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1. Introduction

ABSTRACT

In this paper we present the classification of a subclass of naturally
graded Leibniz algebras. This subclass has the nilindex n — 3 and the
characteristic sequence (n—3, 2, 1), where nis the dimension of the
algebra. In fact, this result completes the classification of naturally
graded Leibniz algebras of nilindex n — 3.

The theory of Lie algebras is one of the main fields of the modern algebra. From the classical theory
of Lie algebras it is known that the study of finite dimensional Lie algebras is reduced to the nilpotent
ones. From the investigation of nilpotent Lie algebras devoted many works [3,9,13], and others.

Since the description of nilpotent Lie algebras is an unsolvable problem they should be investi-
gated adding some restrictions like restrictions to the index of nilpotency of the algebra, gradation,
characteristic sequence and others. Firstly, Vergne studied Lie algebras with maximal nilindex (such
algebras are called filiform algebras). In fact, she classified the naturally graded filiform Lie algebras
and described filiform algebras in terms of 2-cohomologies. Further, in the work [8] the classification
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of the n-dimensional naturally graded Lie algebras of nilindex n — 2 is obtained. However, the next
stage, the classification of the naturally graded Lie algebras of nilindex n — 3 is not established.

Intensive investigation of Lie algebras leads to the appearance of new algebraic object - Leibniz
algebras. Recall, the Leibniz algebras introduced by Loday in [10] are a “non commutative"” algebras
analogue of Lie algebras. Several authors have studied the structural properties of Leibniz algebras,
[1,7,11,12]. In the context of this work we mention the paper [1], where the authors described up
to isomorphism, the naturally graded Leibniz algebras of nilindex greater than n — 1. Concerning
Leibniz algebras of nilindex n — 2 we have the difference with the case of Lie algebras. Due to inherent
property of n-dimensional nilpotent Lie algebras of nilindex n — 2, they have characteristic sequence
equal to (n — 2, 1, 1), but the Leibniz algebras have also another characteristic sequence, (n — 2, 2).
The classification of such naturally graded Leibniz algebras is completed in [4,5].

The last possible stage - the classification of complex n-dimensional naturally graded Leibniz al-
gebras of nilindex n — 3 is a difficult problem and it should be divided into three cases. Namely, it
is necessary to consider the possibilities of the characteristic sequence of such algebras: (n — 3, 3),
(n—3,1,1,1)and (n—3, 2, 1).To the classification of the complex naturally graded Leibniz algebras of
nilindex n—3 with characteristic sequence equal to (n—3, 3) and (n—3, 1, 1, 1) devoted works [3,2,6].

The knowledge of naturally graded algebras of a certain family offers significant information about
their structural properties. In this sense, in [11,12], the authors give an isomorphism criteria to obtain
the classification of filiform Leibniz algebras arising from naturally graded complex filiform Leibniz
algebras. The isomorphism criteria are given in terms of invariant functions.

In this paper we obtain the classification of naturally graded Leibniz algebras of nilindex n — 3 with
characteristic sequence (n — 3, 2, 1). Thus, we complete this study for the n — 3 case. Remark that this
classification includes Lie algebras of nilindex n — 3, which were open until this work. All the spaces
and the algebras are considered over the field of the complex numbers. We omit the products which
are equal to zero, for convenience.

Throughout all the work we use the software Mathematica (see [4]) to compute the Leibniz identity
in low dimensions and to formulate the generalizations of the calculations, which are proved for
arbitrary dimension. Moreover, the program allows us to construct now bases using some general
transformation of the generators of the algebra. Some examples of the programs for different types of
Leibniz algebras classes can be found in http://personal.us.es/jrgomez.

2. Preliminaries
In this section we give the necessary definitions and notions.

Definition 2.1. An algebra L over the field F is called a Leibniz algebra if the Leibniz identity
[x, [y, zll = [[x, y], z] — [[x, z], 1,

holds for any x, y, z € L, where [—, —] is the multiplication in L.

Note that in the case where the identity [x, x] = 0 is satisfied, the Leibniz identity can be easily
reduced to the Jacobi identity. Thus, Leibniz algebras are “non commutative" algebras analogues of Lie
algebras.

For an arbitrary algebra L, we define the following sequence:

=1, M =k 1], k> 1.

Definition 2.2. A Leibniz algebra L is called nilpotent, if there exists s € N such that ¥ # 0 and
[*t1 = 0. The minimal number s verifying this property is called nilindex of the algebra L.

Let L be a nilpotent Leibniz algebra and let x be an arbitrary element of L. We define the right
multiplication operator Ry : L — Las Ry(y) = [y, x].

For the operator of right multiplication R, denote by C(x) the descending sequence of its Jordan
blocks dimensions with x an arbitrary element from the set L \ [L, L]. Consider the lexicographical



order on the set of such sequence, i.e. C(x) = (ny,ny,...,n,) < C(y) = (my, my, ..., my) if and
only if there exists i € N such that nj = m; foranyj < iandn; < m;.

Definition 2.3. The sequence C(L) = maxxep\[z,1] C(¥) is said to be the characteristic sequence of the
Leibniz algebra L.

Definition 2.4. Theset R(L) = {x € L : [y, x] = Oforanyy € L} is called the right annihilator of the
algebra L.

Let L be a finite dimensional nilpotent Leibniz algebra. Put L; := Li/L"“‘1 with1 < i < s—1,where
s is the nilindex of the algebra L and denote gr(L) = L1 &L, ® - - - @ Ls_1. The graded Leibniz algebra,
gr(L), is obtained where [L;, L;] € Li;.

An algebra L is called naturally graded if L = gr(L).

Let L be a naturally graded Leibniz algebra with characteristic sequence (n — 3, 2, 1). By definition
of characteristic sequence there exist a basis {e1, e, ..., e,} in the algebra L such that the operator
Re, has one block J,—3 of size n — 3, one block J, of size 2 and one block J; of size one.

