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b Dpto. Matemática Aplicada I. Universidad de Sevilla. Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain
c CMCC, Universidade Federal do ABC, Santo André - SP, Brazil
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1. INTRODUCTION

Gradings by abelian groups have played a key role in the study of Lie algebras and superalgebras,

starting with the root space decomposition of the semisimple Lie algebras over the complex field,

which is an essential ingredient in the Killing-Cartan classification of these algebras. Gradings by

a cyclic group appear in the connection between Jordan algebras and Lie algebras through the Tits-

Kantor-Koecher construction, and in the theory of Kac-Moody Lie algebras. Gradings by the integers

or the integers modulo 2 are ubiquitous in Geometry. Also there are some papers about non-group

gradings [7, 30].

In 1989, Patera and Zassenhaus [29] began a systematic study of gradings by abelian groups on Lie

algebras. They raised the problem of classifying the fine gradings, up to equivalence, on the simple Lie

algebras over the complex numbers. This problem has been settled now thanks to the work of many

colleagues. After that, gradings of simple alternative and simple Malcev algebras [17], the simple Kac

Jordan superalgebra [5], countless simple Lie algebras [6, 11–16, 18–22] and filiform Lie algebras [4]

were described.

The concept of length of a Lie algebra was introduced by Gómez, Jiménez-Merchán and Reyes

in [23, 24]. They distinguished an interesting family: algebras admitting a grading with the great-

est possible number of non-zero subspaces. Actually, the gradings with a large number of non-zero

subspaces enable us to describe the multiplication on the algebra more exactly.

In the past years, Leibniz algebras have been under active research (see, for example, [1, 3, 8–10,

25–27]). The main result on the structure of finite-dimensional Leibniz algebras asserts that a Leibniz

algebra decomposes into a semidirect sum of a solvable radical and a semisimple Lie algebra [3].

Therefore, the main problem of the description of finite-dimensional Leibniz algebras consists of the
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study of solvable Leibniz algebras. Similarly to the case of Lie algebras the study of solvable Leibniz

algebras is reduced to nilpotent ones [9].

Since the description of all n-dimensional nilpotent Leibniz algebras is an unsolvable task (even in

the case of Lie algebras), we have to study nilpotent Leibniz algebras under certain conditions (con-

ditions on index of nilpotency, various types of grading, characteristic sequence etc.) [1, 26, 27]. The

well-known natural grading of nilpotent Lie and Leibniz algebras is very helpful when investigating

of the properties of those algebras without restrictions on the grading. Indeed, we can always choose

a homogeneous basis and thus the grading allows to obtain more explicit conditions for the structural

constants. Moreover, such grading is useful for the investigation of cohomologies for the considered

algebras, because it induces the corresponding grading of the group of cohomologies. Thus, it is very

crucial to know what kind of grading admits a nilpotent Leibniz algebra.

In the present paper we begin the study of gradings on Leibniz algebras by classifying, up to equiv-

alence, of all abelian groups gradings of null-filiform and one-parametric filiform Leibniz algebras.

2. PRELIMINARIES

In this section we give necessary definitions and preliminary results.

Definition 1. A vector space with a bilinear multiplication (L, ·) over the complex field is called a

Leibniz algebra if for any x, y, z ∈ L the so-called Leibniz identity

x(yz) = (xy)z − (xz)y

holds.

For a given Leibniz algebra L the sequence of two-sided ideals defined recursively as follows:

L1 = L, Lk+1 = LkL, k ≥ 1,

is said to be the lower central series of L.

Definition 2. A Leibniz algebra L is said to be nilpotent, if there exists n ∈ N such that Ln = 0. The

minimal number n with such property is said to be the index of nilpotency of the algebra L.

Definition 3. An n-dimensional Leibniz algebra L is said to be null-filiform if dimLi = n+1−i, 1 ≤
i ≤ n+ 1.

Theorem 4 ( [2]). An arbitrary complex n-dimensional null-filiform non-Lie Leibniz algebra is iso-

morphic to the algebra

NFn : eie1 = ei+1, 1 ≤ i ≤ n− 1,

where {e1, e2, . . . , en} is a basis of the algebra NFn.

Actually, a nilpotent Leibniz algebra is null-filiform if and only if it is one-generated algebra. Notice

that this notion has no sense in Lie algebra case, because they are at least two-generated.

Definition 5. An n-dimensional Leibniz algebra L is said to be filiform if dimLi = n− i, for 2 ≤ i ≤
n.

Definition 6. Let G be a group. An algebra L is a G-graded algebra if and only if the vector space

L has the following decomposition L =
⊕

g∈G

Lg and the multiplication law of L has the following

property LgLh ⊂ Lg+h, ∀g, h ∈ G. Any Lg is called a homogeneous subspace and the set of all g such

that Lg 6= 0 is called the support of the grading.



3

For a G-graded algebra L =
⊕

g∈G

Lg we will use the following notation Lg := 〈ei1 , . . . , eik〉g, if the

homogeneous subspace Lg is generated by ei1 , . . . , eik .

Definition 7. Given two groups gradings L =
⊕

g∈G

Lg and L =
⊕

h∈H

Lh we shall say that they are

equivalent if there are:

(1) a bijection σ : G → G′ between the supports of the first and second gradings respectively,

(2) an algebra automorphism ϕ of L such that ϕ(Lg) = Lσ(g) for any g ∈ G.

Following [28] we introduce the next class of filiform non-Lie Leibniz algebras.

Definition 8. A complex n-dimensional algebra admitting a basis {e1, e2, . . . , en} such that the table

of multiplication of the algebra has the following form:

eie1 = ei+1, 2 ≤ i ≤ n− 1,
e1e2 = θen,

with θ ∈ C is called a one-parametric filiform Leibniz algebra.

In the description of all abelian groups grading of our algebras, we are using the techniques ex-

plained in the recent monograph [21, Section 1.4], which have been successfully used in the classi-

fication of abelian groups gradings on different classes of algebras (see for instance [4, 5, 13, 14]).

To do that, we will always suppose that the grading group is generated by the support of the grad-

ing. Roughly speaking, it is shown in the above references that any group grading, (with the group

finitely generated abelian), is induced by a finitely generated abelian subgroup of diagonalizable au-

tomorphisms of the automorphism group of the algebra, (finite dimensional and over an algebraically

closed field of characteristic zero), under study. The homogeneous components are the simultane-

ous eigenspaces relative to the given subgroup of automorphisms. Furthermore, up to equivalences

of gradings, any such subgroup is contained in the normalizer of some fixed maximal torus of the

automorphism group of the algebra.

A special kind of gradings arises when we consider the inducing automorphisms not only in the

normalizer of a maximal torus, but in the torus itself.

Definition 9. A grading of an algebra is said to be toral if it is produced by automorphisms within a

torus of the automorphism group of the algebra.

