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1. Introduction

In the past years, the theory of Lie superalgebras has suffered a remarkable evolution both in Math-
ematics and Physics. The Lie superalgebras emerge to Physics in 1974 [3]. Later, in 1975, Kǎc [8]
offers a comprehensive description of the mathematical theory of Lie superalgebras, and estab-
lishes the classification of all finite-dimensional simple Lie superalgebras over an algebraically
closed field of characteristic zero.

Some authors have studied Lie superalgebras (nilpotent and non nilpotent) and their cohomol-
ogy [5–7,10,11,14,15]. But there exist a few results concerning nilpotent Lie superalgebras with
even part the Heisenberg algebra (these superalgebras are called Lie superalgebras of Heisenberg
type [2]). The simplest non trivial nilpotent Lie algebra is the Heisenberg algebra. Actually there
is a family of Heisenberg algebras, H2n+1, one for each odd dimension. Heisenberg algebras play
a fundamental role in many fields. For example, we are going to see the central role of Heisenberg
algebras in Quantum Mechanics: in the classical description of a system, the observables are
functions of 2n canonical variables, n coordinates q1, . . . , qn and n momenta p1, . . . , pn. If H is
the total energy of the system, or so called the Hamiltonian, then Hamilton’s equations may be
written in terms of Poisson brackets as

q̇i = {qi, H }, ṗi = {pi, H }.



More generally, the evolution in time of an observable F is given by

Ḟ = {F, H }.
The relationship between symmetries and conservation laws is fundamental. If G is a function

of the canonical variables such that {G, H } = 0, where H is the Hamiltonian, then G generates
a symmetry of the system that can be obtained by solving the equations

dqi

ds
= {qi, G} = ∂G

∂pi

,

dpi

ds
= {pi, G} = ∂G

∂qi

.

If {q(s), p(s)} is the flow generated by the equations, we have that

dH

ds
=

∑
i

(
∂H

∂qi

dqi

ds
+ ∂H

∂pi

dpi

ds

) ∑
i

(
∂H

∂qi

∂G

∂pi

− ∂H

∂pi
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∂qi

)
= {H, G} = 0

It follows that the observables form an infinite dimensional Lie algebra with respect to the
Poisson bracket

{F, G} =
n∑
i

(
∂F

∂qi

∂G

∂pi

− ∂F

∂pi

∂G

∂qi

)

The equations of motion are q̇i = ∂H/∂pi and ṗi = ∂H/∂qi with H , the Hamiltonian of the
system. It is easy to check that the symmetries of the Hamiltonian, that is, the observables such
that {H, G} = 0, form a Lie subalgebra of the Lie algebra of all the observables.

A quantum mechanical description of the same system is obtained by finding an algebra of
Hermitian operators on a Hilbert space with the Lie product given by the commutator. In that
case, if A and B are the operators corresponding to the classical functions a and b, respectively,
then [A, B] is an operator corresponding to the classical function ı�{a, b} (� = h/2π with h

Planck’s constant). In particular, since the classical canonical variables qr, ps satisfy {qr, qs} = 0,
{pr, ps} = 0, {qr, ps} = δrs , the corresponding quantum mechanical operators have to satisfy the
commutation relations

[Qr, Qs] = 0, [Pr, Ps] = 0, [Qr, Ps] = ı�δrs1.

In the case of one variable, we obtain the Heisenberg algebra {Q, P, E}, where E = ı�1; with
n variables we get the generalized Heisenberg algebra [1,16].

This work aims at finding the Lie superalgebras that verify the same algebraic conditions that
Heisenberg algebras verify in the theory of Lie algebras.

We will not presuppose any knowledge of the theory of Lie superalgebras, however, we assume
that the reader is familiar with the standard theory of Lie algebras.

2. Preliminaries

2.1. Z2-graded algebraic structures. Superalgebras

The vector space V is said to be Z2-graded if it admits a decomposition in direct sum V = V0 ⊕ V1.
The elements of V0 and V1 are called even odd, respectively.



