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Abstract

We show a method to determine the space of derivations of any Lie algebra, and in partic-
ular we apply this method to a special class of Lie algebras, those nilpotent with low nilindex. 
Most calculations have been supported by the software Mathematica 3.0. 

1. Introduction

Lots of geometric and algebraic properties of Lie algebras, such as the compu-
tation of the dimension of their orbits or the determination of their first spaces of
cohomology [8] can be studied based on the knowledge of the corresponding space
of derivations, Der(g). But Der(g) has also applications to other problems in math-
ematics, like the classification of solvable Lie algebras from the nilpotent or Gelf-
and–Kirillov’s conjecture about the field of fractions of enveloping algebras of Lie
algebras [1,2], and also in Physics as in the study of the interaction of particles [11],
etc.

Up to now, in order to determine the space of derivations of Lie algebras was
needed a suitable gradation for the algebra containing homogeneous subspaces of
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dimension as low as possible [3,7], and this fact is specially difficult to obtain when
the nilindex is low.

We are now going to describe a process that allows us to determine the space of
derivations Der(g) for a given Lie algebra g and with that method we will not need
to have a special gradation of the algebra and particularly, this method will be more
precise with algebras of low nilindex, but it is also valid to determine the algebra of
derivations of Lie algebras of high nilindex or, even, for non-nilpotent Lie algebras.

The descending central sequence of a Lie algebra g of dimension n is defined by
C0(g) = g, Ci (g) = [g,Ci−1(g)]. If Ck(g) = 0 for some k, the corresponding Lie
algebra is called nilpotent. The smallest integer k such that the equality Ck(g) = 0
holds is called the nilindex of g. In general, the nilindex ranges from 1 (abelian) to
n− 1 (filiform Lie algebra).

In this way, the derived sequence (Dn(g)) of ideals in g is defined inductively by
D1(g) = g, and Dn(g) = [Dn−1(g),Dn−1(g)] for n > 1. If there exists an integer n
such that Dn(g) = {0}, then g is said to be a solvable Lie algebra, for more details
see [12].

Let g be a Lie algebra over K. A linear endomorphism d of g is called a derivation
of g if it satisfies

d([X,Y ]) = [d(X), Y ] + [X, d(Y )] ∀X,Y ∈ g.

It is easy to see that the set Der(g) of all derivations of g is a vector subspace of
End g, furthermore Der(g) is a Lie algebra over K for the bracket [d, d ′] = d ◦ d ′ −
d ′ ◦ d ∀d, d ′ ∈ Der(g).

A Z-gradation for a Lie algebra g consists in a decomposition as direct sum into
vectorial spaces g = ⊕

i∈Z gi such that [gi , gj ] ⊂ gi+j .
Let g be a Lie algebra on a field K. It is often convenient to use the language of

modules along with the (equivalent) language of representations. As in other algebra-
ic theories, there is a natural definition (see [9]). A vector space V over K, endowed
with a bilinear operation g × V → V (denoted (x, v) �→ x · v or just xv) is called a
g-module if the following condition is satisfied:

[x, y] · v = x · y · v − y · x · v ∀x, y ∈ g, v ∈ V.

For example, if φ : g → End(V ) is a representation of g (i.e., a homomorphism
of Lie algebras), then V may be viewed as a g-module via the action x · v = φ(x)(v).
Conversely, given a g-module V, this equation defines a representation φ : g →
End(V ).

Throughout the following sections, K is a field of characteristic 0, and all algebras
and modules are finite-dimensional over K.

1.1. Semisimple Lie algebras

Let g be a Lie algebra. Then always there exists a solvable ideal in g which
contains all other solvable ideals. This largest solvable ideal is called the radical
of g.



One says that g is semisimple if its radical 0 or an equivalent condition is that g

contains no non-zero abelian ideal.
Now, let V be a g-module, and φ : g → End(V ) the corresponding representation.

Definition 1.1. V (or φ) is called simple (or irreducible) if V /= (0) and V has no
submodules other than (0) and V.

V (or φ) is called semisimple (or completely reducible) if V is the direct sum of
simple submodules.

Note that g may be semisimple as a g-module without being a semisimple Lie
algebra; for example, g = K.