3. GRADINGS ON NULL-FILIFORM LEIBNIZ ALGEBRAS

By the above, in the first we are calculating the group of automorphisms of our algebra. In the

second, we are proving that the normalizer of a maximal torus in the group of automorphisms is the

same torus and so all of our gradings will be toral ones. Finally, we are constructing all toral gradings

on our algebra.

Let A := NFn be a null-filiform Leibniz algebra.

3.1. Automorphisms of A. Let f ∈ Aut(A), then f(e1) = ae1 +
n∑

j=2

ajej, and

f(ei) = f(ei−1e1) = . . . = f((. . . ((e1e1)e1) . . .)e1) = (. . . ((f(e1)f(e1))f(e1)) . . .)f(e1),

hence f(ei) = aiei + ai−1

n−i∑

j=1

aj+1ej+i, 1 ≤ i ≤ n, with a 6= 0. It is easy to see that all automor-

phisms of A have the same form.
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3.2. Maximal Torus. It is easy to verify that a maximal torus is formed by:

T =







ta :=







a 0 . . . 0
0 a2 . . . 0
...

...
. . .

...

0 0 . . . an







: a ∈ K∗







∼= K∗.

Lemma 10. Let N(T) be the normalizer of T. Then, N(T) = T.

Proof. We have N(T) = {M ∈ Aut(A) : MTM−1 ∈ T, ∀ T ∈ T}.
For

M =









a 0 . . . 0 0
a2 a2 . . . 0 0
...

...
. . .

...
...

an−1 aan−2 . . . an−1 0
an aan−1 . . . an−1a2 an









and T =









λ 0 . . . 0 0
0 λ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . λn−1 0
0 0 . . . 0 λn









,

we have

MT =









aλ 0 . . . 0 0
a2λ a2λ2 . . . 0 0
...

...
. . .

...
...

an−1λ aan−2λ
2 . . . an−1λn−1 0

anλ aan−1λ
2 . . . an−1a2λ

n−1 anλn









.

We need to prove the existence of T ′ ∈ T such that MT = T ′M. For

T ′ =







d 0 . . . 0
0 d2 . . . 0
...

...
. . .

...

0 0 . . . dn







we conclude that d = λ and by choosing λ 6= 1, 0 we get a2 = a3 = · · · = an = 0 and M ∈ T. �

3.3. Cyclic gradings. A cyclic grading is a toral grading produced by a single toral element ta. In

this case the grading is always equivalent to a grading by a cyclic group. In order to study the grading

induced by ta on A, which is the decomposition of A as a direct sum of eigenspaces of such toral

element ta, we are going to distinguish different possibilities motivated by the cardinal of the possible

values of the set of eigenvalues of ta.

We distinguish the following cases:

• ai 6= 1 for i = 1, 2, . . . , n. In this case, we have the next grading:

A = 〈e1〉1 ⊕ 〈e2〉2 ⊕ · · · ⊕ 〈en〉n : Z-grading.

• ai = 1 where a is an i-primitive root of 1, and 1 ≤ i ≤ n − 1, i ∈ N. If i = 1, we obtain

the trivial grading. Thus, we can consider 2 ≤ i ≤ n − 1. Let us write n = mi + p with

0 ≤ p ≤ i− 1, p ∈ N. We have a Zi-grading with the following homogeneous subspaces:
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A0 = 〈ei, e2i, . . . , emi〉
A1 = 〈e1, ei+1, . . . , emi+1〉
A2 = 〈e2, ei+2, . . . , emi+2〉

. . .
Ap = 〈ep, ei+p, . . . , emi+p〉
Ap+1 = 〈ep+1, ei+p+1, . . . , e(m−1)i+p+1〉

. . .
Ai−1 = 〈ei−1, e2i−1, . . . , e(m−1)i+i−1〉.

(1)

Lemma 11. Let A be a null-filiform Leibniz algebra of dimension n. Then any cyclic grading is

equivalent to only one of the following n gradings:

(I) The trivial grading given by A = 〈e1, e2, . . . , en〉.
(II) The Z-grading given by A = 〈e1〉1 ⊕ 〈e2〉2 ⊕ · · · ⊕ 〈en〉n.

(III) For any 2 ≤ i ≤ n−1, the Zi-grading given by A = A0⊕A1⊕· · ·⊕Ai−1, where homogeneous

subspaces are described in grading (1), being n = mi+ p with 0 ≤ p ≤ i− 1.

Proof. We have only to show that two different gradings in the lemma are not equivalent, but this is

an immediate consequence of the fact that the cardinal of the support of any grading is different to the

cardinal of the support of any other different grading. �

3.4. Classification theorem.

Lemma 12. If e1 is a homogeneous element of an abelian group grading (that is, e1 ∈ Ax for some

x ∈ G), then the grading is one of the list of Lemma 11.

Proof. Let e1 ∈ Ax and x ∈ G be. Let i be the order of x.

• i > n. Let j ≤ n be, we have ej = (. . . ((e1 e1)e1) . . . )e1
︸ ︷︷ ︸

j−1

∈ Ajx and the Z-grading

A = 〈e1〉 ⊕ 〈e2〉 ⊕ · · · ⊕ 〈en〉.

• i ≤ n. Then, e1 ∈ Ax, e2 ∈ A2x, . . . , ei−1 ∈ A(i−1)x with |{x, 2x, . . . , (i− 1)x}| = i− 1. Let

j ≥ i be, j = im+ p with 0 ≤ p < i. Then ej = (. . . ((e1 e1)e1) . . . )e1
︸ ︷︷ ︸

j−1

∈ Aim+p = Ap. Thus,

A = 〈e1, e1+i, . . . 〉1 ⊕ 〈e2, e2+i, . . . 〉2 ⊕ · · · ⊕ 〈ei−1, e2i−1, . . . 〉i−1 ⊕ 〈ei, e2i, . . . 〉0

�

Lemma 10 and Lemma 12 will allow us to assert that all of the abelian group gradings of A are the

ones given in Lemma 11. Indeed, since by Lemma 10, N(T) = T, we know that all of the gradings

are toral. Hence any grading is the simultaneous eigenspaces decomposition of A respect to a given

(abelian) subgroup of semisimple automorphisms U contained in T. Now. since

T = {ta : a ∈ K∗},

(see 3.1.2), and any ta is of the form ta :=







a 0 . . . 0
0 a2 . . . 0
...

...
. . .

...

0 0 . . . an







respect to the basis {e1, e2, ..., en}

we have that e1 belongs to the eigenspace associated to the eigenvalue a, for any ta ∈ T and so e1 be-

longs to some simultaneous eigenspace respect to the decomposition of A relative to the simultaneous
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eigenspaces decomposition of A through the abelian family of semisimple automorphisms U. From

here e1 is a homogeneous element of any abelian group grading of A and we can apply Lemma 12 to

conclude the next theorem:

Theorem 13. Any abelian group grading of a null-filiform Leibniz algebra is equivalent to only one

of the list of Lemma 11.

