Central extensions of filiform Zinbiel algebras ${ }^{\square}$
Luisa M. Camacho ${ }^{a}$, Iqboljon Karimjanov ${ }^{b}$, Ivan Kaygorodov c \& Abror Khudoyberdiyev d
${ }^{a}$ University of Sevilla, Sevilla, Spain.
${ }^{b}$ Andijan State University, Andijan, Uzbekistan.
${ }^{c}$ CMCC, Universidade Federal do ABC, Santo André, Brazil.
${ }^{d}$ National University of Uzbekistan, Institute of Mathematics Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan.

E-mail addresses:
Luisa M. Camacho (lcamacho@us.es)
Iqboljon Karimjanov (iqboli@gmail.com)
Ivan Kaygorodov (kaygorodov.ivan@ gmail.com)
Abror Khudoyberdiyev (khabror@mail.ru)

Abstract

In this paper we describe central extensions (up to isomorphism) of all complex null-filiform and filiform Zinbiel algebras. It is proven that every non-split central extension of an n-dimensional nullfiliform Zinbiel algebra is isomorphic to an $(n+1)$-dimensional null-filiform Zinbiel algebra. Moreover, we obtain all pairwise non isomorphic quasi-filiform Zinbiel algebras.

Keywords: Zinbiel algebra, filiform algebra, algebraic classification, central extension.
MSC2010: 17D25, 17A30.

Introduction

The algebraic classification (up to isomorphism) of an n-dimensional algebras from a certain variety defined by some family of polynomial identities is a classical problem in the theory of non-associative algebras. There are many results related to algebraic classification of small dimensional algebras in the varieties of Jordan, Lie, Leibniz, Zinbiel and many another algebras [1, 9, 11--16, 24, 27, 31, 33, 36- 38, 42]. An algebra \mathbf{A} is called a Zinbiel algebra if it satisfies the identity

$$
(x \circ y) \circ z=x \circ(y \circ z+z \circ y) .
$$

Zinbiel algebras were introduced by Loday in [43] and studied in [2,5, 10, 17, 20,-22, 41, 44-46,49]. Under the Koszul duality, the operad of Zinbiel algebras is dual to the operad of Leibniz algebras. Hence, the tensor product of a Leibniz algebra and a Zinbiel algebra can be given the structure of a Lie algebra. Under the symmetrized product, a Zinbiel algebra becomes an associative and commutative algebra. Zinbiel algebras are also related to Tortkara algebras [20] and Tortkara triple systems [7]. More precisely,

[^0]every Zinbiel algebra with the commutator multiplication gives a Tortkara algebra (also about Tortkara algebras, see, [24-26]), which have recently sprung up in unexpected areas of mathematics [18, 19].

Central extensions play an important role in quantum mechanics: one of the earlier encounters is by means of Wigner's theorem which states that a symmetry of a quantum mechanical system determines an (anti-)unitary transformation of a Hilbert space. Another area of physics where one encounters central extensions is the quantum theory of conserved currents of a Lagrangian. These currents span an algebra which is closely related to so-called affine Kac-Moody algebras, which are universal central extensions of loop algebras. Central extensions are needed in physics, because the symmetry group of a quantized system usually is a central extension of the classical symmetry group, and in the same way the corresponding symmetry Lie algebra of the quantum system is, in general, a central extension of the classical symmetry algebra. Kac-Moody algebras have been conjectured to be symmetry groups of a unified superstring theory. The centrally extended Lie algebras play a dominant role in quantum field theory, particularly in conformal field theory, string theory and in M-theory. In the theory of Lie groups, Lie algebras and their representations, a Lie algebra extension is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is a trivial extension obtained by taking a direct sum of two Lie algebras. Other types are a split extension and a central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. A central extension and an extension by a derivation of a polynomial loop algebra over a finite-dimensional simple Lie algebra gives a Lie algebra which is isomorphic to a non-twisted affine Kac-Moody algebra [6, Chapter 19]. Using the centrally extended loop algebra one may construct a current algebra in two spacetime dimensions. The Virasoro algebra is the universal central extension of the Witt algebra, the Heisenberg algebra is the central extension of a commutative Lie algebra [6, Chapter 18].

The algebraic study of central extensions of Lie and non-Lie algebras has a very long history [3, 28-30, 35, 39, 47, 48, 50]. For example, all central extensions of some filiform Leibniz algebras were classified in [3, 48] and all central extensions of filiform associative algebras were classified in [35]. Skjelbred and Sund used central extensions of Lie algebras for a classification of low dimensional nilpotent Lie algebras [47]. After that, the method introduced by Skjelbred and Sund was used to describe all non-Lie central extensions of all 4-dimensional Malcev algebras [30], all non-associative central extensions of 3-dimensional Jordan algebras [29], all anticommutative central extensions of 3-dimensional anticommutative algebras [8]. Note that the method of central extensions is an important tool in the classification of nilpotent algebras. It was used to describe all 4-dimensional nilpotent associative algebras [15], all 4-dimensional nilpotent assosymmetric algebras [32], all 4-dimensional nilpotent bicommutative algebras [40], all 4-dimensional nilpotent Novikov algebras [34], all 4-dimensional commutative algebras [23], all 5-dimensional nilpotent Jordan algebras [27], all 5-dimensional nilpotent restricted Lie algebras [14], all 5-dimensional anticommutative algebras [23], all 6-dimensional nilpotent Lie algebras [13, 16], all 6-dimensional nilpotent Malcev algebras [31], all 6-dimensional nilpotent binary Lie algebras [1], all 6 -dimensional nilpotent anticommutative $\mathfrak{C D}$-algebras [1], all 6 -dimensional nilpotent Tortkara algebras [24, 26], and some others.

1. Preliminaries

All algebras and vector spaces in this paper are over \mathbb{C}.
1.1. Filiform Zinbiel algebras. An algebra \mathbf{A} is called Zinbiel algebra if for any $x, y, z \in \mathbf{A}$ it satisfies the identity

$$
(x \circ y) \circ z=x \circ(y \circ z)+x \circ(z \circ y) .
$$

For an algebra \mathbf{A}, we consider the series

$$
\mathbf{A}^{1}=\mathbf{A}, \quad \mathbf{A}^{i+1}=\sum_{k=1}^{i} \mathbf{A}^{k} \mathbf{A}^{i+1-k}, \quad i \geq 1
$$

We say that an algebra \mathbf{A} is nilpotent if $\mathbf{A}^{i}=0$ for some $i \in \mathbb{N}$. The smallest integer satisfying $\mathbf{A}^{i}=0$ is called the nilpotency index of \mathbf{A}.

Definition 1. An n-dimensional algebra \mathbf{A} is called null-filiform if $\operatorname{dim} \mathbf{A}^{i}=(n+1)-i, 1 \leq i \leq n+1$.
It is easy to see that a Zinbiel algebra has a maximal nilpotency index if and only if it is null-filiform. For a nilpotent Zinbiel algebra, the condition of null-filiformity is equivalent to the condition that the algebra is one-generated.

All null-filiform Zinbiel algebras were described in [4]. Throughout the paper, C_{i}^{j} denotes the combinatorial numbers $\binom{i}{j}$.
Theorem 2. [4] An arbitrary n-dimensional null-filiform Zinbiel algebra is isomorphic to the algebra F_{n}^{0} :

$$
e_{i} \circ e_{j}=C_{i+j-1}^{j} e_{i+j}, \quad 2 \leq i+j \leq n,
$$

where omitted products are equal to zero and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basis of the algebra.
As an easy corollary from the previous theorem we have the next result.
Theorem 3. Every non-split central extension of F_{n}^{0} is isomorphic to F_{n+1}^{0}.
Proof. It is easy to see, that every non-split central extension of F_{n}^{0} is a one-generated nilpotent algebra. It follows that every non-split central extension of a null-filiform Zinbiel algebra is a null-filiform Zinbiel algebra. Using the classification of null-filiform algebras (Theorem 2) we have the statement of the Theorem.

Definition 4. An n-dimensional algebra is called filiform if $\operatorname{dim}\left(\mathbf{A}^{i}\right)=n-i, 2 \leq i \leq n$.
All filiform Zinbiel algebras were classified in [4].
Theorem 5. An arbitary n-dimensional $(n \geq 5)$ filiform Zinbiel algebra is isomorphic to one of the following pairwise non-isomorphic algebras:

$$
\begin{array}{llll}
F_{n}^{1}: & e_{i} \circ e_{j}=C_{i+j-1}^{j} e_{i+j}, & 2 \leq i+j \leq n-1 ; & \\
F_{n}^{2}: & e_{i} \circ e_{j}=C_{i+j-1}^{j} e_{i+j}, & 2 \leq i+j \leq n-1, & e_{n} \circ e_{1}=e_{n-1} ; \\
F_{n}^{3}: & e_{i} \circ e_{j}=C_{i+j-1}^{j} e_{i+j}, & 2 \leq i+j \leq n-1, & e_{n} \circ e_{n}=e_{n-1} .
\end{array}
$$

1.2. Basic definitions and methods. Throughout this paper, we are using the notations and methods well written in [29, 30] and adapted for the Zinbiel case with some modifications. From now, we will give only some important definitions.

