
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/350727308

Deep Learning-Based Prediction of Test Input Validity for RESTful APIs

Conference Paper · June 2021

CITATIONS

0
READS

34

5 authors, including:

Some of the authors of this publication are also working on these related projects:

General-purpose simulators View project

HORATIO: Improvements in the reliability, customization and operating costs of software services regulated by user agreements View project

Alberto Martin-Lopez

Universidad de Sevilla

8 PUBLICATIONS   16 CITATIONS   

SEE PROFILE

Sergio Segura

Universidad de Sevilla

87 PUBLICATIONS   2,845 CITATIONS   

SEE PROFILE

Luis Valencia-Cabrera

Universidad de Sevilla

68 PUBLICATIONS   586 CITATIONS   

SEE PROFILE

Antonio Ruiz-Cortés

Universidad de Sevilla

303 PUBLICATIONS   6,558 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Alberto Martin-Lopez on 08 April 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/350727308_Deep_Learning-Based_Prediction_of_Test_Input_Validity_for_RESTful_APIs?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/350727308_Deep_Learning-Based_Prediction_of_Test_Input_Validity_for_RESTful_APIs?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/General-purpose-simulators?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/HORATIO-Improvements-in-the-reliability-customization-and-operating-costs-of-software-services-regulated-by-user-agreements?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alberto-Martin-Lopez?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alberto-Martin-Lopez?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alberto-Martin-Lopez?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio-Segura?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio-Segura?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio-Segura?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Valencia-Cabrera?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Valencia-Cabrera?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Valencia-Cabrera?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Ruiz-Cortes?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Ruiz-Cortes?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Ruiz-Cortes?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alberto-Martin-Lopez?enrichId=rgreq-df44c39d15a9b21aaf57a23b0d7724bb-XXX&enrichSource=Y292ZXJQYWdlOzM1MDcyNzMwODtBUzoxMDEwMjgzMTUzNzIzNDA1QDE2MTc4ODE2ODI5MDk%3D&el=1_x_10&_esc=publicationCoverPdf


Deep Learning-Based Prediction of Test Input
Validity for RESTful APIs

A. Giuliano Mirabella
SCORE Lab, I3US Institute

Universidad de Sevilla
Seville, Spain

amirabella@us.es

Alberto Martin-Lopez
SCORE Lab, I3US Institute

Universidad de Sevilla
Seville, Spain

alberto.martin@us.es

Sergio Segura
SCORE Lab, I3US Institute

Universidad de Sevilla
Seville, Spain

sergiosegura@us.es

Luis Valencia-Cabrera
SCORE Lab, I3US Institute

Universidad de Sevilla
Seville, Spain
lvalencia@us.es

Antonio Ruiz-Cortés
SCORE Lab, I3US Institute

Universidad de Sevilla
Seville, Spain

aruiz@us.es

Abstract—Automated test case generation for RESTful web
APIs is a thriving research topic due to their key role in software
integration. Most approaches in this domain follow a black-
box approach, where test cases are randomly derived from the
API specification. These techniques show promising results, but
they neglect constraints among input parameters (so-called inter-
parameter dependencies), as these cannot be formally described
in current API specification languages. As a result, when testing
real-world services, most random test cases tend to be invalid
since they violate some of the inter-parameter dependencies of the
service, making human intervention indispensable. In this paper,
we propose a deep learning-based approach for automatically
predicting the validity of an API request (i.e., test input) before
calling the actual API. The model is trained with the API requests
and responses collected during the generation and execution
of previous test cases. Preliminary results with five real-world
RESTful APIs and 16K automatically generated test cases show
that test inputs validity can be predicted with an accuracy
ranging from 86% to 100% in APIs like Yelp, GitHub, and
YouTube. These are encouraging results that show the potential
of artificial intelligence to improve current test case generation
techniques.

Index Terms—RESTful web API, web services testing, artificial
neural network

I. INTRODUCTION

RESTful web APIs [1] are heavily used nowadays for
integrating software systems over the network. One common
phenomenon occurring to RESTful APIs is that they contain
inter-parameter dependencies (or simply dependencies for
short), i.e., dependency constraints that restrict the way in
which two or more input parameters can be combined to
form valid calls to the service. For example, in the Google
Maps API, when searching for places, if the location
parameter is set, then the radius parameter must be set
too, otherwise a 400 status code (“bad request”) is returned.
Likewise, when querying the GitHub API [2] to retrieve
the authenticated user’s repositories, the optional parameters
type and visibility must not be used together in the

same API request, otherwise an error will be returned. A
recent study [3] revealed that these dependencies are extremely
common and pervasive—they appear in 4 out of every 5
APIs across all application domains and types of operations.
Unfortunately, current API specification languages like the
OpenAPI Specification (OAS) [4] provide no support for the
formal description of this type of dependencies, despite being
a highly demanded feature by practitioners1. Instead, users are
encouraged to describe dependencies among input parameters
informally, using natural language, which leads to ambiguities
and makes it hardly possible to interact with services without
human intervention2.