4. GRADINGS ON ONE-PARAMETRIC FILIFORM LEIBNIZ ALGEBRAS

We will follow the same program than in the previous section to classify the abelian group grad-

ings on one-parametric filiform Leibniz algebras. First we compute the group of automorphisms of

our algebras. Then, in order to find a maximal torus and compute its normalizer, we will have two

distinguish two cases attending to the possible nullity of the parameter. We will obtain that just in case

this parameter is zero all of the gradings are toral ones. In this case we will also have that any abelian

group grading is necessarily cyclic. For the remaining cases we will have to develop new tools for

their study.

4.1. Automorphisms of F1. Our first goal is to compute its group of automorphisms. Let dim(F1) ≥
4 and f ∈ Aut(F1). Then

f(e1) =

n∑

k=1

akek and f(e2) =

n∑

k=1

bkek.

It is easy to see that a1b2 6= 0. From f(e1)
2 = f(e21) = 0 we find f(e1) = a1e1 + anen; and from

f(e2)
2 = f(e22) = 0 we have b1 = 0. Also from f(e1)f(e2) = θf(en) we obtain θ(1− an−3

1 ) = 0.
If we rename a1 = a and b2 = b, we have

f(e1) = ae1 + anen,
f(ei) = ai−2(bei + b3ei+1 + · · ·+ bn−i+2en), 2 ≤ i ≤ n, ab 6= 0,

θ(1− an−3) = 0.

So we get:

(2) Aut(F1) =

















a 0 0 . . . 0
0 b 0 . . . 0
0 b3 ab . . . 0
0 b4 ab3 . . . 0
...

...
...

. . .
...

an bn abn−1 . . . an−2b











:
an, b3, ..., bn ∈ C and a, b ∈ C∗,
θ(1− an−3) = 0







.

To calculate a maximal torus in the above group of automorphisms we are going to distinguish two

cases.

4.2. Case in which θ = 0. Since in this case

Aut(F1) =

















a 0 0 . . . 0
0 b 0 . . . 0
0 b3 ab . . . 0
0 b4 ab3 . . . 0
...

...
...

. . .
...

an bn abn−1 . . . an−2b











: an, b3, ..., bn ∈ C, a, b ∈ C∗
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for n ≥ 3 (the case n = 3 is easy to verify), we get that a maximal torus is formed by:

(3) T =







ta,b :=









a 0 0 . . . 0
0 b 0 . . . 0
0 0 ab . . . 0
...

...
...

. . .
...

0 0 0 . . . an−2b









: a, b ∈ C∗







∼= C∗ × C∗.

By similar calculations to Lemma 10 one can prove the following result:

Lemma 14. Let N(T) be the normalizer of T. Then, N(T) = T.

Denote by A a one-parametric filiform Leibniz algebra with θ = 0. Let us compute the grading on

A induced by only an element ta,b in our maximal torus. We will denote d1 = a, d2 = b and di = ai−2b
with 3 ≤ i ≤ n the diagonal of the matrix ta,b respect our fixed basis.

We distinguish the following cases:

(1) a = b.
(1.1) If a = b = 1. In this case, we have the trivial grading:

A = 〈e1, e2, . . . , en〉.

(1.2) If a = b and ai = 1, being a an i-primitive root of 1 and 2 ≤ i ≤ n − 1, i ∈ N. Let

n = im+ p be with 0 ≤ p < i. Then, we get the Zi-grading

A = 〈ei+1, e2i+1 . . . , e1+(m−1)i, e1+mi〉0,
⊕ 〈e1, e2, e2+i, e2+2i, . . . , e2+(m−1)i, e2+mi〉1
⊕ 〈e3, e3+i, e3+2i, . . . , e3+(m−1)i, e3+mi〉2

. . .
⊕ 〈ep, ep+i, ep+2i, . . . , ep+(m−1)i, ep+mi〉p−1

⊕ 〈ep+1, ep+1+i, ep+1+2i, . . . , ep+1+(m−1)i〉p
. . .

⊕ 〈ei, e2i, e3i, . . . , emi〉i−1.

(1.3) If a = b and ai 6= 1, 0 < i < n. We have the Z-grading

A = 〈e1, e2〉1 ⊕ 〈e3〉2 ⊕ 〈e4〉3 ⊕ · · · ⊕ 〈en−1〉n−2 ⊕ 〈en〉n−1.

(2) a 6= b. We have d1 = a, d2 = b, di = ai−2b with 3 ≤ i ≤ n.
(2.1) If a = 1. We obtain a Z2-grading

A = 〈e1〉0 ⊕ 〈e2, e3, . . . , en〉1.

(2.2) If a = −1 and b = 1.
We get the Z2-grading

A = 〈e2, e4, e6, . . .〉0 ⊕ 〈e1, e3, e5, e7, . . .〉1.

(2.3) If a = −1 and b 6= 1.
We get the Z× Z2-grading

A = 〈e1〉(0,1) ⊕ 〈e2, e4, e6, . . . 〉(1,0) ⊕ 〈e3, e5, e7, . . . 〉(1,1).

(2.4) If a /∈ {1,−1}.
(2.4.1) If b = 1, then d1 = a, d2 = 1, di = ai−2 with 3 ≤ i ≤ n. We can distinguish two

cases:
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(A) If there exists i with 3 ≤ i ≤ n − 2 such that ai = 1. Let n = mi + p,
0 ≤ p ≤ i− 1. We have the following Zi-grading

A = 〈e2, e2+i, e2+2i, . . . , e2+(m−1)i, e2+mi〉0
⊕ 〈e1, e3, e3+i, e3+2i, . . . , e3+(m−1)i, e3+mi〉1

. . .
⊕ 〈ep, ep+i, ep+2i, . . . , ep+(m−1)i, ep+mi〉p−2

⊕ 〈ep+1, ep+1+i, ep+1+2i, . . . , ep+1+(m−1)i〉p−1

. . .
⊕ 〈ei+1, e2i+1, e3i+1, . . . , ei+1+(m−1)i〉i−1.

(B) If ai 6= 1 for any i, 3 ≤ i ≤ n− 2. We have the following Z-grading:

A = 〈e2〉0 ⊕ 〈e1, e3〉1 ⊕ 〈e4〉2 ⊕ · · · ⊕ 〈en−1〉n−3 ⊕ 〈en〉n−2.

(2.4.2) If b 6= 1.
(A) di 6= dj for all i, j with 1 ≤ i, j ≤ n. We have the following Z-grading:

A = 〈e1〉1 ⊕ 〈e2〉2 ⊕ 〈e3〉3 ⊕ 〈e4〉4 ⊕ · · · ⊕ 〈en−1〉n−1 ⊕ 〈en〉n.