Let (\mathbf{A}, \circ) be a Zinbiel algebra and \mathbb{V} a vector space. Then the \mathbb{C}-linear space $Z^{2}(\mathbf{A}, \mathbb{V})$ is defined as the set of all bilinear maps $\theta: \mathbf{A} \times \mathbf{A} \longrightarrow \mathbb{V}$, such that

$$
\theta(x \circ y, z)=\theta(x, y \circ z+z \circ y) .
$$

Its elements will be called cocycles. For a linear map f from \mathbf{A} to \mathbb{V}, if we write $\delta f: \mathbf{A} \times \mathbf{A} \longrightarrow \mathbb{V}$ by $\delta f(x, y)=f(x \circ y)$, then $\delta f \in \mathbb{Z}^{2}(\mathbf{A}, \mathbb{V})$. We define $\mathrm{B}^{2}(\mathbf{A}, \mathbb{V})=\{\theta=\delta f: f \in \operatorname{Hom}(\mathbf{A}, \mathbb{V})\}$. One can easily check that $B^{2}(\mathbf{A}, \mathbb{V})$ is a linear subspace of $Z^{2}(\mathbf{A}, \mathbb{V})$ whose elements are called coboundaries. We define the second cohomology space $\mathrm{H}^{2}(\mathbf{A}, \mathbb{V})$ as the quotient space $\mathrm{Z}^{2}(\mathbf{A}, \mathbb{V}) / \mathrm{B}^{2}(\mathbf{A}, \mathbb{V})$.

Let $\operatorname{Aut}(\mathbf{A})$ be the automorphism group of the Zinbiel algebra \mathbf{A} and let $\phi \in \operatorname{Aut}(\mathbf{A})$. For $\theta \in$ $\mathrm{Z}^{2}(\mathbf{A}, \mathbb{V})$ define $\phi \theta(x, y)=\theta(\phi(x), \phi(y))$. Then $\phi \theta \in \mathrm{Z}^{2}(\mathbf{A}, \mathbb{V})$. So, Aut (\mathbf{A}) acts on $\mathrm{Z}^{2}(\mathbf{A}, \mathbb{V})$. It is easy to verify that $B^{2}(\mathbf{A}, \mathbb{V})$ is invariant under the action of $\operatorname{Aut}(\mathbf{A})$ and so we have that $\operatorname{Aut}(\mathbf{A})$ acts on $\mathrm{H}^{2}(\mathbf{A}, \mathbb{V})$.

Let \mathbf{A} be a Zinbiel algebra of dimension $m<n$, and \mathbb{V} be a \mathbb{C}-vector space of dimension $n-m$. For any $\theta \in Z^{2}(\mathbf{A}, \mathbb{V})$ define on the linear space $\mathbf{A}_{\theta}:=\mathbf{A} \oplus \mathbb{V}$ the bilinear product " $[-,-]_{\mathbf{A}_{\theta}}$ " by $\left[x+x^{\prime}, y+y^{\prime}\right]_{\mathbf{A}_{\theta}}=x \circ y+\theta(x, y)$ for all $x, y \in \mathbf{A}, x^{\prime}, y^{\prime} \in \mathbb{V}$. The algebra \mathbf{A}_{θ} is a Zinbiel algebra which is called an $(n-m)$-dimensional central extension of \mathbf{A} by \mathbb{V}. Indeed, we have, in a straightforward way, that \mathbf{A}_{θ} is a Zinbiel algebra if and only if $\theta \in \mathrm{Z}^{2}(\mathbf{A}, \mathbb{V})$.

We also call the set $\operatorname{Ann}(\theta)=\{x \in \mathbf{A}: \theta(x, \mathbf{A})+\theta(\mathbf{A}, x)=0\}$ the annihilator of θ. We recall that the annihilator of an algebra \mathbf{A} is defined as the ideal $\operatorname{Ann}(\mathbf{A})=\{x \in \mathbf{A}: x \circ \mathbf{A}+\mathbf{A} \circ x=0\}$ and observe that $\operatorname{Ann}\left(\mathbf{A}_{\theta}\right)=(\operatorname{Ann}(\theta) \cap \operatorname{Ann}(\mathbf{A})) \oplus \mathbb{V}$.

We have the next key result:
Lemma 6. Let \mathbf{A} be an n-dimensional Zinbiel algebra such that $\operatorname{dim}(\operatorname{Ann}(\mathbf{A}))=m \neq 0$. Then there exists, up to isomorphism, a unique $(n-m)$-dimensional Zinbiel algebra \mathbf{A}^{\prime} and a bilinear map $\theta \in Z^{2}(\mathbf{A}, \mathbb{V})$ with $\operatorname{Ann}(\mathbf{A}) \cap \operatorname{Ann}(\theta)=0$, where \mathbb{V} is a vector space of dimension m, such that $\mathbf{A} \cong \mathbf{A}_{\theta}^{\prime}$ and $\mathbf{A} / \operatorname{Ann}(\mathbf{A}) \cong \mathbf{A}^{\prime}$.

However, in order to solve the isomorphism problem we need to study the action of $\operatorname{Aut}(\mathbf{A})$ on $\mathrm{H}^{2}(\mathbf{A}, \mathbb{V})$. To do that, let us fix e_{1}, \ldots, e_{s} a basis of \mathbb{V}, and $\theta \in \mathrm{Z}^{2}(\mathbf{A}, \mathbb{V})$. Then θ can be uniquely written as $\theta(x, y)=\sum_{i=1}^{s} \theta_{i}(x, y) e_{i}$, where $\theta_{i} \in \mathrm{Z}^{2}(\mathbf{A}, \mathbb{C})$. Moreover, $\operatorname{Ann}(\theta)=\operatorname{Ann}\left(\theta_{1}\right) \cap \operatorname{Ann}\left(\theta_{2}\right) \cap$ $\ldots \cap \operatorname{Ann}\left(\theta_{s}\right)$. Further, $\theta \in \mathrm{B}^{2}(\mathbf{A}, \mathbb{V})$ if and only if all $\theta_{i} \in \mathrm{~B}^{2}(\mathbf{A}, \mathbb{C})$.

Definition 7. Let \mathbf{A} be an algebra and I be a subspace of $\operatorname{Ann}(\mathbf{A})$. If $\mathbf{A}=\mathbf{A}_{0} \oplus I$ then I is called an annihilator component of \mathbf{A}.

Definition 8. A central extension of an algebra A without annihilator component is called a non-split central extension.

It is not difficult to prove (see [30, Lemma 13]), that given a Zinbiel algebra \mathbf{A}_{θ}, if we write as above $\theta(x, y)=\sum_{i=1}^{s} \theta_{i}(x, y) e_{i} \in \mathrm{Z}^{2}(\mathbf{A}, \mathbb{V})$ and we have $\operatorname{Ann}(\theta) \cap \operatorname{Ann}(\mathbf{A})=0$, then \mathbf{A}_{θ} has an annihilator component if and only if $\left[\theta_{1}\right],\left[\theta_{2}\right], \ldots,\left[\theta_{s}\right]$ are linearly dependent in $\mathrm{H}^{2}(\mathbf{A}, \mathbb{C})$.

Let \mathbb{V} be a finite-dimensional vector space. The Grassmannian $G_{k}(\mathbb{V})$ is the set of all k-dimensional linear subspaces of \mathbb{V}. Let $G_{s}\left(\mathrm{H}^{2}(\mathbf{A}, \mathbb{C})\right)$ be the Grassmannian of subspaces of dimension s in $\mathrm{H}^{2}(\mathbf{A}, \mathbb{C})$. There is a natural action of $\operatorname{Aut}(\mathbf{A})$ on $G_{s}\left(\mathrm{H}^{2}(\mathbf{A}, \mathbb{C})\right)$. Let $\phi \in \operatorname{Aut}(\mathbf{A})$. For $W=\left\langle\left[\theta_{1}\right],\left[\theta_{2}\right], \ldots,\left[\theta_{s}\right]\right\rangle \in G_{s}\left(\mathrm{H}^{2}(\mathbf{A}, \mathbb{C})\right)$ define $\phi W=\left\langle\left[\phi \theta_{1}\right],\left[\phi \theta_{2}\right], \ldots,\left[\phi \theta_{s}\right]\right\rangle$. Then $\phi W \in$ $G_{s}\left(\mathrm{H}^{2}(\mathbf{A}, \mathbb{C})\right)$. We denote the orbit of $W \in G_{s}\left(\mathrm{H}^{2}(\mathbf{A}, \mathbb{C})\right)$ under the action of Aut (\mathbf{A}) by $\operatorname{Orb}(W)$. Since given

$$
W_{1}=\left\langle\left[\theta_{1}\right],\left[\theta_{2}\right], \ldots,\left[\theta_{s}\right]\right\rangle, W_{2}=\left\langle\left[\vartheta_{1}\right],\left[\vartheta_{2}\right], \ldots,\left[\vartheta_{s}\right]\right\rangle \in G_{s}\left(\mathrm{H}^{2}(\mathbf{A}, \mathbb{C})\right),
$$

we easily have that in case $W_{1}=W_{2}$, then $\bigcap_{i=1}^{s} \operatorname{Ann}\left(\theta_{i}\right) \cap \operatorname{Ann}(\mathbf{A})=\bigcap_{i=1}^{s} \operatorname{Ann}\left(\vartheta_{i}\right) \cap \operatorname{Ann}(\mathbf{A})$, and so we can introduce the set

$$
T_{s}(\mathbf{A})=\left\{W=\left\langle\left[\theta_{1}\right],\left[\theta_{2}\right], \ldots,\left[\theta_{s}\right]\right\rangle \in G_{s}\left(\mathrm{H}^{2}(\mathbf{A}, \mathbb{C})\right): \bigcap_{i=1}^{s} \operatorname{Ann}\left(\theta_{i}\right) \cap \operatorname{Ann}(\mathbf{A})=0\right\}
$$

which is stable under the action of $\operatorname{Aut}(\mathbf{A})$.
Now, let \mathbb{V} be an s-dimensional linear space and let us denote by $E(\mathbf{A}, \mathbb{V})$ the set of all non-split s-dimensional central extensions of \mathbf{A} by \mathbb{V}. We can write

$$
E(\mathbf{A}, \mathbb{V})=\left\{\mathbf{A}_{\theta}: \theta(x, y)=\sum_{i=1}^{s} \theta_{i}(x, y) e_{i} \text { and }\left\langle\left[\theta_{1}\right],\left[\theta_{2}\right], \ldots,\left[\theta_{s}\right]\right\rangle \in T_{s}(\mathbf{A})\right\}
$$

