural gradations of nilpotent Lie and Leibniz algebras give some useful information about
their properties in the general case, that is, without restriction on the gradation. Such a gradation is
important for the study of cohomology groups for the algebras considered because it induces their
corresponding gradation [10,13].

Naturally graded n-dimensional Lie algebras have been studied by several authors [2,9]. In n-
dimensional Leibniz algebras, naturally graded 2-filiform and p-filiform with p >n — 4 are known
(see [3,4]).

Several authors have studied the cohomological and structural properties of Leibniz algebras
[1,5-8,12].

In the present paper all spaces and algebras are considered over the field of complex numbers. We
omit the products which are equal to zero, for convenience. Also we shall not consider the algebras
which are the direct sum of algebras of less dimension (such algebras are called split algebras).

Given an arbitrary Leibniz algebra L, we define the lower central series:

'=1r [M'=qk1], k>1.

An algebra L is called nilpotent if there exists s € N such that L* = 0. The minimal number s is
called the index of nilpotency or nilindex.

Given any element x of the Leibniz algebra L, we define the right multiplication operatorRy : L — L
as Re(y) = [y, x].

Let x be a generator of the algebra L and Ry be the nilpotent right operator. Thanks to the complex
number field we can use the fundamental result of linear algebra on Jordan form of linear transforma-
tions. We define the decreasing sequence C(x) = (ny, ny, . . ., ny) that consists of the dimensions of the
Jordan blocks of Ry in lexicographic order, i.e. C(x) = (ny,ny,...,n) <Cy) = (my,my, ..., mg) &
there exists i € N such that nj = m; foranyj < iand n; < m;.

The sequence C(L) = maxy¢;\ 2 C(x) is called the characteristic sequence of the Leibniz algebra L.

According to the Lie algebras, the characteristic sequence is invariant by isomorphisms [1].

A Leibniz algebra L is called p-filiform if C(L) = (n — p, 1,...,1), where p > 0.

p

Note that the above definition agrees with the definition of p-filiform Lie algebras when p > 0 [2].
Since Lie algebras are not singly-generated algebras, the notion of 0-filiform algebra for Lie algebras
has no sense.

ThesetsR(L) = {x € L: [y,x] = Oforally € L} and Center(L) = {a € L : [a,L] = [L,a] = 0} are
called the right annihilator and center of L, respectively. o

Given an n-dimensional p-filiform Leibniz algebra L, put L; = L'/L'T!, 1<i<n —pandgrl = L, &
Ly @ --- @ Ly—p.Then[L; L;j] € Liy; and we obtain the graded algebra grL. If grL and L are isomorphic,
grL = L, we say that L is naturally graded.

We shall use the expression “graded algebra” instead of “naturally graded algebra” for convenience.

The list of graded p-filiform Lie algebras (1 <p <n — 1) can be found in [2]. For this reason, we
only study the non Lie Leibniz algebras.

In this work, we focus our attention on graded (n — 3)-filiform non Lie Leibniz algebras where n is
the dimension of the algebra.

The graded p-filiform Leibniz algebras with O < p < 2 are known (see [1,3]). In [4], the authors study
the graded p-filiform Leibniz algebras withp >n — 4.

Since the description of all nilpotent Leibniz algebras is an unsolvable task (even in case of Lie
algebras), we focus our attention on graded algebras with some restriction on their characteristic
sequences.

2. Graded p-filiform Leibniz algebras

Let L be a graded p-filiform n-dimensional Leibniz algebra. Then, there existsabasis {e1, €3, . . ., en—p,
fi, ... fp) such that e; € I\L? and C(e;) = (n —p,1,...,1). From the definition of characteristic
——

p-times



sequence, the operator R,, in the Jordan form has one block J,_p, of size n — p and p blocks J; (where
J1 = {0}) of size one.
We can reduce the study to the following two possibilities of Jordan forms of the matrix Re, (see

[4]):

Joep O 0O == 0 it 0 0O --- 0
o0 J 0 --- 0 0 Joop O - 0
0 0 0 --- | 0 0 0 -+ =

A p-filiform Leibniz algebra L is said to be of first type (type I) if the operator Re, has the first form
and of second type (type II) in the other case.