(B) there exist k, l with k 6= l such that dk = dl with 3 ≤ k < l ≤ n. Thus, ai = 1.
Let n = mi+ p be. We have the following Z× Zi-grading:

A = 〈e1〉(0,1)
⊕ 〈e2, e2+i, e2+2i, . . . , e2+(m−1)i, e2+mi〉(1,0)
⊕ 〈e3, e3+i, e3+2i, . . . , e3+(m−1)i, e3+mi〉(1,1)

. . .
⊕ 〈ep, ep+i, ep+2i, . . . , ep+(m−1)i, ep+mi〉(1,p−2)

⊕ 〈ep+1, ep+1+i, ep+1+2i, . . . , ep+1+(m−1)i〉(1,p−1)

. . .
⊕ 〈ei+1, e2i+1, e3i+1, . . . , ei+1+(m−1)i〉(1,i−1).

(C) there exists i, 3 ≤ i ≤ n such that d1 = di and d1 6= dj, i 6= j. Thus, b = 1
ai−3 .

We put ai−3 6= 1 because in other case b = 1 and it gives the case (2.4.1.B).

We have the following Z-grading:

A = 〈e2〉−i+3 ⊕ · · · ⊕ 〈ei−2〉−1 ⊕ 〈ei−1〉0 ⊕ 〈e1, ei〉1 ⊕ 〈ei+1〉2 ⊕ · · · ⊕ 〈en〉n−i+1,

(D) there exist k, l with k > l such that d1 = dk = dl and k − l = i. Thus b = a3−l

and ai = 1. Let n = mi + p with 0 ≤ p < i be. We have the following

Zi-grading:

A = 〈e1, ei+1, e2i+1, e3i+1, . . .〉1
⊕ 〈e2, ei+2, e2i+2, e3i+2, . . .〉2

. . .
⊕ 〈ei, e2i, e3i, e4i, . . .〉0.

Since one-dimensional filiform Leibniz algebras and two-dimensional filiform Leibniz algebras

with θ = 0 have zero product we consider filiform Leibniz algebras, with θ = 0, of dimension

greater or equal than three.

Lemma 15. Let A be a one-parametric filiform Leibniz algebra with θ = 0 and of dimension n ≥ 3.

Then any cyclic grading is equivalent to only one of the following:
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(1) The trivial grading given by A = 〈e1, e2, . . . , en〉.
(2) The Z-grading given by

A = 〈e1〉1 ⊕ 〈e2〉2 ⊕ 〈e3〉3 ⊕ 〈e4〉4 ⊕ · · · ⊕ 〈en−1〉n−1 ⊕ 〈en〉n.

(3) The Z-grading given by

A = 〈e1, e2〉1 ⊕ 〈e3〉2 ⊕ 〈e4〉3 ⊕ · · · ⊕ 〈en−1〉n−2 ⊕ 〈en〉n−1.

(4) For any 3 ≤ i ≤ n, the Z-grading given by

A = 〈e2〉−i+3 ⊕ · · · ⊕ 〈ei−2〉−1 ⊕ 〈ei−1〉0 ⊕ 〈e1, ei〉1 ⊕ 〈ei+1〉2 ⊕ · · · ⊕ 〈en〉n−i+1.

(5) The Z2-grading given by

A = 〈e1〉0 ⊕ 〈e2, e3, . . . , en〉1.

(6) For n ≥ 4, the Z2-grading given by

A = 〈e2, e4, e6, . . .〉0 ⊕ 〈e1, e3, e5, e7, . . .〉1.

(7) The Z× Z2-grading given by

A = 〈e1〉(0,1) ⊕ 〈e2, e4, e6, . . . 〉(1,0) ⊕ 〈e3, e5, e7, . . . 〉(1,1).

(8) For any 2 ≤ i ≤ n− 1, (i, n) 6= (2, 3), the Zi-grading given by

A = 〈ei+1, e2i+1, . . . , e1+(m−1)i, e1+mi〉0
⊕ 〈e1, e2, e2+i, e2+2i, . . . , e2+(m−1)i, e2+mi〉1
⊕ 〈e3, e3+i, e3+2i, . . . , e3+(m−1)i, e3+mi〉2

. . .
⊕ 〈ep, ep+i, ep+2i, . . . , ep+(m−1)i, ep+mi〉p−1

⊕ 〈ep+1, ep+1+i, ep+1+2i, . . . , ep+1+(m−1)i〉p
. . .

⊕ 〈ei, e2i, e3i, . . . , emi〉i−1.

(9) For any 3 ≤ i ≤ n− 1, (i, n) 6= (3, 4), the Zi-grading given by

A = 〈e2, e2+i, e2+2i, . . . , e2+(m−1)i, e2+mi〉0
⊕ 〈e1, e3, e3+i, e3+2i, . . . , e3+(m−1)i, e3+mi〉1

. . .
⊕ 〈ep, ep+i, ep+2i, . . . , ep+(m−1)i, ep+mi〉p−2

⊕ 〈ep+1, ep+1+i, ep+1+2i, . . . , ep+1+(m−1)i〉p−1

. . .
⊕ 〈ei+1, e2i+1, e3i+1, . . . , ei+1+(m−1)i〉i−1.

(10) For any 3 ≤ i ≤ n− 2, the Z× Zi-grading given by

A = 〈e1〉(0,1)
⊕ 〈e2, e2+i, e2+2i, . . . , e2+(m−1)i, e2+mi〉(1,0)
⊕ 〈e3, e3+i, e3+2i, . . . , e3+(m−1)i, e3+mi〉(1,1)

. . .
⊕ 〈ep, ep+i, ep+2i, . . . , ep+(m−1)i, ep+mi〉(1,p−2)

⊕ 〈ep+1, ep+1+i, ep+1+2i, . . . , ep+1+(m−1)i〉(1,p−1)

. . .
⊕ 〈ei+1, e2i+1, e3i+1, . . . , ei+1+(m−1)i〉(1,i−1).
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(11) For any 3 ≤ i ≤ n− 2, the Zi-grading given by

A = 〈e1, ei+1, e2i+1, e3i+1, . . .〉1
⊕ 〈e2, ei+2, e2i+2, e3i+2, . . .〉2

. . .
⊕ 〈ei, e2i, e3i, e4i, . . .〉0.

Proof. By the above discussion, we just have to prove that two different gradings of the lemma are not

equivalent.

Since two gradings with supports of different cardinal are not equivalent, we have that (1), (2) and

(3) are not equivalent among them.