Note that there will be six possibilities for the operators Re, . By a change of basis it is easy to prove
that the six cases can be reduced to the following three cases:

Jh3 00 J2 00 Ji 00
0 20/, 0 Jn3 0|, 0Jn30
0 0 0 0 | 0 0 |

Definition 2.5. A Leibniz algebra L is called either of the first type (type I) or the second type (type II)
or the third type (type III) if the operator Re, has the form:

Ja3 00 2 0 0 Ji 00

0 LOYf, | 0J30(, |0OJus30]|,

0 0 0 0 | 0 0
respectively.

3. The main result
3.1. Typel
In this subsection we consider the algebras of type 1. So, we have the following brackets:
lei,er] =eiy1, 1<is<n—4,
len—3,e1] =0,

len—2,e1] =en—1,

[en—1,e1] =0,

[en’ E]] =0.
From the above brackets it is easy to see that {e,, es, ..., e,—3} € R(L) and
Ly 2 (e1), L 2 (e2), L3 2 (e3), ..., Ln—3 2 {en—3).

Let us assume thate,_, € L;; and e, € L,, thene,_1 € Ly 1.



We can distinguish the following cases:
Casel.Ifri =r, = 1.

Then we have
L] = (elv en72, en>7 L2 = <ez’ en71>: L3 = <e3>’ ey LTI73 = (en73)‘

Case 1.1. Let us consider e;—1 ¢ R(L).

Since the elements e;, and [eq, e,—2] + [en—2, €1] belong to the operator R(L), then the equal-
ity [e1, en—2] = «1ey — ep—q is achieved. Similarly, considering the embedding of the elements
[en—2, en—2], [en, enl, [en, en—2] + [en—2, en], and [e1, en] + [en, €1] in R(L) we get [en—2, en—2],
[en, enl, [e1, en] arein (ez). Moreover, [en—2, en] = Bn—2€2 — yen—1 and [en, en—2] = ez + yen—1.

Taking this into account we obtain a first version of the family of the algebras:

lei, e1] = eiy1, 1<i<n—4,
[en—2,e1] = en—1,

le1, en—2] = 12 — en—1,

[ei, en—2] = ai€it1, 2<i<n—4,
[en—2, en—2] = an—2e2,

[en, en—2] = anez + yen_1,

lei, en] = Bieit1, 1<i<n—4,
len—2, en] = Bn—2e2 — yen—1,

len, en] = Brea.

By the Leibniz identity, it is easy to prove that [e;, e,—1] = 0for 1 < i < n — 3, which is a contra-
diction because e,—1 € R(L) forn > 8.

Case 1.2. Let us consider e;—1 € R(L).

In this case using the Leibniz identity we obtain the law of the family (n > 7):
[ei, 1] = eiy1, 1<i<n—4,

[en—2, 1] = en—1,

le1, en—2] = aez + d1€n—1,

lei, en—2] = cveiyq, 2<i<n—4,

[en—2, en—2] = S2€n—1,

[en, en—2] = d3en—1,

[e1, en] = Bez + yien—1,

lei, en] = Beit, 2<i<n—4,

[en—2, en] = y2€n—1,

len, en] = y3en—1.




It should be noted that {e,—3, e,—1} € Center(L). Further we compute the Leibniz identity with
aid of the software Mathematica.

Due to the property of natural gradation of the algebra it is enough to consider the following change
of generators:

/
el = Piey + Py—en—2 + Pyey,

/

en_» = Qnen_3 + Quen,
/

€, = Rp—2en—2 + Rpey.

Case 1.2.1. Let us consider e, € R(L).
Then it implieso = §; = 8, = §3 = 0.
We have the family of algebras denoted by
[ei, e1] = eiy1, 1<i<n—4,
[en—2, e1] = en—1,
[e1. en] = Bez + y1en—1,

[ei, en] = Beit1, 2<i<n—A4,

L(B, Y1, v2, ¥3) -

[en—2, en] = y2en_1,

[en, en] = y3€n—1.

Lemma 3.1. Anarbitrary Leibniz algebra of the family L(8, 1, 2, ¥3) isisomorphic to one of the following
pairwise non-isomorphic algebras:

L;(0,1,0,0), L»(0,0,1,0), L3(1,0,0,0), Ls(1,0,—1,0), L5(1,0,1,0), Le(1,1,1,0),

17(0,0,0,1), Lg(0,0,1,1), Lyg(1,0,0,1), L1p(1,0,1,1), Ly1(1,1,1,1),
L]Z(la 07 _19 l)

Proof. Making the general change of basis in the family L(8, y1, 2, ¥3), we derive the expressions of
the new parameters in the new basis:

g BRn

PP
(y1P1 — BPp—3 + V2Pn—2 + y3Pn)P1Ry

"7 Py + APy (P1Qu_z + 12PaQu—2 + y3PaQn)’

Vi = (¥2Qn—2 + y3Qu)Ry

’ P1Qn—2 + ¥2PnQu—2 + ¥3PnQn ’
v = (V2Rn—2 + ¥3Rn)Rn

y =

P1Qu—2 + ¥2PnQn—2 + ¥3PnQn’
with the following restrictions:

BQn =0,

Qu(y2Qn—2 + y3Q) =0,

Qu(y2Rn—2 + y3Ry) =0,

Y1P1 — BPn—2 + ¥2Pn—2 + ¥3Pn = 0,
P1(Qu—2Rn — QuRp—2) # 0.



If Q;, # 0, then 8 = 0 and we get the homogeneous linear system,
72Qn—2 + y3Qn =0,

V2Rn—2 + 3Ry = 0,

whose solutions are y, = y3 = 0. Moreover, from y;Py — BPy—2 + y2Pn—2 + y3Pp, = 0 we get
y1P1 = Oyielding y; = 0. That leads to a split algebra.
¥3PnRy

Thus we will consider Q, = 0. That implies P; 4+ 5P, # 0 and henceR,_ = —————.
(P1 + y2Pn)

We can distinguish two cases:

(a) When e, € R(L).