Automated testing of RESTful web APIs is an active
research topic [5]–[10]. Most techniques in the domain follow
a black-box approach, where the specification of the API under
test (e.g., an OAS document) is used to drive the generation of
test cases [6]–[8], [10]. Essentially, these approaches exercise
the API using (pseudo) random test data. To test a RESTful
API thoroughly, it is crucial to generate valid test inputs (i.e.,
successful API calls) that go beyond the input validation code
and exercise the actual functionality of the API. Valid test
inputs are those satisfying all the input constraints of the API
under test, including inter-parameter dependencies.

Problem: Current black-box testing approaches for REST-
ful web APIs do not support inter-parameter dependencies
since, as previously mentioned, these are not formally de-
scribed in the API specification used as input. As a result,
existing approaches simply ignore dependencies and resort to
brute force to generate valid test cases, i.e., those satisfying all
input constraints. This is hardly feasible for most real-world
services, where inter-parameter dependencies are complex and
pervasive. For example, the search operation in the YouTube
API has 31 input parameters, out of which 25 are involved

1https://github.com/OAI/OpenAPI-Specification/issues/256
2https://swagger.io/docs/specification/describing-parameters/

https://github.com/OAI/OpenAPI-Specification/issues/256
https://swagger.io/docs/specification/describing-parameters/


in at least one dependency: trying to generate valid test
cases randomly is like hitting a wall. This was confirmed
in a previous study [11], where it was found that 98 out of
every 100 random test cases for the YouTube search operation
violated one or more inter-parameter dependencies.

To address this problem, Martin-Lopez et al. [11] devised a
constraint-based testing technique, where valid combinations
of parameters were automatically generated by analyzing the
dependencies of the API expressed in Inter-parameter Depen-
dency Language (IDL), a domain-specific language proposed
by the own authors. Although effective, this approach requires
specifying the dependencies of the API in IDL, which is a
manual and error-prone task. Furthermore, sometimes depen-
dencies are simply not mentioned in the API specification, not
even in natural language, and thus they can only be discovered
when debugging unexpected API failures.

Approach: In this paper, we propose a deep learning-based
approach for automatically inferring whether a RESTful API
request is valid or not, i.e., whether the request satisfies all the
inter-parameter dependencies. In contrast to the state-of-the-art
methods, no input specification is needed. The model is trained
with the API requests and their corresponding API responses
observed in previous calls to the API. In effect, this allows to
rule out potentially invalid test cases—unable to test the actual
functionality of the API under test—without calling the actual
API. This makes the testing process significantly more efficient
and cost-effective, especially in resource-constrained scenarios
where API calls may be limited. Preliminary evaluation results
show that test inputs validity can be predicted with an accuracy
ranging from 86% to 100% in APIs like Yelp, GitHub, and
YouTube. These results are promising and show the potential
of artificial intelligence techniques in the context of system-
level test case generation.

The rest of the paper is organized as follows: Section II
introduces the basics on automated testing of RESTful web
APIs. Section III presents our approach for predicting the
validity of test inputs for RESTful APIs. Section IV explains
the evaluation process performed and the results obtained.
The possible threats to validity are discussed in Section V.
Related literature is discussed in Section VI. Lastly, Section
VII mentions future lines of research and concludes the paper.

II. RESTFUL WEB APIS

Web APIs allow systems to interact over the network by
means of simple HTTP interactions. A web API exposes one
or more endpoints through which it is possible to retrieve data
(e.g., an HTML page) or to invoke operations (e.g., create a
Spotify playlist [12]). Most modern web APIs typically adhere
to the REpresentational State Transfer (REST) architectural
style [1], being referred to as RESTful web APIs. Such APIs
are usually decomposed into multiple RESTful web services
[13], each one allowing to manage one or more resources. A
resource can be any piece of data exposed to the Web, such
as a YouTube video [14] or a GitHub repository [2]. These
resources can be accessed and manipulated via create, read,

Fig. 1. Excerpt of the OAS specification of the GitHub API.

update, and delete (CRUD) operations, using specific HTTP
methods such as GET and POST.