Theorem 1.1 (H. Weyl [11]). If g is semisimple, all g-modules (of finite dimension)
are semisimple.

1.2. Reductive Lie algebras

It is possible to use the foregoing results to obtain some general results concerning
semisimple representations of arbitrary Lie algebras and the structure of reductive
Lie algebras.

A Lie algebra g is called reductive if its radical (rad g) coincides with its center
(cf. [10]), and in this case, g is the direct sum of its center (that is an abelian algebra)
and D(g) (that is semisimple) [13].

We now show the following decisive criterion for the semisimplicity of a repre-
sentation of an arbitrary Lie algebra.

Theorem 1.2 [13]. Let g be a reductive Lie algebra over K, and let φ be a finite-
dimensional representation of g. Then φ is completely reducible if and only if for
every element X in the radical of g, φ(X) is a semisimple endomorphism (i.e., diag-
onalizable over the algebraic closure of K).

Furthermore, let V be the space on which φ acts, so if the hypothesis of the the-
orem is satisfied we can then find distinct elements λ1, . . . , λp on the dual space
(rad g)∗ and subspaces V1, . . . , Vp of V such that V is the direct sum of the Vi and
Vi = {v: v ∈ V, Xv = λi(X)v ∀X ∈ rad g}, obtaining with that direct sum the de-
composition into simple g-submodules of the semisimple g-module V.

The following result holds if we restrict to the algebras g = a with a abelian
instead of considering general reductive Lie algebras g = g1 ⊕ a with g1 semisimple
and a abelian Lie algebras. By applying the preceding theorem to a particular abelian
Lie algebra (which always coincides with its radical) we are going to obtain a new
method that simplifies the computations involved in the determination of the algebra
of derivations of any Lie algebra.



1.3. Toral-method

Let g be an arbitrary Lie algebra, and Der(g) the corresponding algebra of deriva-
tions that is also a Lie algebra. We now consider a special subalgebra of Der(g) called
T that it is constituted by the set, the largest that can be found, of derivations that are
simultaneously diagonalizable. This algebra is abelian, coincides with its radical and
it is formed by diagonal endomorphisms X, so any endomorphism of the form φ(X)

there will be a semisimple endomorphism. Thus, by applying the precedent theorem
every T-module will be semisimple via the correspondence between representations
completely reducible and semisimple modules.

An easy calculation shows that g and Der(g) are both structure of T-modules
by considering the operations or ‘products’ t · g = t (g), ∀t ∈ T , g ∈ g and t · d =
[t, d], ∀t ∈ T , d ∈ Der(g), respectively. So g and Der(g) are semisimple T-modules,
obtaining from that fact the following decompositions into direct sums, in the sense
of vectorial spaces, of simple T-modules:

• g = gα1
⊕ gα2

⊕ · · ·
gαi = {g/t · g = αi(t)g ∀t ∈ T }
with αi ∈ T ∗, such that αi(Tj ) = δi,j with {Ti} a basis of T, and the subspaces
gαi verifies that [gαi , gαj ] ⊂ gαi+αj , i.e., if there exist gαi , gαj with [gαi , gαj ] /= 0,
then the space gαi+αj also exists.

• Der(g) = Dλ1 ⊕ Dλ2 ⊕ · · ·
Dλi = {d ∈ Der(g)/t · d = λi(t) · d ∀t ∈ T }
λi ∈ T ∗, and the subspaces Dλi verify similar conditions to the precedents gαi .

It remains to determine which is the form of each space Dλi belonging to the
gradation obtained forDer(g). On the other hand, if we use the previous gradation for
g, any derivation d ∈ Dλi verifies d(gαi ) ⊂ gαj , from that, with an easy calculation
we lead to the following form to λi , that is, λi(t) = αj (t) − αi(t). This last fact
determines the type of derivations that form part of every Dαj−αi .

The steps that can be followed to calculate the algebra of derivations of a Lie
algebra are the following:

Step 1: The first step consists in determining into Der(g) a particular set, the big-
gest possible, constituted by diagonal derivations. For that, we choose a gradation for
g (g = ⊕

i∈Z gi ) in the sense that this gradation must contain as many homogeneous
subspaces of dimension 1 as possible.