We also have the next result, which can be proved as in [30, Lemma 17].
Lemma 9. Let $\mathbf{A}_{\theta}, \mathbf{A}_{\vartheta} \in E(\mathbf{A}, \mathbb{V})$. Suppose that $\theta(x, y)=\sum_{i=1}^{s} \theta_{i}(x, y) e_{i}$ and $\vartheta(x, y)=$ $\sum_{i=1}^{s} \vartheta_{i}(x, y) e_{i}$. Then the Zinbiel algebras \mathbf{A}_{θ} and \mathbf{A}_{ϑ} are isomorphic if and only if

$$
\operatorname{Orb}\left\langle\left[\theta_{1}\right],\left[\theta_{2}\right], \ldots,\left[\theta_{s}\right]\right\rangle=\operatorname{Orb}\left\langle\left[\vartheta_{1}\right],\left[\vartheta_{2}\right], \ldots,\left[\vartheta_{s}\right]\right\rangle
$$

From here, there exists a one-to-one correspondence between the set of $\operatorname{Aut}(\mathbf{A})$-orbits on $T_{s}(\mathbf{A})$ and the set of isomorphism classes of $E(\mathbf{A}, \mathbb{V})$. Consequently we have a procedure that allows us, given the Zinbiel algebra \mathbf{A}^{\prime} of dimension $n-s$, to construct all non-split central extensions of \mathbf{A}^{\prime}. This procedure would be:

Procedure

(1) For a given Zinbiel algebra \mathbf{A}^{\prime} of dimension $n-s$, determine $H^{2}\left(\mathbf{A}^{\prime}, \mathbb{C}\right), \operatorname{Ann}\left(\mathbf{A}^{\prime}\right)$ and Aut $\left(\mathbf{A}^{\prime}\right)$.
(2) Determine the set of $\operatorname{Aut}\left(\mathbf{A}^{\prime}\right)$-orbits on $T_{s}\left(\mathbf{A}^{\prime}\right)$.
(3) For each orbit, construct the Zinbiel algebra corresponding to a representative of it.

Finally, let us introduce some of notation. Let \mathbf{A} be a Zinbiel algebra with a basis $e_{1}, e_{2}, \ldots, e_{n}$. Then by $\Delta_{i, j}$ we will denote the bilinear form $\Delta_{i, j}: \mathbf{A} \times \mathbf{A} \longrightarrow \mathbb{C}$ with $\Delta_{i, j}\left(e_{l}, e_{m}\right)=\delta_{i l} \delta_{j m}$. Then the set $\left\{\Delta_{i, j}: 1 \leq i, j \leq n\right\}$ is a basis for the linear space of the bilinear forms on \mathbf{A}. Then every $\theta \in \mathrm{Z}^{2}(\mathbf{A}, \mathbb{C})$ can be uniquely written as $\theta=\sum_{1 \leq i, j \leq n} c_{i j} \Delta_{i, j}$, where $c_{i j} \in \mathbb{C}$.

2. Central extension of filiform Zinbiel algebras

Proposition 10. Let F_{n}^{1}, F_{n}^{2} and F_{n}^{3} be n-dimensional filiform Zinbiel algebras defined in Theorem 5 Then:

- A basis of $\mathrm{Z}^{2}\left(F_{n}^{k}, \mathbb{C}\right)$ is formed by the following cocycles

$$
\begin{aligned}
& \mathrm{Z}^{2}\left(F_{n}^{1}, \mathbb{C}\right)=\left\langle\Delta_{1,1}, \Delta_{1, n}, \Delta_{n, 1}, \Delta_{n, n}, \sum_{i=1}^{s-1} C_{s-1}^{i-1} \Delta_{i, s-i} ; 3 \leq s \leq n\right\rangle \\
& \mathrm{Z}^{2}\left(F_{n}^{k}, \mathbb{C}\right)=\left\langle\Delta_{1,1}, \Delta_{1, n}, \Delta_{n, 1}, \Delta_{n, n}, \sum_{i=1}^{s-1} C_{s-1}^{i-1} \Delta_{i, s-i} ; 3 \leq s \leq n-1\right\rangle, k=2,3
\end{aligned}
$$

- A basis of $\mathrm{B}^{2}\left(F_{n}^{k}, \mathbb{C}\right)$ is formed by the following coboundaries

$$
\begin{aligned}
& \mathrm{B}^{2}\left(F_{n}^{1}, \mathbb{C}\right)=\left\langle\Delta_{1,1}, \sum_{i=1}^{s-1} C_{s-1}^{i-1} \Delta_{i, s-i}, 3 \leq s \leq n-1\right\rangle, \\
& \mathrm{B}^{2}\left(F_{n}^{2}, \mathbb{C}\right)=\left\langle\Delta_{1,1}, \sum_{i=1}^{s-1} C_{s-1}^{i-1} \Delta_{i, s-i}, 3 \leq s \leq n-2, \sum_{i=1}^{n-2} C_{n-2}^{i-1} \Delta_{i, n-1-i}+\Delta_{n, 1}\right\rangle, \\
& \mathrm{B}^{2}\left(F_{n}^{3}, \mathbb{C}\right)=\left\langle\Delta_{1,1}, \sum_{i=1}^{s-1} C_{s-1}^{i-1} \Delta_{i, s-i}, 3 \leq s \leq n-2, \sum_{i=1}^{n-2} C_{n-2}^{i-1} \Delta_{i, n-1-i}+\Delta_{n, n}\right\rangle .
\end{aligned}
$$

- A basis of $\mathrm{H}^{2}\left(F_{n}^{k}, \mathbb{C}\right)$ is formed by the following cocycles

$$
\begin{aligned}
& \mathrm{H}^{2}\left(F_{n}^{1}, \mathbb{C}\right)=\left\langle\left[\Delta_{1, n}\right],\left[\Delta_{n, 1}\right],\left[\Delta_{n, n}\right],\left[\sum_{i=1}^{n-1} C_{n-1}^{i-1} \Delta_{i, n-i}\right]\right\rangle, \\
& \mathrm{H}^{2}\left(F_{n}^{k}, \mathbb{C}\right)=\left\langle\left[\Delta_{1, n}\right],\left[\Delta_{n, 1}\right],\left[\Delta_{n, n}\right]\right\rangle, \quad k=2,3 .
\end{aligned}
$$

Proof. The proof follows directly from the definition of a cocycle.
Proposition 11. Let $\phi_{k}^{n} \in \operatorname{Aut}\left(F_{n}^{k}\right)$. Then

$$
\begin{aligned}
& \phi_{1}^{n}=\left(\begin{array}{cccccc}
a_{1,1} & 0 & 0 & \ldots & 0 & 0 \\
a_{2,1} & a_{1,1}^{2} & 0 & \ldots & 0 & 0 \\
a_{3,1} & * & a_{1,1}^{3} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n-1,1} & * & * & & a_{1,1}^{n-1} & a_{n-1, n} \\
a_{n, 1} & 0 & 0 & \ldots & 0 & a_{n, n}
\end{array}\right), \quad \phi_{2}^{n}=\left(\begin{array}{cccccc}
a_{1,1} & 0 & 0 & \ldots & 0 & 0 \\
a_{2,1} & a_{1,1}^{2} & 0 & \ldots & 0 & 0 \\
a_{3,1} & * & a_{1,1}^{3} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n-1,1} & * & * & & a_{1,1}^{n-1} & a_{n-1, n} \\
a_{n, 1} & 0 & 0 & \ldots & 0 & a_{1,1}^{n-2}
\end{array}\right), \\
& \phi_{3}^{n}=\left(\begin{array}{cccccc}
a_{1,1} & 0 & 0 & \ldots & 0 & 0 \\
a_{2,1} & a_{1,1}^{2} & 0 & \ldots & 0 & 0 \\
a_{3,1} & * & a_{1,1}^{3} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n-1,1} & * & * & & a_{1,1}^{n-1} & a_{n-1, n} \\
a_{n, 1} & 0 & 0 & \ldots & 0 & a_{1,1}^{(n-1) / 2}
\end{array}\right)
\end{aligned}
$$