RESTful APIs are commonly described with languages such
as the OpenAPI Specification (OAS) [4], arguably considered
the industry standard. An OAS document describes an API in
terms of the allowed inputs and the expected outputs. Figure 1
depicts an excerpt of the OAS specification of the GitHub API.
As illustrated, the operation GET /user/repos accepts
five input parameters (lines 67, 77, 85, 94 and 103), three
of which are involved in two inter-parameter dependencies,
according to the documentation of the GitHub API [2]: 1)
type and visibility cannot be used together; and 2)
type and affiliation cannot be used together either.
These dependencies must be satisfied in order to generate
valid API inputs (i.e., HTTP requests). Upon valid API inputs,
successful HTTP responses with a 200 status code will be
returned (line 113); otherwise, an API error will be obtained,
identifiable by a 4XX status code (lines 114 and 116).



Automated test case generation for RESTful APIs is an
active research topic [5]–[10]. Most approaches in this domain
exploit the OAS specification of the service to generate test
cases, typically in the form of one or more HTTP requests.
An HTTP request is identified by a method (e.g., GET), a
path (e.g., /user/repos) and a set of parameters (e.g.,
type and sort). In some cases, parameter values can also be
extracted from the API specification, as in the example shown
in Figure 1: all parameters are defined as enum strings, i.e.,
with a finite set of values. Crafting an HTTP request would
just be a matter of assigning values to random parameters
within their domain, resulting in a test input such as GET
/user/repos?type=all&sort=pushed. In order to
generate a valid request, all inter-parameter dependencies of
the API operation should be satisfied. Valid requests are
essential for thoroughly testing APIs, since they exercise their
inner functionality, going beyond their input validation logic.
According to the REST best practices [13], valid requests
should return successful responses (2XX status codes), while
invalid requests should be gracefully handled and return “client
error” responses (4XX status codes).

III. APPROACH

In this paper, we propose an artificial neural network for
the automated inference of test input validity in the context
of RESTful APIs (or simply APIs henceforth). The goal is to
automatically infer whether an API call is valid or not without
calling the actual API. This would be extremely helpful for the
automated generation of cost-effective test suites, especially in
resource-constrained scenarios where stressing the API with
thousands or even millions of random API calls is not an
option. The approach is divided in three steps, described
below.

A. Data collection

The first step consists in the collection of a dataset of
API calls properly labeled as valid or invalid. We consider
an API call as valid if it returns a successful response (2XX
status codes), and invalid if it returns a “client error” response
(4XX status codes). As a precondition, the API calls must
meet all the individual parameter constraints indicated in
the API specification regarding data types, domains, regular
expressions, and so on. For example, if a parameter is defined
as an integer between 0 and 20, the value 42 would be invalid.
Therefore, it can be assumed that all the invalid API calls in the
dataset are invalid due to the violation of one or more inter-
parameter dependencies, and not due to errors in individual
parameters. A dataset of these characteristics (a set of valid and
invalid API calls) can be automatically generated using state-
of-the-art testing tools like RESTest [11] or RESTler [15], or
collected directly from the users activity.

Table I depicts a sample dataset for the operation to browse
user’s repositories from the GitHub API (described in Fig-
ure 1). The dataset, in tabular format, contains five rows,
one for each API call. It contains n + 1 columns, n being
the number of input parameters of the API operation. Each

TABLE I
DATASET EXAMPLE.

sort direction visibility type affiliation faulty

full name - public public - True
- - all private - True
- - private - collaborator,owner False
- desc - all - False

cell [i, j] represents the value of the parameter in column
j for the API call in row i. The last cell of each row
(column “faulty”) states whether the API call is valid or
not—the value to be predicted in our work. For example,
row 2 in the dataset represents a request to the GitHub
API (operation GET /user/repos) with the following key-
value pairs: <visibility=all, type=private>. As
stated in the faulty column, such call is invalid because, as
explained in the API documentation [2], the parameters type
and visibility cannot be used together. By contrast, row
4 is valid, because <direction=desc, type=all> does
not violate any dependency.

B. Data preprocessing

The raw dataset is not ready to be fed into the network,
as it contains many empty values, not supported by standard
deep learning frameworks. In order to fill those empty values,
different techniques could be used. For instance, empty values
of numeric variables could be filled with the mean or the
median value of the column, or zero values. Unfortunately,
none of these strategies can be applied in this domain because
the sole presence of an input parameter in an API call can
be crucial for the violation or fulfillment of a dependency.
Additionally, artificial neural networks do not support string
inputs, only numeric values. To address these problems, we
propose enriching and processing the dataset as described
below.

1) Data enrichment: we propose extending the original data
as follows.

– For each number and string column, an auxiliary
boolean column will be created informing whether the
value is empty or not. Columns representing free string
parameters will be deleted since dependencies typically
constrain their presence or absence exclusively [3].

– For each enum column, a string fake_value will
be assigned to empty values (e.g., “None0”), making sure
that such values do not exist in the dataset already.

2) Data processing: next, we propose processing the
dataset as follows.