An easy way to find diagonal derivations is to determine the subspace d0 of
Der(g) such that

d0(gi ) ⊂ gi , i ∈ Z,

continuously, we selected those elements of a certain basis in which they are diago-
nals.

Step 2: Let T be a subalgebra form by the diagonal derivations. Thus,



t ∈ T �⇒ t =
∑
i∈Z

αi(t)d
i
0,

where the αi’s are the dual basis of the di0’s, these last ones are the diagonal deriva-
tions.

Step 3: In this step, we are going to determine the differences of the ‘weights’ 1 of
the subspaces. Then imposing to a generic derivation in each subspace the conditions
that actual derivation must hold, we determine all possible derivations. In this step,
we have used as an invaluable tool the software Mathematica given the huge amount
of data involved in these computations.

Remark 1.3. The method essentially reduces the computations comparing with the
methods that have been used up to now, being specially efficient for that algebras of
low nilindex whose treatment results very complicated by the precedent methods.

Remark 1.4. If the subalgebra T is one-dimensional, our method is reduced to the
one used in [3], so the new method (called Toral-method) generalizes the precedent.

Remark 1.5. The Toral-method can be used to determine Der(g) even if g is not
nilpotent.

2. Applying the Toral-method to (n − 3)-filiform Lie algebras

We now apply the method described in the precedent section to a wide family g of
Lie algebras with nilindex 3 and from which we already know Der(g) what allows
us to contrast the methods.

In [4,5], (n− 3)-filiform Lie algebras are classified (by different methods), ob-
taining the algebras gin’s with i ranging from 1 to n− 2, and their laws can be ex-
pressed in a certain adapted basis {X0,X1,X2,X3, Y1, Y2, . . . , Yn−5, Yn−4} by

g
2q−1
n :

{
[X0,Xi ] = Xi+1, 1 � i � 2,

[Y2k−1, Y2k] = X3, 1 � k � q − 1,
1 � q � E

(
n − 2

2

)
;

g2s
n :




[X0,Xi ] = Xi+1, 1 � i � 2,

[X1, Yn−4] = X3,

[Y2k−1, Y2k] = X3, 1 � k � s − 1,

1 � s � E

(
n − 3

2

)
;

gn−2
n :

{
[X0,Xi ] = Xi+1, 1 � i � 2,

[X1,X2] = Yn−4.

1 The notion of weight is usually used in the theory of semisimple algebras though we used it for
arbitrary algebras using an analogous meaning with the semisimple case.



As an application of the Toral-method, continuously we are going to calculate the
space of derivations of the family of algebras g

2q−1
n .

Lemma 2.1. The linear mappings ad(X0), ad(X1), ad(X2), ad(Y2i), ad(Y2i−1),

t0, t1, d
i
0, h

r
0, dβ−α, dα+β−λi , d−α+λi , d2α, d2α+β−δr , dλi−λk , d−2α−β+λi+λj ,

d−2α−β+2λi , d2α+β−λi−λj , d2α+β−2λi , dδr−α, dδr−β, dδr−λi , d−2α−β+δr+λi , dδr−δs ,
1 � i, j, k � q − 1, i /= k, i < j and 2q − 1 � r, s � n − 4 and r /= s of the space
g

2q−1
n , with




t0(X0) = X0,

t0(X2) = X2,

t0(X3) = 2X3,

t0(Y2j ) = 2Y2j ,




t1(X1) = X1,

t1(X2) = X2,

t1(X3) = X3,

t1(Y2j ) = Y2j ,

{
di0(Y2i ) = −Y2i ,

di0(Y2i−1) = Y2i−1,

{
hr0(Yr ) = Yr ,

{
dβ−α(X0) = X1,

{
dα+β−λi (X0) = Y2i ,

dα+β−λi (Y2i−1) = X2,

{
d−α+λi (X0) = Y2i−1,

d−α+λi (Y2i ) = −X2,
{d2α(X1) = X3,

{
d2α+β−δr (Yr ) = X3,



d−2α−β+λi+λj (Y2j )

