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1. INTRODUCTION

The notion of Leibniz algebra was introduced in 1993 by J.-L. Loday [6] as a 
generalization of Lie algebras. In the last 20 years, the theory of Leibniz algebras 
has been actively studied, and many results of the theory of Lie algebras have been 
extended to Leibniz algebras.

From the theory of Lie algebras it is known that every finite dimensional 
Lie algebra is decomposed into a semidirect sum of a semisimple subalgebra and 
solvable radical (Levi’s Theorem) [5]. Moreover, thanks to Mal’cev’s results [7] the 
study of solvable Lie algebras is reduced to the study of nilpotent algebras.

Recently, Barnes proved an analogue of Levi’s Theorem for Leibniz algebras 
[4]. Namely, a Leibniz algebra is decomposed into a semidirect sum of its solvable 
radical and a semisimple Lie algebra.

Recall, an algebra L over a field F is called Leibniz algebra if for any elements 
x� y� z ∈ L the Leibniz identity holds:

�x� �y� z�� = ��x� y�� z� − ��x� z�� y��

where �−� −� is multiplication of L.
Let L be a Leibniz algebra and I = ideal < �x� x� � x ∈ L >  be the ideal of L 

generated by all squares. Then I is the minimal ideal with respect to the property



that L/I is a Lie algebra. The natural epimorphism � � L → L/I determines the
associated Lie algebra L/I of the Leibniz algebra L.

The inherent properties of non-Lie Leibniz algebras imply that the subspace
spanned by the squares of elements of the algebra is a nontrivial ideal (further
denoted by I). Moreover, the ideal I is abelian and hence, it belongs to the solvable
radical.

Due to the existence of the non-trivial ideal I in non-Lie Leibniz algebra we
can not consider the notion of simplicity in ordinary sense. In [1], the adaptation of
simplicity for Leibniz algebras was proposed. Namely, a Leibniz algebra L is said
to be simple if it only has the following ideals: �0�, I , L and �L� L� �= I . Obviously,
this definition agrees with the definition of a simple Lie algebra.

In fact, Abdykassymova and Dzhumadil’daev in [2] suggested the following
construction of Leibniz algebras.

Let G be a simple Lie algebra and M be an irreducible skew-symmetric G-
module (i.e., �x� m� = 0 for all x ∈ G� m ∈ M). Then the vector space Q = G + M
equipped with the multiplication

�x + m� y + n� = �x� y� + �m� y��

where m� n ∈ M� x� y ∈ G is a simple Leibniz algebra.
From the analogue of Levi’s decomposition for Leibniz algebras (see [4]),

we conclude that the above construction is universal for a simple Leibniz algebra
assuming G �= L/I� M �= I� Q �= L, that is, any simple Leibniz algebra is realized
by this construction.

According to [5], in any three-dimensional simple Lie algebra there exits a
basis �e� f� h� such that the table of multiplication has the form

�e� h� = 2e� �f� h� = −2f� �e� f� = h�
�h� e� = −2e� �h� f� = 2f� �f� e� = −h	

This Lie algebra is denoted by sl2, and the basis �e� f� h� is called the canonical basis.

Theorem 1.1 ([5]). For each integer m = 0� 1� 2� 	 	 	 , there exists one, up to
isomorphism, irreducible sl2-module M of dimension m + 1	 The module M has a basis
�x0� x1� 			� xm� such that the representing transformations E, F , and H corresponding
to the canonical basis �e� f� h� are given by

H
xk� = 
m − 2k�xk� 0 ≤ k ≤ m�
F
xm� = 0� F
xk� = xk+1� 0 ≤ k ≤ m − 1�
E
x0� = 0� E
xk� = −k
m + 1 − k�xk−1� 1 ≤ k ≤ m	

In [8], the authors described the complex finite-dimensional Leibniz algebras
whose associated Lie algebra is isomorphic to sl2	 The crucial role in that
classification is played by Theorem 1.1. Taking a similar approach, a property of
Leibniz algebras with an associated Lie algebra sl2+̇R� where R is a solvable radical,
is obtained. In addition, in this article, we present the classification of such algebras
for a two-dimensional radical R.



Throughout the article, we consider finite-dimensional algebras over the field
of complex numbers. Moreover, in the multiplication table of an algebra we omit
the null products.