– Numerical variables will be normalized in order to even
the influence of variables of different orders of magni-
tude. For example, the operation for creating a coupon
in the Stripe API includes, among others, the numerical
parameters redeem_by and duration_in_months.
While the latter is ∼ 102, the former is typically ∼ 109,
which makes its influence to the network output much



stronger. The normalization step guarantees that the val-
ues of both parameters are reduced to the same order of
magnitude, so that there is equity among inputs.

– enum values will be processed using one-hot encoding
[16], which creates an alphabet of the k possible values
found in dataset, and then transforms the string pa-
rameter into a binary vector of k elements. For example,
possible values for the parameter direction of GitHub API
are “asc”, “desc”, or fake_value (if it is missing).
Those three possibilities are encoded as vectors (1, 0, 0),
(0, 1, 0), (0, 0, 1) respectively, where each position of
the vector corresponds to a specific value and only
one element is equal to 1. One-hot encoding technique
provides better performance than simple integer encoding
when there is no logical order among enum values [16].

C. Network design

The discipline of deep learning is a common choice when
facing a classification problem. Specifically, the proposed
model is the multilayer perceptron [17], [18]: it can easily
handle numerical data and learn knowledge representation;
moreover, its implementation is relatively straightforward, and
it offers many possible configurations and architectures to
experiment with.

The system is a classifier of Rn into 2 classes: valid or
faulty; it accepts the parameters of an API call as input, and
returns the predicted validity as output. While the number of
classes is already known, the number of inputs n is variable,
and it depends on the number of API parameters. For this
reason, the network automatically adapts to the number of
inputs of the corresponding API operation. More specifically,
it has the following structure:

– Input layer: an input layer will be automatically built
fitting to the dataframe number of columns, so as for the
accepted shape to be flexible.

– Inner layers: we have experimented with several depths
and different neuronal units per layer.

– Output layer: one neuron, emitting the probability of the
instance of belonging to the valid class. The class will
be predicted as faulty or valid depending on the value of
the output being greater than 0.5 or not.

In order to achieve better results, we experimented with
different combinations of values for the key hyperparameters
driving the learning process. The optimizer is the computation
method used to update network weights [19]. The batch size
refers to the number of instances the system is fed with
before each weight update happens. Finally, the learning rate
determines how much the gradient of the error influences
the weights update. The best configuration found is opti-
mizer=“Adam”, batch size=8, and learning rate=0.002.

Figure 2 depicts a visual representation of the proposed
architecture, consisting in: n-units input layer, five inner layers
with 32, 16, 8, 4 and 2 units, respectively, and the final one-
unit output layer. As usual in these feed-forward networks, all
layers are densely connected to the preceding and following
ones. Besides, the first, second, and third layers are followed in

Fig. 2. Network architecture.

this case by three dropout layers, with the dropout coefficient
equal to 0.3.

D. Training and automated inference

For each target API, the network must be trained with
a dataset of previous calls to the API before using it as
an effective predictor. Training the network excessively is
counterproductive as it may results on the network memorizing
instances rather than learning; a phenomena called overfitting.
To avoid overfitting, we propose the following strategies:

– L1 and L2-regularization factors in each layer [20], which
prevents the entropy among weights from increasing
excessively. A lower entropy guarantees the uniform dis-
tribution of the information, in this case the knowledge,
among weights.

– Several Dropout layers along the architecture [21], which
randomly silence neurons and prevent the network from
activating them, and therefore from improving their
weights.

– Early stopping of the training process [20]. Along the
training process several metrics are controlled and when
they stop improving the training is forced to stop.

Once the system has been properly trained, the validity
of new API calls can be predicted by simply applying the
network over new instances of the same API (i.e., introducing
the instance as an input and applying the forward step only,
thus getting the output of the network). In the GitHub example,
for instance, when running the network with the API call
GET /user/repos?sort=created, not included in the
original dataset depicted in Table I, the system should ideally
predict it as valid, since it satisfies all the input constraints,
including the inter-parameter dependencies described in Sec-
tion II.

IV. EVALUATION

For the evaluation of the approach, we implemented a neural
network in Python and we assessed its prediction capability
on an automatically generated dataset. Next, we describe
the research questions, experimental setup and the results
obtained.

A. Research questions

We address the following research questions (RQs):
– RQ1: How effective is the approach in predicting the

validity of test inputs for RESTful APIs? This is the
main goal of our work. To answer it, we will study the



TABLE II
RESTFUL SERVICES USED IN THE EVALUATION.