= Y2i−1,

d−2α−β+λi+λj (Y2i )

= Y2j−1,

{
d−2α−β+2λi (Y2i )

= Y2i−1,

{
d2α+β−λi−λj (Y2j−1) = Y2i ,

d2α+β−λi−λj (Y2i−1) = Y2j ,

{
d2α+β−2λi (Y2i−1) = Y2i ,

{
dλi−λk (Y2k−1) = −Y2i−1,

dλi−λk (Y2i ) = Y2k,

{
dδr−α(X0) = Yr ,

{
dδr−β(X1) = Yr ,

{
dδr−λi (Y2i−1) = Yr

{
d−2α−β+δr+λi (Y2i ) = Yr ,

{
dδr−δs (Ys) = Yr

are derivations over g
2q−1
n .

Theorem 2.2. The linear mappings described above constitute a basis for
Der(g2q−1

n ).



Proof. Following the method description it is necessary to calculate the diagonal
derivations and in order to do it we first need a gradation for the algebra. So let

gi =




〈Y−2i〉, 1 − q � i � −1,
〈0〉, i = 0,
〈Xi−1〉, 1 � i � 4,
〈Y2i−9〉, 5 � i � q + 3,
〈Yi+q−5〉 q + 4 � i � n − (q − 1),

〈Y2q−2〉 ⊕ · · · ⊕ 〈Y6〉 ⊕ 〈Y4〉 ⊕ 〈Y2〉 ⊕ 〈0〉
⊕〈X0〉 ⊕ 〈X1〉 ⊕ 〈X2〉 ⊕ 〈X3〉
⊕〈Y1〉 ⊕ 〈Y3〉 ⊕ · · · ⊕ 〈Y2q−3〉 ⊕ 〈Y2q−1〉 ⊕ · · · ⊕ 〈Yn−4〉,

a gradation of the mentioned family. Using this gradation we can determine the space
of derivations d0, such that d0(gi ) ⊂ gi ; and from this space we form the subalgebra
T by choosing those of them that be diagonal.

Computation to d0.

d0(Xi) = αiXi, 0 � i � 3,

d0(Yj ) = βjYj , 1 � j � n − 4,

by imposing the derivation condition for each pair of vectors belonging to the basis
we lead to the following restrictions for the parameters:

α2 = α0 + α1,

α3 = 2α0 + α1,

β2k = 2α0 + α1 − β2k−1, 1 � k � q − 1.

Obtaining that a possible basis for d0 can be formed by

{t0, t1} ∪ {
di0, 1 � i � q − 1

} ∪ {
h
j

0, 2q − 1 � j � n − 4
}

with 1 � q � E
(
n−2

2

)
and dim(d0) = n− q − 1.

To construct a torus of derivations, that is, a subalgebra T formed by diagonal
derivations, we have to take those derivations in d0 that have the desired form. In the
particular case in which we have been working now T = d0, so if d ∈ T , then



d(X0) = αX0,

d(X1) = βX1,

d(X2) = (α + β)X2,

d(X3) = (2α + β)X3,

d(Y2i−1) = λiY2i−1, 1 � i � q − 1,

d(Y2i ) = (2α + β − λi)Y2i , 1 � i � q − 1,
d(Yj ) = δjYj , 2q − 1 � j � n− 4,

and we have T = αt0 + βt1 + ∑
i∈{1,q−1} λidi0 + ∑

j∈{2q−1,n−4} δjh
j

0, leading to the
following gradation for the algebra:



g
2q−1
n

 = g2α+β−λq−1 ⊕  · · ·  ⊕  g2α+β−λ1 ⊕ g0 ⊕ gα ⊕ gβ ⊕ gα+β

⊕ g2α+β ⊕ gλ1
⊕ · · · ⊕ gλq−1

⊕ gδ2q−1
⊕ · · · ⊕ gδn−4

.

Once, we have found the weights, we calculate all possible differences between
them determining the corresponding subspaces of the space of derivations.

Calculate the differences between weights:

Case 1. α − β; in this case, d(X1) = α1X0 and the remaining ones vanish. Impos-
ing the fact that d is a derivation we arrive at α1 = 0. Thus, Dα−β = {0}.