2.1. Central extensions of F_{n}^{1}. Let us denote

$$
\nabla_{1}=\left[\Delta_{1, n}\right], \nabla_{2}=\left[\Delta_{n, 1}\right], \nabla_{3}=\left[\Delta_{n, n}\right], \nabla_{4}=\left[\sum_{j=1}^{n-1} C_{n-1}^{j-1} \Delta_{j, n-j}\right]
$$

and $x=a_{1,1}, y=a_{n, n}, z=a_{n-1, n}, w=a_{n, 1}$. Since

$$
\left(\begin{array}{cccccc}
& & & \\
* & \cdots & * & C_{n-1}^{0} \alpha_{4}^{\prime} & \alpha_{1}^{\prime} \\
* & \cdots & C_{n-1}^{1} \alpha_{4}^{\prime} & 0 & 0 \\
\vdots & \cdots & \vdots & \vdots & \vdots \\
C_{n-2}^{n-2} \alpha_{4}^{\prime} & \cdots & 0 & 0 & 0 \\
\alpha_{2}^{\prime} & \cdots & 0 & 0 & \alpha_{3}^{\prime}
\end{array}\right)=\left(\phi_{1}^{n}\right)^{T}\left(\begin{array}{ccccccc}
0 & 0 & 0 & \cdots & 0 & C_{n-1}^{0} \alpha_{4} & \alpha_{1} \\
0 & 0 & 0 & \cdots & C_{n-1}^{1} \alpha_{4} & 0 & 0 \\
0 & 0 & 0 & \vdots & \vdots & 0 & 0 \\
\vdots & \vdots & \vdots & C_{n-1}^{n-1-i} \alpha_{4} & \vdots & \vdots & \vdots \\
\vdots & 0 & \vdots & 0 & \vdots & \vdots & \vdots \\
0 & C_{n-1}^{n-3} \alpha_{4} & 0 & \vdots & \vdots & \vdots & \vdots \\
& & & & & 0 & \cdots \\
C_{n-1}^{n-2} \alpha_{4} & 0 & 0 & 0 & 0 & 0 \\
\alpha_{2} & 0 & 0 & \cdots & 0 & 0 & \alpha_{3}
\end{array}\right) \phi_{1}^{n},
$$

for any $\theta=\alpha_{1} \nabla_{1}+\alpha_{2} \nabla_{2}+\alpha_{3} \nabla_{3}+\alpha_{4} \nabla_{4}$, we have the action of the automorphism group on the subspace $\langle\theta\rangle$ as

$$
\left\langle\left(\alpha_{1} x y+\alpha_{3} y w+\alpha_{4} x z\right) \nabla_{1}+\left(\alpha_{2} x y+\alpha_{3} y w+(n-1) \alpha_{4} x z\right) \nabla_{2}+\alpha_{3} y^{2} \nabla_{3}+\alpha_{4} x^{n} \nabla_{4}\right\rangle .
$$

2.1.1. 1-dimensional central extensions of F_{n}^{1}. Let us consider the following cases:
(1) if $\alpha_{1} \neq 0, \alpha_{2}=\alpha_{3}=\alpha_{4}=0$, then by choosing $x=1, y=1 / \alpha_{1}$, we have the representative $\left\langle\nabla_{1}\right\rangle$.
(2) if $\alpha_{2} \neq 0, \alpha_{3}=\alpha_{4}=0$, then by choosing $x=1, y=1 / \alpha_{2}, \alpha=\alpha_{1} / \alpha_{2}$, we have the family of representatives $\left\langle\alpha \nabla_{1}+\nabla_{2}\right\rangle$.
(3) if $\alpha_{1}=\alpha_{2}, \alpha_{3} \neq 0, \alpha_{4}=0$, then by choosing $y=1 / \sqrt{\alpha_{3}}, w=-\alpha_{2} / \alpha_{3}, x=1$, we have the representative $\left\langle\nabla_{3}\right\rangle$.
(4) if $\alpha_{1} \neq \alpha_{2}, \alpha_{3} \neq 0, \alpha_{4}=0$, then by choosing $x=\frac{\sqrt{\alpha_{3}}}{\alpha_{1}-\alpha_{2}}, y=\frac{1}{\sqrt{\alpha_{3}}}, w=\frac{\alpha_{2}}{\sqrt{\alpha_{3}}\left(\alpha_{2}-\alpha_{1}\right)}$, we have the representative $\left\langle\nabla_{1}+\nabla_{3}\right\rangle$.
(5) if $(n-1) \alpha_{1}=\alpha_{2}, \alpha_{3}=0, \alpha_{4} \neq 0$, then by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1, z=-\alpha_{1} / \alpha_{4}$, we have the representative $\left\langle\nabla_{4}\right\rangle$.
(6) if $(n-1) \alpha_{1} \neq \alpha_{2}, \alpha_{3}=0, \alpha_{4} \neq 0$, then by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=\frac{\sqrt[n]{\alpha_{4}}}{\alpha_{2}-(n-1) \alpha_{1}}, z=$ $-\frac{\sqrt[n]{\alpha_{4}}}{\alpha_{2}-(n-1) \alpha_{1}}$, we have the representative $\left\langle\nabla_{2}+\nabla_{4}\right\rangle$.
(7) if $\alpha_{3} \neq 0, \alpha_{4} \neq 0$, then by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1 / \sqrt{\alpha_{3}}, z=\frac{\alpha_{1}-\alpha_{2}}{(n-2) \sqrt{\alpha_{3}} \alpha_{4}}, w=\frac{\alpha_{2}-(n-1) \alpha_{1}}{(n-2) \sqrt[n]{\alpha_{4}} \alpha_{3}}$, we have the representative $\left\langle\nabla_{3}+\nabla_{4}\right\rangle$.
It is easy to verify that all previous orbits are different, and so we obtain

$$
\begin{aligned}
T_{1}\left(F_{n}^{1}\right)= & \operatorname{Orb}\left\langle\nabla_{1}\right\rangle \cup \operatorname{Orb}\left\langle\alpha \nabla_{1}+\nabla_{2}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{3}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}+\nabla_{3}\right\rangle \cup \\
& \operatorname{Orb}\left\langle\nabla_{4}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{2}+\nabla_{4}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{3}+\nabla_{4}\right\rangle .
\end{aligned}
$$

2.1.2. 2-dimensional central extensions of F_{n}^{1}. We may assume that a 2-dimensional subspace is generated by

$$
\begin{aligned}
& \theta_{1}=\alpha_{1} \nabla_{1}+\alpha_{2} \nabla_{2}+\alpha_{3} \nabla_{3}+\alpha_{4} \nabla_{4}, \\
& \theta_{2}=\beta_{1} \nabla_{1}+\beta_{2} \nabla_{2}+\beta_{3} \nabla_{3} .
\end{aligned}
$$