It should be noted that a p-filiform Leibniz algebra of the first type is a non-Lie algebra. Indeed, if
the Leibniz algebra is of the first type, then [eq, e1] = e, which contradicts the identity [x, x] = 0.

2.1. Classification of graded (n — 3)-filiform Leibniz algebras of type I

Let Lbe a (n — 3)-filiform Leibniz algebra of the first type. Then there exists a basis {e1, €3, €3, f1, . . .,
fn—3} (so called adapted basis) such that
leier] =ei1, 1<i<2
[fieil =0, 1<j<n—-3.
From these products we have:
(e1) €L, (e2) SLy, (e3) S ls.

However, we do not have information about the position of the elements {f1, f5, . . ., fi—3}.

Let us denote by rq, 13, ..., r;—3 the positions of the basic elements fi, fy, . . ., f;—3 in the natural
gradation, respectively, i.e. fi € Ly, for 1 <i<n — 3. Without loss of generality one can suppose that
1<r;<ry <.+ <rp_3 <3.1tshould be noted that {e, e3} € R(L). For p-filiform Leibniz algebras, the
following theorem holds.

Theorem 2.1 ([4]). LetL be agraded p-filiform Leibniz algebra of typel. Thenrs <sforanys € {1,2,...,p}.
To prove the main result of this subsection we need the following lemmas.

Lemma 2.1 ([4]). Anarbitrary p-filiform Leibniz algebra of type I satisfying the propertyr; = 1for1 <i<p
is split.

Lemma 2.2. Let L be a n-dimensional graded (n — 3)-filiform Leibniz algebra of type I. If the condition
1=r = -+ =1} <41, 1 <k <n — 4 holds, we have that
Ly = (e, fr.for - - Ji)r L2 = (€2, fut1, futar - - fu—3), L3 = {e3).

Ifnis odd then k > "2;3 and k > "2;2 ifnis even.

Proof. Let L be a Leibniz algebra of type I which satisfies the condition of the lemma. Then f; € L; for
1<i<kand
Ly ={e1n.fr,.. .. fi)y L2 D {e2), L3 D (e3).
Let us introduce the notations
n—3—k
lenfil=ajea+ D Bisferss 1<i<k.

s=1
From the equalities [[e; fjl, e1] = [eir1.fjl, we get [eo,fi] = ajes, 1<j<k. By equalities

[[fi 1 e1] = 0, we can conclude [fi, 1 = ¥ fir1 + -+ + ¥ > “fas for1<ij<k.



We may assume that [f;, f1] = 0 for 1 <i<k. Indeed, if we consider the element Ae; + Bf; with a
large enough value of A and B # 0, then rank(Rge, +f,) > 3. Therefore, C(Ae; + Bfi) would be larger

than (3,1,...,1), i.e., we get a contradiction. Applying similar arguments, we obtain [f;, fj] = 0 for
1<i,j<k.
Thus, we have the following products:
lei e1] = eiyq, 1<i<2,
n—3—k .
[e1, fi] = ajer + Z] Bjsfiers 1<j<k,
* 5= .
() [e2, fi] = ajes, lg_lgk,
[e3,fj’]:[fi,e]]=o, 1<J<n_37
[fifil=0 1<i,j<k.

Since [fi,fil =[fieil =0 for 1<ij<k one can assume L = ([ey,eq1] [ey,fi]) that is,
dim(Ly) <k 4+ 1.

Let us suppose fi+1, fk+2, - - -, fe+s liein Ly for 1 <s <n — 3 — k. Then applying the arguments used
for [f;, f1], we obtain [fi;, fj] = yijes for 1 <i<s, 1<j<k. Now using (*) we can conclude L3 = (e3)
andk+s=n—3.

Thus,

Ly ={er.fi.for ... fi), L ={exfixt.fix2, - . Jn=3), L3 =(e3). [

The following theorem presents the classification of graded non-split (n — 3)-filiform Leibniz
algebras of type L.