Then 8 = y; = y» = y3 = 0, and we again obtain a split algebra.
(b) When e, ¢ R(L).

It is necessary to distinguish the following subcases:

(b1) |ys =0.

Then we have R,_, = 0 and let us observe that the nullities of 8" and y, are invariant.

If = 0and y», = 0, then y; # 0. Choosing e, = %en, we can assume )7 = 1 and we obtain the
algebraL;(0, 1, 0, 0).

If 8 = 0and y, # 0, then putting P,_, = —%’1 and making e, = %en, we have the algebra
L,(0,0,1,0).

If B # 0and y, = 0, then choosing e}, = %en and P, = ”Tfl we get the algebra L3(1, 0, 0, 0).
If B # 0and y, # 0, then it is not difficult to check the validity of the following expression:

_ (ﬂ - VZ)Pan
(P1 + BPy)(Py + y2Py)

B — v,

Let us distinguish the following cases:

(1) B—ra#0.
_ nh

If we choose P,_, = 4o, we obtain y{ = 0. Moreover, 8’ = 1ifand only if R, =

and 5 = —1ifand only if P, = —%.
The restrictions P; + 5P, # 0 and P; + BP, # 0 are also verified. Indeed,

P1+BPy
B

Py (y2 + — )P
P1+Vz(— 1(;2/”8}3)): (B 2/13/2) 1 £0
and
Py (v2 + -
K +ﬁ(_ 1(;2/2/3 IB)) - 7/zzlfzﬂ 7o

Thus, we obtain the algebra L4(1, 0, —1, 0).
(2) B—y2=0.



Then ' =y, = PliﬁP »and choosing Ry = Pltf 1 we yield the equalities 8/ = y; = 1.
Moreover, the nullity of y; is invariant, because y{ = W

(a) If 1 = 0, then we get L5(1, 0, 1, 0).
(b) If y1 # 0, then choosing Qu,—> = w we can assume y{ = 1 and the algebra
1
Lg(1, 1,1, 0) holds.

(b2) |y3 #0.

Then we have
BRn , (11P1 — BPy_2 + ¥2Pn2 + v3Py)P1Ry

IB/ = —, ‘}/ = ,
Pi+ Py ! (Pt + BPa)(P1 + ¥2Pn)Qu—2
, v2Rn , y3P1R
VZ = 9 ‘}/3 = 2 .
Py + y2Py (P + y2Pn)*Qn—2

Let us distinguish the following cases.

If =0andy, =0.

2
Choosing P, = —V;—? and Qu—; = y?,f" we can suppose y; = 0, and y§ = 1, so the algebra
L7(0, 0, 0, 1) is obtained.

If =0andy, #0.

Choosing P,_, = —%,Rn = %7’2’213" and Q,_; = V;PI we obtain that y{ = 0,y =

y3 = 1.Thus, L3(0, 0, 1, 1).
If #0andy, =0.
Choosing R, = P‘%fP”,Pn_z = % and Q,_, = % we obtain g/ = 1, y{ =
0, y3/ = 1. Therefore we have the algebra Lg(1, 0, 0, 1).
If8 #0andy, #0.

If B — y» = 0, we have nullity invariant as a form:
, (y3 = By)RaP;

/ S
TN = e+
Thus,
) B—rv2=0.
2
e [fy3 — By # 0, taking P, = —V;—I:‘, R, = _71314;3/.‘51% and Q,—» = 7@1?52)2, we obtain

B =1,9=0y, =1,y; =1andthealgebraly(1,0, 1, 1).
e [f 3 — By; = 0, analogously to the above case, choosing the appropriate values of R, and
Qn—p wecanassume 8/ = 1,4 = 1and y; = 1. Thus, we get Ly (1, 1, 1, 1).
2) p—y2 #0.
Choosing the appropriated values of R, P;,_», P, and Q,_, we obtain 8’ = 1, y]’ =0,p = —
and y4 = 1, respectively. Therefore, the algebra L15(1, 0, —1, 1) is obtained. O

Case 1.2.2. Let us consider e, ¢ R(L).

In this case if e, € R(L), then by the following change e,_, = e,, €,

n = en—2, We come to the
above case 1.2.1.



Therefore we assert that e, ¢ R(L). Then we derive the family

[ei, e1] = eitq, 1<i<n—4,
[en—2, e1] = en—1,

[e1, en—2] = aex + d1ep—1,

[ei, en—2] = c€itq, 2<is<n—4,
M B i oy 51,8 35) « | L0 2 12 = Do

[en, en—2] = d3€n—1,

le1, en] = Bex + y1en—1,

[ei, en] = Beit1, 2<i<n—4,

[en—2, en] = y2en—1,

[en, en] = y3€n_1.

Since e,_; € Center(L) we can consider the factor algebraL = L/(e,_1), which is naturally graded
2-filiform and by [5] it leads the nullity of that « is an invariant. Hence, we distinguish two cases:
o # 0and « = 0. The next result shows the classification for the case ¢ = 0.

Lemma 3.2. An arbitrary algebra of the family M(c«, B, v1, 2, V3, 61, 62, 63) with o 7 0 is isomorphic
to one of the following pairwise non-isomorphic algebras:

M(1,0,0,0, 1, 81, 62, 83), M>(1,0,0, ,,0,0,0,1) y» # 0,
Ms(1,0,0,—1,0,0, 62, 1), M4(1,0,0, 94,0, %, 0,1),y2 #0,
Ms(1,0,0,—1,0,—1,68,,1), 8, € {0,1} Mg(1,0,94,0,0,0,0,1), 1 #0,
M7(1,0,1,0,0, 81,0, 1),
Ms(1,0,y1,¥2,0,0,0,1),
y1 €1{0,1}, 2 € {0, —1},
Mq(1,0,1,9,,0,0, 82, 1),
y2 {0, =1}, & € {0, 1},
Myo(1,0, 91, —1,0,0, 8,2, 1),
7 ¢ {0, 1}, & € {0, 1},
My1(1,0,1,-1,0,0,6,,1), 6 € {0, 1},
Miz (1,0, 71,72, 0,0, - 0=2I012) )