Let V = V0 ⊕ V1 and W = W0 ⊕ W1 be two-graded vector spaces. A linear mapping f :
V −→ W is said to be homogeneous of degree γ (γ ∈ Z2) if f (Vα) ⊂ Wα+γ (mod 2) for all α ∈ Z2.
The mapping f is called a homomorphism of the Z2-graded vector spaces if it is homogeneous
of degree 0. Now it is evident how we define an isomorphism or an automorphism of Z2-graded
vector spaces.

A Lie superalgebra is a Z2-graded vector space, g = g0 ⊕ g1, with a bracket product [ , ] which
verifies

(1) [gα, gβ] ⊂ gα+β(mod 2) ∀α, β ∈ Z2.
(2) [X, Y ] = −(−1)αβ[Y, X] ∀X ∈ gα, ∀Y ∈ gβ .
(3) (−1)γα[X, [Y, Z]] + (−1)αβ[Y, [Z, X]] + (−1)βγ [Z, [X, Y ]] = 0 for all X ∈ gα, Y ∈ gβ ,

Z ∈ gγ with α, β, γ ∈ Z2.

The last property is called graded Jacobi identity and we will call it Jg(X, Y, Z). g0 is called the
even part and it is a Lie algebra. g1 is called the odd part and it is a g0-module. We consider Ln+m

the set of the Lie superalgebras g = g0 ⊕ g1 with dim(g0) = n and dim(g1) = m.
The descending central sequence of a Lie superalgebra g = g0 ⊕ g1 is defined by C0(g) = g,

Ck+1(g) = [Ck(g), g] for all k ≥ 0. If Ck(g) = {0} for some k, the Lie superalgebra is called
nilpotent. The smallest integer k such as Ck(g) = {0} is called the nilindex of g.

2.2. Cohomology of Lie superalgebras

The cohomology of Lie superalgebras is a ‘generalization’ of the cohomology of Lie algebras.
Such generalization takes into account the Z2-graduation of the superalgebras and the parity of
the isomorphisms amongst them.

Let V = V0 ⊕ V1 be a graded-vector space and g = g0 ⊕ g1 a Lie superalgebra. End(V ) is an
associative superalgebra if we define the Z2-graduation by:

End(V )α =
{
A ∈ End(V )

A(Vβ)
⊂ Vα+β, β ∈ Z2

}
∀α ∈ Z2

It is easy to prove that End(V )0 and End(V )1 are the homegeneous linear maps of degree 0 and
1, respectively. We call the associated superalgebra to End(V ) pl(V ) = pl0(V ) ⊕ pl1(V ). This
superalgebra plays the same role as the gl(V ) in Theory of the Lie algebras.

Let g = g0 ⊕ g1 be a Lie superalgebra and Dα(g), α ∈ Z2 the subspace of all f ∈ plα(g)

such that

f ([X, Y ]) = [f (X), Y ] + (−1)αξ [X, f (Y )] ∀X ∈ gξ , ∀Y ∈ g, ξ ∈ Z2.

If α ≡ 0(mod 2), D0 is formed by the even derivations of the superalgebra g and α ≡ 1(mod 2),
D1 are the odd derivations of the superalgebra g. Thus we obtain that D(g) = D0 ⊕ D1 is a graded
subalgebra of pl(g).We call the elements of D(g) superderivations of g. Thus, the Lie superalgebra
of the superderivations of g is denoted by D(g).

We define the operator ad(X) following Lie algebras theory. If X is an homogeneous element
of degree 0, ad(X) is an even superderivation and if X is an homogeneous element of degree 1,
ad(X) is an odd superderivation. Thus, Ad(g) is the space of all inner superderivations of g and
Ad(g) = Ad(g0) ⊕ Ad(g1).

We consider g as a g-module by the adjoint representation. We can identify Z1(g, g) =
Z1

0(g, g) ⊕ Z1
1(g, g) (the space of the cocicles of degree 1) with the space of superderivations



of g (D(g) = D0(g) ⊕ D1(g)). Moreover, B1(g, g) = B1
0 (g, g) ⊕ B1

1 (g, g) (the space of the
coboundaries of degree 1) can be identified with the space of inner superderivations (Ad(g) =
Ad(g0) ⊕ Ad(g1)). In particular, Z1

0(g, g) = D0(g) and B1
0 (g, g) = Ad(g0).