Consider now the gradings in the family, depending on i, (4) having all of them a support with

cardinal n − 1. From here these are not equivalent to (1) or (2). Clearly the grading (3) neither is

equivalent to any grading in (4), because in the opposite case there should be an automorphism φ of A
such that φ(〈e1, e2〉) = 〈e1, ei〉 with i ≥ 3, what would be a contradiction. If we fix now 3 ≤ i, j ≤ n
with i 6= j and consider the two gradings of type (4) associated to i and j. In case both gradings were

equivalent, we would have an automorphism φ of A such that φ(〈e1, ei〉) = 〈e1, ej〉, but the dimension

of the subalgebra of A generated by {e1, ei} is n−i+2 while the one generated by {e1, ej} is n−j+2.

Hence there not exists such φ because i 6= j. We conclude that two different gradings of the family

(4) are not equivalent.

Consider now the grading (5). This is not equivalent to any of the previous ones because of the

different cardinals of the supports, (in the case (3) when n = 3 as consequence of there is not any

automorphism satisfying φ(〈e1, e2〉) = 〈e2, e3〉 while in the case (4) when n = 3 because there is not

any automorphism satisfying φ(〈e1, e3〉) = 〈e2, e3〉).
As above, the grading (6) is not equivalent to any grading (1)-(5).

Respect to the grading (7), we get as above that this is not equivalent to (1)-(6).

Taking into account that the dimension of the homogeneous subspace containing e1 is at least three

in grading (8), we have as above that grading (8) is not equivalent to (1)-(7).

We observe that any grading in (9) has at least two homogeneous components with dimensions

greater or equal that two, so they are not equivalent to any grading (1)-(7).

Since in (8) any grading has e1 and e2 in the same homogeneous component, we also have that (9)

is not equivalent to (8).

Taking now into account that in gradings (10) there is always at least four nonzero homogeneous

components, that 〈e1〉 is always a homogeneous component and that there exists at least one homo-

geneous component with dimension greater o equal than two, we get that gradings in (10) are not

equivalent to any grading in (1)-(9).

Finally, by observing that in (11) all of the gradings have at least two homogeneous components

with dimensions greater or equal than two, that e1 does not belong to a one-dimensional homogeneous

component, that e2 does not belong to the same component than e1 and that e3 belongs to the same

component than e1 just in case i = 2, we can assert that any grading in (11) is not equivalent to any

grading in (1)-(10).

�

Next, we are going to show that any abelian group grading on A is equivalent to a cyclic grading.

Lemma 16. If e1, e2 are homogeneous elements of an abelian group grading of A (that is, e1 ∈
Ax, e2 ∈ Ay for some x, y ∈ G), then the grading of A is one of the list in Lemma 15.
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Proof. Let e1 ∈ Ax, e2 ∈ Ay and x, y ∈ G be; and let denote by i be the order of x (denoted by

ord(x) = i). We are going to distinguish two cases.

In the first one x = y. That is e1, e2 ∈ Ax. We can consider the next possibilities:

• We have i ≥ n. We get by the grading e3 = e2e1 ∈ A2x, e4 = e3e1 ∈ A3x and so ej =
ej−1e1 ∈ A(j−1)x for any j ≤ n. From here we have the grading

A = 〈e1, e2〉x ⊕ 〈e3〉2x ⊕ 〈e4〉3x ⊕ · · · ⊕ 〈en−1〉(n−2)x ⊕ 〈en〉(n−1)x,

which is clearly equivalent to the Z-grading in Lemma 15-(3).

• We have 1 ≤ i ≤ n − 1. As above we get that ej ∈ A(j−1)x for 1 ≥ j ≥ n. Hence, in case

i = 1 (and so x = 0) we get that A has the trivial grading. Suppose then 2 ≤ i ≤ n− 1. Then

e1, e2 ∈ Ax, e3 ∈ A2x, . . . , ei ∈ A(i−1)x with |{x, 2x, . . . , (i− 1)x}| = i− 1,

and also

ei = ei−1e1 ∈ Aix = A0

because ord(x) = i.
Finally, let j ≥ i + 1 be. Since j = ir + s with r, s ∈ N and 0 ≤ s < i, we get as

consequence of ord(x) = i that

ej ∈ Ajx = −Asx.

From here, if we write n = im+ p with m, p ∈ N and 0 ≤ p < i, we have the grading

A = 〈ei+1, e2i+1, . . . , e1+(m−1)i, e1+mi〉0
⊕ 〈e1, e2, e2+i, e2+2i, . . . , e2+(m−1)i, e2+mi〉1
⊕ 〈e3, e3+i, e3+2i, . . . , e3+(m−1)i, e3+mi〉2

. . .
⊕ 〈ep, ep+i, ep+2i, . . . , ep+(m−1)i, ep+mi〉p−1

⊕ 〈ep+1, ep+1+i, ep+1+2i, . . . , ep+1+(m−1)i〉p
. . .

⊕ 〈ei, e2i, e3i, . . . , emi〉i−1.

This grading is equivalent to the Z-grading in Lemma 15-(3) when (i, n) = (2, 3) or to the

Zi-grading in Lemma 15-(8) when (i, n) 6= (2, 3).

In the second case x 6= y. That is e1 ∈ Ax, e2 ∈ Ay with x 6= y. We distinguish three possibilities.

• First i = 1. Then x = 0 and so

ej = (. . . ((e2 e1)e1) . . . )e1
︸ ︷︷ ︸

j−2

∈ Ay

for any 3 ≤ j ≤ n. Hence

A = 〈e1〉0 ⊕ 〈e2, e3, . . . , en〉y,

which is equivalent to the Z2-grading in Lemma 15-(5).

• Second, i ≥ n− 1. We have as above that

ej ∈ Ay+(j−2)x

for any 3 ≤ j ≤ n. Observe that the fact ord(x) ≥ n − 1 gives us that y + px 6= y + qx and

y + px 6= y for any 1 ≤ p, q ≤ n − 2 with p 6= q. However, it is possible that y + px = x for

some 1 ≤ p ≤ n− 2. That is, y = −kx for some 0 ≤ k ≤ n− 3. Form here, we have that to

distinguish two cases so as to obtain:
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If y 6= −kx for any k ∈ {0, 1, ..., n− 3} we get the grading

A = 〈e1〉x ⊕ 〈e2〉y ⊕ 〈e3〉y+x ⊕ 〈e4〉y+2x ⊕ · · · ⊕ 〈en−1〉y+(n−3)x ⊕ 〈en〉y+(n−2)x,

which is equivalent to the Z-grading in Lemma 15-(2).

If y = −kx for some k ∈ {0, 1, ..., n− 3} then we have

A = 〈e2〉−kx ⊕ 〈e3〉(−k+1)x ⊕ · · · ⊕ 〈ek+1〉−x ⊕ 〈ek+2〉0 ⊕ 〈e1, ek+3〉x⊕
⊕〈ek+4〉2x ⊕ · · · ⊕ 〈en〉(n−k−2)x,

which is equivalent to the Z-grading in Lemma 15-(4).