2. COMPLEX LEIBNIZ ALGEBRAS WHOSE ASSOCIATED LIE ALGEBRAS
ARE ISOMORPHIC TO sl2+̇R.

In this section, we consider the Leibniz algebra L for which its corresponding
Lie algebra is a semidirect sum of sl2 and a two-dimensional solvable ideal R	 In
addition, we shall assume that I is a right irreducible module over sl2.

Let L be a Leibniz algebra such that L/I � sl2 ⊕ R� where R is a solvable Lie
algebra and �ē� h̄� f̄ �� �x0� x1� 	 	 	 � xm�, �y1� y2� 	 	 	 � yn� are the bases of sl2� I , and R,
respectively.

Let �e� h� f� x0� x1� 	 	 	 � xm� y1� y2� 	 	 	 � yn� be a basis of the algebra L such that

�
e� = ē� �
h� = h̄� �
f� = f̄ � �
yi� = yi� 1 ≤ i ≤ n	

Then taking into account the Theorem 1.1, we have

�e� h� = 2e +
m∑

j=0

a
j
ehxj� �h� f� = 2f +

m∑
j=0

a
j
hf xj� �e� f� = h +

m∑
j=0

a
j
ef xj�

�h� e� = −2e +
m∑

j=0

a
j
hexj �f� h� = −2f +

m∑
j=0

a
j
fhxj� �f� e� = −h +

m∑
j=0

a
j
fexj�

�e� yi� =
m∑

j=0

�ijxj �f� yi� =
m∑

j=0

ijxj� �h� yi� =
m∑

j=0

�ijxj�

�xk� h� = 
m − 2k�xk� 0 ≤ k ≤ m�
�xk� f� = xk+1� 0 ≤ k ≤ m − 1�
�xk� e� = −k
m + 1 − k�xk−1� 1 ≤ k ≤ m�

where 1 ≤ i ≤ n.
Similar as in the proof of Proposition 3.1 of the [8], one can get

�e� h� = 2e� �h� f� = 2f� �e� f� = h�
�h� e� = −2e �f� h� = −2f� �f� e� = −h�
�e� e� = 0 �f� f� = 0� �h� h� = 0	

Let us denote the following vector spaces:

sl−1
2 =< e� h� f >� R−1 =< y1� y2� 	 	 	 � yn > 	

Proposition 2.1. Let L be a Leibniz algebra whose quotient L/I 	 sl2 ⊕ R, where R
is a solvable ideal and I is a right irreducible module over sl2 with dimI �= 3	 Then
�sl−1

2 � R−1� = 0	

Proof. It is clearly sufficient to prove the equality for the basic elements of sl−1
2

and R−1. Consider the Leibniz identity

�e� �e� yi�� = ��e� e�� yi� − ��e� yi�� e� = −��e� yi�� e�

= −
m∑

j=0

�ij�xj� e� =
m∑

j=1


−mj + j
j − 1���ijxj−1� 1 ≤ i ≤ n	



On the other hand, we have that �e� �e� yi�� = �e�
∑m

j=0 �ijxj� = 0 for 1 ≤ i ≤ n.
Comparing the coefficients of the basic elements, we obtain �ij = 0 for 1 ≤ j ≤

m	 Thus, �e� yi� = �i�0x0 with 1 ≤ i ≤ n	

Consider the equalities

0 = �e�
m∑

j=0

ijxj� = �e� �f� yi�� = ��e� f�� yi� − ��e� yi�� f�

= �h� yi� − �i�0�x0� f� = �h� yi� − �i�0x1	

Then we have that �h� yi� = �i�0x1 with 1 ≤ i ≤ n.
From the equalities

0 = �e� �h� yi�� = ��e� h�� yi� − ��e� yi�� h� = 2�e� yi� − �i�0�x0� h�

= 2�i�0x0 − m�i�0x0 = �i�0
2 − m�x0�

it follows that �i�0 = 0 for 1 ≤ i ≤ n	 Taking into account that m �= 2 (because of
dimI �= 3), we get �e� yi� = �h� yi� = 0 with 1 ≤ i ≤ n	

From the equalities

0 = �f� �e� yi�� = ��f� e�� yi� − ��f� yi�� e� = �h� yi� − ��f� yi�� e� = −��f� yi�� e�

= −
m∑

j=0

ij�xj� e� = −
m∑

j=0


−mj + j
j − 1��ijxj−1�

we derive i�j = 0 for 1 ≤ j ≤ m. Consequently, �f� yi� = i�0x0� for all 1 ≤ i ≤ n.
Similarly, from