Thus, the first space of cohomology, H1(g, g), can be identified with the space of exterior
superderivations Out(g) (see [4], [12]), that is

Out(g) = D0(g)

Ad(g0)
⊕ D1(g)

Ad(g1)
.

If we call O(g) the orbit of the law of g in the variety of laws of Lie superalgebras, Ln+m, we
have that

dim(O(g)) = dim(B2
0 (g, g)) = n2 + m2 − dim(D0(g)),

where B2
0 (g, g) is the space of 2-coboundaries.

3. Heisenberg Superalgebras

3.1. Heisenberg algebras

DEFINITION 3.1.1 A Lie algebra Hk is called Heisenberg algebra of dimension n = 2k + 1 if it
is defined in the basis {e1, . . . , e2k+1} by

[e2i−1, e2i] = e2k+1, 1 ≤ i ≤ k.

(The undefined brackets are null).

REMARK 3.1.2 All Heisenberg algebras verify that

C1(g) = Z(g) and dim(Z(g)) = 1.

This is a characteristic of Heisenberg algebras.

LEMMA 3.1.3 Every Lie algebra satisfying C1(g) = Z(g) and dim(Z(g)) = 1 is isomorphic to
the Heisenberg algebra.

3.2. Classification of Heisenberg superalgebras

The superalgebras g = g0 + g1 with [g1, g1] = 0 satisfy the two conditions to be a Lie algebra
that is: skew-symmetry and Jacobi identity. Thus, the structure of Heisenberg in these cases are
similar to Heisenberg algebras. So, in this paper, we will focus the study of Lie superalgebras
with [g1, g1] non null.

DEFINITION 3.2.1 A nilpotent superalgebra g (g = g0 ⊕ g1) is called Heisenberg superalgebra
(HSA) if [g1, g1] 
= 0, and

C1(g) = Z(g)

dim(Z(g)) = 1.

The complete list of Lie superalgebras (g = g0 ⊕ g1) with C1(g0 ⊕ g1) = Z(g0 ⊕ g1) and
dim(Z(g0 ⊕ g1)) = 1 is derived from the following results.



LEMMA 3.2.2 Let g be a HSA, g = g0 ⊕ g1, then g admits a basis such that the only non null
products as follows:

{
[Xi, Xj ] = εijZ 1 ≤ i < j ≤ n − 1

[Yk, Yl] = δklZ 1 ≤ k ≤ l ≤ m, ∃δkl 
= 0 for some k, l

with εij , δkl ∈ {0, 1}, C1(g) = 〈Z〉 ⊕ {0} and Z(g) = 〈Z〉.

Proof Let g = g0 ⊕ g1 a HSA we have that C1(g) = C1(g)0 ⊕ C1(g)1, C1(g) = Z(g),
dim(Z(g)) = 1.

As C1(g) = 〈Z〉 ⊕ 〈0〉, it is easy to prove that [g0, g1] = 0 and the characteristic sequence of
Lie superalgebra is (. . . |1, 1, 1, . . . , 1).

The only non null products are the following:

{[Xi, Xj ] = εijZ 1 ≤ i < j ≤ n − 1

[Yk, Yl] = δklZ 1 ≤ k ≤ l ≤ m ∃δkl 
= 0 for some k, l

with εij , δkl ∈ {0, 1}.
If εij = 0 for all i, j , we obtain the degenerate case. Then, there exists εij 
= 0 for some i, j ;

and δkl 
= 0 for some k, l. �

COROLLARY 3.2.3 Let g be under the conditions of the Theorem above, then we have g0 as a Lie
algebra with C1(g0) = Z(g0) and dim(Z(g0)) = 1.

THEOREM 3.2.4 (Classification of HSA) Every HSA, g, g = g0 ⊕ g1 ∈ Ln+m, n = 2r + 1, is
isomorphic to the following Lie superalgebra. That can be expressed in a suitable basis
{X1, . . . , X2r+1, Y1, . . . , Ym} by

{
[X2i−1, X2i] = X2r+1, 1 ≤ i ≤ r

[Yj , Yj ] = X2r+1, 1 ≤ j ≤ m.