API Operation #Parameters #Dependencies

GitHub Get user repositories 5 2
LanguageTool Proofread text 11 4
Stripe-CC Create coupon 9 3
Stripe-CP Create product 18 6
Yelp Search businesses 14 4
YouTube-GCT Get comment threads 11 5
YouTube-GV Get videos 12 5
YouTube-S Search 31 16

prediction accuracy of the approach using a large dataset
of calls to industrial APIs.

– RQ2: What is the impact of the size of the dataset in the
accuracy of the network? The accuracy of the approach
largely depends on the size of the dataset. To investigate
its impact, we will study the accuracy achieved along
different sizes of the dataset to provide further insights
on the applicability of the approach.

B. Experimental setup

Next, we describe the dataset, the network implementation,
and the evaluation procedure.

1) Dataset: we used the tool RESTest for the automated
generation of the dataset. RESTest [11] is a black-box test
case generation framework for RESTful web APIs. RESTest
implements a novel constraint-based testing approach that
leverages the manually enriched specification of APIs (using
the IDL language to specify inter-parameter dependencies) to
automatically generate valid or invalid calls to a given API
operation [11]. Specifically, we generated test cases for the
eight real-world API operations depicted in Table II. For each
API service, the table shows its name, operation under test,
number of input parameters and number of inter-parameter
dependencies. A detailed description of the dependencies is
given in Appendix A. For each of such API operations, we
used RESTest to automatically generate 1,000 valid and 1,000
invalid API calls, creating eight datasets with 2,000 API calls
each, 16,000 API calls in total. RESTest was configured to
satisfy all the individual parameter constraints (e.g., using
data dictionaries) ensuring that invalid calls are caused by the
violation of one or more dependencies. As a sanity check,
we ran all the generated calls into the actual APIs to confirm
that they were correctly labeled as valid or invalid. Also, we
manually confirmed that each of the dependencies is violated
at least once in the dataset.

2) Network implementation: the proposed approach was
implemented using common deep learning packages for
Python. The preprocessing step was based entirely on pandas
1.2.0, which offers general dataframe manipulation tools,
and scikit-learn 0.23.2 which provides normaliza-
tion, and one-hot encoding functionalities. The network
was built using tensorflow 2.3.0 and keras 2.4.3;
among others, most relevant tools were: Dense class to build
inner layers; Dropout class, and regularizers method

TABLE III
PREDICTION ACCURACY FOR EACH SERVICE.

API
Accuracy (%)

Cross Validation Test

GitHub 99.8 100
LanguageTool 85.6 86.0
Stripe-CC 97.8 100
Stripe-CP 98.4 98.8
Yelp 94.8 94.1
YouTube-GCT 98.2 100
YouTube-GV 99.4 100
YouTube-S 98.3 99.3

Mean 96.5 97.3

to implement regularization techniques; finally, Sequential
class was used to build the model.

3) Network evaluation: In order to evaluate the perfor-
mance of each configuration and choose the best option, we
used the stratified 5-fold cross validation (CV) technique,
which makes possible biases highly unlikely. Stratified K-fold
CV is a variant of K-fold CV which guarantees that each fold
has a balanced presence of instances of each class (faulty and
valid, in this case), and it is supported by scikit-learn
package.

The fundamental metric considered to choose the best
architecture during the cross validation is the accuracy, which
measures the fraction of correctly predicted instances. One
common practice when facing classification problems is to
consider also the area under the ROC curve (AUC). AUC
measures the homogeneity of the system accuracy among
different classes, and it is especially useful when classes are
not equally represented in the dataset, and the accuracy score
can easily mislead the intuition. In our case, since the dataset
is completely balanced, AUC plays a less relevant role as a
metric. However, we were controlling its values as well, to
guarantee they were always considerably high, thus increasing
the confidence that the good results in accuracy were similar
in the different classes represented (valid and faulty). Both
metrics were calculated using keras.

The database was randomly split into test and train datasets
(20% and 80%, respectively). Training data were exploited by
CV training in order to choose the best system architecture and
tune hyperparameters, while the test data were used to evaluate
the final accuracy of the predictor. Such division of the dataset
guarantees the measured scores are not only adjusted to the
specific CV training data, but also legitimate in predicting
completely new instances. Just like in cross validation, the
fundamental metric to ponder is the accuracy.

C. Experimental results

Table III shows the predictor accuracy for each API opera-
tion both in CV training and test data. With 99% confidence
CV and test accuracy are (96.5±3.97)% and (97.3±4.23)%,
respectively. The results show that the overfitting phenomena
has been controlled successfully along training process, as



Fig. 3. Accuracy evolution by dataset size.

there is a strong similarity between CV and test scores for
each API operation.