• Third, 2 ≤ i ≤ n− 2. Then,

e1 ∈ Ax, e2 ∈ Ay, e3 ∈ Ay+x, . . . , ei+1 ∈ Ay+(i−1)x with |{x, 2x, . . . , (i− 1)x}| = i− 1.

We also have

ei+2 ∈ Ay+ix = Ay.

Take now some j ≥ i+ 3 and express j − 2 = ir + s with r, s ∈ N and 0 ≤ s < i, then

ej ∈ Ay+(j−2)x = As.

Now if we express n = im + p with m, p ∈ N and 0 ≤ p < i, we can distinguish as above

two possibilities.

In the first one y 6= −kx for any k ∈ {0, 1, ..., n− 3}. Then we get the grading

A = 〈e1〉x
⊕ 〈e2, e2+i, e2+2i, . . . , e2+(m−1)i, e2+mi〉y
⊕ 〈e3, e3+i, e3+2i, . . . , e3+(m−1)i, e3+mi〉y+x

. . .
⊕ 〈ep, ep+i, ep+2i, . . . , ep+(m−1)i, ep+mi〉y+(p−2)x

⊕ 〈ep+1, ep+1+i, ep+1+2i, . . . , ep+1+(m−1)i〉y+(p−1)x

. . .
⊕ 〈ei+1, e2i+1, e3i+1, . . . , ei+1+(m−1)i〉y+(i−1)x,

which is equivalent to the Z× Z2-grading in Lemma 15-(7) when i = 2 or to Z× Zi-grading

in Lemma 15-(10) when i ≥ 3.

In the second one y = −kx for some k ∈ {0, 1, ..., n− 3}. Then we have the grading

A = 〈e1, ek+3, ek+3+i, ek+3+2i, . . .〉x
⊕ 〈e2, ek+4, ek+4+i, ek+4+2i, . . .〉2x

. . .
⊕ 〈ek+1, ek+1+i, ek+1+2i, ek+1+3i, . . .〉(i−1)x

⊕ 〈ek+2, ek+2+i, ek+2+2i, ek+2+3i, . . .〉0.

which is equivalent either to the Z2-grading in 15-(6) when k = 0 (that is, y = 0) and i = 2 or

to the Zi-grading in 15-(9) when k = 0 and i ≥ 3, or to the Z× Z2-grading in Lemma 15-(7)

when k 6= 0 (that is, y 6= 0) and i = 2 or to the Zi-grading in 15-(11) when k 6= 0 and i ≥ 3.

�

Theorem 17. Any group grading of a one-parametric filiform Leibniz algebra with θ = 0, and dimen-

sion n ≥ 3, is equivalent to only one in the list of Lemma 15.
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Proof. Recall that any grading of A is induced by an abelian subgroup G of diagonalizable automor-

phisms in N(T) = T, being the homogeneous components of the grading the common eigenspaces of

the elements in G.
Since for any f ∈ G ⊂ T, Equation (3) gives us that e1 and e2 are eigenvectors of f , then e1 and e2

are homogeneous vectors in any grading of A. From here Lemma 16 completes the proof. �

4.3. Case in which θ 6= 0. Taking into account Equation (2), we have that in case dim(F1) ≥ 4 then

Aut(F1) =

















ǫ 0 0 . . . 0
0 b 0 . . . 0
0 b3 ǫb . . . 0
0 b4 ǫb3 . . . 0
...

...
...

. . .
...

an bn ǫbn−1 . . . ǫn−2b











: an, b3, ..., bn ∈ C, b ∈ C∗; ǫn−3 = 1







.

From here a maximal torus is:

T =







t1,b :=









1 0 0 . . . 0
0 b 0 . . . 0
0 0 b . . . 0
...

...
...

. . .
...

0 0 0 . . . b









: b ∈ C∗







∼= C∗.

Hence, the normalizer of T in Aut(F1) is

N(T) =

















ǫ 0 0 . . . 0
0 b 0 . . . 0
0 b3 ǫb . . . 0
0 b4 ǫb3 . . . 0
...

...
...

. . .
...

0 bn ǫbn−1 . . . ǫn−2b











: b3, ..., bn ∈ C, b ∈ C∗; ǫn−3 = 1







.

Observe that T $ N(T) and so any grading of F1 is not necessarily a toral one.

Let us denote by A any (non-Lie) one-parametric filiform Leibniz with θ 6= 0 and with dim(A) ≥ 3
(the cases dim(A) = 1, 2 give algebras with zero product).

Recall now that any grading of A is induced by an abelian subgroup G of diagonalizable automor-

phisms in N(T), being the homogeneous components of the grading the common eigenspaces of the

elements in G.
Since for any f ∈ G (and following from the multiplication table of the algebra), e1 and en are

eigenvectors of f , then e1 and en are homogeneous vectors in any grading of A. That is,

(4) e1 ∈ Ag and en ∈ Ah

for some g, h ∈ G, where G denotes the abelian group in the grading of A:

(5) A =
⊕

g∈G

Ag.

If A is three-dimensional, we know by Equation (4) that e1 ∈ Ag and e3 ∈ Ah. We are going to

distinguish two possibilities:
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First, g = h. In this case either A = Ag when e2 ∈ Ag or A = Ag ⊕ At with t 6= g when e2 /∈ Ag.

In the first case we get the trivial grading A = A0. In the second case we can write e2 = vg + vt with

vg ∈ Ag and 0 6= vt ∈ At. If vg = 0 then e2 ∈ At and we have the Z2-grading

(6) A = 〈e2〉0 ⊕ 〈e1, e3〉1.

If vg 6= 0 then the fact e1e2 = θe3 and the grading of A give us 2g = g and g + t = g. From here

g = 0 and so t = 0. Hence g = t, a contradiction, and so this case does not happen.

Second, g 6= h. In this case either A = Ag ⊕ Ah when e2 ∈ Ag ⊕ Ah or A = Ag ⊕ Ah ⊕ At with

t /∈ {g, h} when e2 /∈ Ag ⊕ Ah.

Consider the case in which e2 ∈ Ag ⊕ Ah and write e2 = vg + vh with vg ∈ Ag and vh ∈ Ah. If

vg = 0 we get e2 = eh and the the Z2-grading

(7) A = 〈e1〉0 ⊕ 〈e2, e3〉1.

If vh = 0 then e2 = vh and we obtain the the Z2-grading

(8) A = 〈e3〉0 ⊕ 〈e1, e2〉1.

Finally if vg 6= 0 and vh 6= 0, the fact e1e2 = θe3 and the grading of A give us 2g = h and g + h = h.

From here g = h = 0. This is a contradiction and so this case does not happen.

Consider now the case in which e2 /∈ Ag ⊕ Ah. Then we can write e2 = vg + vh + vt with vi ∈ Ai

for i ∈ {g, h, t} and vt 6= 0. If vg = vh = 0 then e2 = vt and we get the Z-grading

(9) A = 〈e1〉1 ⊕ 〈e2〉2 ⊕ 〈e2〉3.