REMARK 3.2.5 For each pair of dimensions, n and m (n must be odd), there exists only one Lie
superalgebra, up to isomorphism, that verifies the same algebraic conditions as the Heisenberg
algebra. That is, for each pair of dimensions, there exists a HSA.

Proof of the Theorem Let g be a HSA, by the previous results we have that

[X2i−1, X2i] = X2r+1 1 ≤ i ≤ r

[Yj , Yl] = δjlX2r+1 1 ≤ j ≤ l ≤ m

with δjl 
= 0 for some j, l.
For each j , 1 ≤ j ≤ m, there exists l (l ≥ j ) such that δjl 
= 0. By finite induction, we prove

that δjj = 1, with 1 ≤ j ≤ m and δjl = 0 ∀l > j .
The change of basis Y ′

1 = 1/
√

δ11Y1 if δ11 
= 0, or the change Y ′
1 = (1 − δll)/(2δ1l)Y1 + Yl if

δ11 = 0 and δ1l 
= 0 permits to suppose δ11 = 1. If δ1l = 0, ∀l > 1, we have arrived at the result



and if δ1l 
= 0 for any l, the change Y ′
1 = Y1, Y ′

l = −δ1lY1 + Yl for l > 1 permits to obtain the
result.

In the rest of the cases, the situation is analogous. �

4. Cohomology

In this section, we study the space of superderivations of a HSA. First, we compute the dimension
of the above spaces with the aid of the following program. Finally, and as application, some
geometrical properties are studied (the first cohomology space).

4.1. Effective computing

The following program allows us to obtain the dimension of the space of superalgebras of
superderivations. We compute this dimension for a HSA in particular dimension. Next, by an
induction processing, we obtain the dimension for a HSA in arbitrary finite dimension. The pro-
gram allows us to obtain the even superderivations. For the computing of odd superderivations,
we use a similar program as the one presented here, but making some modifications. For example,
the conditions of odd superderivations.

Step 1 This step introduces the conditions of the HSA.

r1 = 1;
dim = 2r1 + 1;
dim1 = 2;
basemu0 = Table[x[i], {i, 1, dim}];
basemu1 = Table[y[j], {j, 1, dim1}];

mu0[0, x_] := 0;
mu0[x_, 0] := 0;
mu0[x_, x_] := 0;
mu0[x_, y_] := Simplify[-mu0[y, x]] /; OrderedQ[{y, x}];
mu0[x_ + y_, z_] := Simplify[mu0[x, z] + mu0[y, z]];
mu0[z_, x_ + y_] := Simplify[mu0[z, x] + mu0[z, y]];
mu0[x_, a_ y_] := a mu0[x, y];
mu0[a_ x_, y_] := a mu0[x, y];

mu1[0, x_] := 0;
mu1[x_, 0] := 0;
mu1[x_, y_] := Simplify[mu1[y, x]] /; OrderedQ[{y, x}];
mu1[x_ + y_, z_] := Simplify[mu1[x, z] + mu1[y, z]];
mu1[z_, x_ + y_] := Simplify[mu1[z, x] + mu1[z, y]];
mu1[x_, a_ y_] := a mu1[x, y];
mu1[a_ x_, y_] := a mu1[x, y];

mu2[0, x_] := 0;
mu2[x_, 0] := 0;
mu2[x_, y_] := Simplify[-mu2[y, x]] /; OrderedQ[{y, x}];
mu2[x_ + y_, z_] := Simplify[mu2[x, z] + mu2[y, z]];
mu2[z_, x_ + y_] := Simplify[mu2[z, x] + mu2[z, y]];
mu2[x_, a_ y_] := a mu2[x, y];
mu2[a_ x_, y_] := a mu2[x, y];



For[i = 1, i <= r1, i++, mu0[x[2i - 1], x[2i]] = x[2r1 + 1]];
mu0[x[i_], x[j_]] := 0;

For[i = 1, i <= 2r1 + 1, i++,For[j = 1, j <= dim1, j++,
mu2[x[i], y[j]] = 0]];