Then we have the six following cases:
(1) if $\alpha_{4} \neq 0, \beta_{3} \neq 0$, then we can suppose that $\alpha_{3}=0$. Now
(a) for $(n-1) \alpha_{1} \neq \alpha_{2}, \beta_{1} \neq \beta_{2}$, by choosing $x=\left(\frac{\left(\alpha_{2}-(n-1) \alpha_{1}\right)\left(\beta_{2}-\beta_{1}\right)}{\alpha_{4}}\right)^{1 /(n-2)}, y=\frac{\beta_{2}-\beta_{1}}{\beta_{3}} x$, $z=\frac{\alpha_{1}\left(\beta_{1}-\beta_{2}\right)}{\alpha_{4} \beta_{3}} x, w=-\beta_{1} x / \beta_{3}$, we have the representative $\left\langle\nabla_{2}+\nabla_{3}, \nabla_{2}+\nabla_{4}\right\rangle$.
(b) for $(n-1) \alpha_{1} \neq \alpha_{2}, \beta_{1}=\beta_{2}$, by choosing $x=\left(\frac{\alpha_{2}-(n-1) \alpha_{1}}{\alpha_{4} \sqrt{\beta_{3}}}\right)^{1 /(n-1)}, y=1 / \sqrt{\beta_{3}}, z=$ $-\frac{\alpha_{1}}{\alpha_{4} \sqrt{\beta_{3}}}, w=-\beta_{1} x / \beta_{3}$, we have the representative $\left\langle\nabla_{3}, \nabla_{2}+\nabla_{4}\right\rangle$.
(c) for $(n-1) \alpha_{1}=\alpha_{2}, \beta_{1} \neq \beta_{2}$, by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=\frac{\beta_{2}-\beta_{1}}{\beta_{3}} x, z=\frac{\alpha_{1}\left(\beta_{1}-\beta_{2}\right)}{\alpha_{4} \beta_{3}} x$, $w=-\beta_{1} x / \beta_{3}$, we have the representative $\left\langle\nabla_{2}+\nabla_{3}, \nabla_{4}\right\rangle$.
(d) for $(n-1) \alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}$, by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1 / \sqrt{\beta_{3}}, z=-\alpha_{1} y / \alpha_{4}$, $w=-\beta_{1} x / \beta_{3}$, we have the representative $\left\langle\nabla_{3}, \nabla_{4}\right\rangle$.
(2) if $\alpha_{4} \neq 0, \beta_{3}=0, \beta_{2} \neq 0$, then we can suppose that $\alpha_{2}=0$. Now
(a) for $\alpha_{3} \neq 0$, by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1 / \sqrt{\alpha_{3}}, z=\frac{\alpha_{1}}{(n-2) \sqrt{\alpha_{3} \alpha_{4}}}, w=-\frac{(n-1) \alpha_{1}}{(n-2) \sqrt[n]{\alpha_{4} \alpha_{3}}}$, and $\alpha=\beta_{1} / \beta_{2}$ we have the family of representatives $\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{3}+\nabla_{4}\right\rangle$.
(b) for $\alpha_{3}=0,(n-1) \beta_{1} \neq \beta_{2}$, then by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1, z=-\frac{\alpha_{1} \beta_{2}}{\left.\alpha_{4}(n-1) \beta_{1}-\beta_{2}\right)}$ and $\alpha=\beta_{1} / \beta_{2}$, we have the family of representatives $\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{4}\right\rangle_{\alpha \neq \frac{1}{n-1}}$.
(c) for $\alpha_{3}=0,(n-1) \beta_{1}=\beta_{2}$ and $\alpha_{1}=0$, by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1, z=0$, we have the representative $\left\langle\frac{1}{n-1} \nabla_{1}+\nabla_{2}, \nabla_{4}\right\rangle$.
(d) for $\alpha_{3}=0,(n-1) \beta_{1}=\beta_{2}$ and $\alpha_{1} \neq 0$, by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=-\frac{\sqrt[n]{\alpha_{4}}}{(n-1) \alpha_{1}}, z=$ $\frac{\sqrt[n]{\alpha_{4}}}{(n-1) \alpha_{4}}$, we have the representative $\left\langle\frac{1}{n-1} \nabla_{1}+\nabla_{2}, \nabla_{2}+\nabla_{4}\right\rangle$.
(3) if $\alpha_{4} \neq 0, \beta_{3}=\beta_{2}=0, \beta_{1} \neq 0$, then
(a) for $\alpha_{3} \neq 0$, by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1 / \sqrt{\alpha_{3}}, z=\frac{\alpha_{1}-\alpha_{2}}{(n-2) \sqrt{\alpha_{3}} \alpha_{4}}, w=\frac{\alpha_{2}-(n-1) \alpha_{1}}{(n-2) \sqrt[n]{\alpha_{4} \alpha_{3}}}$, we have the representative $\left\langle\nabla_{1}, \nabla_{3}+\nabla_{4}\right\rangle$.
(b) for $\alpha_{3}=0$, after a linear combination of θ_{1} and θ_{2} we can suppose that $(n-1) \alpha_{1}=\alpha_{2}$, by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1, z=-\alpha_{1} / \alpha_{4}$, we have the representative $\left\langle\nabla_{1}, \nabla_{4}\right\rangle$.
(4) if $\alpha_{4}=0, \alpha_{3} \neq 0, \beta_{2} \neq 0$, then
(a) for $\beta_{1} \neq \beta_{2}$, after a linear combination of θ_{1} and θ_{2} we can suppose that $\alpha_{1}=\alpha_{2}$, by choos$\operatorname{ing} y=1 / \sqrt{\alpha_{3}}, w=-\alpha_{2} / \alpha_{3}, x=1$ and $\alpha=\beta_{1} / \beta_{2}$ we have the family of representatives $\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{3}\right\rangle_{\alpha \neq 1}$.
(b) for $\beta_{1}=\beta_{2}, \alpha_{1}=\alpha_{2}$, after a linear combination of θ_{1} and θ_{2} we have the representative $\left\langle\nabla_{1}+\nabla_{2}, \nabla_{3}\right\rangle$.
(c) for $\beta_{1}=\beta_{2}, \alpha_{1} \neq \alpha_{2}$, by choosing $x=\frac{\sqrt{\alpha_{3}}}{\alpha_{1}-\alpha_{2}}, y=1 / \sqrt{\alpha_{3}}, w=\frac{\alpha_{2}}{\sqrt{\alpha_{3}}\left(\alpha_{2}-\alpha_{1}\right)}$, we have the representative $\left\langle\nabla_{1}+\nabla_{2}, \nabla_{1}+\nabla_{3}\right\rangle$.
(5) if $\alpha_{4}=0, \alpha_{3} \neq 0, \beta_{2}=0, \beta_{1} \neq 0$, then after a linear combination of θ_{1} and θ_{2} we can suppose that $\alpha_{1}=\alpha_{2}$, by choosing $y=1 / \sqrt{\alpha_{3}}, w=-\alpha_{2} / \alpha_{3}, x=1$ and $\alpha=\beta_{1} / \beta_{2}$ we have the representative $\left\langle\nabla_{1}, \nabla_{3}\right\rangle$.
(6) if $\alpha_{3}=\alpha_{4}=0, \beta_{3}=0$, then we have the representative $\left\langle\nabla_{1}, \nabla_{2}\right\rangle$.

It is easy to verify that all previous orbits are different, and so we obtain

$$
\begin{aligned}
T_{2}\left(F_{n}^{1}\right)= & \operatorname{Orb}\left\langle\nabla_{1}, \nabla_{2}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}, \nabla_{3}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}, \nabla_{3}+\nabla_{4}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}, \nabla_{4}\right\rangle \cup \\
& \operatorname{Orb}\left\langle\frac{1}{n-1} \nabla_{1}+\nabla_{2}, \nabla_{2}+\nabla_{4}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}+\nabla_{2}, \nabla_{1}+\nabla_{3}\right\rangle \cup \operatorname{Orb}\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{3}\right\rangle \cup \\
& \operatorname{Orb}\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{3}+\nabla_{4}\right\rangle \cup \operatorname{Orb}\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{4}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{2}+\nabla_{3}, \nabla_{2}+\nabla_{4}\right\rangle \cup \\
& \operatorname{Orb}\left\langle\nabla_{2}+\nabla_{3}, \nabla_{4}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{3}, \nabla_{2}+\nabla_{4}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{3}, \nabla_{4}\right\rangle .
\end{aligned}
$$

2.1.3. 3-dimensional central extensions of F_{n}^{1}. We may assume that a 3-dimensional subspace is generated by

$$
\begin{aligned}
\theta_{1} & =\alpha_{1} \nabla_{1}+\alpha_{2} \nabla_{2}+\alpha_{3} \nabla_{3}+\alpha_{4} \nabla_{4} \\
\theta_{2} & =\beta_{1} \nabla_{1}+\beta_{2} \nabla_{2}+\beta_{3} \nabla_{3} \\
\theta_{3} & =\gamma_{1} \nabla_{1}+\gamma_{2} \nabla_{2}
\end{aligned}
$$

Then we have the following cases:
(1) if $\alpha_{4} \neq 0, \beta_{3} \neq 0, \gamma_{2} \neq 0$, then we can suppose that $\alpha_{2}=0, \alpha_{3}=0, \beta_{2}=0$ and
(a) for $\gamma_{1} \neq \gamma_{2},(n-1) \gamma_{1} \neq \gamma_{2}$, then by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1 / \sqrt{\beta_{3}}, z=\frac{\alpha_{1} \gamma_{2} y}{\alpha_{4}\left((n-1) \gamma_{1}-\gamma_{2}\right)}$, $w=\frac{\beta_{1} \gamma_{2} x}{\alpha_{4}\left(\gamma_{1}-\gamma_{2}\right)}$, we have the family of representatives $\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{3}, \nabla_{4}\right\rangle_{\alpha \notin\left\{1, \frac{1}{n-1}\right\}}$.
(b) for $\gamma_{1}=\gamma_{2}$, then
(i) for $\beta_{1} \neq 0$, by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=\frac{\beta_{1} x}{\beta_{3}}, z=\frac{\alpha_{1} y}{(n-2) \alpha_{4}}, w=0$, we have the representative $\left\langle\nabla_{1}+\nabla_{2}, \nabla_{1}+\nabla_{3}, \nabla_{4}\right\rangle$.
(ii) for $\beta_{1}=0$, by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1 / \sqrt{\beta_{3}}, z=\frac{\alpha_{1} y}{(n-2) \alpha_{4}}$, $w=0$, we have the representative $\left\langle\nabla_{1}+\nabla_{2}, \nabla_{3}, \nabla_{4}\right\rangle$.
(c) for $(n-1) \gamma_{1}=\gamma_{2}$, then
(i) for $\alpha_{1} \neq 0$, by choosing $y=1 / \sqrt{\beta_{3}}, z=-\frac{\alpha_{1} y}{\alpha_{4}}, x=\sqrt[n-1]{(n-1) z}, w=-\frac{(n-1) \beta_{1} x}{(n-2) \beta_{3}}$, we have the representative $\left\langle\frac{1}{n-1} \nabla_{1}+\nabla_{2}, \nabla_{3}, \nabla_{2}+\nabla_{4}\right\rangle$.
(ii) for $\alpha_{1}=0$, by choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1 / \sqrt{\beta_{3}}, z=0, w=-\frac{(n-1) \beta_{1} x}{(n-2) \beta_{3}}$, we have the representative $\left\langle\frac{1}{n-1} \nabla_{1}+\nabla_{2}, \nabla_{3}, \nabla_{4}\right\rangle$.
(2) if $\alpha_{4} \neq 0, \beta_{3} \neq 0, \gamma_{2}=0, \gamma_{1} \neq 0$, then we can suppose that $\alpha_{3}=0$ and after a linear combination of $\theta_{1}, \theta_{2}, \theta_{3}$ we can suppose that $(n-1) \alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}$. By choosing $x=1 / \sqrt[n]{\alpha_{4}}, y=1 / \sqrt{\beta_{3}}$, $z=-\alpha_{1} y / \alpha_{4}, w=-\beta_{1} x / \beta_{3}$, we have the representative $\left\langle\nabla_{1}, \nabla_{3}, \nabla_{4}\right\rangle$.
(3) if $\alpha_{4} \neq 0, \beta_{3}=0, \beta_{2} \neq 0, \gamma_{2}=0, \gamma_{1} \neq 0$, then and after a linear combination of $\theta_{1}, \theta_{2}, \theta_{3}$ we can suppose that $\alpha_{1}=\alpha_{2}=\beta_{1}=0$. Now
(a) for $\alpha_{3} \neq 0$, by choosing $y=1 / \sqrt{\alpha_{3}}, x=1 / \sqrt[n]{\alpha_{4}}$ we have the representative $\left\langle\nabla_{1}, \nabla_{2}, \nabla_{3}+\right.$ $\left.\nabla_{4}\right\rangle$.
(b) for $\alpha_{3}=0$, we have the representative $\left\langle\nabla_{1}, \nabla_{2}, \nabla_{4}\right\rangle$.
(4) if $\alpha_{4}=0, \beta_{3}=0, \gamma_{2}=0$, then we have the representative $\left\langle\nabla_{1}, \nabla_{2}, \nabla_{3}\right\rangle$.