It would be sensible to think that a correlation should
exist between goodness of results and complexity of the
API operation, i.e., validity of services with less number of
parameters and dependencies should be easily predictable.
This theoretical intuition is confirmed by GitHub or Stripe-
CC, for instance, where accuracy is 100%. However, Yelp
scores are counter-intuitively lower, which could be due to
its dependencies being arithmetic; similarly, LanguageTool
validity is by far the hardest to predict despite having only
4 dependencies. By contrast, the search operation validity in
YouTube is predicted very accurately (99.3%), despite being
its parameters and dependencies the most numerous ones. This
may due to the fact that most of its parameters are enum,
with a fixed set of possible values, and therefore there are less
combinations of parameters and values for which to predict
input validity. All these facts suggest that the complexity
of validity prediction does not lie only on the number of
dependencies, but also on their type and the shape of the
parameters involved.

In view of these results, RQ1 can be answered as follows:

The accuracy of the network ranges from 86% to 100%
with a mean accuracy in the eight API operations
under study of 97.3%.

Figure 3 shows the evolution of the mean accuracy across
all the API operations under study with respect to the size
of the dataset. As illustrated, accuracy increases drastically as
the size approaches to 400 instances, properly balanced. Then,
the prediction accuracy increases slowly until the 800-1000
instances, after which the growth is asymptotic. As a result,
RQ2 can be answered as follows:

The approach achieves an accuracy of 90% with
balanced datasets of about 400 instances, reaching its
top performance with 800 or more instances.

V. THREATS TO VALIDITY

Next, we discuss the possible internal and external validity
threats that may have influenced our work, and how these were
mitigated.

A. Internal validity

Threats to the internal validity relate to those factors that
might introduce bias and affect the results of our investigation.
A possible threat in this regard is the existence of bugs in
the implementation of the approach or the tools used. For
the generation of the API requests, we relied on RESTest
[11], a state-of-the-art testing framework for RESTful APIs.
It could happen that, due to bugs on RESTest or errors in the
API specifications, some valid requests were actually invalid,
or vice versa. To neutralize this threat, we executed all the
requests generated against each of the APIs, to make sure that
all of them were correctly labeled as valid or invalid.

For the implementation of our approach, we used cross
validation to select the best combination of hyperparameters
that would yield the best possible results. Regarding the dataset
used, it could be argued that it is not diverse enough, especially
for the invalid requests: since these were generated with
RESTest (which we used as a black box), it could happen that
all of them were invalid due to violating the same dependency
over and over again. To mitigate this threat, we manually
confirmed that every single dependency was violated at least
once in the dataset.

B. External validity

External validity concerns the extent to which we can
generalize from the results obtained in the experiments. Our
approach has been validated on five subject APIs, and therefore
they might not completely generalize further. To minimize this
threat, we resorted to industrial APIs with millions of users
world-wide. Specifically, we selected API operations with
different characteristics in terms of numbers of parameters
(from 5 to 31), parameter types (e.g., strings, numeric, enums),
number of inter-parameter dependencies (from 2 to 16), and
type of dependencies. In this regards, it is worth mentioning
that the selected API operations include instances of all the
eight dependency patterns identified in web APIs [3].

VI. RELATED WORK

The automated generation of valid test inputs for RESTful
APIs is a somehow overlooked topic in the literature. Most
testing approaches focus on black-box fuzzing or related tech-
niques [7], [8], [10], [15], where test inputs are derived from
the API specification (when available) or randomly generated,
with the hope of causing service crashes (i.e., 5XX status
codes). Such inputs are unlikely to be valid, especially in
the presence of inter-parameter dependencies like the ones
discussed in this paper.

Applications of artificial intelligence and deep learning
techniques for enhancing RESTful API testing are still in
their infancy. Arcuri [5] advocates for a white-box approach
where genetic algorithms are used for generating test inputs



that cover more code and find faults in the system under
test. Atlidakis et al. [22] proposed a learning-based mutation
approach, where two recurrent neural networks are employed
for evolving inputs that are likely to find bugs. In both cases,
the source code of the system is required, which is seldom
available, especially for commercial APIs such as the ones
studied in our evaluation (e.g., YouTube and Yelp).

The handling of inter-parameter dependencies is key for
ensuring the validity of RESTful API inputs, as shown in a
recent study on 40 industrial APIs [3]. Two previous papers
have addressed this issue up to a certain degree: Wu et al.
[23] proposed a method for inferring these dependencies by
leveraging several resources of the API. Oostvogels et al. [24]
proposed a DSL for formally specifying these dependencies,
but no approach was provided for automatically analyzing
them. The most related work is probably that of Martin-
Lopez et al. [11], [25], where an approach for specifying
and analyzing inter-parameter dependencies was proposed, as
well as a testing framework supporting these dependencies.
However, the API dependencies must be manually written in
IDL language, which is time-consuming and error-prone. The
work presented in this paper is a step forward in automating
this process, since we provide a way for predicting the validity
of API inputs without the need of formally specifying the
dependencies among their parameters, just by analyzing the
inputs and outputs of the API.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a deep learning-based approach
for predicting the validity of test inputs for RESTful APIs.
Starting from a dataset of previous calls labeled as valid or
faulty, the proposed network is able to predict the validity
of new API calls with an accuracy of ∼ 97%. In contrast to
existing methods, relying on manual means or brute force, our
approach is fully automated, leveraging the power of current
deep learning frameworks. This is a small step, but promising,
showing the potential of AI to achieve an unprecedented
degree of automation in software testing.