0 = �f� �f� yi�� = ��f� f�� yi� − ��f� yi�� f� = ��f� yi�� f�

= i�0�x0� f� = i�0x1�

we obtain �f� yi� = 0 for all 1 ≤ i ≤ n	

Thus, we obtain �e� yi� = �f� yi� = �h� yi� = 0 with 1 ≤ i ≤ n	 We complete the
proof of the proposition. �

3. COMPLEX LEIBNIZ ALGEBRAS WHOSE ASSOCIATED LIE ALGEBRA IS
ISOMORPHIC TO sl2+̇R, dim R = 2

In this section, we consider the case when R is a two-dimensional solvable
radical. From the classification of two-dimensional Lie algebras (see [5]) we know
that in R there exists a basis �y1� y2� in which the following table of multiplication
of R has this form:

�y1� y2� = y1� �y2� y1� = −y1	



In the case when dimI �= 3 and I a right irreducible module over sl2,
summarizing the results of the Proposition 2.1, we get the following table of
multiplication:

�e� h� = 2e� �h� f� = 2f� �e� f� = h�
�h� e� = −2e� �f� h� = −2f� �f� e� = −h�
�xk� h� = 
m − 2k�xk� 0 ≤ k ≤ m�
�xk� f� = xk+1� 0 ≤ k ≤ m − 1�
�xk� e� = −k
m + 1 − k�xk−1� 1 ≤ k ≤ m�

�yi� e� =
m∑

j=0

a
j
iexj� 1 ≤ i ≤ 2�

�yi� f� =
m∑

j=0

a
j
if xj� 1 ≤ i ≤ 2�

�yi� h� =
m∑

j=0

a
j
ihxj� 1 ≤ i ≤ 2�

�xk� yi� =
m∑

j=0

ak
ijxj� 0 ≤ k ≤ m� 1 ≤ i ≤ 2�

�y1� y2� = y1 +
m∑

j=0

b
j
12xj� �y2� y1� = −y1�

�y1� y1� =
m∑

j=0

b
j
1xj� �y2� y2� =

m∑
j=0

b
j
2xj�

(1)

where �e� h� f� x0� x1� 	 	 	 � xm� y1� y2� is a basis of L	

Let us present the following theorem which describes the Leibniz algebras with
the condition L/I 	 sl2 ⊕ R, where dimI �= 3� dimR = 2, and I a right irreducible
module over sl2.

Theorem 3.1. Let L be a Leibniz algebra whose quotient L/I 	 sl2 ⊕ R, where R is
a two-dimensional solvable radical and I is a right irreducible module over sl2 
dimI �=
3�. Then there exists a basis �e� h� f� x0� x1� 	 	 	 � xm� y1� y2� of L such that the table of
multiplication in L has the following form:

�e� h� = 2e� �h� f� = 2f� �e� f� = h�
�h� e� = −2e� �f� h� = −2f� �f� e� = −h�
�xk� h� = 
m − 2k�xk� 0 ≤ k ≤ m�
�xk� f� = xk+1� 0 ≤ k ≤ m − 1�
�xk� e� = −k
m + 1 − k�xk−1� 1 ≤ k ≤ m�
�y1� y2� = y1� �y2� y1� = −y1�
�xk� y2� = axk� 0 ≤ k ≤ m� a ∈ �	

Proof. Let L be an algebra satisfying the conditions of the theorem, then we get
the table of multiplication 
1�.



We consider the chain of the equalities

0 = �xi� �h� y1�� = ��xi� h�� y1� − ��xi� y1�� h� = 
m − 2i��xi� y1� −
m∑

k=0

ai
1k�xk� h�

= 
m − 2i�
m∑

k=0

ai
1kxk −

m∑
k=0

ai
1k
m − 2k�xk =

m∑
k=0

ai
1k
m − 2i − 
m − 2k��xk

=
m∑

k=0

2ai
1k
k − i�xk�

from which we have ai
1k = 0 with 0 ≤ i ≤ m and i �= k	 Thus,

�xi� y1� = ai
1ixi = a1ixi with 0 ≤ i ≤ m	

Similarly,

0 = �xi� �h� y2�� = ��xi� h�� y2� − ��xi� y2�� h� = 
m − 2i��xi� y2� −
m∑

k=0

ai
2k�xi� h�

= 
m − 2i�
m∑

k=0

ai
2kxi −

m∑
k=0

ai
2k
m − 2k�xk =

m∑
k=0

ai
2k
m − 2i − 
m − 2k��xk

=
m∑

k=0

2ai
2k
k − i�xk�

we get �xi� y2� = ai
2ixi with 0 ≤ i ≤ m	

From the identity �xi� �y1� y2�� = ��xi� y1�� y2� − ��xi� y2�� y1�, we deduce

[
xi� y1 +

m∑
k=0

bk
12xk

]
= ai

1i�xi� y2� − ai
2i�xi� y1�

⇒ �xi� y1� = ai
1ia

i
2ixi − ai

2ia
i
1ixi = 0�

and we have �xi� y1� = 0 with 0 ≤ i ≤ m� that is, �I� y1� = 0.
We consider the Leibniz identity