It is easy to verify that all previous orbits are different, and so we obtain

$$
\begin{aligned}
T_{3}\left(F_{n}^{1}\right)= & \operatorname{Orb}\left\langle\nabla_{1}, \nabla_{2}, \nabla_{3}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}, \nabla_{2}, \nabla_{3}+\nabla_{4}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}, \nabla_{2}, \nabla_{4}\right\rangle \cup \\
& \operatorname{Orb}\left\langle\nabla_{1}+\nabla_{2}, \nabla_{1}+\nabla_{3}, \nabla_{4}\right\rangle \cup \operatorname{Orb}\left\langle\frac{1}{n-1} \nabla_{1}+\nabla_{2}, \nabla_{3}, \nabla_{2}+\nabla_{4}\right\rangle \cup \\
& \operatorname{Orb}\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{3}, \nabla_{4}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}, \nabla_{3}, \nabla_{4}\right\rangle .
\end{aligned}
$$

2.1.4. 4-dimensional central extensions of F_{n}^{1}. There is only one 4-dimensional non-split central extension of the algebra F_{n}^{1}. It is defined by $\left\langle\nabla_{1}, \nabla_{2}, \nabla_{3}, \nabla_{4}\right\rangle$.

2.1.5. Non-split central extensions of F_{n}^{1}. So we have the next theorem

Theorem 12. An arbitrary non-split central extension of the algebra F_{n}^{1} is isomorphic to one of the following pairwise non-isomorphic algebras

- one-dimensional central extensions:

$$
\mu_{1}^{n+1}, \mu_{2}^{n+1}(\alpha), \mu_{3}^{n+1}, \mu_{4}^{n+1}, F_{n+1}^{1}, F_{n+1}^{2}, F_{n+1}^{3}
$$

- two-dimensional central extensions:

$$
\mu_{5}^{n+2}, \mu_{6}^{n+2}, \mu_{7}^{n+2}, \mu_{1}^{n+2}, \mu_{8}^{n+2}, \mu_{9}^{n+2}, \mu_{10}^{n+2}(\alpha), \mu_{11}^{n+2}(\alpha), \mu_{2}^{n+2}(\alpha), \mu_{12}^{n+2}, \mu_{4}^{n+2}, \mu_{13}^{n+2}, \mu_{3}^{n+2}
$$

- three-dimensional central extensions:

$$
\mu_{14}^{n+3}, \mu_{15}^{n+3}, \mu_{5}^{n+3}, \mu_{9}^{n+3}, \mu_{16}^{n+3}, \mu_{10}^{n+3}(\alpha), \mu_{6}^{n+3}
$$

- four-dimensional central extensions:

$$
\mu_{14}^{n+4}
$$

with $\alpha \in \mathbb{C}$.
2.2. Central extensions of F_{n}^{2}. Let us denote

$$
\nabla_{1}=\left[\Delta_{1, n}\right], \quad \nabla_{2}=\left[\Delta_{n, 1}\right], \quad \nabla_{3}=\left[\Delta_{n, n}\right]
$$

and $x=a_{1,1}, w=a_{n, 1}$. Let $\theta=\alpha_{1} \nabla_{1}+\alpha_{2} \nabla_{2}+\alpha_{3} \nabla_{3}$. Then by

$$
\left(\begin{array}{ccccc}
* & \ldots & 0 & 0 & \alpha_{1}^{\prime} \\
0 & \ldots & 0 & 0 & 0 \\
\vdots & \ldots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0 & 0 \\
\alpha_{2}^{\prime} & \ldots & 0 & 0 & \alpha_{3}^{\prime}
\end{array}\right)=\left(\phi_{2}^{n}\right)^{T}\left(\begin{array}{ccccc}
0 & \ldots & 0 & 0 & \alpha_{1} \\
0 & \ldots & 0 & 0 & 0 \\
\vdots & \ldots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0 & 0 \\
\alpha_{2} & \ldots & 0 & 0 & \alpha_{3}
\end{array}\right) \phi_{2}^{n},
$$

we have the action of the automorphism group on the subspace $\langle\theta\rangle$ as

$$
\left\langle x^{n-2}\left(x \alpha_{1}+w \alpha_{3}\right) \nabla_{1}+x^{n-2}\left(x \alpha_{2}+w \alpha_{3}\right) \nabla_{2}+x^{2 n-4} \alpha_{3} \nabla_{3}\right\rangle .
$$

2.2.1. 1-dimensional central extensions of F_{n}^{2}. Let us consider the following cases:
(1) if $\alpha_{3}=0$, then
(a) for $\alpha_{2}=0, \alpha_{1} \neq 0$, we have the representative $\left\langle\nabla_{1}\right\rangle$.
(b) for $\alpha_{2} \neq 0$, by choosing $x=\alpha_{2}^{-1 /(n-1)}$ and $\alpha=\alpha_{1} / \alpha_{2}$, we have the family of representatives $\left\langle\alpha \nabla_{1}+\nabla_{2}\right\rangle$.
(2) if $\alpha_{3} \neq 0$, then
(a) for $\alpha_{1} \neq \alpha_{2}$, by choosing $x=\left(\frac{\alpha_{2}-\alpha_{1}}{\alpha_{3}}\right)^{1 /(n-3)}$, $w=-\frac{x \alpha_{1}}{\alpha_{3}}$ we have the representative $\left\langle\nabla_{2}+\right.$ $\left.\nabla_{3}\right\rangle$.
(b) for $\alpha_{1}=\alpha_{2}$, by choosing $w=-\frac{x \alpha_{1}}{\alpha_{3}}$ we have the representative $\left\langle\nabla_{3}\right\rangle$.

It is easy to verify that all previous orbits are different, and so we obtain

$$
T_{1}\left(F_{n}^{2}\right)=\operatorname{Orb}\left\langle\nabla_{1}\right\rangle \cup \operatorname{Orb}\left\langle\alpha \nabla_{1}+\nabla_{2}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{2}+\nabla_{3}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{3}\right\rangle .
$$

2.2.2. 2-dimensional central extensions of F_{n}^{2}. We may assume that a 2 -dimensional subspace is generated by

$$
\begin{aligned}
& \theta_{1}=\alpha_{1} \nabla_{1}+\alpha_{2} \nabla_{2}+\alpha_{3} \nabla_{3}, \\
& \theta_{2}=\beta_{1} \nabla_{1}+\beta_{2} \nabla_{2} .
\end{aligned}
$$

We consider the following cases:
(1) if $\alpha_{3} \neq 0$ and $\beta_{1} \neq \beta_{2}$, then after a linear combination of θ_{1} and θ_{2} we can suppose that $\alpha_{1}=\alpha_{2}$. Now,
(a) for $\beta_{2} \neq 0$, by choosing $x=\beta_{2}^{-1 /(n-1)}, w=-\frac{x \alpha_{1}}{\alpha_{3}}$ and $\alpha=\beta_{1} / \beta_{2}$ we have the family of respresentatives $\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{3}\right\rangle_{\alpha \neq 1}$.
(b) for $\beta_{2}=0$, by choosing $x=\beta_{1}^{-1 /(n-1)}, w=-\frac{x \alpha_{1}}{\alpha_{3}}$, we have the respresentative $\left\langle\nabla_{1}, \nabla_{3}\right\rangle$.
(2) if $\alpha_{3} \neq 0$ and $\beta_{1}=\beta_{2}$, then
(a) for $\alpha_{1} \neq \alpha_{2}$, by choosing $x=\left(\frac{\alpha_{1}-\alpha_{2}}{\alpha_{3}}\right)^{1 /(n-1)}, w=-\frac{x \alpha_{2}}{\alpha_{3}}$ we have the representative $\left\langle\nabla_{1}+\right.$ $\left.\nabla_{2}, \nabla_{1}+\nabla_{3}\right\rangle$.
(b) for $\alpha_{1}=\alpha_{2}$, after a linear combination of θ_{1} and θ_{2} we have the representative $\left\langle\nabla_{1}+\right.$ $\left.\nabla_{2}, \nabla_{3}\right\rangle$.
(3) if $\alpha_{3}=0$, then we have the representative $\left\langle\nabla_{1}, \nabla_{2}\right\rangle$.