Many plans remain for our future work: first and foremost,
we plan to perform a more thorough evaluation including
different datasets and more APIs. In addition, we are currently
exploring the use of different machine learning techniques for
the automated inference of inter-parameter dependencies in
RESTful APIs.

VERIFIABILITY

For the sake of reproducibility, the code and the dataset of
our work are publicly accessible in the following anonymous
repository:

https://anonymous.4open.science/r/
8954c607-8d6c-4348-a23c-d57c920cdc22/

REFERENCES

[1] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, 2000.

[2] “GitHub API,” accessed January 2020. [Online]. Available: https:
//developer.github.com/v3/

[3] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “A Catalogue of
Inter-Parameter Dependencies in RESTful Web APIs,” in International
Conference on Service-Oriented Computing, 2019, pp. 399–414.

[4] “OpenAPI Specification,” accessed April 2020. [Online]. Available:
https://www.openapis.org

[5] A. Arcuri, “RESTful API Automated Test Case Generation with Evo-
Master,” ACM Transactions on Software Engineering and Methodology,
vol. 28, no. 1, pp. 1–37, 2019.

[6] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Checking Security Prop-
erties of Cloud Services REST APIs,” in IEEE International Conference
on Software Testing, Validation and Verification, 2020, pp. 387–397.

[7] H. Ed-douibi, J. L. C. Izquierdo, and J. Cabot, “Automatic Generation
of Test Cases for REST APIs: A Specification-Based Approach,” in
IEEE International Enterprise Distributed Object Computing Confer-
ence, 2018, pp. 181–190.

[8] S. Karlsson, A. Causevic, and D. Sundmark, “QuickREST: Property-
based Test Generation of OpenAPI Described RESTful APIs,” in IEEE
International Conference on Software Testing, Validation and Verifica-
tion, 2020, pp. 131–141.

[9] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic
Testing of RESTful Web APIs,” IEEE Transactions on Software Engi-
neering, vol. 44, no. 11, pp. 1083–1099, 2018.

[10] E. Viglianisi, M. Dallago, and M. Ceccato, “RestTestGen: Automated
Black-Box Testing of RESTful APIs,” in IEEE International Conference
on Software Testing, Validation and Verification, 2020, pp. 142–152.

[11] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Black-
Box Constraint-Based Testing of RESTful Web APIs,” in International
Conference on Service-Oriented Computing, 2020, pp. 459–475.

[12] “Spotify Web API,” accessed November 2016. [Online]. Available:
https://developer.spotify.com/web-api/

[13] L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs.
O’Reilly Media, Inc., 2013.

[14] “YouTube Data API,” accessed April 2020. [Online]. Available:
https://developers.google.com/youtube/v3/

[15] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST
API Fuzzing,” in International Conference on Software Engineering,
2019, pp. 748–758.

[16] F. N. Kerlinger and E. J. Pedhazur, Multiple regression in behavioral
research. Holt, Rinehart and Winston of Canada Ltd, New York (N.Y.),
1973.

[17] F. Rosenblatt, Principles of neurodynamics: perceptions and the theory
of brain mechanisms. Washington, DC: Spartan, 1962.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal
Representations by Error Propagation. Cambridge, MA: MIT Press,
1986, p. 318–362.

[19] Keras. Optimizers. [Online]. Available: https://keras.io/api/optimizers/
[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016.
[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[22] V. Atlidakis, R. Geambasu, P. Godefroid, M. Polishchuk, and B. Ray,
“Pythia: Grammar-Based Fuzzing of REST APIs with Coverage-guided
Feedback and Learning-based Mutations,” Tech. Rep., 2020.

[23] Q. Wu, L. Wu, G. Liang, Q. Wang, T. Xie, and H. Mei, “Inferring
Dependency Constraints on Parameters for Web Services,” in World Wide
Wed, 2013, pp. 1421–1432.

[24] Oostvogels, N., De Koster, J., De Meuter, W., “Inter-parameter Con-
straints in Contemporary Web APIs,” in International Conference on
Web Engineering, 2017, pp. 323–335.