Theorem 2.2. Any n-dimensional graded non-split (n — 3)-filiform Leibniz algebra of type I is isomorphic
to one of the following pairwise non-isomorphic algebras:

nis odd:
lei,e1] = eit1, 1<i<2,
[61,]‘}'] :fnz;3+j’ 1 <]< t,
" e, fe1] = €2+ fus iy,
O\ e fil = fuza g, t+2<j<2,
[e2, fr+1] = e3,
[fn%3+j,]3':|263, 1<j<t 0<e< 52,
lei e1] = eit1, 1<i<?,
[e],fl] =ue +f@+].
2
le, fol = Bea + fus 4y
Pl) : {lenfil =fazs 3<j<52,
le2, f1] = aes, a eC,
le2.f2] = Bes, o + B2 =0,
[fis 5] = e, 1<j<t, 0<t< 53,
where P (a) is isomorphic to P} (—«).
[ei, e1] = €jt+1, 1<i<2,
ler, il = ez +fus 1y, o € C\{O),
. _n=3
P2 (a) : le1. ;] Zf#_,_jv 2<j<53,
le2, fi] = aes,
[frs 5] = es 1<j<t 0<t< 3,

where Pt2 (@) is isomorphic to Pt2 (—a).



nis even:

[ei, e1] = eit1,
(o151 = fln:3 147
[elva%J
[ez,anz;zJH] =e3

[fL'EiJ+1+i'ch‘] =e3 1<i<t 0<t< L%J .

NN

N, : ml=e2

Proof. Due to Lemmas 2.1 and 2.2 we have

Ly = {er.fr.fo .. . Ji) L2 = (€2 fitrt. fiv2, - - - Ju—3), L3 = (e3)
and
[ei e1] = eit1, 1<i<2,
len, 1 = ajes + 47 Bisfirss  1<j<k,
1= q <j<k,
(k) [e2, fi] = ajes, 1 j k
[es,fil = [fj, e1] =0, 1<j<n—-3,
[fif] =0, 1<ij<k,

[ferin i1 = vijes,

1<isn—3—k 1<j<k.

Consider the case n odd.

Ifk > % we obtain [eq, f;] = 0, putting f; = a1fi + a2f> + - - - + ayfi for appropriate values of
ai, ay, . .., ag, we get a split algebra. The same happens if k < % Thus, we have k = %
If Bj1 =0for 1<j< % then fnz;s+1 ¢ Ly, which is a contradiction with the condition L, =

<ez,fnz;3+1,fn%s+2, .. .,fn,3>. Hence, Bj,1 # 0 for some jp € {1, e, ”773} Making the change of

n—3
: ! __ F / / _ 2 Q. :
variables f{ = f,, 13»0 =fi andf%Jrl =2 ,Bjo_sf%_irs,we obtain

n—3

=
[%f{] =a1e3+ ) Brofus = e +f2%3+1,
s=1

where ] = o, B = Bio.s-

Accordingly, for fj with 2 <j < % we can obtain
[ei e1] = eitq, 1<i<2,
le1 fil = aje2 +fns 1<) < =3
le2, fi] = aes, 1<j< 23,
les. fil = [fierl =0, 1<j<n—3,
[fifil=0, 1<ij< 2,
[fnz;3+,-vfj] = VYijes 1<i,j< ”2;3

By the following products [f%wﬁ] = [le1, fil — aiea, fil = [lew. fil. fi] — ailea, fi1 = lex, [fi 1]
n—3

+ [[e1, fil. fil — evicrjes with 1<, j < "2 we obtain that y;j = y;; with 1 <i,j < "32.

Now consider the matrix consisting of the element y;j, where 1<i,j < % Let t be a natural
number of rows of the matrix (y;;) in which there exists a non zero element. If all ;; = 0, then we
assumet = 0. By corresponding renumbering of the basis elements {fj, . . ., fn—3 } we can suppose that

2

the first t rows have non zero elements. It means that in the products of the algebra we can suppose
that for each i from 0 <i < t there exists some j such that y;; # 0.



If y11 # 0 we can make the following change of basis:

fi= J;Tfl,
; —Vnﬁ V1Jf1, 2<j< 53,
fos iy = Al
fnz;3+,- =nafasy —nifis gy, 2<is =3
andwe have y1 1 =1, y1; = 0if2<i< "2,
" 3 such that y; ; # 0 then we can obtain 11 = 1and