It is easy to verify that all previous orbits are different, and so we obtain

$$
T_{2}\left(F_{n}^{2}\right)=\operatorname{Orb}\left\langle\nabla_{1}, \nabla_{2}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}, \nabla_{3}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}+\nabla_{2}, \nabla_{1}+\nabla_{3}\right\rangle \cup \operatorname{Orb}\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{3}\right\rangle .
$$

2.2.3. 3-dimensional central extensions of F_{n}^{2}. There is only one 3-dimensional non-split central extension of the algebra F_{n}^{2}. It is defined by $\left\langle\nabla_{1}, \nabla_{2}, \nabla_{3}\right\rangle$.
2.2.4. Non-split central extensions of F_{n}^{2}. So we have the next result.

Theorem 13. An arbitrary non-split central extension of the algebra F_{n}^{2} is isomorphic to one of the following pairwise non-isomorphic algebras

- one-dimensional central extensions:

$$
\mu_{1}^{n+1}, \mu_{2}^{n+1}(\alpha) \text { with } \alpha \neq \frac{1}{n-3}, \mu_{8}^{n+1}, \mu_{12}^{n+1}, \mu_{16}^{n+1}
$$

- two-dimensional central extensions:

$$
\mu_{5}^{n+2}, \mu_{6}^{n+2}, \mu_{9}^{n+2}, \mu_{10}^{n+2}(\alpha) \text { with } \alpha \neq \frac{1}{n-4}, \mu_{16}^{n+2}
$$

- three-dimensional central extensions:

$$
\mu_{14}^{n+3}
$$

with $\alpha \in \mathbb{C}$.
2.3. Central extensions of F_{n}^{3}. Let us denote

$$
\nabla_{1}=\left[\Delta_{1, n}\right], \quad \nabla_{2}=\left[\Delta_{n, 1}\right], \quad \nabla_{3}=\left[\Delta_{n, n}\right]
$$

and $x=a_{1,1}, w=a_{n, 1}$. Let $\theta=\alpha_{1} \nabla_{1}+\alpha_{2} \nabla_{2}+\alpha_{3} \nabla_{3}$. Then by

$$
\left(\begin{array}{ccccc}
* & \ldots & 0 & 0 & \alpha_{1}^{\prime} \\
0 & \ldots & 0 & 0 & 0 \\
\vdots & \ldots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0 & 0 \\
\alpha_{2}^{\prime} & \ldots & 0 & 0 & \alpha_{3}^{\prime}
\end{array}\right)=\left(\phi_{3}^{n}\right)^{T}\left(\begin{array}{ccccc}
0 & \ldots & 0 & 0 & \alpha_{1} \\
0 & \ldots & 0 & 0 & 0 \\
\vdots & \ldots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0 & 0 \\
\alpha_{2} & \ldots & 0 & 0 & \alpha_{3}
\end{array}\right) \phi_{3}^{n},
$$

we have the action of the automorphism group on the subspace $\langle\theta\rangle$ as

$$
\left\langle x^{(n-1) / 2}\left(x \alpha_{1}+w \alpha_{3}\right) \nabla_{1}+x^{(n-1) / 2}\left(x \alpha_{2}+w \alpha_{3}\right) \nabla_{2}+x^{n-1} \alpha_{3} \nabla_{3}\right\rangle .
$$

2.3.1. 1-dimensional central extensions of F_{n}^{3}. Let us consider the following cases:
(1) if $\alpha_{3}=0$, then
(a) for $\alpha_{2}=0, \alpha_{1} \neq 0$, by choosing $x=\alpha_{1}^{-2 /(n+1)}$, we have the representative $\left\langle\nabla_{1}\right\rangle$.
(b) for $\alpha_{2} \neq 0$, by choosing $x=\alpha_{2}^{-2 /(n+1)}$ and $\alpha=\alpha_{1} / \alpha_{2}$ we have the family of representatives $\left\langle\alpha \nabla_{1}+\nabla_{2}\right\rangle$.
(2) if $\alpha_{3} \neq 0$, then
(a) for $\alpha_{2} \neq \alpha_{1}$, by choosing $x=\left(\frac{\alpha_{2}-\alpha_{1}}{\alpha_{3}}\right)^{2 /(n-3)}, w=-\frac{x \alpha_{1}}{\alpha_{3}}$ we have the representative $\left\langle\nabla_{2}+\right.$ $\left.\nabla_{3}\right\rangle$.
(b) for $\alpha_{2}=\alpha_{1}$, by choosing $w=-\frac{x \alpha_{1}}{\alpha_{3}}$ we have the representative $\left\langle\nabla_{3}\right\rangle$.

It is easy to verify that all previous orbits are different, and so we obtain

$$
T_{1}\left(F_{n}^{3}\right)=\operatorname{Orb}\left\langle\nabla_{1}\right\rangle \cup \operatorname{Orb}\left\langle\alpha \nabla_{1}+\nabla_{2}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{2}+\nabla_{3}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{3}\right\rangle
$$

2.3.2. 2-dimensional central extensions of F_{n}^{3}. We may assume that a 2 -dimensional subspace is generated by

$$
\begin{aligned}
& \theta_{1}=\alpha_{1} \nabla_{1}+\alpha_{2} \nabla_{2}+\alpha_{3} \nabla_{3} \\
& \theta_{2}=\beta_{1} \nabla_{1}+\beta_{2} \nabla_{2}
\end{aligned}
$$

We consider the following cases:
(1) if $\alpha_{3} \neq 0$ and $\beta_{1} \neq \beta_{2}$, then after a linear combination of θ_{1} and θ_{2} we can suppose that $\alpha_{1}=\alpha_{2}$. Now,
(a) for $\beta_{2} \neq 0$, by choosing $x=\beta_{2}^{-2 /(n+1)}, w=-\frac{x \alpha_{1}}{\alpha_{3}}$ and $\alpha=\beta_{1} / \beta_{2}$ we have the family of respresentatives $\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{3}\right\rangle_{\alpha \neq 1}$.
(b) for $\beta_{2}=0$, by choosing $x=\beta_{1}^{-2 /(n+1)}, w=-\frac{x \alpha_{1}}{\alpha_{3}}$, we have the respresentative $\left\langle\nabla_{1}, \nabla_{3}\right\rangle$.
(2) if $\alpha_{3} \neq 0$ and $\beta_{1}=\beta_{2}$, then
(a) for $\alpha_{1} \neq \alpha_{2}$, by choosing $x=\left(\frac{\alpha_{1}-\alpha_{2}}{\alpha_{3}}\right)^{2 /(n-3)}, w=-\frac{x \alpha_{2}}{\alpha_{3}}$ we have the representative $\left\langle\nabla_{1}+\right.$ $\left.\nabla_{2}, \nabla_{1}+\nabla_{3}\right\rangle$.
(b) for $\alpha_{1}=\alpha_{2}$, after a linear combination of θ_{1} and θ_{2} we have the representative $\left\langle\nabla_{1}+\right.$ $\left.\nabla_{2}, \nabla_{3}\right\rangle$.
(3) if $\alpha_{3}=0$, then we have the representative $\left\langle\nabla_{1}, \nabla_{2}\right\rangle$.

It is easy to verify that all previous orbits are different, and so we obtain

$$
T_{2}\left(F_{n}^{3}\right)=\operatorname{Orb}\left\langle\nabla_{1}, \nabla_{2}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}, \nabla_{3}\right\rangle \cup \operatorname{Orb}\left\langle\nabla_{1}+\nabla_{2}, \nabla_{1}+\nabla_{3}\right\rangle \cup \operatorname{Orb}\left\langle\alpha \nabla_{1}+\nabla_{2}, \nabla_{3 .}\right\rangle
$$

2.3.3. 3-dimensional central extensions of F_{n}^{3}. There is only one 3-dimensional non-split central extension of the algebra F_{n}^{3}. It is defined by $\left\langle\nabla_{1}, \nabla_{2}, \nabla_{3}\right\rangle$.
2.3.4. Non-split central extensions of F_{n}^{3}. So we have the next theorem.

Theorem 14. An arbitrary non-split central extension of the algebra F_{n}^{3} is isomorphic to one of the following pairwise non-isomorphic algebras

- one-dimensional central extensions:

$$
\mu_{7}^{n+1}, \mu_{11}^{n+1}(\alpha), \mu_{12}^{n+1}, \mu_{3}^{n+1}
$$

- two-dimensional central extensions:

$$
\mu_{15}^{n+2}, \mu_{6}^{n+2}, \mu_{9}^{n+2}, \mu_{10}^{n+2}(\alpha)
$$

- three-dimensional central extensions:

$$
\mu_{14}^{n+3}
$$

with $\alpha \in \mathbb{C}$.