14! ¢{071}7 V2¢{0» _1}7 M13(170717_190719051)’



Mi4(1,0, 91, —1,0,0,0, 1), y1 ¢ {0, 1},
My(1,0,0,0,0,2,—1,0)
Myg(1,0,0,1,0,0,0,0),
Msy(1,0,1,0,0,0,—1,0),
M>,(1,0,1,0,0,0,0,0),

M4(1,0,0,0,0,61,1,0), 6; € {0, 1},

Mi5(1,0,1,¥2,0,0,0,1), 2 ¢ {0, —1},
My7(1,0,0,1,0,61,0,0), 6; € {0, 1},
My9(1,0,1,1,0,—1,0,0),
M»(1,0,1,0,0,0,1,0),
My3(1,0,0,0,0,0, 6,0), 8, #0,
M>s(1,0,0,0,0, —2, —1,0).

Proof. This proof is similar to the proof of Lemma 3.1. O

Now, we consider the case where «

invariant.

0.Thus, Q, = Oand B/ =

BRx

, i.e., B is nullity
P1 + BP;, p

Lemma 3.3. An arbitrary algebra of the family M(0, O, y1, V2, V3, 61, 82, 83) is isomorphic to one of the

following pairwise non-isomorphic algebras:
M>y6(0,0,0,0,1,0,1,0),
M35(0,0,1,y2,73,0,1,0), y3 #0
Ms30(0,0,1,1,0,0,1,0),
Ms3,(0, 0, y1,0,1,1,0,0), y; € {0, 1},
M34(0,0,1,0,0,0,0,1),

M36(07 01 07 _17 y?:s Oa 09 1)9 )/3 € {Os 1}1

M27(0,0,0,1, y5,0,1,0), y3 #0,

M9(0, 0, y1,1,0,0,1,0), y; € {0,1}
Ms31(0,0,0,0,1,81,0,0), 87 #1,
Ms3(0,0,0,1, v3,61,0,0), y3,81 € {0, 1},
Ms5(0, 0, v1,¥2,0,0,0, 1), y1 € {0, 1},

72 #0,

Ms7(0,0, ¥1, ¥2. 0, . 0. 1), 1 € {0, 1},
Y2 #0,

M38(07 O’ Vl, _17 Oa _15 07 1)7 )/1 € {07 1}7 M39(07 O’ y17 _17 15 _15 07 1)7 )/1 € {07 _2}7

Myo(0,0,1,1,0,6,0,0).

Proof. The proof is similar to the proof of Lemma 3.1. [

Lemma 3.4. An arbitrary algebra of the family M (0, B, v1, ¥2, ¥3, 61, 62, 03), with 8 # 0 is isomorphic
to one of the following pairwise non-isomorphic algebras:

M#(0,1,0,0,0,61,0,0,), & ¢ {0, —1},

M43(07 11 07 01 1a 8]701 0)1 81 ¢ {0’ _1}1

M45(071507 _17]18]’07 0)7 5] #09
M4(0,1,0,—1,0,61,0,0), &1 #0,

M49(0s 17 Y1, Oa 17 81, 07 ])7 V1€ {07 ]}7

M43(0, 1, 1, 0,0, —1, 0, 0),
y1 € {0, 1},

Mas(0,1,%1,0,1, —1,0,0),
r1 €1{0, 1},
M4s(0,1,0,1,1,1,0,0),
Mgg(0, 1, y1, —1, 3, =2, 0, 0),
Y1, v3 € {0, 1},



Mso(0, 1, 1, —1,0, 61,0, 83), y1 € {0, 1}, 83 ¢ {0, 1},
Ms1(0,1,0, -1, y3,81,0,1), y3 € {0,1}, &1 #1,
Ms2(0, 1,91, 1,1,0,0, —1),

Ms4(0, 1,1, 1,0,0,0,83), y1 € {0, 1}, 85 #0,
Ms6(0, 1, y1, 1, y3, —1,0, =1), y1, v3 € {0, 1},

M58(07 la Y1, 170a 8]707 81)7 Y1 € {09 l}a (S] ¢ {Oa _l}a
Meo(0, 1, ¥1,0,1,0,1, 1),

M62(07 15 yla 7/2, 19 07 17 _1)7 VZ ;é 07

Me4(0,1,%1,1,0,0,1, 1),

Me5(0,1,1,1,0,1,0,0)

Ms3(0, 1, 1, —2,3,0,1, —1)
Ms5(0,1,1,1, 3, 0,0, —1),
Ms7(0,1,0,1, y3,0,0, —1),
y3 €{0, 1},

Ms9(0, 1, y1, 2, ¥3,0, 1,0, ),
Meg1(0,1,94,0,1,0,1, —1),
7 € {0, 1},

Me3(0, 1, y1,0, 3,0, 1, —y3),
Y3 #0,

Mes(0, 1, y1,0,1,0,1, —1),
y1 € {0, 1},

Mes(0, 1, y1,1,1,0,0, —1),
y1 € {0, 1}

Proof. The proof of this Lemma is similar to the proof of Lemma 3.1. O

Consider now the following cases.
Case2.Ifr, =1andr; > 1.

We also need to consider the following family of algebras

[ei, e1] = eiyq, 1<i<n—4,
[en—2,e1] = en—1,

N, B) [e1, en] = ez + en—2,
[e2, en] = aes + en—1,
lei, en] = eiy, 3<i<n—4,
[en—2, en] = Ben_1.

Theorem 3.5. Let L be an n-dimensional Leibniz algebra with characteristic sequence (n — 3, 2, 1) of type
I, = 1and r; > 1. Then the algebra L is isomorphic to one of the following pairwise non-isomorphic

algebras:

N](Oa ﬂ)’ IB € {0’ l}a
NZ(]’ ﬂ)v ﬁ € {01 _1}

Proof. When we consider r; = 1and ry > 3, we obtain the gradation Ly = (eq, e,), Ly = (e2), ...
LT]-] = (er—l)’ LT] = (erl» en—z)' . 'vLT1+] = (eT1+lﬂ el’l—1>7 .