Case 2. β − α; in this case, d(X0) = α0X1 and the rest vanish. Imposing again that
d is a derivation, we obtain that the parameter α0 can take any value, leading to a
derivation that will be represented by dβ−α(X0) = X1. So Dβ−α = 〈dβ−α〉.

Case 3. −2α − β + λi + λj , 1 � i < j � q − 1; if i /= j , we have

d(Y2j ) = β2jY2i−1, 1 � i, j � q − 1,

d(Y2i ) = β2iY2j−1, 1 � i, j � q − 1.

Imposing once again the derivation condition, (q − 1)(q − 2)/2 derivations are ob-
tained, d−2α−β+λi+λj .

If i = j , we obtain q − 1 derivations, d−2α−β+2λi . Thus,

D−2α−β+2λi = 〈d−2α−β+2λi 〉, 1 � i � q − 1,

D−2α−β+λi+λj = 〈d−2α−β+λi+λj 〉, 1 � i < j � q − 1.

The remaining differences are in correspondence with analogous situations that
we have yet to treat.

Concluding, in Table 1 we show all the differences and all linear mappings from
each one, together to the dimension of the corresponding subspace of derivations.

The mappings in Table 1 together to the torus of derivations, constitute a basis for
the space of derivations. Then

dim
(
Der

(
g

2q−1
n

)) = n2 − (3 + 2q)n+ 2q2 + 3q + 6. �

Most calculations have been supported by the package of symbolic calculus, Math-
ematica 3.0. The program that we explicit allows us to obtain the space of derivations
of any Lie algebras for concrete dimensions. It is very useful in order to guess the



Table 1

Differences Derivations Dimension

β − α dβ−α dim(Dβ−α) = 1

β ad(X1) dim(Dβ) = 1

α ad(X0) dim(Dα) = 1

α + β − λi dα+β−λi dim(⊕Dα+β−λi ) = q − 1

λi − α dλi−α dim(⊕Dλi−α) = q − 1

α + β ad(X2) dim(Dα+β) = 1

2α d2α dim(D2α) = 1

2α + β − λi ad(Y2i ) dim(⊕D2α+β−λi ) = q − 1

λi ad(Y2i−1) dim(⊕Dλi
) = q − 1

2α + β − δh d2α+β−δh dim(⊕D2α+β−δh ) = n− 2q − 2

λi − λk dλi−λk dim(⊕Dλi−λk ) = q2 − 3q + 2

−2α − β + λi + λj d−2α−β+λi+λj dim(⊕D−2α−β+λi+λj ) = (q−1)(q−2)
2

−2α − β + 2λi d−2α−β+2λi dim(⊕D−2α−β+2λi ) = q − 1

2α + β − λi − λj d2α+β−λi−λj dim(⊕D2α+β−λi−λj ) = (q−1)(q−2)
2

2α + β − 2λi d2α+β−2λi dim(⊕D2α+β−2λi ) = q − 1

δh − α dδh−α dim(⊕Dδh−α) = n− 2q − 2

δh − β dδh−β dim(⊕Dδh−β) = n− 2q − 2

δh − λi dδh−λi dim(⊕Dδh−λi ) = (n− 2q − 2)(q − 1)

−2α − β + δh + λi d−2α−β+δh+λi dim(⊕D−2α−β+δh+λi ) = (n− 2q − 2)(q − 1)

δh − δs dδh−δs dim(⊕Dδh−δs ) = (n− 2q − 2)(n− 2q − 3)

dimension and a basis of the aforesaid space for generic dimension of the Lie algebra
(see for instance [6]). The program can be separated into four parts.
1. Using T (the algebra form by diagonal derivations) we calculate all of the possible

differences between weights of subspaces.
2. We now create the generic space of derivations associated to each weight.
3. We impose that the bellow space is effectively the space of derivations of the

algebra.
4. Finally, we arrive at the dimension and a basis of the algebra of derivations as sum

and union, respectively, of the dimension and particular basis of each space.

Note: The program allows us to obtain the space of derivations of any Lie alge-
bra for concrete dimensions. By induction we can compute the space of derivations
of Lie algebras in arbitrary dimension.
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