For[i = 1, i <= dim1, i++, mu1[y[i], y[i]] = x[2r1 + 1]];
mu1[y[j_], y[i_]] = 0;

Step 2 We introduce the graduation we will use in the computing of superderivations. Next, we
also introduce the conditions of even superderivations.

g[j_] := Which[1 <= j <= r1, x[2j - 1], r1 + 2 <= j <= 2r1 + 1,
x[4r1 + 4 - 2j], True, 0];

g[r1 + 1] := basemu1;
g[2r1 + 2] := x[2r1 + 1];

For[i = 1, i <= 2r1 + 2, i++, Print["g[", i, "]->", g[i]]];

der0[i_Integer, j_Integer, k_Integer] := Collect[d[i][mu0[x[j], x[k]]]
- mu0[d[i][x[j]], x[k]] - mu0[x[j], d[i][x[k]]],basemu0]

der1[i_Integer, j_Integer, k_Integer] := Collect[d[i][mu1[y[j], y[k]]]
- mu1[d[i][y[j]], y[k]] - mu1[y[j], d[i][y[k]]],basemu0]

der2[i_Integer, j_Integer, k_Integer] := Collect[d[i][mu2[x[j], y[k]]]
- mu2[d[i][x[j]], y[k]] - mu2[x[j], d[i][y[k]]],basemu1]

For[i = -dim, i <= dim, i++, For[j = 1, j <= 2r1 + 2, j++,
Which[i + j == r1 + 1, d[i][g[j]] =Sum_{k = 1}ˆ{dim1}b[i, k] y[k],
i + j > 2r1 + 2, d[i][g[j]] = 0, True, d[i][g[j]] = a[i, j] g[i + j]]]];

For[i = -dim, i <= dim, i++,Which[g[j] == 0, d[i][g[j]] = 0]];

For[i = -dim, i <= dim, i++, For[s = 1, s <= dim1, s++,
Which[i + r1 + 1 == r1 + 1, d[i][y[s]] =Sum_{k = 1}ˆ{dim1} b[i, k, s] y[k],
i + r1 + 1 > 2r1 + 2, d[i][y[s]] = 0, True, d[i][y[s]] = 0]

For[i = -dim, i <= dim, i++,For[j = 1, j <= 2r1 + 2, j++,
For[s = 1, s <= dim1, s++,Which[i != 0, d[i][y[s]] = 0, True, d[0][y[s]]
Sum_{k = 1}ˆ{dim1} b[0, k, s] y[k]]]]];

For[i = -dim, i <= dim, i++,For[j = 1, j <= r1, j++, Which[i + j!=
r1 + 1, d[i][g[j]] = a[i, j] g[i + j], i + j == r1 + 1,
d[i][g[j]]= 0]]];

For[i = -dim, i <= dim, i++,For[j = r1 + 2, j <= 2r1 + 2, j++,
Which[i + j != r1 + 1, d[i][g[j]] = a[i, j] g[i + j], i + j == r1 + 1,
d[i][g[j]] = 0]]];

Step 3 We compute the conditions amongst the above coefficients, and we obtain the free
coefficients.

For[i = -dim, i
<= dim, i++,For[j = 1, j <dim, j++, For[k = j + 1, k <= dim,
k++,deriv0[i_, j_, k_] := Coefficient[der0[i, j, k], basemu0]]]]

For[i = -dim, i <= dim, i++,For[j = 1, j <= dim1, j++, For[k = 1, k
<= dim1, k++,deriv1[i_, j_, k_] := Coefficient[der1[i, j, k],
basemu0]]]]



For[i = -dim, i <=
dim, i++,For[j = 1, j <= dim, j++, For[k = 1, k <= dim1,
k++,deriv2[i_, j_, k_] := Coefficient[der2[i, j, k], basemu1]]]]

For[v = -dim, v <= dim, v++,funcion0[v_] := Module[{j, k, Lec}, Lec = {};
For [j = 1, j <= dim, j++, For[k = j + 1, k <= dim , k++,
Lec = Union[Lec, deriv0[v, j, k]];];];Lec]];