[e1, en] = aes.

.. Ly_3 = (ep—3), so we can write



From the chain of equalities
[e2, en] = [[e1, e1], en] = [e1, [e1, enl] + [[e1, enl, e1] = cler, e2] + a[ez, e1] = cres,
we have [ey, ep] = aes.
Similarly we obtain [e;, e;] = aejyq for 1 < i < n — 4. Therefore,
[er,—1.e1] =er,
ler,—1, en] = ey,

and we conclude that it is impossible to obtain the basis element e, yielding contradiction.
Let us consider the caser, = 1andr; = 2.

ThenLy = (e1, en), Ly = (€2, en—2), L3 = (e3, en—1),...,.Ln—3 = {ep—3) and we denote [eq, ep] =
ajey + azen—2, [e1, en] = Brex + Baen—2.

The equation [[ey, en], e1] = [en, [en, e11] + [[en, e1], e,] implies B1 = B> = 0.

Sincee,_, € Ly, thenw, # 0and we canassume «; = 1. Moreover, since [e1, e;]+[en, 1] € R(L)
and a1e3 + ep—» € R(L), we have e,_» € R(L) and e,—1 € R(L).

Using the induction method it can be proved that [e;, e;] = «qei41 for2 < i < n—4,and applying
the Leibniz identity we come to the family N(«, B).

Taking the general change of basis in N(«, ) we obtain

S SR )
P1+apn’ Pl+,3Pn.
The study of nullities of «r, B leads to the algebras of Theorem. [

o

Case3.Ifri =1, > 2.

We obtain the following two families:

lei, e1] = eiy1, 1<i<n—4,
[en—2,e1] = en—1,

K(et, B1, B2), n > 8: [e1, en—2] = ez + en,

[ei, en—2] = €it1,

len—2, en—2] = Bren—1 + Baen.

[ei, e1] = eit1, 1<i<n—4,
[en—2, 1] = en—1,

[e1, en—2] = c1e2 — €n—1,

[e2, en—2] = a1e3 + azen,

T(aq,02,03), n > 10:
[ei, en—2] = a1€it1, 3<isn—4,
[en—1, en—2] = azey,

le1, en—1] = —oen,

[en—2, en—1] = —azen.

where (a2, a3) # (0, 0).




If we study these two families of Leibniz algebras we can prove the following theorem.

Theorem 3.6. Let L be an n-dimensional Leibniz algebra with characteristic sequence (n — 3, 2, 1) of type

I,y = 1and ry > 2. Then the algebra L is isomorphic to one of the following pairwise non-isomorphic
algebras:

K (0, B1,0), B1 €{0,1}; K2(1, By, B2), B1 € {1, =1}, B2 € {0,1}; K3(0,1, B2), B2 # O;
K4(1, B1,0), By # 0; Ks(1,1, -1).

T1(1,0,1); (1,1, a3), a3z € {0, 1}; T3(0, 1, 3), a3 € {0, 1}; T4(0, 0, 1).

Proof. Analogous to Theorem 3.5. [J

3.2. Typell

As in type I we have that L1 2 (eq1), L, D (ez) and we suppose e3 € L, e, € L,. Analogously, we
have the following brackets:

[e1,e1] = e,
[ei,er]l =eip1, 3<i<n—2.

Inthe casery = 1,r, = 1and e4 € R(L), if we make a change of basis, we can see that this case
becomes type I.

Ifry =1, = 1and eqs ¢ R(L) with n odd, we have the following family of Leibniz algebras
denoted by

[e1, e1] = e,

[ei, e1] = eit1, 3<i<n—2,
[e1, ei] = —ejy1, 4<i<n—-2,
[en, e1] = —Baea,

[e1, e3] = aje; — ey,
L(Ol1, o3, Op, ﬁ]v ﬂ?ﬁ /341 ﬂn) :
[e3, e3] = azeo,
[el‘lv 83] = Upez,
[e1, en] = Brea,

[e3, en] = Bzeo,

[en, en] = Breo.

Theorem 3.7. Let L be an n-dimensional Leibniz algebra with characteristic sequence (n — 3, 2, 1) of type

I, 11 = r, = 1andnodd. Then the algebra L is isomorphic to one of the following pairwise non-isomorphic
algebras:

L](Ol1,0l3,1,0, 0, 0,1), Lz(0,0[_?,,],O, 0, ﬂ4,1),
L3(:|:2\/a 70{3’1701 07 :F\/%9])7 a3 7501 L4(17011’03 0’_1’1)’
L5(O, 1, O, 0, O, ﬁ4, 1), L5(:|:2, 1, 0, 0, O, ,34, 1), ,34 (S {0, 1}

17(1,0,0,0,0, B4, 1), Ba € {0, 1} Lg(0,0,0,0,0, B4, 1), Ba € {0, 1},



Lo(a1,0,4,0,1,1,0), ay € {0, =1}, oy # =1, L1p(0,0, 0y, 0, 1,0, 0),

[11(1,0, 0, 1, 1, —tp, 0), oy # —1, L12(0, @3, —1,1,1,0,0), a3 € {0, 1},
L13(cty,1,-1,0,1,0,0), Li4(21,0,—1,0,1,0,0), o1 € {0, 1},
L15(0, 3, —1,1,1,1,0), a1 € {0, 2}, a3z € {—1, 1}, L5(1,0,—1,1,1,1,0),
L17(¢1,0,1,1,0,0,0), o € {0, 1}, L5(0,0,1,0,0,0,0),
L19(—1,0,1,0,0,1,0), Ly0(0, 23,0,1,0, B4,0), a3 € {0, 1},
Ba # 1,
L»1(0,23,0,0,0,1,0), a3 € {0, 1}, L»»(0,1,0, 31,0,1,0), B € {0, 1},
Ly3(£2,1,0, 81,0,1,0), By € {0, 1}, Ly4(1,0,0,1,0,1,0),
Ls(2,1,-1,1,1,1,0), L»6(0,0,0,1,0,1,0),