3. Appendix: The list of the algebras

REFERENCES

[1] Abdelwahab H., Calderón A.J., Kaygorodov I., The algebraic and geometric classification of nilpotent binary Lie algebras, International Journal of Algebra and Computation, 29 (2019), 6, 1113-1129.
[2] Adashev J., Camacho L., Gomez-Vidal S., Karimjanov I., Naturally graded Zinbiel algebras with nilindex $n-3$, Linear Algebra and its Applications, 443 (2014), 86-104.
[3] Adashev J., Camacho L., Omirov B., Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras, Journal of Algebra, 479 (2017), 461-486.
[4] Adashev J., Khudoyberdiyev A. Kh., Omirov B. A., Classifications of some classes of Zinbiel algebras, Journal of Generalized Lie Theory and Applications, 4 (2010), 10 pages.
[5] Adashev J., Ladra M., Omirov B., The classification of naturally graded Zinbiel algebras with characteristic sequence equal to $(n-p, p)$, Ukrainian Mathematical Journal, 71 (2019), 7, 867-883.
[6] Bauerle G.G.A., de Kerf E.A., ten Kroode A.P.E., Lie Algebras. Part 2. Finite and Infinite Dimensional Lie Algebras and Applications in Physics, edited and with a preface by E.M. de Jager, Studies in Mathematical Physics, vol. 7, North-Holland Publishing Co., Amsterdam, ISBN 0-444-82836-2, 1997, x+554 pp.
[7] Bremner M., On Tortkara triple systems, Communications in Algebra, 46 (2018), 6, 2396-2404.
[8] Calderón Martín A., Fernández Ouaridi A., Kaygorodov I., The classification of n-dimensional anticommutative algebras with $(n-3)$-dimensional annihilator, Communications in Algebra, 47 (2019), 1, 173-181.
[9] Calderón Martín A., Fernández Ouaridi A., Kaygorodov I., The classification of 2-dimensional rigid algebras, Linear and Multilinear Algebra, 68 (2020), 4, 828-844.
[10] Camacho L., Cañete E., Gómez-Vidal S., Omirov B., p-filiform Zinbiel algebras, Linear Algebra and its Applications, 438 (2013), 7, 2958-2972.
[11] Camacho L., Karimjanov I., Kaygorodov I., Khudoyberdiyev A., One-generated nilpotent Novikov algebras, Linear and Multilinear Algebra, 2020, DOI: 10.1080/03081087.2020.1725411.
[12] Camacho L., Kaygorodov I., Lopatkin V., Salim M., The variety of dual Mock-Lie algebras, Communications in Mathematics, 2020, to appear, arXiv:1910.01484.
[13] Cicalò S., De Graaf W., Schneider C., Six-dimensional nilpotent Lie algebras, Linear Algebra and its Applications, 436 (2012), 1, 163-189.
[14] Darijani I., Usefi H., The classification of 5-dimensional p-nilpotent restricted Lie algebras over perfect fields, I., Journal of Algebra, 464 (2016), 97-140.
[15] De Graaf W., Classification of nilpotent associative algebras of small dimension, International Journal of Algebra and Computation, 28 (2018), 1, 133-161.
[16] De Graaf W., Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, Journal of Algebra, 309 (2007), 2, 640-653.
[17] Dokas I., Zinbiel algebras and commutative algebras with divided powers, Glasgow Mathematical Journal, 52 (2010), 2, 303-313.
[18] Diehl J., Ebrahimi-Fard K., Tapia N., Time warping invariants of multidimensional time series, Acta Applicandae Mathematicae, 2020, DOI: 10.1007/s10440-020-00333-x
[19] Diehl J., Lyons T., Preis R., Reizenstein J., Areas of areas generate the shuffle algebra, arXiv:2002.02338.
[20] Dzhumadildaev A., Zinbiel algebras under q-commutators, Journal of Mathematical Sciences (New York), 144 (2007), 2, 3909-3925.
[21] Dzhumadildaev A., Tulenbaev K., Nilpotency of Zinbiel algebras, Journal of Dynamical and Control Systems, 11 (2005), 2, 195-213.
[22] Dzhumadildaev A., Ismailov N., Mashurov F., On the speciality of Tortkara algebras, Joournal of Algebra, 540 (2019), 1-19.
[23] Fernández Ouaridi A., Kaygorodov I., Khrypchenko M., Volkov Yu., Degenerations of nilpotent algebras, arXiv:1905.05361.
[24] Gorshkov I., Kaygorodov I., Kytmanov A., Salim M., The variety of nilpotent Tortkara algebras, Journal of Siberian Federal University. Mathematics \& Physics, 12 (2019), 2, 173-184.
[25] Gorshkov I., Kaygorodov I., Khrypchenko M., The geometric classification of nilpotent Tortkara algebras, Communications in Algebra, 48 (2020), 1, 204-209.
[26] Gorshkov I., Kaygorodov I., Khrypchenko M., The algebraic classification of nilpotent Tortkara algebras, Communications in Algebra, 48 (2020), 8, 3608-3623
[27] Hegazi A., Abdelwahab H., Classification of five-dimensional nilpotent Jordan algebras, Linear Algebra and its Applications, 494 (2016), 165-218.
[28] Hegazi A., Abdelwahab H., Is it possible to find for any $n, m \in \mathbb{N}$ a Jordan algebra of nilpotency type $(n, 1, m)$?, Beiträge zur Algebra und Geometrie, 57 (2016), 4, 859-880.
[29] Hegazi A., Abdelwahab H., The classification of n-dimensional non-associative Jordan algebras with $(n-3)$ dimensional annihilator, Communications in Algebra, 46 (2018), 2, 629-643.
[30] Hegazi A., Abdelwahab H., Calderón Martín A., The classification of n-dimensional non-Lie Malcev algebras with ($n-4$)-dimensional annihilator, Linear Algebra and its Applications, 505 (2016), 32-56.
[31] Hegazi A., Abdelwahab H., Calderón Martín A., Classification of nilpotent Malcev algebras of small dimensions over arbitrary fields of characteristic not 2, Algebras and Representation Theory, 21 (2018), 1, 19-45.
[32] Ismailov N., Kaygorodov I., Mashurov F., The algebraic and geometric classification of nilpotent assosymmetric algebras, Algebras and Representation Theory, 2020, DOI: 10.1007/s10468-019-09935-y.
[33] Jumaniyozov D., Kaygorodov I., Khudoyberdiyev A., The algebraic and geometric classification of nilpotent noncommutative Jordan algebras, Journal of Algebra and its Applications, 2020, DOI: 10.1142/S0219498821502029
[34] Karimjanov I., Kaygorodov I., Khudoyberdiyev A., The algebraic and geometric classification of nilpotent Novikov algebras, Journal of Geometry and Physics, 143 (2019), 11-21.
[35] Karimjanov I., Kaygorodov I., Ladra M., Central extensions of filiform associative algebras, Linear and Multilinear Algebra, 2019, DOI: 10.1080/03081087.2019.1620674.
[36] Karimjanov I., Ladra M., Some classes of nilpotent associative algebras, Mediterranean Journal of Mathematics, 17 (2020), 2, Pape 70, 21 pp.
[37] Kaygorodov I., Khrypchenko M., Lopes S., The algebraic and geometric classification of nilpotent anticommutative algebras, Journal of Pure and Applied Algebra, 224 (2020), 8, 106337.
[38] Kaygorodov I., Khudoyberdiyev A., Sattarov A., One-generated nilpotent terminal algebras, Communications in Algebra, 48 (2020), 10, 4355-4390.
[39] Kaygorodov I., Lopes S., Páez-Guillán P., Non-associative central extensions of null-filiform associative algebras, Journal of Algebra, 560 (2020), 1190-1210.
[40] Kaygorodov I., Páez-Guillán P., Voronin V., The algebraic and geometric classification of nilpotent bicommutative algebras, Algebras and Representation Theory, 2020, DOI: 10.1007/s10468-019-09944-x.
[41] Kaygorodov I., Popov Yu., Pozhidaev A., Volkov Yu., Degenerations of Zinbiel and nilpotent Leibniz algebras, Linear and Multilinear Algebra, 66 (2018), 4, 704-716.
[42] Kaygorodov I., Volkov Yu., The variety of 2-dimensional algebras over an algebraically closed field, Canadian Journal of Mathematics, 71 (2019), 4, 819-842.
[43] Loday J.-L., Cup-product for Leibniz cohomology and dual Leibniz algebras, Mathematica Scandinavica, 77 (1995), 2, 189-196.
[44] Mukherjee G., Saha R., Cup-product for equivariant Leibniz cohomology and Zinbiel algebras, Algebra Colloquium, 26 (2019), 2, 271-284.
[45] Naurazbekova A., On the structure of free dual Leibniz algebras, Eurasian Mathematical Journal, 10 (2019), 3, 40-47.
[46] Naurazbekova A., Umirbaev U., Identities of dual Leibniz algebras, TWMS Journal of Pure and Applied Mathematics, 1 (2010), 1, 86-91.
[47] Skjelbred T., Sund T., Sur la classification des algebres de Lie nilpotentes, C. R. Acad. Sci. Paris Ser. A-B, 286 (1978), 5, A241-A242.
[48] Rakhimov I., Hassan M., On one-dimensional Leibniz central extensions of a filiform Lie algebra, Bulletin of the Australian Mathematical Society, 84 (2011), 2, 205-224.
[49] Yau D., Deformation of dual Leibniz algebra morphisms, Communications in Algebra, 35 (2007), 4, 1369-1378.
[50] Zusmanovich P., Central extensions of current algebras, Transactions of the American Mathematical Society, 334 (1992), 1, 143-152.

[^0]: ${ }^{1}$ This work was supported by Agencia Estatal de Investigación (Spain), grant MTM2016-79661-P (European FEDER support included, UE); RFBR 20-01-00030; FAPESP 18/15712-0, 18/12197-7, 19/00192-3.