For[v = -dim, v <= dim, v++,funcion1[v_] := Module[{j, k, Lec}, Lec = {};
For [j = 1, j <= dim1, j++,For[k = 1, k <= dim1 , k++,
Lec = Union[Lec, deriv1[v, j, k]];];];Lec]];

For[v = -dim, v <= dim, v++,funcion2[v_] := Module[{j, k, Lec}, Lec = {};
For [j = 1, j <= dim, j++,For[k = 1, k <= dim1 , k++,
Lec = Union[Lec, deriv2[v, j, k]];];];Lec]];

For[v = -dim, v <= dim, v++,funcion[v_] := Union[funcion0[v],
funcion1[v], funcion2[v]]];For[v = -dim, v <= dim, v++,

sol[v_] := Solve[funcion[v] == 0]];

Off[Solve::"svars"]; Off[General::"stop"];

For[i = -dim, i <= dim, i++,For[j = 1, j <= r1, j++,
Which[i + j != r1 + 1, der[i][g[j]] = d[i][ g[j]] /. sol[i][[1]],
i + j == r1 + 1, der[i][g[j]] = 0]]];

For[i = -dim, i <= dim, i++,For[j = r1 + 2, j <= 2r1 + 2, j++,
Which[i + j != r1 + 1, der[i][g[j]] = d[i] [g[j]] /. sol[i][[1]],
i + j == r1 + 1, der[i][g[j]] = 0]]];

For[i = -dim, i <= dim, i++,Which[g[j] == 0, der[i][g[j]] = 0]];

For[i = -dim, i <= dim, i++,For[j = 1, j <= 2r1 + 2, j++,
For[s = 1, s <= dim1, s++,Which[i != 0, der[i][y[s]] = 0, True,
der[0][y[s]] = d[0][y[s]] /. sol[0][[1]]]]]];

Print["====================="]

Module[{i, j, k},For[i = -dim, i <= dim, i++,For[j = 1, j <= dim, j++,
Print["d", i, "(x[", j, "])=", der[i][x[j]]]]; For[

k = 1, k <= dim1, k++, Print["d", i, "(y[", k, "])=", der[i][y[k]]]]]];

Module[{u}, For[u = -dim, u <= dim, u++,parameterder[u_] :
Select[Select[Variables[Join[Table[der[u][x[i]], {i, 1, dim}],

Table[der[u][y[j]], {j, 1, dim1}]]], FreeQ[#, x] &],FreeQ[#, y] &]]];

For[p = -dim, p <= dim, p++,dimder[p_Integer] := Length[parameterder[p]]];
Print["====================="]

Module[{t}, For[t = -dim, t <= dim, t++, Print["dimension(d", t,
")--> ", dimder[t]]]]; Print["====================="]

dimensioneven =Sum_{u=-dim}ˆ{dim}dimder[u];
Print["DIMENSIONEVEN-----> ", dimensioneven]

The program allows us to compute the dimension of the space of superderivations for the
mentioned superalgebras in concrete dimensions. These results lead to conjecture the structure of
such spaces of superderivations in generic dimension.



4.2. Computing of superderivations of HSA

In this section, we compute the dimension of the space of superderivations of HSA. The law of a
HSA is the following: {

[X2i−1, X2i] = X2r+1, 1 ≤ i ≤ r

[Yj , Yj ] = X2r+1, 1 ≤ j ≤ m.

THEOREM 4.2.1 Let g = g0 ⊕ g1 HSA of dimension (2r + 1, m) (dim(g0) = 2r + 1 and
dim(g1) = m). We have that

dim(D0(g)) = 2r2 + 3r + m2 − m + 2

2

and

dim(D1(g)) = (2r + 1)m

Proof We consider the following graduation

gi = 〈X2i−1〉 if 1 ≤ i ≤ r

gr+1 = 〈Y1, Y2, . . . , Ym〉
gi = 〈X4r+4−2i〉 if r + 2 ≤ i ≤ 2r + 1

g2r+2 = 〈X2r+1〉.
First, we compute the even superderivations.
If d ∈ (D0(g)), we have that d(gα) ⊂ gα with α ∈ Z2, and if d ∈ D(g),

d =
2r+1∑

−2r−1

di

where di(gj ) ⊂ gi+j .
Thus, we compute the subspaces di , −2r − 1 ≤ i ≤ 2r + 1. The computing of the dimension

of di is easy but laborious.
d0, we have that

d0(X2i−1) = a(0, i)Xi 1 ≤ i ≤ r,

d0(Yj ) =
m∑

k=1

b(0, k, j)Yk 1 ≤ j ≤ m,

d0(X2i ) = a(0, 2r + 2 − i) 1 ≤ i ≤ r,

d0(X2r+1) = a(0, 2r + 2)X2r+1.