If 1,1 =0and there exists i with 2 <i<
Y1 =0with2<i< ” 3 from the following change

f1 = Afl +fiy

/ —
f%ﬂ = Afnss g +fos iy
=15 2<j<n—3,j¢ {1552 +1],
WlthA 7& Vlz A 7& 0.
Thus,
[ei, e1] = eit1, 1<i<2,
ler, fil = ojer +fus 1)< n3
[e2, fi] = ajes, 1<j<m2,
les.fil = [fier]l =0, 1<j<n—3,
[fifil=0, 1<ij< 2,
[fnz;3+1,f1] =e3,
[fnz;sﬂ,fj] =0, 2<j< 3,
[fﬂ—&-i'fj]:)/i,je& 2<i< 2, 1< 2,

If y25 # 0, then we can obtain y, = 1 and y,; = 0 with 3<i< 73 from the following change
of basis:

1
fészv
f —szfj yz]fl. 3<j< 2,
fn3 \/m7+21
3<ig i3,

f%"‘i - J/Z,Qf%_;_,' J/Z,if%_‘_l.

If 5o =0and there exists i with 3 <i< ”;3 such that y,; # 0, then we can obtain y,, = 1 and
Y2i = 0with3<i< == ” 3 from the following change

fz = Afz +fiy

f’/%%z = Afnss p +fns
=5 1<j<n—3,j¢{2,%+2},
withA # — V" ,A#0.
If we repeat this process with y;;, i =3, ..., H, finally we obtain the following family:
lei e1] = eit1, 1<i<2,
[e1. fi] = ez +f%+j, 1<j< "2—3

L(t) : [e2,fi] = ajes, 1<j< 2,

iy = s Tsist



If ¥ =0 with 1
dim(Center(L(t))) = =2 — t + 1.

s/

<i,j< % then we have L(0). Therefore, L(t) 2 L(t") with t # t' because

Let {Olt+1,ott+2, .. .,a@} be elements of C. If there exists ip with 1 <ip < ? — t such that
2

n—3

Arti; 7 0, then one can suppose that oy = 1 and ¢4 = 0 with2 <j < 5= —

2
change of basis:

Caseig # 1

/ _ 1 X
ft+] - mff"‘lo'

Frcs oy = a3 gy
152 +t+1 Qttig? - Tt+io’
/
feqj = Qtiferi — Aetiferios 2
/ — . _ .
f’:2;3+t+j = at-l—lof%Jr[«H' at+jf%+t+ioy 2
frtiy = etipfe+1 — Cetfirips
7 _ . _
B gy = S i e~ Gerifip

Caseig =1
/
fe

/ _ 1
oz pon = @l

_ 1
= anfer

ftvj = derifer — detifern,

fis

LN R Bl LRt

t, by the following

and we obtain L(t, 1). If otr4j, = O with 1 <ip < % — t, then we have L(t, 0) and L(0) if t = 0. These

families do not intersect:

lei, e1] = eit1, <ig2,
le1, il = ajea + fos 4, 1<j<y,
e1 frar] = €2+ fus iy,

o [0 Ty T e
[ez,fj] = ajes, 1<j<t,
le2, fr+1] = e3,
le2fi] =0, t+2<j<53,
[f%sﬂ,fj]:eg, 1<j<t 1<e< 53,
[ei e1] = eit1, 1<i<2,
[31,fj]=05j32+ff12;3+jv 1<j<t,

L(t,0) : {lenfil =fuzs t+1<j<53
[ez,fj] = ajes, 1<j<t,
frs o fi] =es 1<j<t 1<t< 52,

We have that dim(Center(L(t, 0)?)) = dim(Center(L(t, 1)?)) + 1.

Case 1: If we consider the first family, L(t, 1), then it is easy to check that the following change of basis

leads to the algebra M;.

f,.::oqu —fi 1<i<t,
fio =il —fipg 1<ist

Case 2: If we consider the second family, L(t, 0), then we make the general change of basis (it is sufficient

to change the generators):



n—3
6/1 = A1e1 + Ares +Ases + ) ij}',
j=1
, n—3
fi = Giier + Gyiex + Gsies + Zl Djfj,
]:

Since the vectors es, fn73 +tJr],fnfa g
=D, n=3

2

pose that A3 = C3; =0 and Bn 3.
compute the products, then we obtaln

240
el = Arer + Azes + Z Bif;
j=1

._0w1tht—|—1<1<”—and1<l<”