�xi� �y2� e�� = ��xi� y2�� e� − ��xi� e�� y2�� for 0 ≤ i ≤ m	

Then,

0 = ai
2i�xi� e� − 
−mi + i
i − 1���xi−1� y2�

= ai
2i
−mi + i
i − 1��xi−1 − ai

2�i−1
−mi + i
i − 1��xi−1

= −
−mi + i
i − 1��
ai
2i − ai

2�i−1�xi−1�

which leads to ai
2i = ai

2i−1, that is, we get �xi� y2� = axi with 0 ≤ i ≤ m and some
a ∈ �.



Thus, we have obtained the product �I� R−1�.
Verifying that

0 =
[

y1�
m∑

j=0

a
j
1f xj

]
= �y1� �y1� f�� = ��y1� y1�� f� − ��y1� f�� y1� = ��y1� y1�� f�

=
m∑

j=0

b
j
1�xj� f� =

m−1∑
j=0

b
j
1xj+1�

we obtain b
j
1 = 0 for 0 ≤ j ≤ m − 1, i.e., �y1� y1� = b1

mxm	

The equalities

0 = �y1� �y1� h�� = ��y1� y1�� h� − ��y1� h�� y1� = ��y1� y1�� h� = am
1 �xm� h� = −mam

1 xm�

deduce bm
1 = 0, hence �y1� y1� = 0	

From the identities

0 = �y2� �y1� h�� = ��y2� y1�� h� − ��y2� h�� y1� = −�y1� h��

0 = �y2� �y1� f�� = ��y2� y1�� f� − ��y2� f�� y1� = −�y1� f��

0 = �y2� �y1� e�� = ��y2� y1�� e� − ��y2� e�� y1� = −�y1� e��

we obtain �y1� h� = �y1� f� = �y1� e� = 0	

Using the above obtained products and

0 = �y1� �y2� f�� = ��y1� y2�� f� − ��y1� f�� y2� = ��y1� y2�� f�

=
[

y1 +
m∑

k=0

bk
12xk� f

]
=

m∑
k=0

bk
12�xk� f� =

m−1∑
k=0

bk
12xk+1�

we get bi
12 = 0 with 0 ≤ i ≤ m − 1	

Now from

0 = �y1� �y2� h�� = ��y1� y2�� h� − ��y1� h�� y2� = ��y1� y2�� h�

= �y1 + bm
12xm� h� = −mbm

12xm�

we get bm
12 = 0	 Consequently, bm

12 = 0 for all 0 ≤ i ≤ m, i.e., �y1� y2� = y1.



Thus, we obtain the following table of multiplication:

�e� h� = 2e� �h� f� = 2f� �e� f� = h�
�h� e� = −2e� �f� h� = −2f� �f� e� = −h�
�xk� h� = 
m − 2k�xk� 0 ≤ k ≤ m�
�xk� f� = xk+1� 0 ≤ k ≤ m − 1�
�xk� e� = −k
m + 1 − k�xk−1� 1 ≤ k ≤ m�

�y2� e� =
m∑

j=0

a
j
2exj� �y2� f� =

m∑
j=0

a
j
2f xj� �y2� h� =

m∑
j=0

a
j
2hxj�

�y1� y2� = y1� �y2� y1� = −y1� �y2� y2� =
m∑

j=0

b
j
2xj�

�xk� y2� = axk� 0 ≤ k ≤ m	

In order to complete the proof of the theorem, we need to prove that �y2� y2� =
0� and �R−1� sl−1

2 � = 0.
Consider two cases.