We compute all the conditions of even superderivations, and we obtain the following restrictions:

a(0, 2r + 2) = a(0, i) + a(0, 2r + 2 − i), 1 ≤ i ≤ r

a(0, 2r + 2) = 2b(0, j, j), 1 ≤ j ≤ m

b(0, j, i) + b(0, i, j) = 0, 1 ≤ i < j ≤ m.

Thus, we deduce that dim(d0) = r + (m2 − m + 2)/2.



In this process, it is necessary to use the program above in order to prove the results. The other
cases are more complicate. It is necessary to differentiate some values of r .

Finally, we obtain that

dim(d−2r−1) = 0,

dim(di) =
⌊

2r + 2 + i

2

⌋
, −2r ≤ i ≤ −r − 1,

dim(di) = r + i +
⌊−i

2

⌋
, −r ≤ i ≤ −1,

dim(d0) = r + m2 − m + 2

2
,

dim(di) = r − i + 1 +
⌊

i

2

⌋
, 1 ≤ i ≤ r,

dim(dr+1) =
⌊

r + 1

2

⌋
,

dim(di) =
⌊

2r + 4 − i

2

⌋
, r + 2 ≤ i ≤ 2r

dim(d2r+1) = 1.

Thus it is easy to prove that dim(D0(g)) = 2r2 + 3r + (m2 − m + 2)/2.
Next, we compute the odd superderivations. In this case, the computing is easier.
If d ∈ D1(g), we have that d(g0) ⊂ g1 and d(g1) ⊂ g0. Analogous to case even, if d ∈ D(g)

d =
2r+1∑

−2r−1

di,

where di(gj ) ⊂ gi+j .
We compute all the subspaces di , and we have that

dim(d−2r−1) = 0,

dim(di) = 0, −2r ≤ i ≤ −r − 1,

dim(d−r−1) = 0,

dim(di) = m, −r ≤ i ≤ −1,

dim(d0) = 0,

dim(di) = m, 1 ≤ i ≤ r,

dim(dr+1) = m,

dim(di) = 0 r + 2 ≤ i ≤ 2r,

dim(d2r+1) = 0.

Thus it is easy to prove that dim(D1(g)) = (2r + 1)m. �

COROLLARY 4.2.2 Let g be a HSA. We have that

dim(D(g)) = 2r2 + 3r + m2 − m + 2

2
+ (2r + 1)m.



REMARK 4.2.3 Even derivations of the HSA can also be found by using the description of
derivations of the Heisenberg algebra [9,13].

4.3. Application

In this section, we compute some geometrical properties as application of the space of
superderivations.

LEMMA 4.3.1 Let g be a HSA, then we obtain that

dim(Ad(g0)) = 2r and dim(Ad(g1)) = m.

COROLLARY 4.3.2 Let g be a HSA. We obtain that

dim(B1(g, g)) = 2r + m,

dim(H1(g, g)) = 2r2 + r + m2 − m + 2

2
+ 2rm.

Proof Remember that

dim(B1(g, g)) = dim(Ad(g0)) + dim(Ad(g1))

and

dim(H1(g, g)) = dim(D0(g)) − dim(Ad(g0)) + dim(D1(g)) − dim(Ad(g1)) �

COROLLARY 4.3.3 Let g be a HSA. We obtain that

dim(O(g)) = dim(B2
0 (g, g)) = 2r2 + r + m2 + m

2
+ 2rm.

Proof Remember that

dim(O(g)) = dim(B2
0 (g, g)) = (2r + 1)2 + m2 − dim(D0(g)) �
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