If vg 6= 0 we get as above that 2g = h and that g + t = h. From here t = g a contradiction. If vh 6= 0
we have in a similar way g + h = h and g + t = h. From here h = t. A contradiction. Hence these

last cases do not occur.

Since the grading (9) has three homogeneous components while the remaining non-trivial gradings

have only two homogeneous components we have that the grading (9)is not equivalent to any grading

in (6)-(8). The grading (6) is not equivalent to grading (8). Indeed, in the opposite case we would

have an automorphism φ of A satisfying φ(〈e2〉) = 〈e3〉 and φ(〈e1, e3〉) = 〈e2, e3〉. But in this

case 0 6= φ(e3) = φ(e2)φ(e1) = 0, a contradiction. In a similar way, gradings (7) and (8) are not

equivalent. Finally, an analogous argument gives us that gradings (6) and (7) are equivalent if and

only if θ ∈ {±1}.

Let us summarize our results in the following statement.

Proposition 18. Any abelian group grading of a one-parametric filiform Leibniz algebra A (with a

nonzero parameter) of dimension 3 is equivalent to the trivial grading or to one of the gradings (6),

(7), (8) or (9) if θ /∈ {±1}; or to the trivial grading or to one of the gradings (6), (8) or (9) if θ ∈ {±1}.

Below we will consider the case of the algebra A for n ≥ 4.

Now, since e1e2 = θen with θ 6= 0, we can write by Equation (5) that

e2 = vg1 + vg2 + · · ·+ vgm

with any vgi 6= 0 and gi 6= gj when i 6= j. From here e1(vg1 + vg2 + · · · + vgm) = θen and, by

distinguish removing the zero and the non-zero products, we can write
∑

j∈J

e1vgj +
∑

k∈K

e1vgk = θen, J ∩K = ∅,
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with e1vgj = 0 for any j ∈ J and e1vgk 6= 0 for any k ∈ K. Since e1 ∈ Ag, then the fact
∑

k∈K

e1vgk =

θen implies that by writing for any k ∈ K, 0 6= e1vgk = vgk+g ∈ Agk+g, we have that 0 6=
∑

k∈K

vgk+g =

θen ∈ Ah. Hence by the grading, we get that gk + g = h for any k ∈ K. That is, gk = h − g for any

k ∈ K. From here we have that the cardinal of K is necessarily 1 and we write

e2 =
∑

j∈J

vgj + vh−g

where any vgj ∈ Agj with e1vgj = 0 and 0 6= vh−g ∈ Ah−g with e1vh−g 6= 0.

Now, since e2e1 = e3, we have
∑

j∈J

vgje1 + vh−ge1 = e3. In case vh−ge1 = 0, then by the product in

A we get 0 6= vh−g = αe1 + βen, α, β ∈ C. But vh−g = e2 −
∑

j∈J

vgj and so e1vh−g = e1e2 = e3 6= 0.

However in this case e1vh−g = e1(αe1 + βen) = 0 which is a contradiction (recall n ≥ 4). Hence

vh−ge1 6= 0 and we can write 0 6= vh−ge1 := vh ∈ Ah. We get

e3 =
∑

j∈J

vgj+g + vh

with vh 6= 0.

We have that vhe1 6= 0. Indeed, if vhe1 = 0 then vh = αe1 + βen with α 6= 0 or β 6= 0. But 0 6=
vh = vh−ge1 and so (by the product in A), α = 0, β 6= 0 and vh−g = τe1 + βen−1 + γen. Recall from

the above that e1vh−g 6= 0 but e1(τe1+βen−1+γen) = 0, a contradiction. From here vhe1 6= 0 and by

denoting 0 6= vhe1 := vh+g ∈ Ah+g we have that e4 = e3e1 = (
∑

j∈J

vgj+g + vh)e1 =
∑

j∈J

vgj+2g + vh+g

with vh+g 6= 0. That is, we can assert

e4 =
∑

j∈J

vgj+2g + vh+g

with vh+g 6= 0.

By arguing in this way get for any k ∈ {2, ..., n− 1} that

ek =
∑

j∈J

vgj+(k−2)g + vh+(k−3)g

with vh+(k−3)g 6= 0.

Finally, for k = n we have that the fact en−1e1 = en gives us en = ek =
∑

j∈J

vgj+(n−2)g + vh+(n−3)g

with vh+(n−3)g 6= 0 and en ∈ Ah. From here, we get by the grading that h + (n − 3)g = h and so

(recall n ≥ 4),

(10) (n− 3)g = 0.

We have by the above that (n − 2)g = g. So in case some vgj+(n−2)g 6= 0 we have vgj+(n−2)g ∈
Agj+g = Ah and so gj = h − g. Summarizing we have (take into account that the fact (n − 3)g = 0
implies (n− 4)g = −g).

(11) e1 ∈ Ag, e2 ∈ Ah−g, e3 ∈ Ah, e4 ∈ Ah+g, · · · , ek ∈ Ah+(k−3)g, · · · , en−2 ∈ Ah+(n−5)g,

en−1 ∈ Ah+(n−4)g = Ah−g, en ∈ Ah.

Let us distinguish two cases:

First, g = 0. Then, by Equation (11), we have either the trivial grading

A = A0
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in case h = 0 or the Z2-grading

(12) A = 〈e1〉0 ⊕ 〈e2, e3, ..., en〉1

when h 6= 0.

Second, g 6= 0. Observe that dim(A) 6= 4 since in this case Equation (10) would give us g = 0.

Let us denote by 2 ≤ t ≤ n − 3 the order of g. By Equation (10), t divides n − 3 and so we can

write

(13) n− 3 = rt

with t, r ∈ N being 2 ≤ t ≤ n− 3 and 1 ≤ r ≤ n− 4.

If furthermore h = g, Equation (11) gives us the following grading, which will be denote as

(14) Ag = 〈e1〉 ⊕ 〈e3, et+3, e2t+3, ..., e(r−1)t+3〉 ⊕ 〈en〉

A2g = 〈e4, et+4, e2t+4, ..., e(r−1)t+4〉
A3g = 〈e5, et+5, e2t+5, ..., e(r−1)t+5〉

...

A(t−1)g = 〈et+1, e2t+1, e3t+1, ..., ert+1〉
A0 = 〈et+2, e2t+2, e3t+2, ..., ert+2〉 ⊕ 〈e2〉

From here, for any divisor t 6= 1 of n − 3 we have a Zt-grading of A by taking i := ig, i ∈
{0, ..., t− 1} in Equation (14) and where rt = n− 3.

We note that pg 6= qg for p, q ∈ {0, ..., t − 1}, p 6= q, in Equation (14) since in the opposite case

(p− q)g = 0 with p− q ≤ t− 1, a contradiction with the order t of g.