Case 1. Let a �= 0 be. Then taking the change of the basic element

y2
′ = y2 −

m∑
j=0

b
j
2

a
xj�

we get

�y2
′� y2

′� =
[

y2 −
m∑

j=0

b
j
2

a
xj� y2 −

m∑
j=0

b
j
2

a
xj

]

= �y2� y2� −
[

m∑
j=0

b
j
2

a
xj� y2

]
=

m∑
j=0

b
j
2xj −

m∑
j=0

b
j
2xj = 0�

which leads to �y2� y2� = 0	
Consider

0 = �y2� �y2� h�� = ��y2� y2�� h� − ��y2� h�� y2� = −��y2� h�� y2�

= −
m∑

j=0

a
j
2h�xj� y2� = −

m∑
j=0

a
j
2haxj�

which gives a
j
2h = 0 for 0 ≤ j ≤ m.

Similarly, from the equalities

0 = �y2� �y2� f�� = ��y2� y2�� f� − ��y2� f�� y2� = −
m∑

j=0

a
j
2f �xj� y2� = −

m∑
j=0

a
j
2f axj�

0 = �y2� �y2� e�� = ��y2� y2�� e� − ��y2� e�� y2� = −
m∑

j=0

a
j
2e�xj� y2� = −

m∑
j=0

a
j
2eaxj�

we get a
j
2f = a

j
2e = 0 for 0 ≤ j ≤ m. Hence, �R−1� sl−1

2 � = 0.



Thus, we proved the theorem for the case of a �= 0.

Case 2. Let a = 0 be. Then, we consider the identity

�y2� �y2� f�� = ��y2� y2�� f� − ��y2� f�� y2��

and we derive

0 =
m∑

j=0

bi
2�xi� f� =

m−1∑
j=0

bi
2xi+1

⇒ bi
2 = 0� 0 ≤ i ≤ m − 1� i	e	�

�y2� y2� = bm
2 xm	

From the chain of the equalities

0 = �y2� �y2� h�� = ��y2� y2�� h� − ��y2� h�� y2� = bm
2 �xm� h� = −mbm

2 xm�

we obtain bm
2 = 0, that is, �y2� y2� = 0	

Let us take the change of the basic element in the form

y2
′ = y2 −

m∑
j=1

a
j−1
2e

−mj + j
j − 1�
xj	

Then

�y2
′� e� = �y2� e� −

m∑
j=1

a
j−1
2e

−mj + j
j − 1�
�xj� e�

= �y2� e� −
m∑

j=1

a
j−1
2e

−mj + j
j − 1�

−mj + j
j − 1��xj−1

=
m∑

j=0

a
j
2exj −

m∑
j=1

a
j−1
2e xj−1

=
m∑

j=0

a
j
2exj −

m−1∑
j=0

a
j
2exj = am

2exm	

Thus, we can assume that

�y2� e� = am
2exm� �y2� h� =

m∑
j=0

a
j
2hxj� �y2� f� =

m∑
j=0

a
j
2f xj	

We have

�y2� �e� h�� = ��y2� e�� h� − ��y2� h�� e� = am
2e�xm� h� −

m∑
j=0

a
j
2h�xj� e�

= −mam
2exm −

m∑
j=0

a
j
2h
−mj + j
j − 1��xj−1	



On the other hand, �y2� �e� h�� = 2�y2� e� = 2am
2exm.

Comparing the coefficients at the basic elements, we get am
2e = 0 and a

j
2h = 0,

where 1 ≤ j ≤ m	 Hence,

�y2� e� = 0� �y2� f� =
m∑

j=0

a
j
2f xj� �y2� h� = a0

2hx0	

Consider

�y2� �e� f�� = ��y2� e�� f� − ��y2� f�� e� = −
m∑

j=0

a
j
2f �xj� e�

= −
m∑

j=0

a
j
2f 
mj + j
j − 1��xj−1

= ma1
2f x0 −

m∑
j=2

a
j
2f 
mj + j
j − 1��xj−1	

On the other hand,

�y2� �e� f�� = �y2� h� = a0
2hx0	

Comparing the coefficients, we obtain a0
2h = ma1

2f and a
j
2f = 0 for 2 ≤ j ≤ m	

Then, we have the product �y2� f� = a0
2f x0 + a1

2f x1	
Now, we consider the equalities

−2�y2� f� = �y2� �f� h�� = ��y2� f�� h� − ��y2� h�� f� = �a0
2f x0 + a1

2f x1� h� − ma1
2f �x0� f��

and we have

−2a0
2f x0 − 2a1

2f x1 = ma0
2f x0 + a1

2f 
m − 2�x1 − ma1
2f x1 ⇒ a0

2f = 0	

Therefore, �y2� f� = a1
2f x1 and �y2� h� = ma1

2f x0	
Taking the change y2

′ = y2 − a1
2f x0� we obtain

�y2
′� f� = �y2

′� h� = 0	

Thus, we have �R−1� sl−1
2 � = 0, which completes the proof of the theorem. �

Remark 3.2. From the description of Theorem 3.1, we conclude that L = 
sl2 ⊕
R�+̇I	 Moreover, if L/I 	 sl2 ⊕ R with dimI �= 3 and there exist two element x̄� ȳ