Proof. Analogous to Theorem 3.5. O

Ifry =1, = 1,e4 ¢ R(L) and n even, then we get the following family:

[e1, e1] = ez,

[ei, e1] = eiyq, 3<i<n—2,

le1, &i]l = —e€it1, 4<i<n—2,

[e1, e3] = ajex — ey,

[e3, e3] = azeo,

[ei, e3] = ageirq, 4<i<n-3,
M(a, o1, o3, o, Bt B3, Bas Bn) : Len el = cnez = faea,

[e1, en] = Brea,

[es, en] = B3ex + Baey,

lei, en] = Baeit1, 4<i<n—-2,

[en, en] = ez,

len, ei] = —B4eit1, 4<i<n—2,

[e3, ei] = —ageit1, 4<i<n-3,

lei, eny1-i] = (=1)'ap_2ep1, 3<i<n—2.

Theorem 3.8. Let L be an n-dimensional Leibniz algebra with characteristic sequence (n — 3, 2, 1) of type
II,r1 = r, = 1andneven. Then the algebra L is isomorphic to one of the following pairwise non-isomorphic
algebras:

Mi(1, aq, a2, @, 0,0, 1,0), oy # 0, M>(1,0, a3, @y, 0,0, an, 1), a3 ¢ {0, —1}, oy # O,
M3(]7 1, %» o, 0,0, 000, 1), ot 75 0 M4(1; —2,—1,0y,0,0, ap, 1)7 p 7& 0
Ms(1, —1,0, an, 0,0, o, 1), ay # 0, Mg(1,0,0,1,0,0,1, 1),

M;(1,0, —(%)%, ¢z, 0,0, B4, 1), an, Ba # 0, Mg(—2, —1,(1++/2),0,0, B4, 1), Ba #0,
Mo(1,1, 3, —£2,0,0, B4, 1), Bs #0, Mio(1, =1, 0, B4,0,0, Ba, 1), Ba # O,



Mn(1,a1,0,0,0,0,1,1), a; # 0,
Mi3(1, o1, a3, &y, 0,0, a0y, 1), oy # 0,
(o1, a3) € {(0, 1), (2, D},
Mi5(1,0,a1,0,0,1, B4, 1), ay # 0,
Mi7(1,1, §,0,0,1, B4, 1),
Mig(1,—1,0,0,0,1, B4, 1),

M (1,0,0,1, B1, B3,0,0), 1 #0, f3 # —1,

M33(1,0,0,1,0, B3, —1,0), B3 ¢ {0, —1},
M35(1,0,0,1, B1,0,—1,0), B1 € {0, 1},

My7(1,1,0,1, By, B1, —1,0), B1 ¢ {0, —1},

My9(1,1,0,1,0,0,1,0),
M31(1,-1,0,1, —Bs, B3,1,0), B3 # —1

Mi2(1,0,0,0,0,0, B4, 1), B4 #0,

My4(1,1,0,1,0,0,1, 1),

Mig(1, =2, =1,0,0,1, B4, 1), s # 0,
Mis(1,2,1,0,0,1, B4, 1), B4 € {0, 1},
May0(1,1,0,0,0,1, B4, 1), Ba € {0, 1},

Map(1, 22,0, 1, 1, 3,0,0). Bi, B3 #0,
M24(1,0,0, 1, B1, B1, —1,0), B1 ¢ {0, —1},
Mas(1, (14 £3),0,1,0, B3, —1,0), B3 ¢ {0, —1}

Mag(1,3.0,1,1,0, —1,0),
M3p(1,0,0,1,0, 83,0,0), B3 #—1,
M3 (1, a1, 0,1, Bq, B1, —1,0),

ar €{0,1}, By # —1,

Ms33(1,0,@3,1,0, =1, B4,0), a3z € {0, 1}, By # 0, M34(1,0, 3,1, —1,-1,0,0), a3 € {0, 1},

Mss(1, a1, @3, 1,0, —1,0,0),

Mz (1,1, 5,1, -1, -1, -1,0),

M3(1,0, 3,1, —1, -1, —1,0), a3 # 0,
Msg(1, a1, 3,1, —1, -1, —1,0),
(a1, a3) € {(=2,-1), (2, 1)},

M39(1,1,0,1, -1, =1, =1,0), a3 € {—1,0,1}, Mgo(1l, =(1 +a3), 23, 1,1, —-1,1,0),

Mar(1,—3.,1,1,2,—1,2,0),

Mg3(1,0,0,0,0,1, B4, 0), Bs #0,
Mys(1,0,0,1,1,1,1,0),
M4;(1,0,0,0, B1,1,0,0), B € {0, 1},
Mygo(1,-1,0,0,0,1,0,0),

Ms1(1,0, 3,0, B1,0,1,0), a3 € {0, 1}, B1 #1,

Ms3(1,0, a3,0,1,0,1,0), a3 # 0,
Mss(1,1, 3,0,1,0,1,0),
Ms;(1,—1,0,0,1,0,1,0),
Ms9(1,0,0,0,1,0,1,0),

Proof. Analogous to Theorem 3.5. [J

Let us investigate the case r{ = 1 and r, = 2. In this case, if e4 € R(L), the algebra is of type I. If

es ¢ R(L), when n is odd we have the family:

[e1, e1] = ey,
[ei, e1] = eiq

K(ar, as, ju1, n2) : 1 [e1, eil = —eipq

[e3, e3] = azex + uaey,

M1, (1 +a3), a3, 1, =1, =1, —1,0),
az € {—1,0,1},

Maa(1, = 5,.0,0,0,1, f4,0). s # 0,
Mss(1, 3,0,0,1,1,—1,0),
Myg(1,1,0,0,1,1,0,0),
Mso(1,1,0,0,1,1,0,0),

Msy(1,0, a3,0,1,0,0,0), as € {0, 1},
Mss(1,1, ,0,1,0,1,0),
Ms6(1,2,1,0,1,0,1,0),
Msg(1,1,0,0,1,0,1,0),

Mgo(1, —3,0,0,0,0,2,1).