1<i<?,

., fa—3 are in the center of the algebra, we can sup-

. Thus, if we

n—3

t t t 2
ey = A (A1 + ZBjaj) e+ |:A2 (A1 + ZBjaj) Z = } es+Ar ) Bifi=s
j=1 j=1

j=1

j=1

2
t t
ey = A (A1 +3 Bjaj) +) B |es,
j=1

j_f'l
n—3
=2 4t

fl = Ciie1 + Coiea + > Dyf,
=

1<i< ,

2

j=1

t
fis =4 |:C1: + ZDuaJ — o (/h + ZB]a])j| e+ {Azcli +42 ) Dy

j=1

t
+D Bus Dy — (Az (
j=1
n—3
2
+ A1 Y _(Dj — o{B)fn- =3,
j=1

j=1

Fow)+ o)

A+ ZB]a,

1<i<t

’

t t t
fé%-ﬁ |:A1C11 + A ZDUO{]:| ey + |:A2C11 + A ZD,JO[] + ZBn 3 D,]i| e3

j=1
n3

+A1ZDUfn 54 LH1<is

j=1
and the following restrictions:

1.G;=0 1<i< 3,

2
2. (A + X Biey) Si Dy + X BiDy =0, t +1<

j=1 j=1

’

i<t

2 .
(Al + o1 B ) Xof_ Doy + Y5 BiDyj = o [(Al + i Bj“}') + 2 312} 1<i<g

4, (2;21 Djaj —

+ X0 B 1<isy,

o) (A1 + Xi_ Bioy) ) Xy Dyey + Xiy (D — ;) Dy =

<A1 + ZJL] Bjaj)z



o
<
=
+
i}
l
oS
K
SN—"
+
L]
ﬂ.
=)
N =
|
w
iy
=)
I
o
Pk
IN
N
‘ =1
N

M‘

7. Coi Y1 Dimotm + X5 Dins  pDjm =0, 1< j <57,

3. (Ztm:1 Dimotm — Ol,'/ (Al + Z[m:1 Bmam)) Ztm:1 Djmotm + Ztm:1 (Dim - Oli/Bm) Dim = 0,
1<i<t, 1<<2, i #],

1

9. (4= Dim0m) (Xkiey Dim0tm) + Xhhq DimDjm = 0, t +1<i< 52, 1< <2, i #].

N
N
‘ =
IN)

Since A;, Cy; do not appear in the expressions ofa{, we can suppose thatA, = C; =0, 1
Accordingly,

b — |0 tH1<i<"2 ort+1<j<"2 andi #],
YT i=jandr+1<i<iE.

Taking into account the above restrictions, we have the following expressions:

/ 34t
e; = Aje; + Z ijj,
j=1
n—3
t t 2
ey = Ay (A1 + ZBjaj) ey + (Z angﬂ.Bj) es+A1 Y. ij%ﬂ,
j=1 j=1 j=1

2
t t
eg =A (A1 + ZB]'O(]') + ZBJZ es,
=1

=1

t
f =) Dy 1<is<t,
j=1

n—3

fl=Ff t+1<i<

t t ¢ .
fr/%3+i = A; LZ Djjatj — o (A1 + ZBjaj):| ey + LZ B?ﬂD,-j —af (Z anﬂBjﬂ e3
j=1 j=1 i— —
t
/ .
+A1Z(Dij—ai3j>f%+j, 1<i<t,
i=1

/! .
f%_’_i:A]fnz;?»_H‘y t+1<l<

and the restrictions (1)—(9) can be rewritten:

2 .
V. (A + X, Biey) Si_y Dyey + Xl BiDy = o [<A1 + Y0 Bioy) + X sz] 1<i<t,

2
2 (S Doy — of (A + iy Biey) ) iy Dyjoyj + Xy (Dy — efB)Dy= (A1 + Ll Byeyy)
+ Yl B 1<i<t,
3. ( tm:l Dimam — Ol,'/ (Al + 2%21 Bmam)) Ztm:1 Djmam + Ztm:1 (Dim — Oli/Bm)Djm =0,
1<i<t, 1<j<t, i #]j.



We only have to compute the restriction on the determinant of change of basis. Since we have that

t

2
t
e/3 = A] (A] + ZB]C(]) —+ Z B]2 es,
j=1

j=1

2
it implies that A; [(Al + X Bjaj) + 3 BJZ} +0.