[25] A. Martin-Lopez, S. Segura, C. Müller, and A. Ruiz-Cortés, “Specifica-
tion and Automated Analysis of Inter-Parameter Dependencies in Web
APIs,” IEEE Transactions on Services Computing, 2020, in press.

APPENDIX A
IDL DEPENDENCIES FROM THE APIS UNDER STUDY

Table IV shows the inter-parameter dependencies present in
the eight API operations considered in our study, expressed in
the IDL language.

https://anonymous.4open.science/r/8954c607-8d6c-4348-a23c-d57c920cdc22/
https://anonymous.4open.science/r/8954c607-8d6c-4348-a23c-d57c920cdc22/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://www.openapis.org
https://developer.spotify.com/web-api/
https://developers.google.com/youtube/v3/
https://keras.io/api/optimizers/
http://jmlr.org/papers/v15/srivastava14a.html


TABLE IV
INTER-PARAMETER DEPENDENCIES INCLUDED IN THE API OPERATIONS UNDER STUDY DESCRIBED IN IDL.

API Inter-parameter dependencies

GitHub ZeroOrOne(type, visibility);
ZeroOrOne(type, affiliation);

LanguageTool

OnlyOne(text, data);
IF preferredVariants THEN language==’auto’;
IF enabledOnly==true THEN NOT (disabledRules OR disabledCategories);
IF enabledOnly==true THEN (enabledRules OR enabledCategories);

Stripe-CC
Or(amount off, percent off);
IF amount off THEN currency;
AllOrNone(duration==’repeating’, duration in months);

Stripe-CP

IF caption THEN type==’good’;
IF [deactivate on[]] THEN type==’good’;
IF [package dimensions[height]] OR [package dimensions[length]] OR [package dimensions[weight]] OR

[package dimensions[width]] THEN type==’good’;
AllOrNone([package dimensions[height]], [package dimensions[length]], [package dimensions[weight]],

[package dimensions[width]]);
IF shippable THEN type==’good’;
IF url THEN type==’good’;

Yelp

Or(location, latitude AND longitude);
ZeroOrOne(open now, open at);
IF offset AND limit THEN offset + limit <= 1000;
IF offset AND NOT limit THEN offset <= 980;

YouTube-GCT

OnlyOne(allThreadsRelatedToChannelId, channelId, id, videoId);
ZeroOrOne(id, moderationStatus);
ZeroOrOne(id, order);
ZeroOrOne(id, pageToken);
ZeroOrOne(id, searchTerms);

YouTube-GV

OnlyOne(chart, id, myRating);
ZeroOrOne(maxResults, id);
ZeroOrOne(pageToken, id);
IF regionCode THEN chart;
IF videoCategoryId THEN chart;

YouTube-S

ZeroOrOne(forContentOwner, forDeveloper, forMine, relatedToVideoId);
IF forContentOwner==true THEN onBehalfOfContentOwner AND type==’video’ AND NOT (videoDefinition OR videoDimension

OR videoDuration OR videoLicense OR videoEmbeddable OR videoSyndicated OR videoType);
IF forMine==true THEN type==’video’ AND NOT (videoDefinition OR videoDimension OR videoDuration OR videoLicense

OR videoEmbeddable OR videoSyndicated OR videoType);
IF relatedToVideoId THEN type==’video’ AND NOT (channelId OR channelType OR eventType OR location OR locationRadius OR

onBehalfOfContentOwner OR order OR publishedAfter OR publishedBefore OR q OR topicId OR videoCaption OR videoCategoryId
OR videoDefinition OR videoDimension OR videoDuration OR videoEmbeddable OR videoLicense OR videoSyndicated OR videoType);

IF eventType THEN type==’video’;
AllOrNone(location, locationRadius);
publishedAfter >= publishedBefore;
IF videoCaption THEN type==’video’;
IF videoCategoryId THEN type==’video’;
IF videoDefinition THEN type==’video’;
IF videoDimension THEN type==’video’;
IF videoDuration THEN type==’video’;
IF videoEmbeddable THEN type==’video’;
IF videoLicense THEN type==’video’;
IF videoSyndicated THEN type==’video’;
IF videoType THEN type==’video’;

View publication statsView publication stats

https://www.researchgate.net/publication/350727308

	Introduction
	RESTful web APIs
	Approach
	Data collection
	Data preprocessing
	Data enrichment
	Data processing

	Network design
	Training and automated inference

	Evaluation
	Research questions
	Experimental setup
	Dataset
	Network implementation
	Network evaluation

	Experimental results

	Threats to validity
	Internal validity
	External validity

	Related work
	Conclusion and Future Work
	References
	Appendix A: IDL dependencies from the APIs under study