[e1, e3] = arex —eq + pien,

(11, n2) # (0, 0).



Theorem 3.9. Let L be an n-dimensional Leibniz algebra with characteristic sequence (n — 3, 2, 1) of
type I, 1 = 1, r, = 2 and n odd. Then the algebra L is isomorphic to one of the following pairwise
non-isomorphic algebras:

K1(0,0,1,0), K(0,0,0,1), K3(1,0,1,0), Ks(1,0,0,1), Ks(1,0,1,1),
KG(Oa 17 15 Mz)a I<7(O’ 17 Oa 1)» K8(17 470 1) Kg(], 4 ’ 2) K]O(l’ 4 » 4)

Proof. Analogous to Theorem 3.5. O

On the other hand, if e4 ¢ R(L) and n is even we have the following family:

[e1, e1] = ey,

lei, e1] = eiy1, 3
P(o1, a3, b1, 2) ler, eil = =€, !
le1, e3] = a1ex —eq + wien,

[es, e3] = azen + paen, (1, n2) # (0,0)
lei enp1—il = (—Dep—y,  3<i<n—2.

Theorem 3.10. Let L be an n-dimensional Leibniz algebra with characteristic sequence (n — 3, 2, 1) of
type I, i = 1, r, = 2 and n even. Then the algebra L is isomorphic to one of the following pairwise
non-isomorphic algebras:

P1(0,0,1,0), P,(0,0,1,1), P3(0,0,2,1), P4(1,0,1,0),
P5(—1,0,1,0), Pg(—1,0, uq, 1), P;(1,0,1,1), Pg(1,0,0, 1),

Py(2,1,2,1), P1p(2,1,1,0), P11(2,1,1,1), P1p(—2,1,2,1),
Pi3(203, a3, 1,0), a3 #0, Pia(FF, 34 —1,1), Pi5(=2,-1,1,1), P16(061,§,1,0), a1 {0, 2},
Py(1, 5.1, 3), Pis(1, §.0.1), P19(2,1,1, 1), Py(1, 3.4, 1),

Py (0, a3, 1, 1), a3 #0 Pp(0,a3,1,0), az # 0.

Proof. Analogous to Theorem 3.5. O

If3<rn< \ n — 5and r, is even, we derive a contradiction, i.e. this case is impossible.
If3 < r, < n— 6 and ry is odd, the obtained family is defined by:

[e1, e1] = e,
lei, e1] = eiy1 3<i<n—-2
le1, e]] = —eiyq 4<i<n-2

S(or, @3)
[e1, e3] = aqex — ey,

[e3, e3s] = azeo,

ler,+a—j, 6] = (=1 ey, 3<j <+ 1.

Theorem 3.11. Let L be an n-dimensional Leibniz algebra with characteristic sequence (n — 3, 2, 1) of
typell,r1 = 1,3 < rp, < n— 6and ry odd. Then the algebra L is isomorphic to one of the following
pairwise non-isomorphic algebras:

S1(1,a3), S(0,1), S3(0,0).



Proof. Analogous to Theorem 3.5. O

There is only left the case whenr, = n — 5 and n > 12 with n even. In this case, the got family is:

W(oq, o3, otn—g — 04, Qp—p — 04):

[er1, e1] = e,

[ei, e1] = eit1

[e1, ei]l = —eitq

[e1, e3] = a1ex — eq,

[e3, e3] = azes,

n—=6

[en—3,e3] =

[en—2, €3] = (an—2 — ag)en—1,

2

[e3, en—2] = (o4 — an—2)en—1,

lej, en—jl = —[ea—j, 1,

lej, eny1-j] = —lent1-j, €1,

[en—4, €3] = (on—g4 — aa)en—3 + en,

(an—g4 — ag)en—2,

n—=6 5
[en, el = — (g — an—g)“en—s4i,
n—=6 5
[ei, en] = 3 (g4 — ap—g)“€n—s+i,
[es, en—a]l = —(0tn—a — s)ey_3 — ey,
n—=6
[es, en—3] = — (an—4 — ag)en—2,

len—1-j, &1 = (=1Y(0g — an_g)en_3 + (—1)1e,,

kwwﬂ=ew(;ﬁym—%4m4,

lent1-j. ] = (=1 (((l -3) (g - 4)

_<(j_3) (g _4) — W +]>an74 +an72)en71a 4<j<

3<i<n—2
4<i<n—-2
3<i<4
3<i<4
4<j<n-5
. _n—2
4<j< >

C-9G-5)

2 )a“_

NS NS

Theorem 3.12. Let L be an n-dimensional Leibniz algebra with characteristic sequence (n — 3, 2, 1) of
typell, 11 = 1,1, = n — 5,5 even and n > 12. Then the algebra L is isomorphic to one of the following

pairwise non-isomorphic algebras:

W1(17a31 07 0)7 W2(011’09 0)9
Ws(0,0,1,0), Ws(1,0,1,0),

Ws(0, 0,0, 0), Wa(1, a3, ap—a — 04, 0),
W7 (nT_Al’O,l,O)’ W8(07a3’l’0)’ ()[37&0,

Wo (725.1,1,0), Wio (1, 4,0,1), wy (n—4, ("T“‘)z,l,o).