If we observe the change of basis and using the properties of the determinant, it is easy to obtain:

. 2 . Dy --- Dt
2 2
At | A +ZBjaJ~) + > B; :
=1 =1
! ! Dy --- Dy
t
A (A + X Bjaj A1Bq
=1

t t
Aq LZ] D]jOlj — (X{ <A1 =+ 2:1 Bjajﬂ A1 (D1 — Ol{B])
= j=

t t
Aq |;X:] Dgjoj — Olg (A] + X:] Bjaj>:| A1 (D4 — O[{B])
= ]=

0 0
0 0
A1B; ABeyqr e A1Bn%3
A1(D]t—(x;Bt) 0 0
A] (Dtt - ot{Bt) 0 e 0
0 A .. 0
0 0 . A
. 2, Dpn -+ D1t
1343
=A (Al +ZBJ‘%') +2 B || :
j=1 j=1
! ! Dy -+ Du
t
A1 + Y Bjaj By e B:
j=1
t ’ d / ’
z:l Dijoj — af (A1 + z:] Bjaj Dy —aiB1  --- Dyt —ajB;
X [J= =

t t
> Dijoj — o (A1 + 3 Bjozj> Dy — /By -+ Dy — ;B
= =



2 Dy --- Di¢

1343 t Lo
= A’ A+ Boj| +) B || X
j=1

=1
Dy --- Dy

Applying the determinant properties, we compute the value of X.

t
A1+ ) Bjoy By .-+ Bt
=
¢
> Dyjo Dy .-+ Dyt
X= Jj=1
¢
ZDthlj Dy -+ Dg
=1
¢
' Bjaj By B:
A, B --- B Jt:1
0 Dy -+ Dy 2 Dijg D --- Dyt
= + Jj=1
0 Dn -+ Du -
> Dy Dp Dy
=
Dp  --- Dt
=A1 : . . .
Dy --- Dy

Thus, the determinant is equal to:

¢ 2, Di1 --- Die
Bt 2 . .
A A+ B | + ) B || S| #o.
= = Dy -+ Du
The general change of basis can be reduced to two changes of basis:

CaseA:Letf/ = Z}Zﬁ Dyf; with 1 <i < "2 and €] = ¢; with 1 <j < 3. The same way that the general
change of basis we can suppose that:

b [0 tH1<i<BE ore 1< P andi £
Tl i=jandt+1<i< i3,

2
In this case, we can rewrite the restrictions (1')—(3’) as follows:
1//. Z}=1 Djjaj = Ot,{, 1<i<t.
2.y Dk =1, 1<i<t,
3y DimDjm =0, 1<i<t, 1<j<t, i #j.

We have that 1 <t < % In the matrix form, we can write the conditions to new parameters by:



o} Din ... Du\ (on
o=]:1]=]": : : | ¢ o =Da.
of Di ... Du) \ot
In the matrix form, the restrictions (1//) 7(3//) can be reformulated by:
D-D'=D"-D=1= |D| =41, wherelisthe unitary matrix.
Itis easy to prove that a2 + o + -+ + a2 =of + a3 + - + al.

1LLleta? +---+a?=0.

(@) Ifoy = @ = - - - = ¢ = 0, then L¢) is isomorphic to P/ (0).
(b) If there exists jo such that «j, #* 0, it can be supposed that o # 0.
Yigjusi Djicti

In this case one can obtain a3 =---=a; =0 (choosing Dj; = — == with

3<j<t—1).

We only have to prove that D - D' = I. We have t? free parameters and we use t — 2

parameters. If D - D' = I, then we have @ equations. In fact, there exist t* — t 4 2 free
t(t4+1)

parameters and equations, since t> — t + 2 > @ the system has a solution.
We have that o7 # 0, oy = Zicq, o = 0, 3 <i<t and by a change of basis, one cannot
obtain oj = 0.
If oy = iorq, we obtain P! (o) with @ € C\{0}.

2. Leta? + - - - + of # 0.Then there exists jo such that o, # 0.1t can be supposed thatay # 0.In

t o
iz i Diicti
o

this case we obtaina} = - -+ = o; = OchoosingDj; = — with 2 <j < t. Accordingly,

the system D - D' = I has a solution. In this case we have Pt2 ().