We also note that for t = 2, Equation (14) means the Z2-grading of A:

A0 = 〈e4, e6, e8, ..., e2(r+1)〉 ⊕ 〈e2〉
A1 = 〈e1〉 ⊕ 〈e3, e5, e7, ..., e2r+1〉 ⊕ 〈en〉.

It remains to study the case in which h 6= g (and also g 6= 0). In this case Equation (11) gives us

(15) Ag = 〈e1〉

Ah = 〈e3, et+3, e2t+3, ..., e(r−1)t+3〉 ⊕ 〈en〉
Ah+g = 〈e4, et+4, e2t+4, ..., e(r−1)t+4〉
Ah+2g = 〈e5, et+5, e2t+5, ..., e(r−1)t+5〉

...

Ah+(t−2)g = 〈et+1, e2t+1, e3t+1, ..., ert+1〉
Ah+(t−1)g = 〈e2〉 ⊕ 〈et+2, e2t+2, e3t+2, ..., ert+2〉.

We have as above that h + pg 6= h + qg for p, q ∈ {0, ..., t − 1}. However it is possible that

g = h+ pg for some p ∈ {1, ..., t− 1}. Hence we consider two possibilities:

First, g 6= h+ pg for any p ∈ {1, ..., t− 1}. Then we get that for any divisor t 6= 1 of n− 3 we have

a Zt×Z-grading of A given by Equation (15) where (1, 0) := g, (i, 1) := h+ ig for i ∈ {0, ..., t− 1},

and where rt = n− 3.

We note that for t = 2, Equation (15) means the Z2 × Z-grading of A:

A(1,0) = 〈e1〉
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A(0,1) = 〈e3, e5, e7, ..., e2r+1〉 ⊕ 〈en〉
A(1,1) = 〈e2〉 ⊕ 〈e4, e6, e8, ..., e2(r+1)〉.

Second, g = h + pg for some p ∈ {1, ..., t − 1}. This fact is equivalent to h = −τg for some

τ ∈ {0, ..., t− 2}. In this case

Ag = Ah+(τ+1)g

and, by looking at Equation (15), we obtain the grading

(16) Ag = 〈e1〉 ⊕ 〈eτ+4, et+τ+4, ..., e(r−1)t+τ+4〉

A−τg = 〈e3, et+3, e2t+3, ..., e(r−1)t+3〉 ⊕ 〈en〉
A(−τ+1)g = 〈e4, et+4, e2t+4, ..., e(r−1)t+4〉
A(−τ+2)g = 〈e5, et+5, e2t+5, ..., e(r−1)t+5〉

...

A0 = 〈eτ+3, et+τ+3, ..., e(r−1)t+τ+3〉
...

A(t−τ−2)g = 〈et+1, e2t+1, e3t+1, ..., ert+1〉
A(t−τ−1)g = 〈e2〉 ⊕ 〈et+2, e2t+2, e3t+2, ..., ert+2〉.

That is, for any divisor t 6= 1 of n − 3 and for any τ ∈ {0, ..., t − 2} we have a Zt-grading of A
given by Equation (16) where Aī := Aig for any ī ∈ Zt and where rt = n− 3.

Theorem 19. Let A be a one-parametric filiform Leibniz algebra A of dimension n.

(i) If n = 4 then any abelian group grading of A is equivalent either to the trivial grading or to

the grading (12).

(ii) If n ≥ 5 then any abelian group grading of A is equivalent either to the trivial grading or to

the grading (12) or to one of the gradings in (14) or to one of the gradings in (15) or to one of

the gradins in (16).

Proof. We only have to show that, for n ≥ 4, the grading (12), any grading in (14), any grading in

(15) and any grading in (16) are not equivalent. To do that, observe that the grading (12) has one

homogeneous component with dimension 1 and one homogeneous component with dimension n− 1.

Fixed now a divisor t ≥ 2 of n − 3 and by denoting rt = n− 3, we have a grading given by (14)

which has one homogeneous component with dimension r + 1, one homogeneous components with

dimension r+2 and t− 2 homogeneous components with dimension r; a grading (15) which has one

homogeneous component with dimension 1, two homogeneous components with dimension r+1 and

t− 2 homogeneous components with dimension r; and a grading (16) with either three homogeneous

components with dimension r+1 and t− 3 homogeneous components with dimension r; or with one

homogeneous component with dimension r + 2, one homogeneous component with dimension r + 1
and t− 2 homogeneous components with dimension r

From here, the grading (12) is equivalent neither to any grading in (14) nor any grading in (15) and

nor any grading in (16) (they have a different number of nonzero homogeneous components). Also,

two different gradings in (14), two different gradings in (15) and two different gradings in (16) are not

equivalent because they have nonzero homogeneous components with different dimensions.
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Now, let us show that any grading in (14) is not equivalent to any grading in (15). To do that,

suppose there exists t, t′ ≥ 2 two divisors of n− 3 such that the Zt-grading of A:

(17) A0 = 〈et+2, e2t+2, e3t+2, ..., ert+2〉 ⊕ 〈e2〉

A1 = 〈e1〉 ⊕ 〈e3, et+3, e2t+3, ..., e(r−1)t+3〉 ⊕ 〈en〉
A2 = 〈e4, et+4, e2t+4, ..., e(r−1)t+4〉
A3 = 〈e5, et+5, e2t+5, ..., e(r−1)t+5〉

...

At−1 = 〈et+1, e2t+1, e3t+1, ..., ert+1〉

and the Zt′ × Z-grading of A

(18) A(1,0) = 〈e1〉

A(0,1) = 〈e3, et′+3, e2t′+3, ..., e(r′−1)t′+3〉 ⊕ 〈en〉
A(1,1) = 〈e4, et′+4, e2t′+4, ..., e(r′−1)t′+4〉
A(2,1) = 〈e5, et′+5, e2t′+5, ..., e(r′−1)t′+5〉

...

A(t′−2,1) = 〈et′+1, e2t′+1, e3t′+1, ..., er′t′+1〉
A(t′−1,1) = 〈e2〉 ⊕ 〈et′+2, e2t′+2, e3t′+2, ..., er′t′+2〉

are equivalent, where rt = n− 3 and r′t′ = n− 3. Since both gradings must have the same number

of nonzero homogeneous components, then necessarily

(19) t = t′ + 1.

As the grading (18) has an homogeneous component with dimension 1, then necessarily r = 1 and

so t = n − 3 in the grading (17). Then we have by Equation (19) that t′ = n − 4. Since t′ divides

n− 3 then necessarily n− 3 = 2 and t′ = 1, but this contradicts the fact that t ≥ 2. We conclude that

the gradings in (17) and in (18) are not equivalent.

Similar arguments allow us to verify that any grading in (14) is not equivalent to any grading in

(16); and that any grading in (15) is not equivalent to any grading in (16).

�
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