Proof. Analogous to Theorem 3.5. O

On the one hand if r, = n — 4, n > 9 and n even, we have a contradiction. On the other hand, if n

is odd, we have the family of algebras denoted by

[e1, e1] = ez,

[ei, e1] = eitq

le1, el = —eitq

[e1, e3] = a1ex — eq,
[es, e3] = azey,

[en—3, €3] = en—z + e,
V(e a1, a5, B) - len—2, €3] = Bep—1,

[en, e3] = —afen—_1,

[e3, en—3] = —aen_ — en

[es, en—] = (—(n — 5)a + Blen—1,

len—j. ] = (=11 (aen_z + en),

[e1, en] = ((n — 5)a — 2B)en—1,
[e3, en] = a((n — 5)a — Bley—1.

4
lent1—j. 6] = (=1 (( — 3) — Blen—1, 4

3<i<n—2
4<Li<n—-2
<jsn—4
<i<<n-—3,

Theorem 3.13. An arbitrary Leibniz algebra of the family Y(«, o1, a3, B) is isomorphic to one of the

following pairwise non-isomorphic algebras:

Y1(0, 0,0, 0), Y2(0,1,0,0),

¥4 (0,1, 5,0), Ys(@, 0,3, 1), a3 #0,

Yy (5,—1,}1,1) Ye(o, 2, (@ + 1), 1), o # —1,
Y10(1, 1,0, 1), Yy (e, (@ +1),0,1), o # —1,
Y13(1,0,03,0), a3 #0, Y14 (1,1, §,0),

Yi6(1,2, 1, 0), Yi7(1,—1,0,0),
Y1o(1,0,0,0).

Proof. Analogous to Theorem 3.5. O

Y3(0, 0, 1, 0),

1
Ye(a 1.5 ) o FE 5,
Yoo, 2(a + 1), (@ 4+ 12, 1),
o #=—1,
Y]z(()l 0 O ]),
Yis (1 1, 2,0),
Yi5(1,1,0,0),

The case r, = n — 3 can be included it in the general case n even and r, odd.

Let us introduce the case r, = 1and r; > 2.1t is clear thatif r; > 2, we have e3 € L™, yielding
en—q € L4 Sincer; > 2, thenr; +n—4 > n— 2,i.e L" "2 # 0, but that is a contradiction with

the supposed nilindex. Therefore the possible value for r; is 1.



3.3. Type Il

In this subsection we investigate the Leibniz algebras of Type III, which have the brackets
lei,e1] = eiy1, 2<i<n—3,
[en—1, e1] = en.
and the gradation
(e1,e2) S Ly, (e3) Sla, (ea) Sz, ..., (en—2) < Lyp—3.

Let us suppose that e,—1 € Ly, then [ep—1,e1] = ep € Lr41, where1 <r < n—4.
The following theorem is true.

Theorem 3.14. Let L be a naturally graded n-dimensional Leibniz algebra with characteristic sequence
(n — 3,2,1) of type Ill and r = 1. Then there exists a basis {e1, e, ..., ey} of L such that the table of
multiplication of the algebra has the following form:

Ifniseven(n > 8)

[ei, e1] = eit1, 2<i<n—3,
len—1,e1] = en,

[e1, ei] = —eiy1, 3<i<n—3,
le1, e2] = —e3 + y1en,

[e2, e2] = yaen,

[en—1, e2] = ysen,

[en—3, €2] = aven—,

len—1-j. €] = (—1ae, 5, 3<j<n—4,
[e2, en—3] = —aen—2,

le1, en—1] = p1en,

le2, en—1] = paen,

len—1, en—1] = pzen.

Ifnisodd(n > 9)

[ei, e1] = ejy1, 2<i<n—3,
[en—1, e1] = en,

[e1, ei] = —eit1, 3<i<n—3,
[e1, e2] = —e3 + y1en,

[e2, e2] = yaen,

[en—1. €2] = y3en,
le1, en—1] = p1en,
le2, en—1] = paen,

len—1, en—1] = pzen.

(omitted products are equal to zero)



Let us note that when n is odd, the obtained family is a particular case of the first family (taking
o = 0). We denote the first family of the above theorem by L(«, y1, v2, ¥3, 41, U2, 43).

Theorem 3.15. Let L be a naturally graded n-dimensional Leibniz algebra with characteristic sequence
(n—3,2,1) of type lll and r = 1. Let n be even (n > 8), then L is isomorphic to one of the following
pairwise non-isomorphic algebras:

Li(1, y1, v2, v3, 11,0, 1), L>(0,1, y2, ¥3, 11,0, 1),
[3(0,0,1, 3, 11,0, 1), L4(0, 0,0, y3, 41,0, 1), 3 € {0, 1},
Ls(1, 1,0, y3, 1, t2, 0), y1 € {0, 1} L(0,0,0,1, u1,0,0),
[7(0,0,0,0, u1,1,0), Lg(0,0,0,0, u,0,0),
Lo(1, 0, y2, —H2, t1, U2, 0),
y2 €1{0,1}, u1 # —1, L10(0, 0, y2, =1, 1, 1,0), 1 # —1,
L11(0,0, 92,0, 11,0,0), y2 € {0, 1}, w1 # —1, L2(1, 1, 2, —p2, —1, 42, 0),
L13(1,0, 2, —p2, —1, 12, 0), 2 € {0, 1} L14(0, y1, 2, —1, =1, 1, 0),
71, v2 € {0, 1},
L15(0,0, y2, —1,-1,1,0), y2 € {0, 1} Li6(0, 1, ¥2,0,—1,0,0), y1, 72 € {0, 1}.

Proof. Analogous to Theorem 3.5. [J

Sice we said above, when n is odd we obtain the algebras L, — L4, Lg — Lg, L1g — L1; and L4 — Lyg.

In the case 2 < r < n — 4 and r even we derive a contradiction.

Theorem 3.16. Let L be a naturally graded n-dimensional Leibniz algebra with characteristic sequence
(n—3,2,1)oftypelll,3 < r < n—4andr odd. Then Lis a Lie algebra.

Proof. Analogous to the Theorem 3.5. O

All the obtained algebras in this work lead us to the classification of n-dimensional naturally graded
Leibniz algebras of nilindex n — 3 and with characteristic sequence equal to (n — 3, 2, 1).
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