Case B: Let ¢] = Aqeq + 21'7;13 Bjf; and j]-’ =fiwith1<j< ”2;3 We can suppose B; = 0 with ”2;3 +
t <j <n — 3. We can obtain this change by the composition of the two following changes:

B.l:Lete| = Aej, thenB; =0, D = 1, Dj = 0, i # jand A # 0(by the condition of the determinant).
The restrictions are the following:

Lo =Ad], 1<i<t.
2.A2=1.

We have of = to; with 1 <i<t.
B.2:Lete] =e; + Z]':f Bjf;, but it is sufficient to consider €] = e; + Bsf; with 1 <s<t and B; # 0.
The restrictions are the following:

1 (1+ Be)ei = of [(1 + Bsrs)? + B2, i # 5.

2. (1 + Bsows)ots + Bs = o' [(1 + Bsas)? + BSZ] .
La2+1=(@2+1) [(1 + Bsors)? +B§], 1<i<t.
4. aio; = o] [(1 + Bsats)? + 352], 1<ij<t, i #]j.
5.(1+ Bs)> + B2 +0.

We have that the expression @2 + 1 is an invariant, i.e., if o2 + 1 is zero then /2 + 1 is zero and
if @ + 1 s not zero then /> + 1 is also non-zero. Thus



(@Lleta?+1=0=a2+1=0.
Replacing in the restrictions we have that B; = 0, which is a contradiction.
(b)Leta? +1#0= a2 +1+0.
The product ;o is an invariant expression, i.e., if ajas % 0 then oo’y % 0 and if ajos = 0
then arfcf = 0.
If there exists ip with 1 <ig <t such that «;, # 0 and i # s then we have two cases:

o Let oz,oozS =0.1It implies that &g = 0 and o, = 0. Replacing in the restriction we have that

al = 1+B2' and af = 1+32 Since orfy ¢ = 0 and «f; # 0 we have ¢ = 0 = B; = 0, which is a
contradiction.
o Let ajyors # 0. This implies that «s # 0 and of o # 0. We can choose Bs = —ﬁ and we
S

obtain o4 = 0, which is a contradiction.

o5 +Bs (2 +1)

lfai7&0withl<i<tandi7és thenwehavethataé:m
sOls S

and ip # s. Choosing Bs =

and o/ = 0 with 1<i<¢t

2+1 we obtain a5 = 0.

In these cases we obtain the same algebras or families of algebras that in the case A.
Consider the case n even.
In a similar way to the case n odd, we can obtain

leie1] = ey, 1<i<2,
ler, fi] = ajer +f[T3J+1+J" 1<j< L%J
le2, fi] = ajes, 1<j<| 2],

sz o] =
]z =

[fL%J+1+i,fj:|=yiJ€3, 1<i§L%J, 1<j<LT3J+1

By the following expression [ = +1+i,f]] = [[e1, fil — ajey, fj] with 1<i,j < L 5 J we obtain

that y;; = ¥, with 1 <i,j <
A similar process to the case n odd allows us to obtain:

[eivel]=ei+]v l<l<2,
lev. 1 = o2 + w1y 15[ ")
[e2. fil = wjes, 1<j< an;aj '

NO ] el | = e
(S

[fL%JHH,ﬁ]:eg, 1<i<t, 0<e<| 2],

If we make the following change of basis:
;o | n= 3
A T |

we get the family N;.
If we repeat the process with the family L(0), then we obtain the same algebras fort = 0. [




2.2. Classification of graded (n — 3)-filiform Leibniz algebras of type II

Let L be an n-dimensional graded (n — 3)-filiform Leibniz algebra of type II and let {eq, e, e,
fi, .. .. fa_3} be an adapted basis.

Theorem 2.3 ([4]). Let L be a complex n-dimensional graded (n — 3)-filiform Leibniz algebra of type II.
Then L is a Lie algebra.

This theorem completes the classification of graded p-filiform Leibniz algebras in each dimension
with n — p > 3. In particular, the classification of graded (n — 3)-filiform non-Lie Leibniz algebras is
present on the list of Theorem 2.2. The classification of graded p-filiform Leibniz algebras (n > 4) was
studied in [4]. Moreover, it should be noted that the list of graded p-filiform non-Lie Leibniz algebras
n — p >3, is simpler than in the Lie algebras case, despite the complementary set of Lie algebras in the
Leibniz algebras set forms a Zariski open set (it is well-known that the open set in Zariski topology is
a big set).
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