of the finite-dimensional solvable radical R such that �x̄� ȳ� = −�ȳ� x̄� = x̄, then in a
similar way to the proof of Theorem 3.1, one can prove that the restriction of the
operator of right multiplication on an element y to ideal I is � · id and the restriction
of the operator of right multiplication on an element x is trivial.



When the dimension of the ideal I is equal to three, we have the family of
Leibniz algebras with the following table of multiplication:

�e� h� = 2e� �h� f� = 2f� �e� f� = h�
�h� e� = −2e� �f� h� = −2f� �f� e� = −h�
�x1� e� = −2x0� �x2� e� = −2x1� �x0� f� = x1�
�x1� f� = x2� �x0� h� = 2x0� �x2� h� = −2x2�

�e� y1� = �x0� �f� y1� = 1
2

�x2� �h� y1� = �x1�

�e� y2� = �x0� �f� y2� = 1
2

�x2� �h� y2� = �x1�

�y1� y2� = y1� �y2� y1� = −y1� �y2� y2� = −ab

2
x2�

�x0� y2� = ax0� �x1� y2� = ax1� �x2� y2� = ax2�
�y2� e� = bx1� �y2� h� = bx2	

Verifying the Leibniz identity of the above family of algebras and using the
program in software Mathematica (see in [3]), we derive the condition �
1 − a� = 0	

Taking the change of the basic element in the form y2
′ = y2 + b

2 x2, we obtain

�y2
′� e� = �y2

′� h� = �y2
′� y2

′� = 0	

Thus, we have the family of algebras L
�� �� a�:

�e� h� = 2e� �h� f� = 2f� �e� f� = h�
�h� e� = −2e� �f� h� = −2f� �f� e� = −h�
�x1� e� = −2x0� �x2� e� = −2x1� �x0� f� = x1�
�x1� f� = x2� �x0� h� = 2x0� �x2� h� = −2x2�

�e� y1� = �x0� �f� y1� = 1
2

�x2� �h� y1� = �x1�

�e� y2� = �x0� �f� y2� = 1
2

�x2� �h� y2� = �x1�

�x0� y2� = ax0� �x1� y2� = ax1� �x2� y2� = ax2�
�y1� y2� = y1� �y2� y1� = −y1�

with the condition �
1 − a� = 0.

Theorem 3.3. Let L be a Leibniz algebra such that L/I 	 sl2 ⊕ R, where R is a two-
dimensional solvable ideal and I is a three-dimensional right irreducible module over
sl2. Then, L is isomorphic to one of the following pairwise non isomorphic algebras:

L
1� 0� 1�� L
0� 1� a�� L
0� 0� a�� with a ∈ F	

Proof. We shall consider the equality �
1 − a� = 0.
Let � �= 0. Then a = 1. Making the basis transformation

y1
′ = 1

�
y1� y2

′ = −�

�
y1 + y2�



we deduce that

�e� y1
′� = x0� �f� y1

′� = 1
2

x2� �h� y1
′� = x1� �e� y2

′� = �f� y2
′� = �h� y2

′� = 0

and the rest products of the family of algebra L
�� �� a� are not changed.
Thus, we can assume that � = 1 and � = 0. Hence, we get the algebra

L
1� 0� 1�	
If � = 0, then for � �= 0 by a suitable scaling of the basic elements of I� we can

suppose that � = 1. Thus, we obtain the algebra L
0� 1� a�	
If � = 0, then for � = 0 we get the algebra L
0� 0� a�	
Using a program in software Mathematica, we conclude that these algebras

are nonisomorphic. This program establishes when two algebras are isomorphic;
moreover, we have added some subroutines to know if two algebras are isomorphic
or not, when one of them is an uniparameter family. It returns the value of the
parameter for which it would be isomorphic. The implementation of this program is
presented for low and fixed dimension. Then we will formulate the generalizations,
proving by induction the results for arbitrary fixed dimension. Finally, to point
out that the algorithmic method of these programs is presented with a step-by-step
explanation in the following web site: http://personal.us.es/jrgomez.

Thus the theorem is proved. �
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